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Circuitos LC 
From Wikipedia, the free encyclopedia 

 

 

 
LC circuits behave as electronic resonators, which are a key component in many applications 

such as oscillators, filters, tuners and frequency mixers. 

An LC circuit consists of an inductor and a capacitor. The electrical current will alternate 

between them at an angular frequency of 

 

, 

 

where L is the inductance in henries, and C is the capacitance in farads. The angular 

frequency has units of radians per second.  

 

An LC circuit is an idealized model since it assumes there is no dissipation of energy due to 

resistance. For a model incorporating resistance see RLC circuit. 

 

Resonant frequency 
The resonant frequency of the LC circuit (in radians per second) is 

 

 
 

The equivalent frequency in the more familiar unit of hertz is 

 

 
 

Circuit analysis 
 

By Kirchoff's voltage law, we know that the voltage across the capacitor, VC must equal the 

voltage across the inductor, VL: 

 

VC = VL 

 

Likewise, by Kirchoff's current law, the current through the capacitor plus the current through 

the inductor must equal zero: 

 

iC + iL = 0 

 

From the constitutive relations for the circuit elements, we also know that 
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and 

 
 

After rearranging and substituting, we obtain the second order differential equation 

 

 
 

We now define the parameter ω as follows: 

 

 
 

With this definition, we can simplify the differential equation: 

 

 
 

The associated polynomial is s2 + ω2 = 0, thus 

 

s = + jω 

or 

s = − jω 

 

where j is the imaginary unit.  

Thus, the complete solution to the differential equation is 

 

i(t) = Ae + jωt + Be − jωt 

 

and can be solved for A and B by considering the initial conditions. 

Since the exponential is complex, the solution represents a sinusoidal alternating current. 

If the initial conditions are such that A = B, then we can use Euler's formula to obtain a real 

sinusoid with amplitude 2A and angular frequency . 

Thus, the resulting solution becomes: 

 

i(t) = 2Acos(ωt) 

 

The initial conditions that would satisfy this result are: 

 

i(t = 0) = 2A 

and 
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Impedance of LC circuits 
 

Series LC 
First consider the impedance of the series LC circuit. The total impedance is given by the sum 

of the inductive and capacitive impedances: 

 

Z = ZL + ZC 

 

By writing the inductive impedance as ZL = iωL and capacitive impedance as and 

substituting we have: 

 

 
 

Writing this expression under a common denominator gives: 

 

 
 

Note that the numerator implies if ω2LC = 1 the total impedance Z will be zero and otherwise 

non-zero. Therefore the series connected circuit will act as a band-pass filter having zero 

impedance at the resonant frequency of the LC circuit. 

 

Parallel LC 
 

The same analysis may be applied to the parallel LC circuit. The total impedance is then given 

by: 

 

 
 

and after substitution of ZL and ZC we have: 

 

 
 

which simplifies to: 
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Note that but for all other values of ω2LC the impedance is finite (and 

therefore less than infinity). Hence the parallel connected circuit will act as band-stop filter 

having infinite impedance at the resonant frequency of the LC circuit. 

 

Selectivity 
LC circuits are often used as filters; the L/C ratio determines their selectivity. For a series 

resonant circuit, the higher the inductance and the lower the capacity, the narrower the filter 

bandwidth. For a parallel resonant circuit the opposite applies. 

 

Applications 
LC circuits behave as electronic resonators, which are a key component in many applications: 

• Oscillators  

• Filters  

• Tuners  

• Mixers  

• Foster-Seeley discriminator  

The Foster-Seeley discriminator is an FM detector circuit that works on the same 

principle as most commonly used FM detectors, which is through variations in 

frequency. It uses a twice-tuned RF transformer to convert frequency changes into 

amplitude changes. 

This is accomplished by the use of resonance networks on the secondary of the 

transformer, tuned to the frequency of the carrier. If the input equals the carrier 

frequency, the inductive and capacitative responses should be equal in amplitude and 

opposite in phase which produces zero voltage on the output. Depending on whether the 

incoming FM signal varies below or above the carrier, the resultant inductive and 

capacitive vectors are summed and the result is a voltage proportional to the original 

phase shift from the carrier. 

Foster-Seeley discriminators are sensitive to both frequency and amplitude variations, 

unlike some detectors. Therefore a limiter must be used which is basically a circuit tuned 

so that at lower amplitudes it acts as a Class-A amplifier and at higher amplitudes acts 

like a Class-C amplifier which clips off the peaks. 

 

 

Circuitos RLC 
 
From Wikipedia, the free encyclopedia 

 

An RLC circuit (sometimes known as resonant or tuned circuit) is an electrical circuit 

consisting of a resistor (R), an inductor (L), and a capacitor (C), connected in series or in 

parallel. A RLC circuit is called a second-order circuit as any voltage or current in the circuit 

can be described by a second-order differential equation. 

 

Fundamental Parameters 
There are two fundamental parameters that describe the behavior of RLC circuits: the resonant 

frequency and the damping factor. In addition, there are several other parameters that can be 

derived from these first two (see next section). 

 

Resonant frequency 
The undamped resonance or natural frequency of an RLC circuit (in radians per second) is: 
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In the more familiar unit hertz, the natural frequency becomes 

 

 
 

Resonance occurs when the complex impedance ZLC of the LC resonator becomes zero: 

 

ZLC = ZL + ZC = 0 

 

Both of these impedances are functions of complex angular frequency s: 

 

 
 

ZL = Ls 

 

Setting these expressions equal to one another and solving for s, we find: 

 

 
 

where the resonance frequency ωo is given in the expression above. 

 

Damping factor 
 

The damping factor of the circuit (in radians per second) is: 

 

 
 

For applications in oscillator circuits, it is generally desirable to make the damping factor as 

small as possible, or equivalently, to increase the quality factor (Q) as much as possible. In 

practice, this requires decreasing the resistance R in the circuit to as small as physically possible. 

In this case, the RLC circuit becomes a good approximation to an ideal LC circuit, which is not 

realizable in practice. (Even if the resistor is removed from the circuit, there is always a small 

but non-zero amount of resistance in the wiring and interconnects between the other circuit 

elements that can never be eliminated entirely). 

Alternatively, for applications in bandpass filters, the value of the damping factor is chosen 

based on the desired bandwidth of the filter. For a wider bandwidth, a larger value of the 

damping factor is required (and vice versa). In practice, this requires adjusting the relative 

values of the resistor R and the inductor L in the circuit. 

 

Derived Parameters 
 

The derived parameters include Bandwidth, Q factor, and damped resonance frequency. 
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Bandwidth 
The RLC circuit may be used as a bandpass or band-stop filter, and the bandwidth (in radians 

per second) is 

 

 
 

Alternatively, the bandwidth in hertz is 

 

 
 

The bandwidth is a measure of the width of the frequency response at the two half-power 

frequencies. As a result, this measure of bandwidth is sometimes called the full-width at half-

power. Since electrical power is proportional to the square of the circuit voltage (or current), 

the frequency response will drop to at the half-power frequencies. 

 

Quality or Q factor 
The Quality of the series tuned circuit, or Q factor, is calculated as the ratio of the resonance 

frequency ωo to the bandwidth Δω (in radians per second): 

 

 
 

Or in hertz: 

 

 
 

For the parallel tuned circuit: 

 

 
 

Q is a dimensionless quantity. 

 

Damped Resonance 
 

The damped resonance frequency derives from the natural frequency and the damping factor. 

If the circuit is underdamped, meaning  then we can define the damped resonance 

as 
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In an oscillator circuit 

 

. 

 

As a result (approx).  

 

See discussion of underdamping, overdamping, and critical damping, below. 

 

Configurations 
 

Every RLC circuit consists of two components: a power source and resonator. There are two 

types of power sources – Thévenin and Norton. Likewise, there are two types of resonators – 

series LC and parallel LC. As a result, there are four configurations of RLC circuits: 

• Series LC with Thévenin power source  

• Series LC with Norton power source  

• Parallel LC with Thévenin power source  

• Parallel LC with Norton power source.  

 

Circuit Analysis 
 

Series RLC with Thévenin power source 
In this circuit, the three components are all in series with the voltage source. 

 

 

Series RLC Circuit notations: 

v - the voltage of the power source 

(measured in volts V)  

i - the current in the circuit (measured 

in amperes A)  

R - the resistance of the resistor 

(measured in ohms = V/A);  

L - the inductance of the inductor 

(measured in henries = H = V·s/A)  

C - the capacitance of the capacitor 

(measured in farads = F = C/V = 

A·s/V)  

 

Given the parameters v, R, L, and C, the solution for the current (I) using Kirchoff's voltage 

law is: 

 

 
 

For a time-changing voltage v(t), this becomes 
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Rearranging the equation gives the following second order differential equation: 

 

 
 

We now define two key parameters: 

 
and  

 
 

both of which are measured as radians per second. 

Substituting these parameters into the differential equation, we obtain: 

 

 
 

 

The Zero Input Response (ZIR) solution 
 

Setting the input (voltage sources) to zero, we have: 

 

 
 

with the initial conditions for the inductor current, IL(0), and the capacitor voltage VC(0). In 

order to solve the equation properly, the initial conditions needed are I(0) and I'(0). 

The first one we already have since the current in the main branch is also the current in the 

inductor, therefore 

 

 
 

The second one is obtained employing KVL again: 

 

 
 

 

 
 

We have now a homogeneous second order differential equation with two initial conditions. 

Substituting the two parameters ζ and ω0, we have 
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We now convert the form of this equation to its characteristic polynomial 

 

 
 

Using the quadratic formula, we find the roots as 

 

 
 

Depending on the values of α and ω0, there are three possible cases: 

 

Over-damping 

 
 

RLC series Over-Damped Response 

 

 
 

In this case, the characteristic polynomial's solutions are both negative real numbers. This is 

called "over-damping". 

Two negative real roots, the solutions are: 

 

 
 

Critical damping 
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RLC series Critically Damped 

 

 
 

In this case, the characteristic polynomial's solutions are identical negative real numbers. This 

is called "critical damping". 

The two roots are identical (λ1 = λ2 = λ), the solutions are: 

 

I(t) = (A + Bt)eλt 

 

for arbitrary constants A and B  

 

 

Under-damping 

 
 

RLC series Under-Damped 

 

 
 

In this case, the characteristic polynomial's solutions are complex conjugate and have negative 

real part. This is called "under-damping" and results in oscillations or ringing in the circuit. The 

solution consists of two conjugate roots 

 

λ1 = − ζ + iωc 

and 

λ2 = − ζ − iωc 

where 

 
 

The solutions are: 

 

 
 

for arbitrary constants A and B.  

 

Using Euler's formula, we can simplify the solution as 
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for arbitrary constants C and D.  

 

These solutions are characterized by exponentially decaying sinusoidal response. The time 

required for the oscillations to "die out" depends on the Quality of the circuit, or Q factor. The 

higher the Quality, the longer it takes for the oscillations to decay. 

 

The Zero State Response (ZSR) solution 
 

This time we set the initial conditions to zero and use the following equation: 

 

 
 

 
 

There are two approaches we can take to finding the ZSR: (1) the Laplace Transform, and (2) 

the Convolution Integral. 

 

Laplace Transform 
We first take the Laplace transform of the second order differential equation: 

 

 
 

where V(s) is the Laplace Transform of the input signal:  

 

 
 

We then solve for the complex admittance Y(s) (in siemens): 

 

 
 

We can then use the admittance Y(s) and the Laplace transform of the input voltage V(s) to 

find the complex electrical current I(s): 

 

 
 

Finally, we can find the electrical current in the time domain by taking the inverse Laplace 

Transform: 
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Example: 

Suppose v(t) = Au(t), where u(t) is the Heaviside step function.  

Then 

 

 
 

 
 

Convolution Integral 
 

A separate solution for every possible function for V(t) is impossible. However, there is a way 

to find a formula for I(t) using convolution. In order to do that, we need a solution for a basic 

input - the Dirac delta function. 

In order to find the solution more easily we will start solving for the Heaviside step function 

and then using the fact that our circuit is a linear system, its derivative will be the solution for 

the delta function. 

The equation will be therefore, for t > 0: 

 

 
Assuming λ1 and λ2 are the roots of 

 

 
 

then as in the ZIR solution, we have 3 cases here: 

 

Over-damping 
Two negative real roots, the solution is: 

 

 

 
 

Critical damping 
The two roots are identical (λ1 = λ2 = λ), the solution is: 

 

 

 
 

Under-damping 
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Two conjugate roots ( ), the solution is: 

 

 

 
(to be continued...) 

 

Frequency Domain 
The series RLC can be analyzed in the frequency domain using complex impedance relations. 

If the voltage source above produces a complex exponential wave form with amplitude V(s) 

and angular frequency s = σ + iω , KVL can be applied: 

 

 
 

where I(s) is the complex current through all components. Solving for I: 

 

 
 

And rearranging, we have 

 

 
 

Complex Admittance 
Next, we solve for the complex admittance Y(s): 

 

 
 

Finally, we simplify using parameters α and ωo 

 

 
 

Notice that this expression for Y(s) is the same as the one we found for the Zero State 

Response. 

 

Poles and Zeros 
The zeros of Y(s) are those values of s such that Y(s) = 0: 

s = 0 and  
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The poles of Y(s) are those values of s such that : 

 

 
 

Notice that the poles of Y(s) are identical to the roots λ1 and λ2 of the characteristic 

polynomial. 

 

Sinusoidal Steady State 
If we now let s = iω.... 

Taking the magnitude of the above equation: 

 

 
 

Next, we find the magnitude of current as a function of ω 

 

 
 

If we choose values where R = 1 ohm, C = 1 farad, L = 1 henry, and V = 1.0 volt, then the 

graph of magnitude of the current I (in amperes) as a function of ω (in radians per second) is: 

 
Sinusoidal steady-state analysis 

 

Note that there is a peak at Imag(ω) = 1. This is known as the resonant frequency. Solving for 

this value, we find: 
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Parallel RLC circuit 
A much more elegant way of recovering the circuit properties of an RLC circuit is through the 

use of nondimensionalization. 

 

 

Parallel RLC Circuit notations: 

V - the voltage of the power 

source (measured in volts V)  

I - the current in the circuit 

(measured in amperes A)  

R - the resistance of the resistor 

(measured in ohms = V/A);  

L - the inductance of the inductor 

(measured in henries = H = 

V·s/A)  

C - the capacitance of the 

capacitor (measured in farads = F 

= C/V = A·s/V)  

 

For a parallel configuration of the same components, where Φ is the magnetic flux in the 

system 

 

 
 

with substitutions 

 

 
 

The first variable corresponds to the maximum magnetic flux stored in the circuit. The second 

corresponds to the period of resonant oscillations in the circuit. 

 

Similarities and differences between series and parallel circuits 
The expressions for the bandwidth in the series and parallel configuration are inverses of each 

other. This is particularly useful for determining whether a series or parallel configuration is 

to be used for a particular circuit design. However, in circuit analysis, usually the reciprocal 

of the latter two variables are used to characterize the system instead. They are known as the 

resonant frequency and the Q factor respectively. 

 

Applications of tuned circuits 
There are many applications for tuned circuits especially in radio and communication 

systems. They can be used to select a certain narrow range of frequencies from the total 

spectrum of radio waves. 
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