
Lecture 8
Hydrodynamics

Part II
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Bjorken model: fast derivation

We use: 1) y = ηs ⇔ vz = z/t , 2) no dependence on ηs [maintained by hydro.

evolution]

We solve around z = 0⇔ y = 0. So vz = z/t = 0, ∂zvz = 1/t , γ = 1

∂nu0

∂t + ∂nuz

∂z = 0 = ∂n
∂t +

∂nvz
∂z = ∂n

∂t + n ∂vz
∂z + vz

∂n
∂z

= ∂n
∂t +

n
t

So n(t) = n(t0)t/t0 which can be re-writen n(τ) = n(τ0)τ0/τ .

To get the solution for another z (with |z| < t), we do a Lorentz boost,
changing y by a constant, this leaves τ constant and the expression
of n(τ) is unchanged.

Similarly ∂µTµ0 = ∂t [(ε+ p)− p] + ∂z [(ε+ p)vz ] = ∂tε+ (ε+ p)/t

which leads to ε(τ) = ε(τ0)(τ0/τ)
4/3 for p = ε/3

Also, since ∂µTµν = 0⇒ ∂µ(suµ) = 0, s(τ) = s(τ0)τ0/τ .
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Exercise:
Compute ε(τ) for Bjorken model with MIT bag equation of state

We use ε = gqgp
π2

30 T 4 + B, p = gqgp
π2

p0 T 4 − B

Near z = 0, to first order in vz
∂µTµ0 = ∂t [(ε+ p)− p] + ∂z [(ε+ p)vz ] = ∂tε+ (ε+ p)/t
We note that: ε+ p = (4/3)(gqgp

π2

30 T 4) = (4/3)(ε− B)
So ∂tε+ (ε+ p)/t = 0 = ∂t(ε− B) + (ε− B)/t

⇒ ε(τ) = [(ε(τ0)− B]
(
τ
τ0

)4/3
+ B
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Simple estimates with Bjorken model

It is possible to get estimates of the initial particle number, entropy
density, energy density, etc. Here we show an example of the latter.

In the rest frame (y = 0): dV = S⊥dz = τS⊥dy and for a central
collision S⊥ = πR2. So ε(τ0) = ε(τ)(τ/τ0)

4/3 = (τ/τ0)
4/3 dE

τπR2dy
[ Note that (τ/τ0)

4/3 6= τ/τ0 (energy per unit rapidity is not conserved)]

Assume dE ∼< m⊥ > dN, τ0 = 1 fm, τ = some fm.
For a central Au+Au collision, at 200 GeV, dNπ/dy ∼ 3× 300 (see p.
7 in lecture 4) and < m⊥ >∼< p⊥ >∼ 0.5 GeV
So ε(τ0) ∼ 3 GeV/fm3>> deconfinement value from lattice QCD (p.7
lecture 6).

Modern values for initial energy density:

Results obtained with NeXSPheRIO code by R.N.Hirayama 4 / 10



Bjorken model with a first order phase transition

We can learn a lot from s(τ) = s(τ0)τ0/τ .

We use the MIT bag toy model to describe the transition.
• For τ0 ≤ τ ≤ τq : fluid in the QGP phase and sqg = gqg

4
3
π2

30 T 3

• For τh ≤ τ : fluid in the pion phase and sπ = gπ 4
3
π2

30 T 3

s(τ)τ = s(τ0)τ0 ⇒ gqτq = ghτh so τh = (gqg/gπ) τq >> τq since
gqg =37 (Nf = 2) and 47.5 (Nf = 3), while gπ =3 [Large volume increase]

Also sπ = sqg(τq/τh) = sqg(gπ/gqg) << sqg i.e. jump in entropy
density.

• For τq ≤ τ ≤ τh: fluid is mixture of QGP and pions
s(τ) = f (τ)gπ 4

3
π2

30 T 3
dec + [1− f (τ)]gqg

4
3
π2

30 T 3
dec = τ0s(τ0)

τ where f (τ) is
the volume fraction of fluid in the pion phase.
⇒ f (τ) = 1−(τq/τ)

1−gπ/gqg 5 / 10



When can we use the Bjorken hypothesis vz = z/t given the
gaussian shape of dN/dy ’s?

Answer: amazingly, vz does not deviates that much from this. Let us
see this.

Consider longitudinal expansion only (which dominates initially) and a
slice of matter at z = 0.
Assume that initially the entropy density is gaussian:
s(x , y , ηs, τ0) ∝ exp

(
− x2

2σ2
x
− y2

2σ2
y
− η2

s
2σ2
ηs

)
This is motivated by the gaussian shape of dN/y :

Rapidity distribution for central Au+Au collisions at 200 GeV: BRAHMS Phys. Rev. Lett. 94 (2005) 162301 with

gaussian fit and σηs ∼ 2.3 fm
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To first order in vz = z/t : ∂µTµz = 0 = ∂
∂t [(ε+ p)vz ] +

∂
∂z p so

∂vz
∂t = − 1

ε+p
∂p
∂z = − 1

ε+p
dp
dε

∂
∂z ε = −

1
Ts c2

s T ∂
∂z s = −c2

s
∂ ln s
∂z

Near z = 0, dt ∼ dτ,dz ∼ τdηs, vz ∼ y is small, so
∂y
∂τ = − c2

s
τ
∂ ln s
∂ηs

⇒ y(τ) =
(

1 +
c2

s ln(τ/τ0)
σ2
ηs

)
ηs.

−→ y is proportional to ηs.

For c2
s = 1/3 and σηs ∼ 2.3: y(τ) = [1 + 0.06 ln(τ/τ0)]ηs i.e. very

close to ηs.
So vz = tanh y ∼ tanh ηs = z/t
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Challenge

In the case of a 1+1 dimensional expansion along the collision axis,
show that for solutions independent of proper time,
y = ηs ± tanh−1 cs. Compute vz . What kind of solution is this?
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Homework
Consider a plasma of gluons and two flavors of massless quarks at
T0 = 300MeV for τ0 = 1 fm. In the Bjorken model, compute the
proper time when the plasma will reach the deconfinement
temperature T ∼ 150MeV and its energy density then.
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Other references on this topic
I J.-Y.ollitrault Relativistic hydrodynamics for heavy-ion

collisions Eur.J.Phys.29 (2008) 275, arXiv:0708.2433
I R. Vogt, Ultrarelativistic Heavy-ion Collisions, Elsevier,

2007
I W. Florkowski, Phenomenology of Ultra-Relativistic

Heavy-Ion Collisions, World Scientific, 2010
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