
Lecture 7
Hydrodynamics

Part I

The description we are about to see is called the “Heavy-Ion
Standard Model”
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Context
It did not start well:

(Some) particle physicists (ca. 90’s): “performing relativistic heavy ion
collisions is like colliding fancy sport cars ou swiss watches” (you’ll
get lots of pieces and won’t learn anything)
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But I believe the origin is this:

Since then, physicists have had lots of successes colliding protons:
Tevatron (p − p̄) top quark (1995), SPS (p − p̄) W and Z bosons
(1983), LHC (p − p) Higgs bosons. How about ion collisions?
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Heavy-Ion Standard Model

Fluctuating initial conditions + rapid thermalization + hydrodynamic
expansion of low viscosity sQGP + transformation in hadron phase +
particle emission

U. Heinz “Towards the Little Bang Standard Model” J. Phys.: Conf. Ser. 455 (2013) 012044

J. Schukraft “Results from the first heavy ion run at the LHC” J. Phys.: Conf. Ser. 381 (2012) 012011
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Standard thermodynamics: p, T , µ constant over the entire volume
Hydrodynamics: local thermodynamic equilibrium p(xµ),T (xµ), µ(xµ)

Baryon number conservation (w/o diffusion)
Mass conservation in nonrelativistic hydrodynamics
∂ρ
∂t + ~∇(ρ~v) = 0 [nonrelativistic continuity equation]

Lorentz contraction in the relativistic case: n −→ nγ = nu0

[Conserved quantity: baryon number]

Relativistic continuity equation:
∂nu0

∂t
+ ~∇(n~u) = 0

nu0 baryon density, nγ~v = n~u baryon flux, uµ 4-velocity of a fluid element

More compactly: ∂µ(nuµ) = 0

Notation: xµ = (x0, x1, x2, x3) = (t , x , y , z, ) = (t , ~x) [Contravariant vector]
∂µ = ∂

∂xµ = ∂
∂t ,

~∇), ∂µ = ∂
∂xµ

= ∂
∂t ,−~∇) [resp. cov. and contrav. derivatives]

∂µaµ = ( ∂∂t ,
~∇) · (a0, ~a) = ∂a0

∂t + ~∇ ·~a [Summation convention]
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Energy and momentum conservation (w/o viscosity)

Analogously to the contravariant 4-vector jµ = nuµ, one can define
conserved currents for the energy and the three momentum
components. These can be written as a contravariant tensor:

Tµν [ν: component of 4-momentum, µ: component of the associated current]

So Tµν =

(
energy density momentum density

energy flux density momentum flux density

)

T 00: energy density
T 0j : density of j-th component of momentum, j=1,2,3
T i0: energy flux along axis i
T ij : flux along axis i of j-th component of momentum.

Tµν is called energy-momentum tensor [pressure comes from momentum flux]
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The energy-momentum tensor in the fluid rest frame (pressure is the
same in all directions) is:

Tµν
R =


ε 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p


In rest frame, Tµν reduces to its static form:
• no energy flux i.e. T i0 = 0
• no momentum accumulation T 0j = 0
• In direction x, pressure is
∆px
∆t

1
∆y∆z = ∆px

∆x
∆t

1
∆x∆yδz = ∆px vx

V −→
∫

d3pN(E)px vx = T xx =
∫

d3pN(E) p v
3 =

∫
d3pN(E) p2

3E so

T ii = p but T ij = 0 if i 6= j

Using the general form of a Lorentz transformation, one gets:
e.g. Denicol & Rischke “ Microscipic Foundations of Relativistic Fluid Dynamics” Springer 2021

Tµν = (ε+ p)uµuν − gµνp
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Exercise:
Start from the rest frame expressions of the baryon current and
energy-momentum tensor and obtain their expressions in a moving
frame.

[This is an alternative derivation to that of Denicol & Rischke or Ollitrault, close to Vogt’s]

• In the moving frame, the fluid velocity becomes:
uµ = ΛµνuνR with uνR = (1,0,0,0) so uµ = Λµ0 u0

R = Λµ0 : the velocity in
the boosted frame defined the ν = 0 component of Λµν .
The baryon current in the rest frame is nµR = (n,0,0,0) and in the
moving frame:
nµ = ΛµνnνR= Λµ0 n = nuµ as expected.

• To obtain the energy-momentum tensor in the moving frame, note:
gρσ = gµνΛρµΛσν = g00Λρ0Λσ0 + g ii Λρi Λσi = uρuσ − Λρi Λσi
gµν = gµν = diag(1,−1,−1,−1): metric tensor, all its matrix elements are zero except on diagonal . It is used

to lower or rise indices: aµ = gµνaν = (g0νaν , g1νaν , ...) = (a0,−ax ,−ay ,−az )

Therefore T ρσ = ΛρµΛσνTµν
R = Λρ0Λσ0 ε+ Λρi Λσi p =

uρuσε+ (uρuσ − gρσ)p = (ε+ p)uρuσ − gρσp as expected
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Equations of non-viscous hydrodynamics
The conservation equations are then:

∂µTµν = 0, ∂µ(n uµ) = 0

= 5 equations with 6 unknowns: ux ,uy ,uz , ε,p,nb,
so we need an equation of state such as p(ε,nb) to close this system.

Note that the conservation equations are differential equations, so we
have to choose initial conditions to solve them.
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Exercise:
What is the relationship with the usual fluid mechanics equations?

• One equation can be recast as an entropy conservation
equation.
uν∂µTµν = 0 = uµ∂µε+ (ε+ p)∂µuµ = uµT∂µs + Tsuµ∂µ ⇒
∂µ(suµ) = 0
where we used the thermodynamic relations ε+ p = Ts and
dp = sdT . In the non-relativistic limit γ −→ 1 and ∂s

∂t + ~∇(s~v) = 0

• The three equations ∂µTµi = 0 for i = 1,2,3 can be recast in a
Euler equation form.
Note ∂µTµ0 = 0 −→ ∂µ[(ε+ p)uµu0] = ∂0p
∂µTµi = 0 = v i∂µ[(ε+ p)uµu0] + (ε+ p)uµu0∂µv i − ∂ ip =
v i∂0p + (ε+ p)uµu0∂µv i − ∂ ip
⇒ ∂~v

∂t + (~v · ~∇)~v = − (1−v2)
(ε+p)

[
~∇p + ~v ∂p

∂t

]
In the non-relativistic limit v small, p � ε, ε ∼ ρ, this equation reduces
to the classical Euler equation.
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A simple example of solution: the Bjorken model
•We ignore transverse expansion (as expected initially), so:{
∂tT 00 + ∂zT 0z = 0
∂tT 0z + ∂zT zz = 0.

We introduce uµ = (cosh y , sinh y) in the equations above:{
cosh y∂tε+ sinh y∂zε+ (ε+ p)(sinh y∂ty + cosh y∂zy) = 0
sinh y∂tp + cosh y∂zp + (ε+ p)(cosh y∂ty + sinh y∂zy) = 0

We change variables: (t , z) −→ (τ, ηs)
where τ ≡

√
t2 − z2 and ηs = atanh(z/t) (spacetime rapidity)

and use of the relations
∂

∂t
=
∂τ

∂t
∂

∂τ
+
∂ηs

∂t
∂

∂ηs
= cosh ηs

∂

∂τ
− sinh ηs

τ

∂

∂ηs

∂

∂z
=
∂τ

∂z
∂

∂τ
+
∂s

∂z
∂

∂ηs
= − sinh ηs

∂

∂τ
+

cosh ηs

τ

∂

∂ηs
to obtain{
τ ∂τ ε+ tanh(y − ηs) ∂ηε+ (ε+ p)

[
τ tanh(y − ηs) ∂τy + ∂ηs y ] = 0

τ tanh(y − ηs) ∂τp + ∂ηs p + (ε+ p)
[
τ ∂τy + tanh(y − ηs) ∂ηs y

]
= 0.
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• So far the discussion has been quite general.
We know make the Bjorken hypothesis:
Fluid velocity is vz = z/t ⇔ y = ηs (fluid rapidity equals spacetime
rapidity), initially at proper time τ0 and at all proper times

[This comes from the expectation that dN/dy has a plateau around mid-rapidity, i.e. boost-invariance. The only flow

boost invariant (=0 at z=0) is vz = z/t cf. Florkowski §2.7 and ch.21]

Using y = ηs, the hydro equations become:
τ
∂ε

∂τ

∣∣∣∣
ηs

+ (ε+ p) = 0

∂p
∂ηs

∣∣∣∣
τ

= 0.

So the thermodynamic quantities do not depend on ηs and ε(τ) =
ε(τ0)(τ0/τ)4/3 (for p = ε/3).
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Exercise:
For a gas of gluons and two flavors of massless quarks, compute
T (τ) in the Bjorken model.

In this case: p = ε/3 and ε = gqgp
π2

30 T 4

So using the Bjorken solution:

T (τ)4 = T (τ0)4(τ0/τ)4/3 ⇔ T (τ) = T (τ0)(τ0/τ)1/3
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Challenge

Redo the calculation on slide 9 (non-relativistic limit) for the case
nb 6= 0.
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Homework
Show that if p = c2

s ε with cs constant, the solution of the Bjorken
model is ε(τ) = ε(τ0)(τ0/τ)1+c2

s
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Other references on this topic
I J.-Y.ollitrault Relativistic hydrodynamics for heavy-ion

collisions Eur.J.Phys.29 (2008) 275, arXiv:0708.2433
I R. Vogt, Ultrarelativistic Heavy-ion Collisions, Elsevier,

2007
I W. Florkowski, Phenomenology of Ultra-Relativistic

Heavy-Ion Collisions, World Scientific, 2010
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