

PGF5312 – 1 FUNDAMENTOS DE PROCESSAMENTO DIGITAL DE IMAGENS MÉDICAS

Aula 15 – Qualidade de imagens Parte 3

Paulo R. Costa Grupo de Dosimetria das Radiações e Física Médica Instituto de Física - USP

		Datas	Dias	Aulas	Tema	GRUPO DE
	I – INTRODUÇÃO -	23/08	Terça	1	ABERTURA DO CURSO	
		25/08	Quinta	2	Prática 1 – Elementos de percepção visual	
	II – DOMÍNIOS	30/08	Terça	3	Domínios espacial e de frequências 1	IFUSP - Instituto de Fisica da USP
	ESPACIAL E DE FREQUÊNCIAS	01/09	Quinta	4	Prática 2 – Introdução ao ImageJ	
	FERIADO	06/09 — 09/09	Terça e Quinta	-	Semana da pátria: RECESSO PARA ESCOLHA DOS TEMAS DAS MONOGRAFIAS	
	II – DOMÍNIOS ESPACIAL E DE FREQUÊNCIAS	13/09	Terça	5	Domínios espacial e de frequências 2	
		15/09	Quinta	6	Prática 3 - Domínios espacial e de frequências	
	III – IMAGENS DIGITAIS	20/09	Terça	7	Fundamentos de Imagens Digitais 1	
		22/09	Quinta	8	Prática 4 – Fundamentos de Imagens Digitais 2/Contraste	
	IV – IMAGENS MÉDICAS	27/09	Terça	9	Imagens Médicas 1: RX, MAMO, CT	
		29/09	Quinta	10	Imagens Médicas 2: FLUORO, DO, MN, RM, US	
		04/10	Terça	11	Qualidade de imagens 1	
	V- QUALIDADE DE IMAGENS	06/10	Quinta	12	AULA IZABELLA BARRETO	
		11/10	Terça	13	Qualidade de imagens 2	
		13/10	Quinta	14	Prática 5 - Qualidade de imagens 2/CNR/SNR	
		18/10	Terça	15	Qualidade de imagem 3	
		20/10	Quinta	16	Prática 6 - Qualidade de imagens 3/ COQ, MTF e NPS	
		25/10	Terça	17	Ajuste de contraste	
		27/10	Quinta	18	Prática 7 - Ajuste de contraste	
	VI – AJUSTE DE CONTRASTE	01/11	Terça	19	Filtros para imagens	
		03/11	Quinta	20	Prática 8 - Filtros para imagens	
	VII – FILTROS PARA	08/11	Terça	21	Qualidade de imagens 4	
	IMAGENS	10/11	Quinta	22	Prática 9 - Qualidade de imagens 4/Detectabilidade	
	FERIADO	15/11	Terça	-	Proclamação da república	
	VIII – INOVAÇÕES EM PROC. DE IMG	17/11	Quinta	23	Inteligência artificial em imagens médicas	
	MÉDICAS	22/11	Terça	24	Reconstrução iterativa em imagens médicas	
	PRÉVIAS DAS	24/11	Quinta	25	Apresentação das Prévia dos trabalhos finais	
	APRESENTAÇÕES	29/11	Terça	26	Apresentação das Prévia dos trabalhos finais	
	AVALIAÇÃO DO CURSO	01/12 - 06/12	Quinta e Terça	-	Preparação para as monografias	
		08/12	Quinta	27	Apresentação dos trabalhos e discussões	
		13/12	Terça	28	Apresentação dos trabalhos e discussões	
		15/12	Quinta	29	Apresentação dos trabalhos e discussões	

Resolução espacial (continuação) **SDNR** NEQ DQE eDEQ

Optical transfer Function (OTF)

$$OTF(f_x, f_y) = \int \int_{-\infty}^{\infty} PSF(x, y) e^{-i2\pi (xf_x + yf_y)} dx dy$$

Modulation Transfer Function (MTF)

Módulo da OTF

Phase Transfer Function (PTF)

Fase da OTF

 $OTF(f_x, f_y) = |OTF(f_x, f_y)| e^{iPTF(f_x, f_y)}$

 $= \mathrm{MTF}(f_x, f_y)e^{i\mathrm{PTF}(f_x, f_y)}$

- Medição da MTF
- \rightarrow Método da onda quadrada
- → Método da fenda

Technical Note: MTF determination from a star bar pattern image

Antonio González-López^{a)}

Hospital Universitario Virgen de la Arrixaca, Ctra. Madrid-Cartagena, El Palmar, Murcia 30120, Spain

Carmen Ruiz-Morales

Servicio de Oncología Radioterápica, Hospital Universitario La Fe, Valencia 46026, Spain

Med. Phys. 42 (9), September 2015

Outras formas de medição

Spatial Frequency cycle/mm, mm⁻¹

line pair / mm (lp/mm)

f = 1.5 cycles / mm

f = 2.0 cycles / mm

Ideal Performance

Fonte: M. Flynn

Fonte: M. Flynn

Fonte: E. Samei

Fonte: E. Samei

Considerando o sistema de imagem como uma série de *n* sub-sistemas

$$PSF(x,y) = PSF_1 * PSF_2 * ... PSF_n$$

No espaço de frequências, temos

$$OTF(f_x, f_y) = \prod_i OTF_i(f_x, f_y) \qquad MTF(f_x, f_y) = \prod_i MTF_i(f_x, f_y)$$
$$\phi(f_x, f_y) = \sum_i \phi_i(f_x, f_y)$$

Medição da MTF

Conditioning data for calculation of the modulation transfer function

Andrew D. A. Maidment^{a)} and Michael Albert

Med. Phys. 30 (2), February 2003

A method for measuring the presampled MTF of digital radiographic systems using an edge test device^{a)}

Ehsan Samei^{b)} and Michael J. Flynn David A. Reimann

→ Método padrão

Med. Phys. 25 (1), January 1998

INTERNATIONAL STANDARD	IE 62220-
	First edit 2003
Medical electrical equipment –	
Characteristics of digital X-ray ir Part 1: Determination of the dete efficiency	naging devices – ctive quantum
Appareils électromédicaux – Caractéristiques des appareils d'imagen Partie 1: Détermination de l'efficacité qu	ie à rayonnement X – iantique de détection

A MTF do sistema de detecção pode ser separada como geometria conversão pixel $MTF_d(f_x, f_y) = MTF_{geom}(f_x, f_y)MTF_{conv}(f_x, f_y)MTF_{aperture}(f_x, f_y)$ **AMOSTRAGEM** \Longrightarrow $\times \sum_{k=1}^{\infty} \delta \left(f_x - \frac{k_x}{\Delta x} \right) \sum_{k=1}^{\infty} \delta \left(f_y - \frac{k_y}{\Delta y} \right),$ $\mathrm{MTF}_{d}(f_{x},f_{y}) = \mathrm{MTF}_{\mathrm{pre}}(f_{x},f_{y}) \sum_{k_{x}=-\infty}^{\infty} \delta\left(f_{x}-\frac{k_{x}}{\Delta x}\right) \sum_{k_{y}=-\infty}^{\infty} \delta\left(f_{y}-\frac{k_{y}}{\Delta y}\right)$ **PRE-SAMPLING USADO NOS PROTOCOLOS DA** IEC SOBRE CARACTARIZAÇÃO **DE DETECTORES**

Pinhole ou slit \rightarrow complicado e demorado

Difíceis de fabricar

Em detectores pixelados, há influencia importante no posicionamento

Dependência da PSF com a posição dos pixels (fase) – dependendo da posição da pinhole ou da slit com relação à matriz, obtém-se resultados diferentes

Solução → ESF

Fabricação dos dispositivos e posicionamento mais fácil

Mora, P. et al J Appl Clin Med Phy. 2021;1–17.

Mora, P. et al J Appl Clin Med Phy. 2021;1–17.

Medição da MTF_{pre}

Método de medição

- Borda (edge) angulada
- Amostragem em uma taxa mais alta que a taxa de amostragem nativa do sistema de detecção (oversampling)

Sem inclinação da borda:

> Amostragem Δx

Com inclinação da borda:

 Deslocamento da posição de amostragem em relação à borda

$$p = \Delta x \tan \alpha$$

Pixel spacing = p

Russo, P. Handbook of X-ray Imaging – Physics and Technology – Cap 24

Método de medição

Numero médio de linhas que resultam em um deslocamento de 1 pixel

$$N_{\rm ave} = \frac{\Delta x}{p} = \frac{1}{\tan \alpha}$$

- A borda deve atravessar N_{ave} linhas verticalmente antes da borda cruzar um pixel na direção x
- Aste método permite a construção de uma ESF super-amostrada

(oversampled)

Mais detalhes:

Buhr, E., S. Günther-Kohfahl, and U. Neitzel. 2003. Accuracy of a simple method for deriving the presampled modulation transfer function of a digital radiographic system from an edge image. *Medical Physics* 30:2323–31.

У

Russo, P. Handbook of X-ray Imaging – Physics and Technology – Cap 24

Existem outros métodos: binarizar a ROI e aplicar operador gradiente

Tipicamente 2,5-5 graus

Ajuste de primeira ordem aplicada $y = a + bx \Rightarrow \alpha = tan^{-1} \left(\frac{1}{b} \right)$

A ROI é diferenciada e a posição do máximo (x) ao longo de cada coluna (y) é registrada

Faz-se uma ROI contendo a borda angulada

Localização e angulação da borda

•

.

•

 $\underset{X}{\longleftrightarrow}$

у |

•

RADIAÇÕES

Pixel spacing = p

 $\Delta x = p \tan \theta$

•

Medição da MTF_{pre}

Método de medição

Medição da MTF_{pre}

- Cálculo da LSF e da MTF
- Algoritmo de diferenciação

- Redução de ruído
- ✓ Normalização na frequência zero, etc

Medição da MTF_{pre}

Método de medição

- Detalhes práticos
- ✤ A borda precisa ser radio-opaca
- Borda polida de forma a não ter ondulações maiores que 5μm
- Para mamografia (IEC 62220-1-2)
- ✓ Aço inoxidável 0,8mmX120mmX60mm
- Especificações sobre posicionamento e técnica de exposição
- ✤ Para radiografia (IEC 62220-1)
- Tugstênio com 1mmX10mmX75mm em uma placa de 3mmX200mmX100mm de chumbo
 - Especificações sobre posicionamento e técnica de exposição

Pre-sampling MTF for a CsI-phosphor digital mammography detector showing some LFD

Dificuldades/problemas de amostragem para determinação da MTF

Effects of undersampling on the proper interpretation of modulation transfer function, noise power spectra, and noise equivalent quanta of digital imaging systems

James T. Dobbins III

Med. Phys. 22 (2), February 1995

	HANDBOOK OF Medical Imaging Volume 1. Physics and Psychophysics	CHAPTER 3 Image Quality Metrics for Digital Systems
		James T. Dobbins, III Duke University Medical Center

$I_{in}(x, y) \otimes P(x, y) = I_{out}(x, y)$ TF $\mathfrak{l}_{in}(\omega_x,\omega_y)\cdot MTF(\omega_x,\omega_y)=\mathfrak{l}_{out}(\omega_x,\omega_y)$

HANDBOOK OF

Medical Imaging

Volume 1. Physics and Psychophysics

CHAPTER 3 Image Quality Metrics for Digital Systems

James T. Dobbins, III Duke University Medical Center

Signal difference-to-noide ratio (SDNR) e Generalized SDNR_g

- Introduzido no guia europeu (2006)
- European Guidelines for Breast Cancer Screening. The European protocol for the quality control of the physical and technical aspects of mammography screening. Part B: Digital mammography. 4th ed. Luxembourg: European Commission; 2006.
- Ideia: encontrar a menor dose necessária para obtenção de uma dada qualidade de imagem (detectabilidade)
 - Uso de objeto plano com bordas bem definidas

SDNR e SDNR_g

This work has introduced and tested a new generalized methodology for assessing the SDNR that accounts for the total signal power generated by an object in an image, independent of object shape and edge characteristics.

Compared to the standard SDNR, the generalized SDNR gives a more accurate estimate for small objects, non-flat objects and/or objects with non-sharp edges (blur, partial volume effects, edge enhancement).

Recomendo fortemente

Physica Medica 64 (2019) 10-15

Contents lists available at ScienceDirect

Physica Medica

journal homepage: www.elsevier.com/locate/ejmp

Technical note

Generalized SDNR analysis based on signal and noise power

P. Monnin^{a,*}, S. Gnesin^a, F.R. Verdun^a, N.W. Marshall^{b,c}

^a Institute of Radiation Physics (IRA), Lausanne University Hospital (CHUV) and University of Lausanne, Rue du Grand-Pré 1, 1007 Lausanne, Switzerland ^b UZ Gasthuisberg, Department of Radiology, Herestraat 49, 3000 Leuven, Belgium ^c Medical Imaging Research Center, Medical Physics and Quality Assessment, Katholieke Universiteit Leuven, 3000 Leuven, Belgium

https://doi.org/10.1016/j.ejmp.2019.06.005

NEQ e DQE

Considerando um sistema de imagens ideal (um contador de fótons perfeito)

$$SNR_{meas} = \frac{N_{meas}}{\sqrt{N_{meas}}} = \sqrt{N_{meas}} \qquad \Longrightarrow \qquad N_{meas} = SNR_{meas}^2$$

Sistemas de imagens reais:

Integradores de energia e não contadores de fótons
 Apresentam componentes de ruído que não são
 caracterizados pela distribuição de Poisson

$$\text{SNR}_{\text{non-ideal}} = \frac{S_{\text{non-ideal}}}{\sigma_{\text{non-ideal}}}$$

NEQ e DQE

Noise equivalent quanta (NEQ)

- Introduzido por Shaw (1963)
- Associado ao desempenho de detecção, por um observador ideal, de estruturas de baixo contraste em uma imagem uniforme limitada por ruído
- NEQ alta em uma dada frequência equivale a um ruído normalizado baixo naquela frequência

$$\operatorname{NEQ}(f) = \frac{(\overline{d} \cdot \operatorname{MTF}(f))^2}{\operatorname{NPS}(f)} = \frac{\operatorname{MTF}^2(f)}{\operatorname{NNPS}(f)}$$

- Introduzido por Dainty and Shaw (1974)
- Descreve a eficiência de um sistema de detecção com raios X
- Descreve a habilidade do sistema em transferir as informações do feixe de entrada para a imagem, no domínio de frequências, considerando o SNR²
 - Degradações da SNR no detector resultam em DQEs < 1</p>

Eficiência Quântica de Detecção (DQE)

Eficiência Quântica de Detecção (DQE)

- Adimensional
- Independente de Q se o detector não incorpora ruído eletrônico ou estrutural
- Q é obtido por medições de kerma no ar no detector (DAK)

Figure 4 – Example for a plot of DQE(u,v) as a function of SPATIAL FREQUENCY with AIR KERMA (a: 2,5µGy, b: 2,5µGy * 3,2, c: 2,5µGy / 3,2) as parameters

Cascading DQE through seven stages for a digital X-ray detector. (Adapted from Monnin, P. et al. 2016. Physics in Medicine and Biology

Russo, P. Handbook of X-ray Imaging – Physics and Technology – Cap 24

- Dependência das respostas dos sistemas de imagem reais com a frequência espacial
- → Complexidade por conta das diferenças inerentes de cada tipo de sistema de imagem
- → Limitações difíceis de quantificar por conta da amostragem em imagens digitais (*aliasing*)

- MTF
- → Resposta do sistema a uma dada frequência de estímulo
- NSP
- → Amplitude da variância em uma dada frequência

 $\frac{MTF(u,v)}{\sqrt{NPS(u,v)}} \propto SNR \ m\acute{a}ximo \ a \ uma \ dada \ frequência$

$$NEQ(u,v) = (SNR(u,v))^2 \propto \frac{(MTF(u,v))^2}{NPS(u,v)}$$

• Normalização

 $G \rightarrow ganho \ do \ detector: valor \ registrado \ para$ uma dada fluência de fótons incidente (f = 0)

$$NNPS(u, v) = \frac{NPS(u, v)}{G}$$

$$NEQ(u,v) = \frac{(MTF(u,v))^2}{NNPS(u,v)} = \frac{G(MTF(u,v))^2}{NPS(u,v)}$$

GRUPO DE DOSIMETRIA DAS RADIAÇÕES e FÍSICA MÉDICA

2 mm Al de baixa pureza

2 mm Al de alta pureza (99%)

Russo, P. Handbook of X-ray Imaging – Physics and Technology – Cap 24

Russo, P. Handbook of X-ray Imaging – Physics and Technology – Cap 24

Alguns exemplos

NNPS's diferentes

MTF's muito parecidas

Alguns exemplos

Russo, P. Handbook of X-ray Imaging – Physics and Technology – Cap 24

Alguns exemplos

FIGURE 24.18 DQE measured as a function of energy for two mammography detectors: (a) a powder CR detector, and (b) an a-Se detector.

Russo, P. Handbook of X-ray Imaging – Physics and Technology – Cap 24

- Medição do NPS
- → Idealmente o mesmo espectro de raios X usado para a medição da MTF

Inclui espalhamento, presença da grade, magnificação e borramento devido ao ponto focal

Effective DQE (eDQE) and speed of digital radiographic systems: An experimental methodology

Ehsan Samei^{a)}

Departments of Radiology, Biomedical Engineering, and Physics, Carl E. Ravin Advanced Imaging Laboratories (RAI Labs), Medical Physics Graduate Program, Duke University and Medical Center, 2424 Erwin Road, Suite 302, Durham, North Carolina 27705

Nicole T. Ranger

Department of Radiology, Carl E. Ravin Advanced Imaging Laboratories (RAI Labs), Duke University and Medical Center, 2424 Erwin Road, Suite 302, Durham, North Carolina 27705

Alistair MacKenzie

Department of Medical Engineering and Physics, KCARE, Faraday Building, King's College Hospital, Denmark Hill, London SE5 9RS, United Kingdom

lan D. Honey

Department of Medical Physics Floor 3, Henriette Raphael House, Guy's and St Thomas Hospital, London SE19RT, United Kingdom

James T. Dobbins III

Departments of Radiology and Biomedical Engineering, Carl E. Ravin Advanced Imaging Laboratories (RAI Labs), Medical Physics Graduate Program, Duke University and Medical Center, 2424 Erwin Road, Suite 302, Durham, North Carolina 27705

Carl E. Ravin Department of Radiology, Carl E. Ravin Advanced Imaging Laboratories (RAI Labs), Duke University and Medical Center, 2424 Erwin Road, Suite 302, Durham, North Carolina 27705

Métricas dependentes de fImage: Second second

Exposição na entrada do phantom corrigida por 1/d² para a posição do detector

Med. Phys. 36 (8), August 2009

$$eDQE(f') = \frac{MTF^{2}(f') \cdot (1 - SF)^{2}}{NNPS(f') \cdot P} = T_{p} \cdot (1 - SF) \cdot DQE(f').$$

$$eDQE(f') = \frac{gMTF^{2}(f')}{NNPS(f') \cdot (P + S)}$$

$$eDQE(f') = \frac{gMTF^{2}(f')}{NNPS(f') \cdot (P + S)}$$

$$Eficiencia da grade Anti-espalhamento$$

$$DQE_{sys}(f) = DQE_{ASD} \cdot DQE_{d}(f)$$

$$= \frac{T_{p}^{2}}{T_{t}} \cdot \frac{MTF^{2}(f)}{NNPS(f) \cdot (P + S)}$$

Russo, P. Handbook of X-ray Imaging – Physics and Technology – Cap 24

Russo, P. Handbook of X-ray Imaging – Physics and Technology – Cap 24

IFUSP - Instituto de Física da USP

