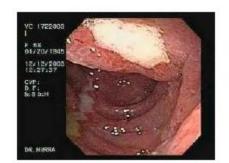


Imunodeficiências Primárias


Prof. Dr. Jean Pierre Schatzmann Peron Laboratório de Interações Neuroimunes ICB IV - USP

Imunodeficiências - Infecções de Repetição

Colite

Pneumonia

Toxoplamose Ocular

Candida

Staphilococcus

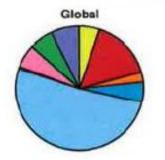
Infecções Múltiplas

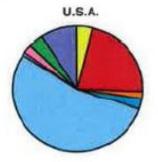
Valores de Referência para Leucócitos no Sangue

	Linfócitos B	Linfócitos T	Fagócitos	
X 10 ⁹ por L de sangue	0,3	Total – 1-2,5 CD4 – 0,5-1,6 CD8 – 0,3-0,9	Monócitos 0,15-,06 Neutrófilos 3-5,5 Eosinófilos 0,05-0,25 Basófilos 0,02	
Análise da Função (in vivo)	Anticorpos	DTH		
Análise da função (in vitro)	Anticorpos	Linfoproliferação e secreção de citocinas	Fagocitose Killing	
1				

Valores de Referência para Imunoglobulinas no Plasma

IgM	IgG	IgA	IgE	Complemento	
600-1400	40-345	60-380	0-200	CH50 125-300	
mg/ dL	mg/dL	mg/dL	IU/mL	IU/mL	




imuno biologia

Major Categories of PI

Categories	GI	oball	U.	S.A.	Intern	ational
Combined T and B-cell Immunodeficiencies	3,163	5.24%	608	3.90%	2,555	5.71%
Other Well Defined Immunodeficiency Syndromes	9,427	15.62%	3,413	21.88%	6,014	13.44%
Diseases of Immune Dysregulaton	1,553	2.57%	282	1.81%	1,271	2.84%
Congenital Defects of Phagocyte Numbers and Function	3,189	5.28%	461	2.95%	2,728	6.09%
Predominantly Antibody Deficiencies	31,162	51.62%	8,388	53.76%	22,774	50.88%
Defects in Innate Immunity	328	0.54%	118	0.76%	210	0.47%
Autoinflammatory Disorders	3,600	5.96%	352	2.26%	3,248	7,26%
Complement Deficiencies	3,652	6.05%	564	3.61%	3,088	6.90%
Other Immunodeficiencies	4,290	7,11%	1,416	9.08%	2,874	6.42%
•						

Total 60,364 15,602 44,762

Prevalência USA vs Mundo

Immunol Res (2011) 51:61-70 DOI 10.1007/s12026-011-8241-y

Global study of primary immunodeficiency diseases (PI) diagnosis, treatment, and economic impact: an updated report from the Jeffrey Modell Foundation

Tipos de Imunodeficiências Encontradas

ADA Deficiency	298
Artemis Deficiency (DCLREIC)	101
COS & / COS & / COS & Deficiency	25
Cernunnos Deficiency	10
DNA Ligase IV Deficiency	14
yc Deficiency	454
IL-2Ralpha Deficiency (CD25 Deficiency)	34
IL-7R & Deficiency	98
JAK3 Deficiency	116
MHC Class I or II Deficiency	226
Omenn Syndrome	237
PNP Deficiency	38
RAG 1/2 Deficiency	312
Reticular Dysgenesis (AK2 Deficiency)	15
ZAP-70 Deficiency	51
Other SCID:	1,134
Total	3,163

ALPS Type 1a, CD95 (fas) Defects	242
ALPS, other types	210
APECED	165
Chediak-Higashi Syndrome	174
Griscelli Syndrome Type 2	96
Hermansky Pudlak Syndrome (Type 2; AP3 deficiency)	11
HLH (other types, Munc13-4, Munc 18-2, STX11)	183
HLH Perforin Deficiency	101
IPEX (X-Linked)	80
IPEX-Like Syndrome	77
XLP1, SHZD1A Deficiency	189
XLP2, XIAP Deficiency	25
Total	1,553

BITE THE STRUCTURES AND RESIDENCE AND AND RESIDENCE AND	arumes
Ataxia-Telangiectasia (A-T)	2,190
Ataxia-Telangie ctasia like Disease (ATLD)	22
Bloom Syndrome	26
Cartilage Hair Hypopiasia	135
Chronic Mucocutaneous Candidiasis	456
Comel-Netherton Syndrome	59
DiGeorge Syndrome (DGS)	4,310
Dyskeratosis Congenita	37
HyperigE, AD (STAT3, Job Syndrome)	760
Hyper-IgE, AR (DOCKB, TYK2 Deficiency)	156
ICF-ID Centromeric Instability and Facial Anomalies	15
Nijmegen Breakage Syndrome	227
PMS2 Deficiency	4
Schimke Syndrome	30
Wiskott Aldrich Syndrome (WAS)	1,000
Total	9,427

CGD, AR	964
CGD, XL	1,029
Glycogen Storage Disease Type 1b	31
Leukocyte Adhesion Deficiency I	168
Leukocyte Adhesion Deficiency II, III, and others	26
MSMD (IL-12p40, IL12RB, IFN-yR1/2, STAT1 Deficiency)	150
Neutropenia w/ Cardiac + Urogenital Malformations	12
Neutropenia, Cyclical	269
Neutropenia, Severe Congenital (ELAZ, HAX1)	505
Neutropenia, XL (WASP mutation)	21
Papillon-Lefèvre Syndrome	14
Total	3,189

Feature	B Cell Deficiency	T Cell Deficiency
Susceptibility to infection	Pyogenic bacteria (otitis, pneumonia, meningitis, osteomyelitis), enteric bacteria and viruses, some parasites	Pneumocystis jiroveci, many viruses, atypical mycobacteria, fungi
Diagnosis		
Serum Ig levels	Reduced	Normal or reduced
DTH reactions to common antigens	Normal	Reduced
Morphology of lymphoid tissues	Absent or reduced follicles and germinal centers (B cell zones)	Usually normal follicles, may be reduced parafollicular cortical regions (T cell zones)

Consistem em Defeitos

- Nos mecanismos de reconhecimento
 - Inata: TLRs, NLRs, entre outros
 - Adaptativa: TCR, Complexo CD3,Igs
- Na sinalização
 - Fatores de Transcrição: MyD88, STATs...
- Defeitos nos mecanismos efetores da resposta imune
 - Inata: ROS (NADPH oxidase), NO (iNOS)...
 - Adaptativa: IFN-γ.

Imunodeficiências

- Imunidade Humoral:
 - Bactérias encapsuladas, bactérias formadoras de pus, viroses.
- Imunidade Celular:
 - patógenos intracelulares e viroses.
- Tumores
 - Imunovigilância
- Autoimunidade ?

TABLE 20-3 Severe C	ombined Immunodeficiencies	
Disease	Functional Deficiencies	Mechanism of Defect
Defects in cytokine signalin	g	
X-linked SCID	Marked decrease in T cells; normal or increased B cells; reduced serum Ig	Cytokine receptor common y chain mutations; defective T cell development in the absence of IL-7-derived signals
Autosomal recessive forms	Marked decrease in T cells; normal or increased B cells; reduced serum Ig	Mutations in IL2RA, IL7RA, JAK3
Defects in nucleotide salva	ge pathways	
ADA deficiency	Progressive decrease in T, B, and NK cells; reduced serum Ig	ADA deficiency caused by mutations in the gene, leading to accumulation of toxic metabolites in lymphocytes
PNP deficiency	Progressive decrease in T, B, and NK cells; reduced serum Ig	PNP deficiency caused by mutations in the gene, leading to accumulation of toxic metabolites in lymphocytes
Defects in V(D)J recombina	tion	
RAG1 or RAG2 deficiency recombination*	Decreased T and B cells; reduced serum lg; absence or deficiency of T and B cells	Cleavage defect during V(D)J recombination; mutations in RAG1 or RAG2
Double-stranded break repair and checkpoint	Decreased T and B cells; reduced serum lg; absence or deficiency of T and B cells	Failure to resolve hairpins during V(D)J recombination; mutations in ARTEMIS, DNA-PKcs, CERNUNNOS, LIG4, NBS1, MRE11, ATM
Defective thymus developm	ent	
Defective pre-TCR checkpoint	Decreased T cells; normal or reduced B cells; reduced serum Ig	Mutations in CD45, CD3D, CD3E, ORAI1 (CRAC channel component), STIM1
DiGeorge syndrome	Decreased T cells; normal B cells; normal or reduced serum Ig	22q111 deletion; T-box 1 (TBXI) transcription factor mutation
FoxN1 deficiency	Thymic aplasia with defective thymic cell development	Recessive mutation in FOXN1

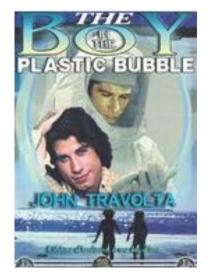
Nome da síndrome de deficiência	Anormalidade específica	Defeito imune	Suscetibilidade
Imunodeficiência combinada severa	Ver Figura 12.14		Geral
Síndrome de DiGeorge	Aplasia tímica	Números variáveis de células T e B	Geral
Deficiência do MHC de classe I	Mutações TAP	Ausência de célulasT CD8	Inflamação crônica dos pulmões e da pele
Deficiência do MHC de classe II	Ausência de expressão do MHC de classe II	Ausência de células T CDA	Geral
Síndrome de Wiskott–Aldrich	Ligada ao X; gene WASP defeitoso	Respostas humorais a polissacarídeos defeituosas e incapacidade de respostas decorrentes de ativação das células T e disfunção das células T _{reg}	Bactérias encapsuladas extracelulares
Agamaglobulinemia ligada ao X	Perda da tirosina quinase Btk	Ausência de células B	Bactérias extracelulares, vírus
Síndrome Hiper IgM	Deficiência de AID Deficiência de ligante CD40 Deficiência do CD40 Deficiência de NEMO (IKK)	Sem mudança de isotipo e/ou tripermutação somática	Bactérias extracelulares Pneumocystis carinii Cryptosporidium parvum

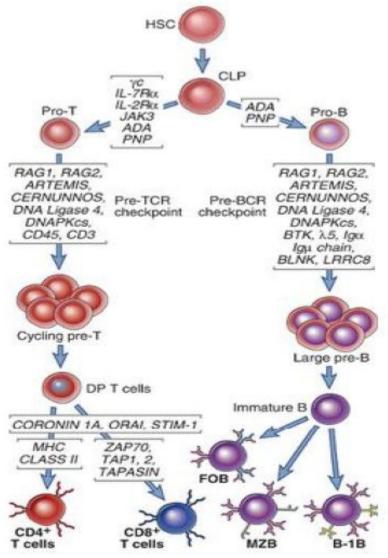
Ŀ	iol	ogi	9
***	0	usnot st	iaų:
	•	11 16	
40			1
		by forther	10

Nome da síndrome de deficiência	Anormalidade específica	Defeito imune	Suscetibilidade
lmunodeficiência variável comum	Deficiência de ICOS Outras	Defeito na produção de IgA e IgG	Bactérias extracelulares
Seletiva de IgA	Desconhecida ligada ao MHC	Nenhuma síntese de IgA	Infecções respiratórias
Deficiência de fagócitos	Muitas diferentes	Perda de função fagocitária	Bactérias e fungos extracelulares
Deficiências do complemento	Muitas diferentes	Perda de componentes específicos do complemento	Bactérias extracelulares, especialmente espécies de <i>Neisseria</i> spp.
Síndrome linfoproliferativa ligada ao X	Mutante SAP (SH2D1A)	Incapacidade de controlar o crescimento das células B	Tumores de células B induzidos pelo EBV
Ataxia telangiectasia	Mutação no domínio da quinase do ATM	Células T reduzidas	Infecções respiratórias
Síndrome de Bloom	DNA-helicase defeituosa	Células T reduzidas Níveis reduzidos de anticorpos	Infecções respiratórias

Imunodeficiência Combinada Severa (SCID)

- Autossômica Mutação nos genes RAG
 - Susceptibilidade múltiplos patógenos
- Síndrome de Omenn
 - Mutação em RAG porém com alguns linfócitos T com função residual –
 Repertório muito restrito. Ausência de linfócitos B.
 - Rash cutâneo, eosinofilia, aumento dos linfonodos e diarreia.
- Adenosina deaminase (ADA) e Purine nucleotide phosphorilase (maior prevalência)
 - degradação de purina e resulta no acúmulo de metabólitos tóxicos de nucleotídeos
- Mutação na cadeia γcomum (Compartilhado pelas citocinas IL-2, IL-4, IL-7, IL-15, IL-21 e TSLP.
 - Deficiência na maturação de linfócitos T e consequentemente pouco help para linfócitos B




David Vetter (September 21, 1971 -- February 22, 1984)

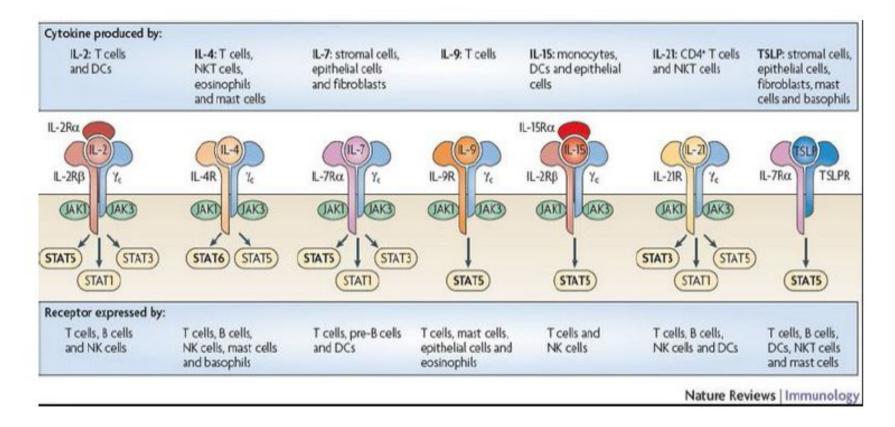
https://www.youtube.com/watch?v=4CFPdUAj41Y

1971 – Houston Hospital – Primeiro transplante de coração e a primeira separação de gêmeos xifópagos.

Imunodeficiência

Combinada

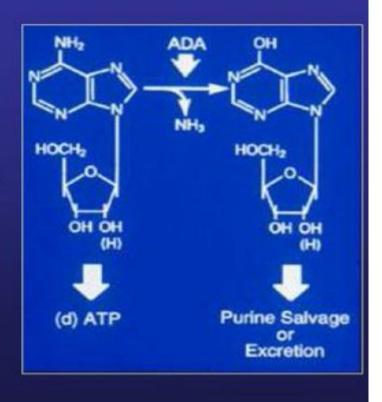
Severa (SCID)


Defeitos na Geração De Linfócitos T e B

SCID Ligada ao X

Deficiência na maturação de linfócitos T Linfócitos ligeiramente reduzidos

Adenosine-Deaminase (ADA) Deficiency


ADA is responsible gene in ~20% SCID. Often fatal, if untreated, due to infections.

It was the first form of SCID where:

- 1. genetic cause was identified (1972),
- 2. responsible gene was cloned (1983),
- 3. gene therapy was approached (1990),
- 4. effective treatment (PEG-ADA) other than HSCT was developed (1990).

PEG-ADA enzyme replacement therapy:

- 1. FDA approved orphan drug (1990),
- 2. Bi-weekly I.M.,
- 3. Can restore, sustain immunity,
- 4. Expensive (\$200-500,000/yr).

ADA - Desaminação da adenosina - desoxiadenosina em inosina e desoxiadenosina.

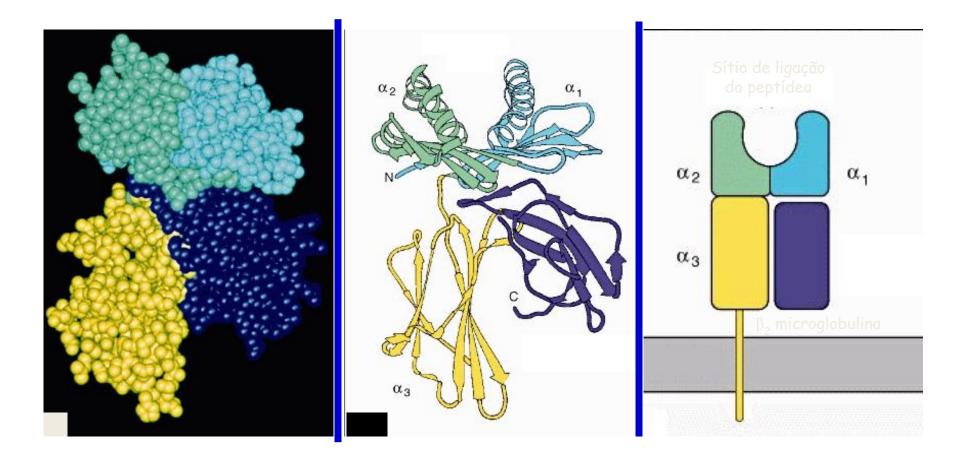
Tóxico por inibir a síntese de DNA – Linfócitos são mais susceptíveis.

imuno biologia na os orosaco

Síndrome do linfócitos nu

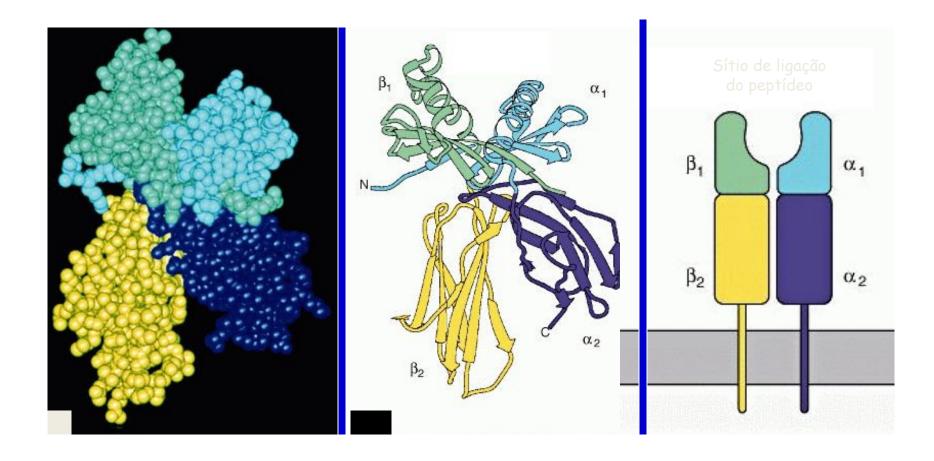
Defeitos na síntese de moléculas do MHC

 MHC I – Comprometimento na maturação e ativação de linfócitos T CD8 – TAP ou Tapasina


 MHC II - Comprometimento na maturação e ativação de linfócitos T CD4 - CIITA

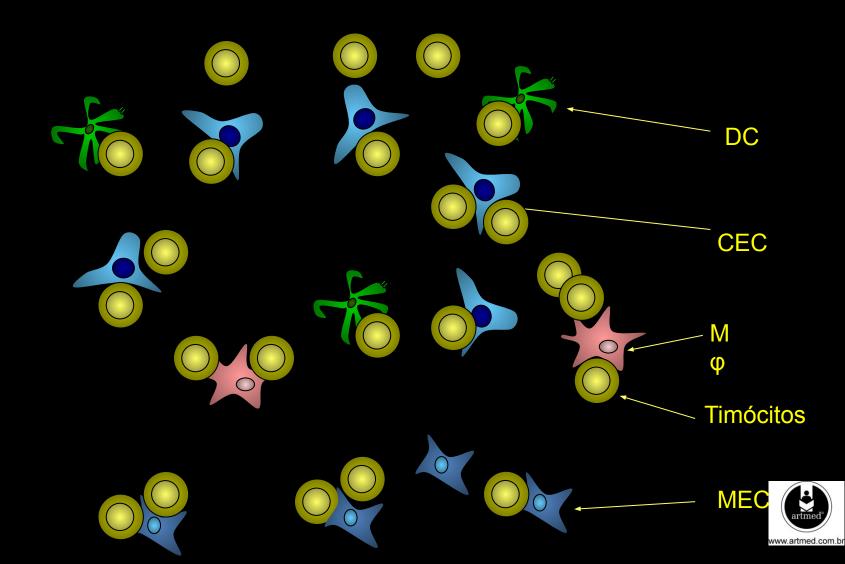
imuno biología de Scheuch

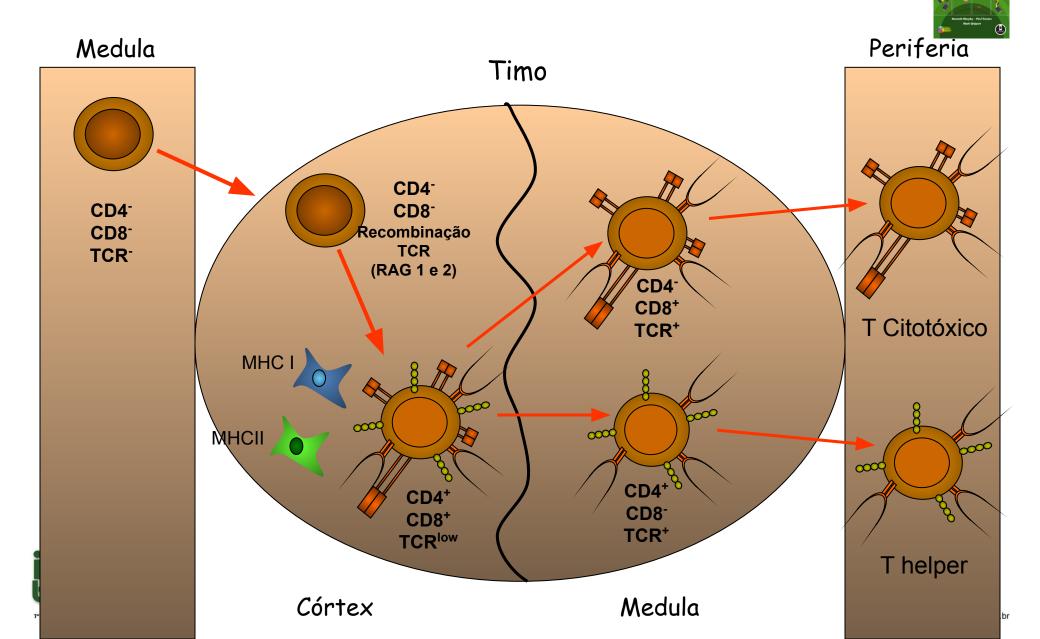
Estrutura da molécula de MHC classe I

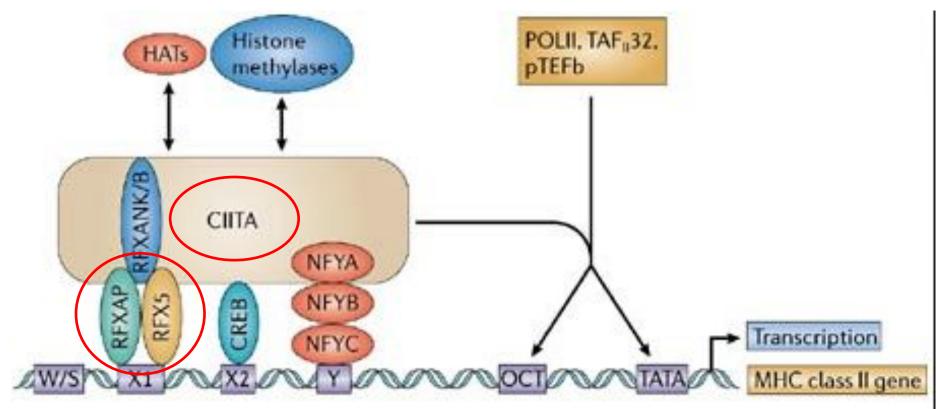


imuno biologia

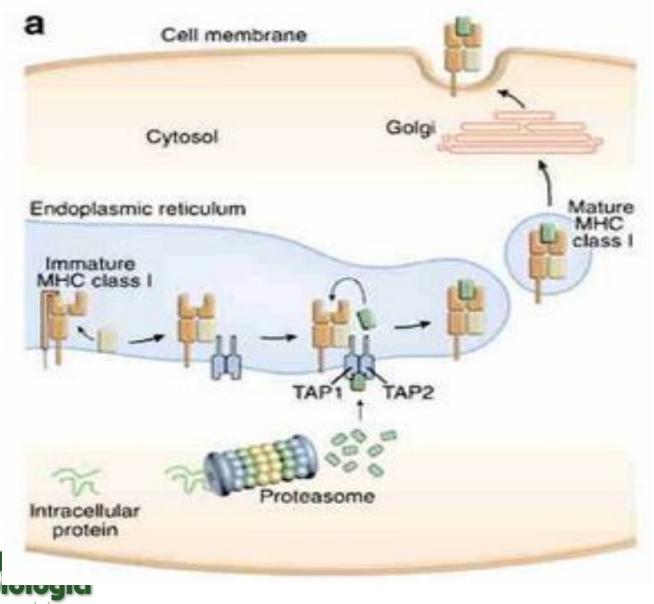
Estrutura da molécula de MHC classe II







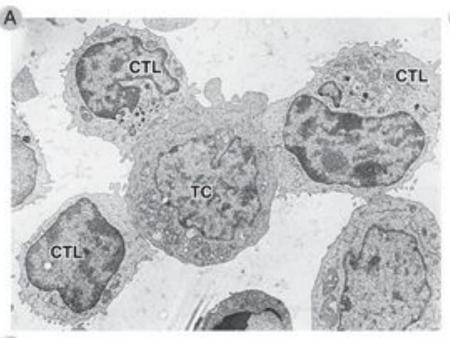
imuno biologia

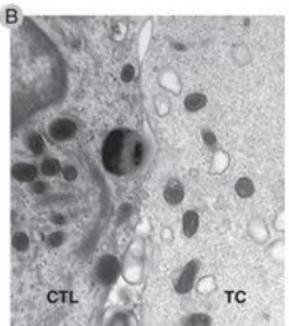


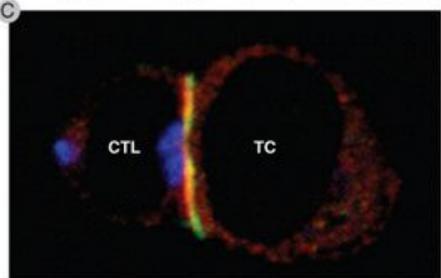
Copyright © 2006 Nature Publishing Group Nature Reviews | Immunology

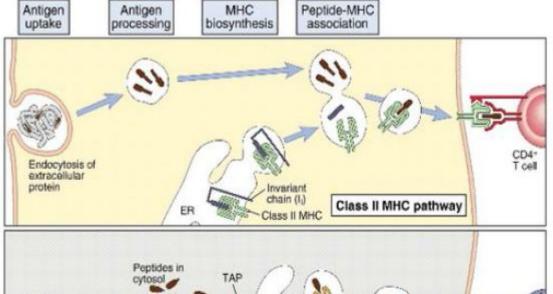

Deficiências no
TAP ou
Tapasina Impedem
que a
Molécula de MHC I
seja expressa
Na membrana
celular

Comprometimento CD8

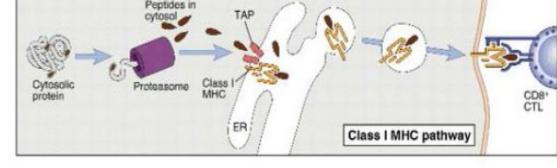





A ligação com o complexo MHC-peptídeo promove a formação de sinapses



Síndrome do Linfócito Nu


Deficiência de TAP

Transportador de Peptídeos para O retículo.

Ausência ou pouco MHC I

Lesões granuloma tosas de Pele

Infecções Bacterianas Pulmonares

Síndrome de Di George

Deleções 22q11

Gene Tbox1

Agenesia Tímica

Foxn1

Deficiências em Linfócitos B e Anticorpos

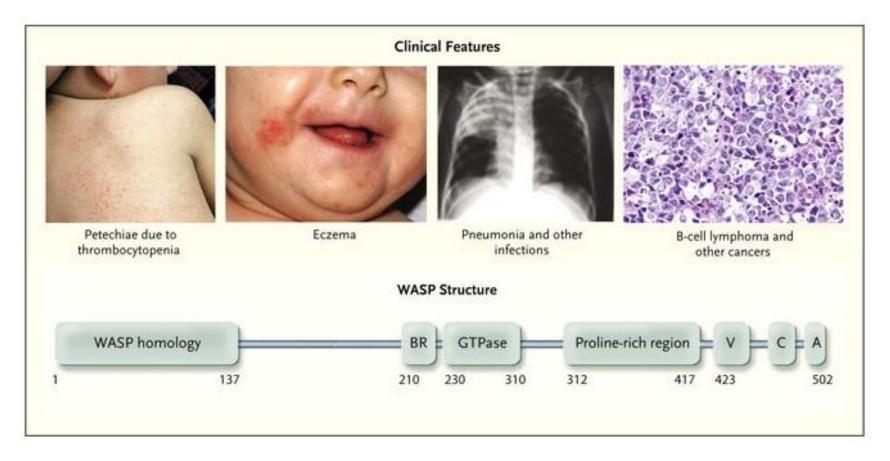
- Agamaglobulinemia ligada ao X
- Deficiência em BTK Bruton tirosina Kinase
- Impede a maturação de linfócitos B
- Igs Indetectáveis
- 20% dos pacientes desenvolvem autoimunidade
- Tratamento com gama-globulinas intravenosa.

Hypogammaglobulinemias/isotype defects		
Selective IgA deficiency	Decreased IgA; may be associated with increased susceptibility to bacterial infections and protozoa such as Giardia lamblia	Mutations in TACI in some patients
Selective IgG2 deficiency	Increased susceptibility to bacterial infections	Small subset have deletion in IgH $\gamma 2$ locus
Common variable immunodeficiency	Hypogammaglobulinemia; normal or decreased B cell numbers	Mutations in ICOS and TACI in some patients
ICF syndrome	Hypogammaglobulinemia, occasional mild T cell defects	Mutations in DNMT3B
Hyper-IgM syndromes		
X-linked	Defects in T helper cell-mediated B cell, macrophage, and dendritic cell activation; defects in somatic mutation, class switching, and germinal center formation; defective cell-mediated immunity	Mutation in CD40L
Autosomal recessive with cell- mediated immune defects	Defects in T helper cell-mediated B cell, macrophage, and dendritic cell activation; defects in somatic mutation, class switching, and germinal center formation; defective cell-mediated immunity	Mutations in CD40, NEMO
Autosomal recessive with antibody defect only	Defects in somatic mutation and isotype switching	Mutations in AID, UNG

AID, activation-induced cytidine deaminase; DNMT3B, DNA methyltransferase 3B; ICF, immunodeficiencies-centromeric instability-facial anomalies; ICOS, inducible costimulator; NEMO, NF-κB essential modulator; TACI, transmembrane activator and calcium modulator and cyclophilin ligand interactor; UNG, uracil N-glycosylase.

Hypogammaglobulinemias/isotype defects		
Selective IgA deficiency	Decreased IgA; may be associated with increased susceptibility to bacterial infections and protozoa such as Giardia lamblia	Mutations in TACI in some patients
Selective IgG2 deficiency	Increased susceptibility to bacterial infections	Small subset have deletion in IgH $\gamma 2$ locus
Common variable immunodeficiency	Hypogammaglobulinemia; normal or decreased B cell numbers	Mutations in ICOS and TACI in some patients
ICF syndrome	Hypogammaglobulinemia, occasional mild T cell defects	Mutations in DNMT3B
Hyper-IgM syndromes		
X-linked	Defects in T helper cell-mediated B cell, macrophage, and dendritic cell activation; defects in somatic mutation, class switching, and germinal center formation; defective cell-mediated immunity	Mutation in CD40L
Autosomal recessive with cell- mediated immune defects	Defects in T helper cell-mediated B cell, macrophage, and dendritic cell activation; defects in somatic mutation, class switching, and germinal center formation; defective cell-mediated immunity	Mutations in CD40, NEMO
Autosomal recessive with antibody defect only	Defects in somatic mutation and isotype switching	Mutations in AID, UNG

AID, activation-induced cytidine deaminase; DNMT3B, DNA methyltransferase 3B; ICF, immunodeficiencies-centromeric instability-facial anomalies; ICOS, inducible costimulator; NEMO, NF-κB essential modulator; TACI, transmembrane activator and calcium modulator and cyclophilin ligand interactor; UNG, uracil N-glycosylase.



- Wiskott-Aldrich Syndrome (WAS) Deficiências na proteína WAS ligada ao cromossomo X, responsável por mudanças do citoesqueleto importantes na ativação de linfócitos T e na colaboração com linfócitos B
- Linfócitos hiporresponssivos à mitógenos
- Resposta citotóxica também esta comprometida
- Proteína WAS também é expressa em plaquetas, as quais também estão alteradas e reduzidas trombocitopenia

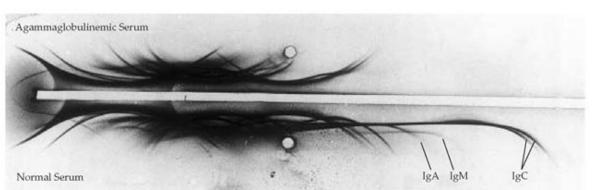
Deficiências de Linfócitos B Redução na síntese total de anticorpos Ou na mudança de isotipo

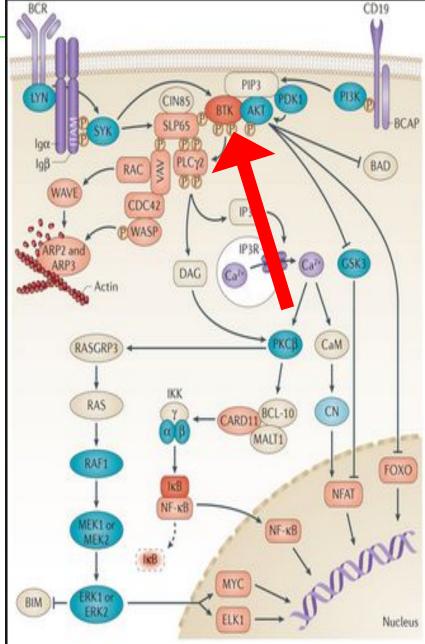
Agamaglobulinemia Ligada ao X

Hiper IgM

CVID

Susceptibilidade à infecções por bactérias Encapsuladas, pois necessitam do Reconhecimento por anticorpos para a opsonização.

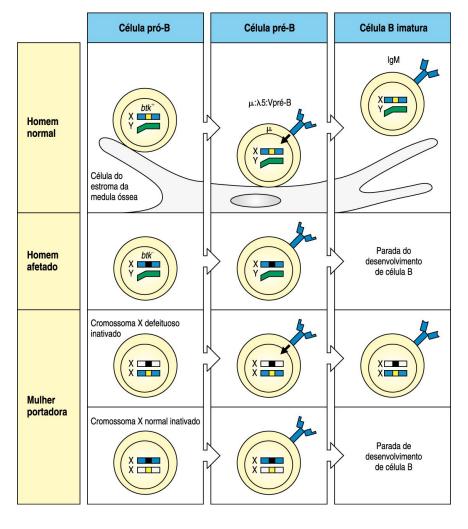


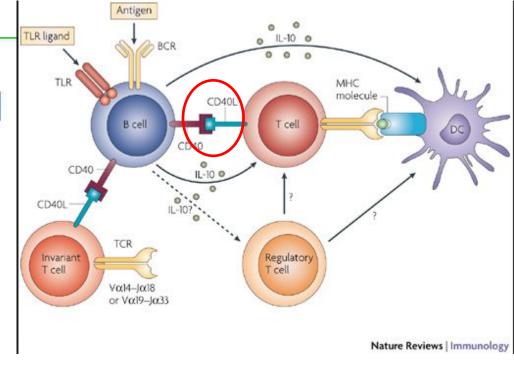

Primeira Imunodeficiência descrita – 1952 por Ogden C Bruton

Mais tarde caracterizada a deficiência de uma proteína batizada de Btk – Bruton Tirosina Kinase

Importante na maturação de linfócitos B – pré-B cell receptor.

Linfócitos

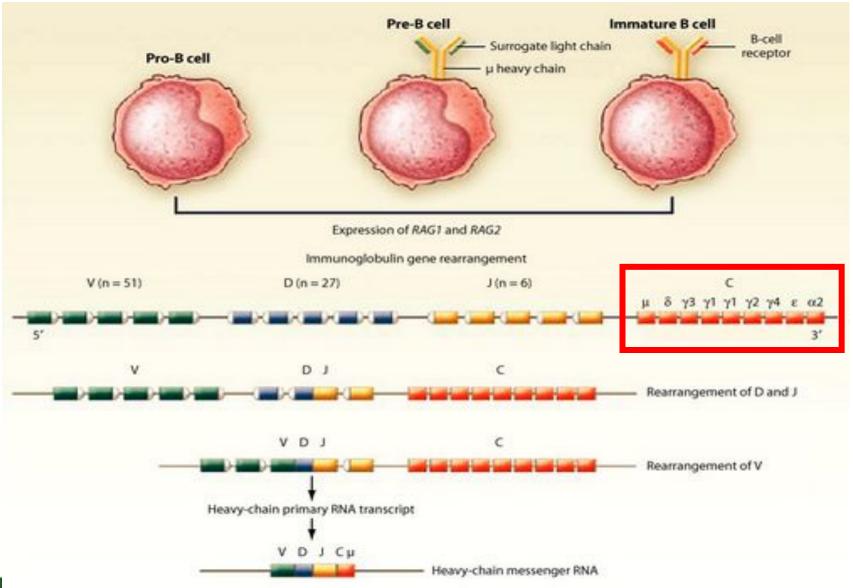



Figura 12.9 O produto do gene btk é importante para o desenvolvimento da célula B.

Hiper IgM

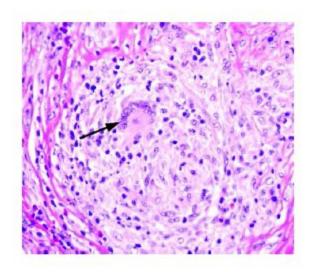
- Mutações no CD40
- Não há mudança de isotipo
- Ausência de IgG e IgA



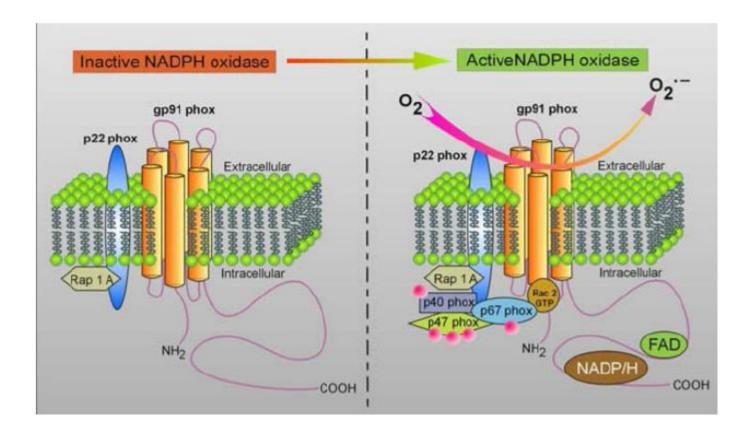


CVID – Imunodeficiência Comum Variável

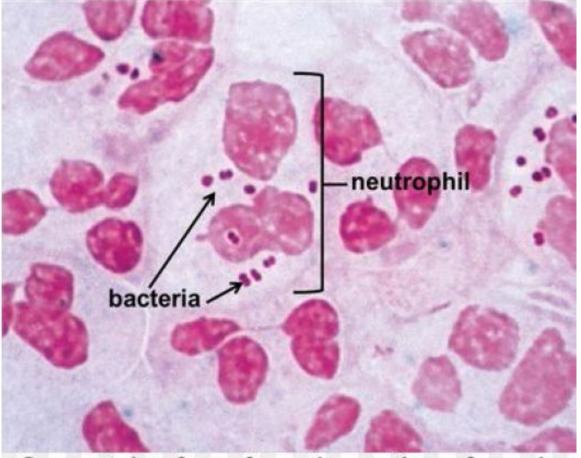
- Multifatorial
- XBP-1 IRE-1
- Deficiência da secreção de IgG
- Pode ser desencadeada por vários fatores
 - Medicamentos, infecções, etc...



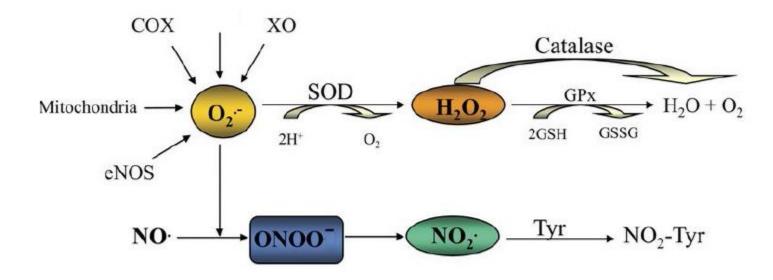
Doença Granulomatosa Crônica


rhIFN-γ

Deficiências em Fagócitos NADPH Oxidase



Phagocytosis by Neutrophils


Gram stain of pus from the urethra of a male patient with gonorrhea. Note the intracellular (phagocytosed) bacteria within neutrophils.

NADPH Oxidase

XO: xanthine oxidase

SOD: superoxide dismutase

GSH: reduced gluthatione

ONOO" neroxynitrite

Nox: NADPH oxidase

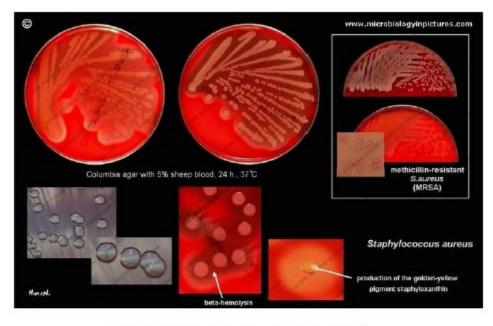
H₂O₂: hydrogen peroxide

GSSG: oxidized gluthatione

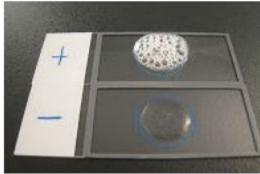
NO. · nitrogen dioxide

O2: superoxide anion

GPx: gluthatione peroxidase


NO: nitric oxide

NO.-Tyr: nitrotyrosine



S aureus

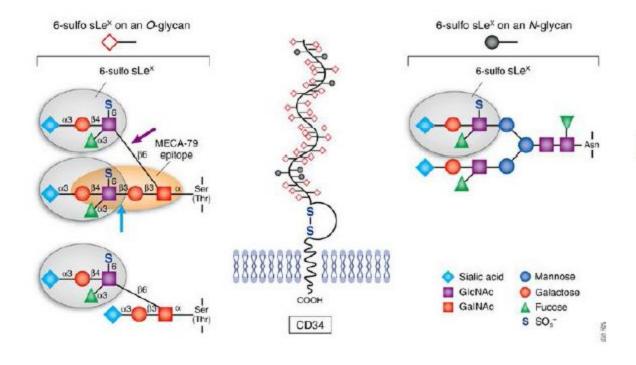
Catalase (+)

Deficiências de Adesão Leucocitária

 Redução na infiltração de leucócitos, principalmente neutrófilos ao sítio de infecção (ausência de pus)

 Rolling e transmigração leucocitária está amplamente comprometida

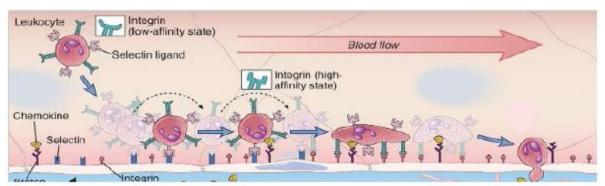
LAD1 – Mutação em CD18


Family	Molecule	Distribution	Ligand (molecule; cell type)		
Selectin	P-selectin (CD62P)	Endothelium activated by cytokines (TNF, IL-1), histamine, or thrombin	Sialyl Lewis X on PSGL-1 and other glycoproteins neutrophils, monocytes, T cells (effector, memory		
	E-selectin (CD62E)	Endothelium activated by cytokines (TNF, IL-1)	Sialyl Lewis X (e.g., CLA-1) on glycoproteins; neutrophils, monocytes, T cells (effector, memory)		
	L-selectin (CD62L)	Neutrophils, monocytes, T cells (naive and central memory), B cells (naive)	Sialyl Lewis X/PNAd on GlyCAM-1, CD34, MadCAM-1, others; endothelium (HEV)		
Integrin	LFA-1 (CD11aCD18)	Neutrophils, monocytes, T cells (naive, effector, memory)	ICAM-1 (CD54), ICAM-2 (CD102); endothelium (upregulated when cytokine activated)		
	Mac-1 (CD11bCD18)	Monocytes, dendritic cells	ICAM-1 (CD54), ICAM-2 (CD102); endothelium (upregulated when cytokine activated)		
	VLA-4 (CD49aCD29)	Monocytes, T cells (naive, effector, memory)	VCAM-1 (CD106); endothelium (upregulated when cytokine activated)		
	α ₄ β ₇ (CD49dCD29)	Monocytes, T cells (gut homing, naive, effector, memory)	VCAM-1 (CD106), MadCAM-1; endothelium in gut and gut-associated lymphoid tissues		

CLA-1, cutaneous lymphocyte antigen 1; GlyCAM-1, glycan-bearing cell adhesion molecule 1; HEV, high endothelial venule, ICAM-1, intracellular adhesion molecule 1; IL-1, interleukin-1; LFA-1, leukocyte function-associated antigen 1; MadCAM-1, mucosal addressin cell adhesion molecule 1; PNAd, peripheral node addressin; PSGL-1, P-selectin glycoprotein ligand 1; TNF, tumor necrosis factor; VCAM-1, vascular cell adhesion molecule 1; VLA-4, very late antigen 4.

Infecções bacterianas e fúngicas recorrentes e reduzida capacidade de reparo.

LAD-2


Defeitos

No

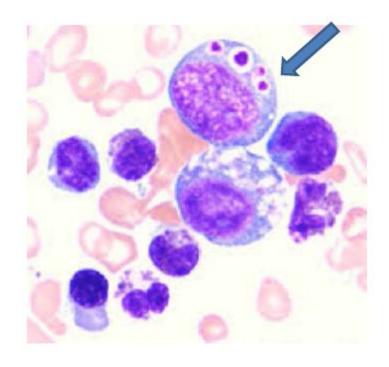
Rolling

E

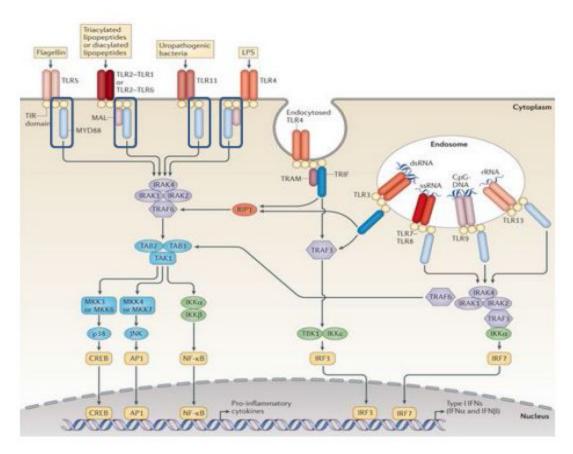
Migração

Defeitos em Fagócitos

Chediak-Higashi:


- autossômica recessiva caracteriada por infecções recorrentes com bactérias piogênicas, albinismo oculocutâneo e infiltrado de linfócitos.
- Fagócitos contém lisossomos gigantes
- Mutação no gene lyst
 - Lysossomal traficking regulator. Dificuldade de fusão entre o fagosomo e o lisossmo.

Chediak - Higashi

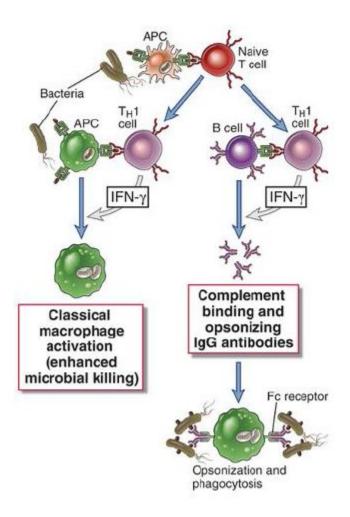


Toll-Like Receptors

MyD88 **IRAK**

Deficiência

No


reconhecimento

Eixo IFN-γ / IL-12

Susceptibilidade

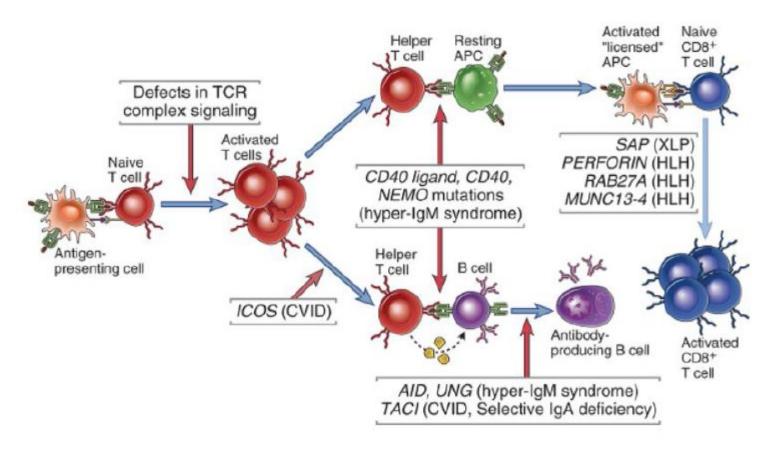
À

Infecções por Bactérias Intracelulares

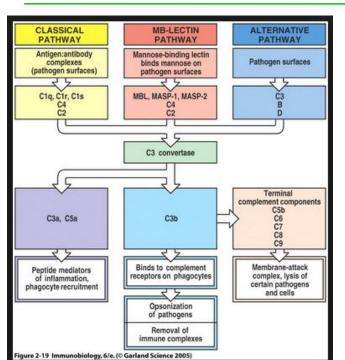
Mycobacterium tuberculosis

Disease	Functional Deficiencies	Mechanism of Defect		
Defects in MHC expression				
Bare lymphocyte syndrome	Defective MHC class II expression and deficiency in CD4 ⁺ T cells; defective cell-mediated immunity and T-dependent humoral immune responses	Defects in transcription factors regulating MHC class II gene expression, including CIITA, RFXANK, RFX5, and RFXAP		
MHC class I deficiency	Decreased MHC class I levels; reduced CD8 ⁺ T cells	Mutations in TAP1, TAP2, and TAPASIN		
Defective T cell signaling				
Proximal TCR signaling defects	Defects in cell-mediated immunity and T-dependent humoral immunity	Mutations in CD3 genes, CD45, STIM1, ORAI1		
Wiskott-Aldrich syndrome	Defective T cell activation, leukocyte mobility	TCR-dependent actin-cytoskeletal rearrangements are defective because of mutations in WASP		

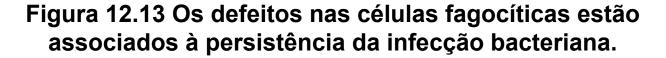
X-linked lymphoproliferative syndrome	Uncontrolled EBV-induced B cell proliferation, uncontrolled macrophage and CTL activation, defective NK cell and CTL function	Mutations in SAP		
Perforin deficiencies	Uncontrolled macrophage and CTL activation, defective NK cell and CTL function	Mutations in PERFORIN		
Granule fusion	Uncontrolled macrophage and CTL activation, defective NK cell and CTL function	Defective cytotoxic granule exocytosis; mutations in RAB27A MUNC13-4, SYNTAXIN, AP3 (and in LYST in Chédiak-Higashi syndrome—see Table 20-2)		


AP3, adaptor-related protein complex 3; LYST, lysosomal trafficking regulator protein; SAP, SLAM-associated protein; TAP, transporter associated with antigen processing; WASP, Wiskott-Aldrich syndrome protein.

Defeitos na Sinalização de Linfócitos



Disease	Functional Deficiencies	Mutation in genes of phagocyte oxidase complex; phox-91 (cytochrome b_{558} α subunit) is mutated in X-linked form Mutations in gene encoding the β chain (CD18) of β_2 integrins Mutations in gene encoding a GDP-fucose transporter required for the synthesis of the sialyl Lewis X component of E- and P- selectin ligands		
Chronic granulomatous disease	Defective production of reactive oxygen species by phagocytes; recurrent intracellular bacterial and fungal infections			
Leukocyte adhesion deficiency type 1	Defective leukocyte adhesion and migration linked to decreased or absent expression of β_2 integrins; recurrent bacterial and fungal infections			
Leukocyte adhesion deficiency type 2	Defective leukocyte rolling and migration linked to decreased or absent expression of leukocyte ligands for endothelial E- and P- selectins, causing failure of leukocyte migration into tissues; recurrent bacterial and fungal infections			
Leukocyte adhesion deficiency type 3	Defective leukocyte adhesion and migration linked to defective inside-out signaling and therefore defective integrin activation	Mutations in gene encoding KINDLIN-3		
Chédiak-Higashi syndrome	Defective vesicle fusion and lysosomal function in neutrophils, macrophages, dendritic cells, natural killer cells, cytotoxic T cells, and many other cell types; recurrent infections by pyogenic bacteria	Mutation in LYST leading to defect in secretor granule exocytosis and lysosomal function		
Toll-like receptor signaling defects	Recurrent infections because of defects in TLR and CD40 signaling and defective type I interferon production	Mutations in NEMO, UNC93B, MyD88, IκBα, and IRAK-4 compromise NF-κB activation downstream of Toll-like receptors		



VIA CLÁSSICA				VIA DA MBL				VIA ALTERNATIVA		
C1 Deficiência leva à doença do complexo imune			MBL MASP-1 MASP-2 C2 C4	SP-1 leva a infecções SP-2 bacterianas, 22 principalmente			Fator D por to		ciência leva à infecção pactérias piogênicas e seria spp., mas não à pença do complexo imune	
	Convertase C3									
Convertase C3										
		Deposição de C3b								
		Deficiência leva à infecção por bactérias piogênicas e <i>Neisseria</i> spp.; algumas vezes, à doença do complexo imune								
		Componentes do ataque à membrana								
	C5 C6 C7 C8 C9					Deficiência lev somente por N				

Tipo do defeito/nome da síndrome	Infecções associadas ou outras doenças		
Deficiência de adesão de leucócitos	Infecções bacterianas piogênicas generalizadas		
Doença granulomatosa crônica	Infecção intra e extracelular, granulomas		
Deficiência de G6PD	Queima respiratória defeituosa, infecção crônica		
Deficiência de mieloperoxidase	Morte celular defeituosa, infecção crônica		
Síndrome de Chediak-Higashi	Infecção intra e extracelular, granulomas		

Doença	Defeito gênico	Mecanismo afetado	Fenótipo		
	Humano	Camundongo			
XSCID	Cadeia γ do receptor da IL-2	Sinalização de citocinas	T-B+NK-	T-B-NK-	
	JAK3	Sinalização de citocinas	T-B+NK-	T-B-NK-	
	Receptor de IL-7	Sinalização de citocinas	T ⁻ B ⁺ NK ⁺	T-B-NK+	
Deficiência de RAG Síndrome de Omenn	RAG1	Recombinação do receptor do antígeno	T-B-NK+	T-B-NK+	
	RAG2	Recombinação do receptor do antígeno	T-B-NK+	T-B-NK+	
	Artemis	Recombinação do receptor do antígeno	T-B-NK+	T-B-NK+	
Deficiência ADA	ADA	Metabolismo	T-B-NK-	T-B-NK+	

Figura 12.14 Síndromes de imunodeficiência severa combinada.

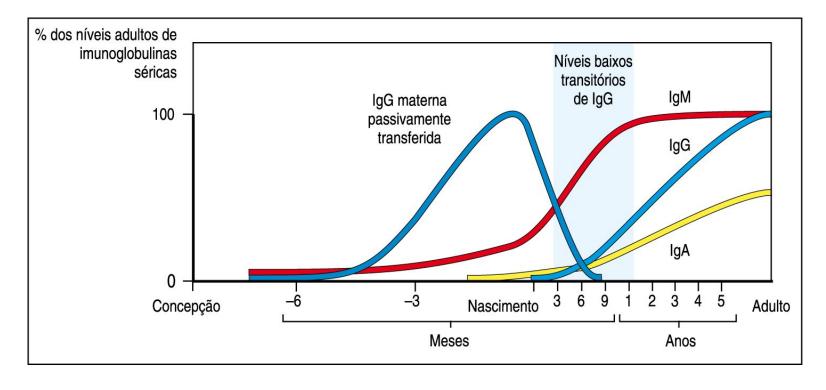
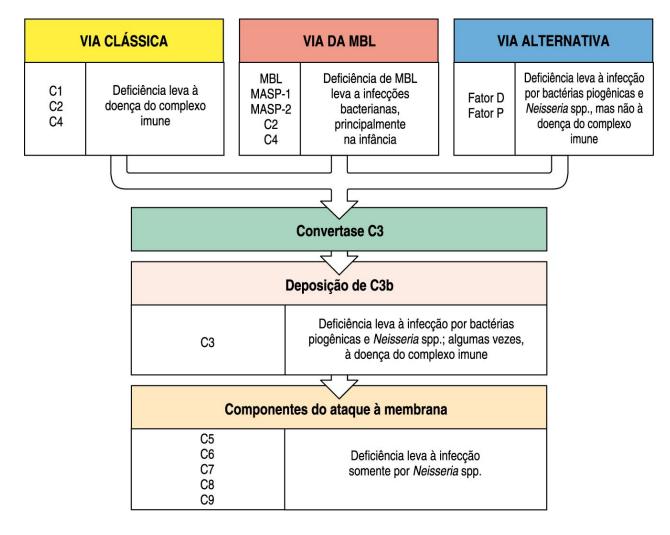
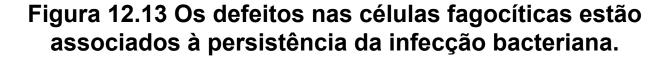



Figura 12.10 Os níveis de imunoglobulina, em recém-nascidos, caem a baixos níveis em torno dos seis meses de vida.




Figura 12.12 Defeitos nos componentes do complemento estão associados à suscetibilidade a certas infecções e ao acúmulo de complexos imunes.

Tipo do defeito/nome da síndrome	Infecções associadas ou outras doenças		
Deficiência de adesão de leucócitos	Infecções bacterianas piogênicas generalizadas		
Doença granulomatosa crônica	Infecção intra e extracelular, granulomas		
Deficiência de G6PD	Queima respiratória defeituosa, infecção crônica		
Deficiência de mieloperoxidase	Morte celular defeituosa, infecção crônica		
Síndrome de Chediak-Higashi	Infecção intra e extracelular, granulomas		

Doença	Defeito gênico	Mecanismo afetado	Fenótipo		
	Humano	Camundongo			
XSCID	Cadeia γ do receptor da IL-2	Sinalização de citocinas	T-B+NK-	T-B-NK-	
	JAK3	Sinalização de citocinas	T-B+NK-	T-B-NK-	
	Receptor de IL-7	Sinalização de citocinas	T-B+NK+	T-B-NK+	
Deficiência de RAG Síndrome de Omenn	RAG1	Recombinação do receptor do antígeno	T-B-NK+	T-B-NK+	
	RAG2	Recombinação do receptor do antígeno	T-B-NK+	T-B-NK+	
	Artemis	Recombinação do receptor do antígeno	T-B-NK+	T-B-NK+	
Deficiência ADA	ADA	Metabolismo	T-B-NK-	T-B-NK+	

Figura 12.14 Síndromes de imunodeficiência severa combinada.

