SEL-0417 Fundamentos de controle - 2022

Departamento de Engenharia Elétrica - EESC/USP

Profa. Vilma A. Oliveira

3 de julho de 2022

Utilizando a biblioteca powersim/simscape electrical do Simulink, esta tarefa terá como foco a implementação do motor CC em malha aberta, conforme representado na Figura 1. Através da modulação por largura de pulso (PWM) e o amplificador de potência, um valor médio de tensão V_M é aplicado à armadura do motor. Conforme o valor escolhido para u, o valor da tensão média é alterado, fazendo com que a velocidade de giro do eixo do motor também se altere.

Figura 1 – Diagrama do motor CC em malha aberta.

Em uma malha de controle fechada, para que a velocidade do eixo do motor seja igual à uma referência especificada, o sinal de erro é medido e processado em um controlador. Este, por sua vez, define o sinal de controle (u) de forma automática. Nesta aula, entretanto, o foco não é o desenvolvimento do controlador, mas sim a simulação do motor em malha aberta.

A biblioteca *powersim/simscape electrical* permite uma simulação com maior nível de detalhe dos blocos utilizados, aproximando-se mais da implementação prática quando comparado ao uso de simples blocos de função de transferência. Alguns blocos úteis estão listados na Tabela 1 e ilustrados na Figura 2.

Nome do bloco	Função	
DC machine	Gera o modelo do motor CC	
IGBT	Gera a chave IGBT	
Diode	Gera o diodo de proteção do motor	
DC Voltage Source	Gera a fonte de tensão CC de entrada	
Sawtooth Generator	Gera a onda dente de serra	
	na frequência especificada	
Relational Operator	Gera um bloco comparador	
Gain	Gera um ganho no valor especificado	
Voltage Measurement	Gera um medidor da tensão	
Mean	Calcula o valor médio do sinal de entrada	

Tabela 1 – Blocos úteis no Simulink.

Figura 2 – Aparência dos blocos no Simulink.

Atividade 1 (Construção do PWM)

O bloco da modulação PWM será construído utilizando alguns dos blocos mais simples da Tabela 1. Como entrada do PWM tem-se o sinal constante (u) e a onda dente de serra (s). A saída do bloco, isto é, os pulsos (p) aplicados à chave obedecem à seguinte regra:

$$p = \begin{cases} 1, & \text{se } u \ge s, \\ 0, & \text{se } u < s. \end{cases}$$
(1)

A onda dente de serra possui amplitude variando entre 0 e 10, com uma frequência que deve ser escolhida seguindo especificações que dependem da planta que se trabalha. Para esta tarefa, utilize uma frequência de 5 kHz. Note que será necessário uma modificação para a construção da onda dente de serra desejada a partir do bloco "Sawtooth generator". Para verificação do PWM desenvolvido, faça mudanças no valor do sinal u (entre 0 e 10) e

verifique a influência no pulso gerado.

Para um dos valores de u, plotar a onda dente de serra, o sinal u e o sinal pulsado gerado pelo PWM todos na mesma figura. Discutir a lógica para geração dos pulsos. O eixo x (tempo) da figura deve variar entre 0 e $3T_s$, com T_s sendo o período de chaveamento da dente de serra.

Atividade 2 (Construção do amplificador de potência)

O bloco amplificador de potência será construído nesta atividade. O pulso de saída do bloco PMW é aplicado à uma chave que determina o valor médio da tensão de armadura a ser aplicada ao motor. Aqui ainda não é necessário a inserção do bloco do motor. O conjunto do bloco PWM com o bloco amplificador de potência é conhecido como *chopper* PWM. Dado um valor de entrada u no PWM, a saída é um valor de tensão média V_M . Ou seja, o *chopper* PWM possui uma relação entrada-saída que pode ser descrita por:

$$V_M = K_a u, \tag{2}$$

sendo K_a o ganho. Aplicar uma tensão u na entrada do amplificador de potência e medir o valor médio V_M da tensão pulsada na armadura do motor. Repetir este passo e preencher a Tabela 2. Dica: o valor médio de um sinal pode ser calculado no Simulink através do bloco *Mean*. A partir dos dados obtidos, discuta uma forma de calcular o ganho K_a .

u(V)	$V_M(V)$
2.0	
4.0	
6.0	
8.0	

Tabela 2 – Medições para calculo de k_a .

Atividade 3 (Inserção do bloco do motor)

Por fim, a terceira atividade consiste em inserir o bloco do motor CC para montar o diagrama de blocos completo exibido na Figura 1. Os parâmetros do motor são extraídos por meio de experimentos em laboratório e uso da *toolbox Parameter Estimation* do Matlab. Variando o valor do sinal constante u verifique o comportamento da velocidade de giro do eixo do motor CC e preencha a Tabela 3.

Tabela 3 – Medições da velocidade de giro do eixo do motor.

u(V)	$V_M(V)$	$\omega(rad/s)$
2.0		
4.0		
6.0		
8.0		