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The  general  equation  is  derived  for the  equilibrium  of  a small  solid  particle  and  a  large  solution,  being
consistent  with  the  thermodynamics  of Gibbs.  This  equation  can  be  solved  in  a  closed  form  for  solubility
if  an  ideal  (or  an  infinitely  diluted)  solution  is  considered,  if  the  interfacial  energy  is independent  of the
composition  of  the  solution  and if  all  physical  parameters  (other  than  the  solubility  itself)  are  taken  size
independent.  The  solubility  of  the  particles  is  found  to  increase  with  increasing  its specific  surface  area,
i.e.  if non-spherical  particles  are  applied.  This  simplified  solution  further  simplifies  if the  shape  of  the
solid  is  supposed  to be spherical.  This  latter  equation,  however,  is found  to  be  in contradiction  with  the
Ostwald–Freundlich  equation,  widely  used  in chemistry,  biology  and  materials  science  to  describe  the
size  dependence  of  solubility  of  a spherical  crystal.  The  reason  for its  incorrectness  is  shown  to  be  due  to
ibbs
ize effect

the incorrect  application  of the  Laplace  equation.  It is  found  that the  solubility  increases  with  decreasing
the  size  of  the dissolving  phase  not  due  to the  increased  curvature  of  the  phase  (Kelvin  and  Freundlich),
but  rather  due  to  the  increased  specific  surface  area  of  the  phase  (Gibss,  Ostwald).  Equations  are  also
derived  for  the  case,  when  the size  effect  of the  interfacial  energy  is  taken  into  account,  and  when  the
crystal  is  surrounded  by  several  planes  of  different  interfacial  energies.  The  role  of wettability  is  discussed
on the  size  dependence  of solubility.
. Introduction

Probably the first paper on the size dependence of solubility
f solid particles in liquid solutions is due to Ostwald (1900).  His
erivation is based on the thermodynamics of Gibbs (1875–1878)
nd is applicable to the solubility of a spherical solid particle in a
arge liquid solution:

A(�) = xo
A(�) · exp

(
3 · Vo

A(�) · �o
�/�

R · T · r�

)
(1a)

here xA(�) is the solubility of component A (mole fraction) in the
orm of a spherical, pure phase � of radius r� (m)  in a given solution

 at temperature T (K) and at a fixed pressure p (Pa), xo
A(�) is the

ame of an infinitely large phase �, �o
�/� is the interfacial energy

J/m2) between the two phases (supposed to be size independent),

o
A(�) is the molar volume (m3/mol) of the pure phase A(�),  and

 = 8.3145 J/(mol K), the universal gas constant. Using the analogy of

∗ Tel.: +36 30 4150002; fax: +36 46 362916.
E-mail address: kaptay@hotmail.com

378-5173/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.ijpharm.2012.03.038
© 2012 Elsevier B.V. All rights reserved.

the Kelvin equation (under the name Thomson, 1871), the Ostwald
equation was quite soon corrected by Freundlich (1909) as:

xA(�) = xo
A(�) · exp

(
2 · Vo

A(�) · �o
�/�

R · T · r�

)
(1b)

Since then, Eq. (1b) has become widely accepted and is called
today as the Ostwald–Freundlich equation. According to Google
Scholar, more than 400 papers refer to this equation under this
name. Its usage accelerated during the recent years, as follows
from Fig. 1. Except the year of 1999, the yearly number of papers
mentioning the Ostwald–Freundlich equation was below 10 before
2005, while it started to increase in an unexpected way  during
the last 5 years. Although the equation is used time to time in
chemistry (Wu and Nancollas, 1998; McCoy, 2001; Cherginets et al.,
2002, 2010; Godec et al., 2009; Bouzid et al., 2011; Deflorian et al.,
2011), physics (Letellier et al., 2007; Shchekin and Rusanov, 2008),
materials science (Znaidi, 2010; Chiang and Sankaran, 2012), envi-
ronmental sciences (Mudunkotuwa and Grassian, 2011; Bian et al.,
2011) and nano-sciences (Ravichandran, 2010; Picher et al., 2011;
Dodd and Saunders, 2011), the boom of its usage is due to its appli-
cation in pharmaceutical nanotechnology (Müller et al., 2001; Nagy
et al., 2012; Liu et al., 2012). Only in the 2010–2011 issues of this

journal 9 papers are published citing the Ostwald–Freundlich equa-
tion (Cerdeira et al., 2010; Deng et al., 2010; Pardeike and Müller,
2010; Keck, 2010; Gao et al., 2011; Jiang et al., 2011; Kawabata et al.,
2011; Pardeike et al., 2011).

dx.doi.org/10.1016/j.ijpharm.2012.03.038
http://www.sciencedirect.com/science/journal/03785173
http://www.elsevier.com/locate/ijpharm
mailto:kaptay@hotmail.com
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Fig. 1. The number of papers published yearly during the last 20 years, containing
the  expression “Ostwald–Freundlich” (according to Google Scholar, searched on 26
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of the present derivation with that, presented in Appendix B, the
following qualitative difference follows:
ecember, 2011).

One can see that Eqs. (1a) and (1b) differ from each other only by
 numerical coefficient. However, behind this small qualitative dif-
erence, a quantitative difference between different approaches are
idden, as recently shown by Kaptay (2012a) for the vapor pressure
f small droplets. In this paper the equation for the size and shape
ependence of the solubility of small solid particles is described,
ased on the thermodynamics of Gibbs. In this context, the validity
f Eqs. (1a) and (1b) will be discussed.

. Derivation of the general equation

Let us consider component A in the form of a pure, solid phase
of any size and shape in an infinitely large solution � of any

ature and number of components (including component A), at
xed temperature and pressure. The task is to derive a general
quation to describe the solubility of A in �. Thus, we search
or an equation for the equilibrium mole fraction of component

 in solution � (xA(�)), which keeps equilibrium with the solid
hase A(�)  of the given size and shape at given temperature and
ressure.

The size and shape of the pure solid phase � is described by its
olume V� (m3) and by its total surface area A� (m2). In the first
pproximation we consider that the interfacial energy is identical
long the total interfacial area of the phase (for the correction, see
elow). Thus, the specific surface area of this phase � (AS,�, 1/m), is
efined as:

S,� ≡ A�

V�
(2)

According to Gibbs (1875–1878), the condition of equilibrium
etween phases � and � is the equality of their partial Gibbs ener-
ies. In our particular case, the standard Gibbs energy of pure phase
(�)  (denoted as Go

A(�),S, J/mol, where subscript “S” refers to the
iven specific surface area AS,�) and the partial Gibbs energy of
omponent A in the solution phase � (GA(�), J/mol) should equal:

o
A(�),S = GA(�) (3)

According to the theory of solutions (Lewis, 1907; Kaptay, 2004,
012b; Lukas et al., 2007), the partial Gibbs energy of component

 in solution � can be written as:

A(�) = Go
A(�) + R · T · ln xA(�) + �GE

A(�) (4)

here Go
A(�) is the standard Gibbs energy of component A in the

E
ure phase � (J/mol) (being the function of only T and p), �GA(�)
s the partial excess Gibbs energy of component A in solution �
J/mol), being a difficult function of xA(�), T and p. The (molar)
tandard Gibbs energy of pure phase A(�)  of the given specific
rmaceutics 430 (2012) 253– 257

surface area can be written as (for the derivation of this equation,
see Appendix A):

Go
A(�),S = Go

A(�) + AS,� · Vo
A(�) · �o

�/� (5)

where Go
A(�) is the standard Gibbs energy of component A in the

pure phase � (J/mol) (being the function of only T and p). Substi-
tuting Eqs. (4) and (5) into Eq. (3):

Go
A(�) + AS,� · Vo

A(�) · �o
�/� = Go

A(�) + R · T · ln xA(�) + �GE
A(�) (6)

The requested solubility (xA(�)) is found by solving Eq. (6).  This
solution has a mathematically closed form only in simplified cases.

3. A simplified solution to Eq. (6)

Now, let us suppose that solution � is an ideal solution, at least,
from the point of view of component A.1 Thus, its excess partial
Gibbs energy will be zero, by definition. Also, let us suppose that the
interfacial energy �o

�/� is independent on the composition of phase

�, i.e. can be taken as a constant parameter. Then, the solubility (i.e.
the equilibrium mole fraction) of component A in phase � can be
expressed from Eq. (6) as:

xA(�) = exp

(
Go

A(�) − Go
A(�) + AS,� · Vo

A(�) · �o
�/�

R · T

)
(7)

Let us express from Eq. (7) the solubility of a large phase, with
negligible specific surface area (i.e. large size):

xo
A(�) = exp

(
Go

A(�) − Go
A(�)

R · T

)
(8)

Substituting Eq. (8) into Eq. (7),  the final equation for the solu-
bility is obtained as:

xA(�) = xo
A(�) · exp

(
AS,� · Vo

A(�) · �o
�/�

R · T

)
(9)

Let us mention that Eq. (9) is valid only, if Go
A(�), Vo

A(�) and �o
�/�

are not size dependent. As follows from Eq. (9),  the larger is the
specific surface area of the particle, the larger is its solubility. Thus,
the smaller is the particle, or the more its shape deviates from that
of a sphere, the higher is its solubility.

For a spherical particle of radius r�, the specific surface area
equals: AS,� = 3/r�. Substituting this value into Eq. (9),  the following
particular expression is obtained:

xA(�) = xo
A(�) · exp

(
3 · Vo

A(�) · �o
�/�

R · T · r�

)
(10)

Eq. (10) is obtained exactly under the same conditions as the
Ostwald equation (1a) or as the Freundlich equation (1b). From the
comparison of Eqs. (1a), (1b) and (10) one can see that our solution
coincides with that of Ostwald. It is not surprising as both equations
are derived using the thermodynamics of Gibbs.

Although the difference between Eqs. (1a), (10) and (1b) is only
in a numerical coefficient 2 vs. 3, behind this quantitative differ-
ence a qualitative difference is hidden. The present author believes
that the derivation of Eqs. (6), (9) and (10), presented in this paper,
are free of contradictions. The reason why the Freundlich equation
(and the Kelvin equation in its roots) contradicts the thermody-
namics of Gibbs is explained in Appendix B. From the comparison
1 The same results of Eqs. (9), (10) and (13) are obtained, when solution � is real,
but is infinitely diluted in component A (as in this case the solution is also quasi-ideal
from the point of view of component A).
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Fig. 3. Dependence of the ratio of the solubilities of small and large crystal as func-
arked “Ostwald”), Eq. (1b) (bold curve marked “Freundlich”) and the Ostwald
quation corrected by the Tolman equation: Eq. (13) (dotted thin curves marked
corrected Ostwald”). Parameters: Vo

A(�)
= 10−4 m3/mol, �o

�/�
= 0.05 J/m2, T = 310 K,

 = 1.0 nm.

i. In agreement with Gibbs and Ostwald, the size effect is due to a
higher specific surface area of a smaller particle. This statement is
in accordance with the thermodynamic of Gibbs, and the present
author believes that it is a true statement.

i. In agreement with the derivation of Kelvin and Freundlich, the
size effect is due to a higher curvature of a smaller particle. As
shown in Appendix B, this statement is based on the incorrect
usage of the Laplace equation, and thus this statement is incor-
rect itself.

The size dependence of the solubility in accordance to Ost-
ald and Freundlich is compared in Fig. 2. One can see that the
stwald equation provides a much stronger size dependence com-
ared to the Freundlich (Ostwald–Freundlich) equation. At this
oint one might note that the results calculated using the (incor-
ect) Ostwald–Freundlich (or Kelvin) equation appear to be closer
o measurements (Adamson, 1990). The reason might be due to the
econdary effect: the size dependence of the interfacial energy.

. The role of the secondary and ternary size effects

Gibbs (1875–1878) also derived a general equation on the size
ependence of surface tension. However, this subject received
ttention only after the work of Tolman (1949):

�/� =
�o

�/�

1 + ((2 · ı)/r�)
(11)

here ��/� is the size dependent interfacial energy (J/m2) and ı is
he distance (m)  from the surface of tension to the dividing surface
or which the superficial density of the particle vanishes. Its value
an be estimated after (Tolman, 1949):

 = kT · d (12)

here d is the intermolecular distances (m)  in the � phase and
T ∼= 0.25–0.60, the Tolman coefficient. Although there are also
ome other approaches in the literature to describe the size effect
f the interfacial energy (Buff, 1951; Jiang et al., 2001; Samsonov
t al., 2004), Eqs. (11) and (12) will be substituted into Eq. (10) in
his paper in the first approximation:

A(�) = xo
A(�) · exp

[
3 · Vo

A(�) · �o
�/�

R · T · (r� + kT · d)

]
(13)
The interval of possible values of the relative solubilities is
hown in Fig. 2, together with Eqs. (1a) and (1b). Suppose, that
xperimental points fall into the interval calculated by the cor-
ected Ostwald equation (13). As follows from Fig. 2, in this case
tion  of the size of the small crystal, in accordance to the corrected Ostwald equation
(13) (figures on lines correspond to different contact angle values). Parameters:
Vo

A(�)
= 10−4 m3/mol, �o

�/g
= 0.10 J/m2, �o

�/g
= 0.07 J/m2, T = 310 K, d = 1.0 nm.

the experimental points seems to confirm the validity of the Fre-
undlich equation. However, as follows from the present paper, the
experimental points actually confirm the validity of the Ostwald
equation, corrected by the Tolman equation.

Let us also mention that a ternary effect is also expected. As fol-
lows from Eq. (7),  the solubility depends also on the standard Gibbs
energy of the crystal. On the other hand, molecular dynamic sim-
ulations of Chamaani et al. (2011) show that the cohesion energy
weakens when the size of the nano-particle decreases, leading to
the shift of Go

A(�) towards more positive values. As follows from Eq.
(7), this is a partial compensation effect to the size dependence of
the surface energies. This ternary effect is not shown here explic-
itly, as it is believed to be within the uncertainty of the Tolman
coefficient (kT ∼= 0.25–0.60).

5. The effect of wettability of the particle by the liquid

According to the equation of Young (1805),  the interfacial energy
depends on the contact angle as:

�o
�/� = �o

�/g − �o
�/g · cos � (14)

where �o
�/g and �o

�/g are interfacial energies of the corresponding

phase against gas (J/m2) and � is the contact angle of phase � on
phase � in a gaseous environment (degrees). If the contact angle
can be altered without changing other parameters, it will have an
influence on the value of �o

�/�, and thus, through Eq. (10), on the size
dependence of the interfacial energy. The weaker is the adhesion,
i.e. the poorer is the wettability (i.e. the larger is the contact angle),
the stronger is the size dependence of the solubility, and vice versa
(see Fig. 3).

6. A correction due to different surface planes

In the derivation of Eqs. (6), (9), (10) and (13), we  supposed that
the interfacial energy along the �/� interface is identical. However,
for crystals covered by different crystal planes h k l, the situation is
more complex. In this case, Eq. (A1) should be modified as:

Go
A(�),S,abs = Go

A(�),abs +
∑
hkl

A�(hkl) · �o
�(hkl)/� (15)

where A�(hkl) is the partial surface area (m2) of phase �, covered
by plane h k l and �o

�(hkl)/� is the interfacial energy (J/m2) between

the h k l plane of phase � and phase �. To the analogy of Eq. (2),  the

specific surface area of the plane h k l of phase � is defined as:

AS,�(hkl) ≡ A�(hkl)

V�
(16)
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hen, instead of Eqs. (A6) and (5) the following equation is obtained:

o
A(�),S = Go

A(�) + Vo
A(�) ·

∑
hkl

AS,�(hkl) · �o
�(hkl)/� (17)

Then, instead of Eqs. (6) and (9),  the following equations are
btained, if the above derivation is repeated using Eq. (17) instead
f Eq. (5):

i. for the most general case:

Go
A(�) + Vo

A(�) ·
∑
hkl

AS,�(hkl) · �o
�(hkl)/� = Go

A(�) + R · T · ln xA(�)

+ �GE
A(�) (18)

i. for the case of an ideal (or infinitely diluted) solution:

xA(�) = xo
A(�) · exp

(
Vo

A(�) ·
∑

hklAS,�(hkl) · �o
�(hkl)/�

R · T

)
(19)

. Conclusions

. The general equation is derived for the equilibrium of a small
solid pure phase and a large solution, being consistent with the
thermodynamics of Gibbs (see Eq. (6)). However, this general
equation can be solved only in a numerical way to find solubility.

. The general equation (6) can be solved in a closed form for solu-
bility if an ideal (or an infinitely diluted) solution is considered
for component A, and if the interfacial energy is independent of
the composition of the solution (see Eq. (9)). As follows from Eq.
(9),  the solubility increases for the same volume of the crystal as
its specific surface area increases (i.e. if its shape deviates more
from sphericity).

. If all physical parameters (other than the solubility itself) are
taken as size independent parameters, then Eq. (9) further sim-
plifies if the shape of the solid is supposed to be spherical (see
Eq. (10)). This equation, however, is found to be in contradiction
with the Ostwald–Freundlich equation (=the extended Kelvin
equation), widely used in chemistry, biology and materials sci-
ence to describe the size dependence of solubility. The reason for
the incorrectness of the Kelvin equation is due to the incorrect
application of the Laplace equation (see Appendix B).

. It is found that the solubility increases with decreasing the size
not due to the increased curvature of the phase (Kelvin and Fre-
undlich), but rather due to the increased specific surface area of
the phase (Gibbs and Ostwald).

. When the size dependence of the interfacial energy is taken
into account, the corrected Ostwald equation (13) is obtained.
Numerical values obtained from the corrected Ostwald equa-
tion might seem to be more similar to the predictions of the
Ostwald–Freundlich equation than to that of the Ostwald equa-
tion. This coincidence might explain the long lifetime of the
principally incorrect Ostwald–Freundlich equation.

. It is shown that the size dependence of solubility can be
enhanced if the particle to be dissolved has a poorer wettability
by the liquid solution.

. Eqs. (6) and (9) are modified for the case, when the crystal is sur-
rounded by several planes of different interfacial energies (see
Eqs. (18) and (19)).

cknowledgements
This work was carried out as part of the TAMOP-4.2.1.B-
0/2/KONV-2010-0001 project with support by the European
nion and the European Social Fund. The author is grateful to M.H.F.
rmaceutics 430 (2012) 253– 257

Sluiter of Delft University of Technology, Netherlands, for his valu-
able discussions.

Appendix A. Derivation of Eq. (5)

According to Gibbs (1875–1878), the absolute value of the stan-
dard Gibbs energy of pure phase A(�)  of the given surface area A�

in solution � (Go
A(�),S,abs, J) can be written as:

Go
A(�),S,abs = Go

A(�),abs + A� · �o
�/� (A1)

where Go
A(�),abs is the absolute value of the bulk standard Gibbs

energy of A(�)  (J). Let us define the molar standard Gibbs energies
by dividing the absolute standard Gibbs energies by the amount of
material in phase � (n�):

Go
A(�),S =

Go
A(�),S,abs

n�
(A2)

Go
A(�) =

Go
A(�),abs

n�
(A3)

Now, let us divide Eq. (A1) by the amount of material in phase
� (n�). Then, taking into account Eqs. (A2) and (A3), the following
equation is obtained:

Go
A(�),S = Go

A(�) + A�

n�
· �o

�/� (A4)

The amount of material in phase � can be defined as the ratio of its
volume (m3) to its molar volume (m3/mol):

n� ≡ V�

Vo
A(�)

(A5)

Let us substitute Eq. (A5) into Eq. (A4) and take into account Eq. (2),
the definition of the specific surface area of phase �. Then, the final
equation is obtained for the (molar) standard Gibbs energy of pure
phase A(�)  of the given specific surface area:

Go
A(�),S = Go

A(�) + AS,� · Vo
A(�) · �o

�/� (A6)

Eq. (A6) is used in the main text of this paper as Eq. (5).

Appendix B. The derivation of Eq. (1b) and the proof of its
incorrectness

Let us consider a small solid, spherical phase � of radius r�, com-
posed of only component A, being in equilibrium with an infinitely
large ideal solution phase �, with an equilibrium mole fraction xA(�).
Then, substituting Eq. (4) with �GE

A(�) = 0 into Eq. (3),  the following
condition of equilibrium is obtained:

Go
A(�),r = Go

A(�) + R · T · ln xA(�) (B1)

where Go
A(�),r is a standard Gibbs energy of phase � of pure compo-

nent A and radius r�. This Gibbs energy is composed of three terms,
written for an arbitrary outside pressure p:

Go
A(�),r = Uo

A(�) + p · Vo
A(�) − T · So

A(�) (B2)

where Uo
A(�) and So

A(�) are the standard inner energy an entropy of
phase A(�), in the first approximation taken as independent of the
size of phase A(�).  Let us consider the system under the standard
outside pressure po. Then, inside the small spherical phase � the

pressure equals:

p = po +
2 · �o

�/�

r�
(B3)
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The second term of Eq. (B3) is the pressure difference, due to de
aplace (1806).  This pressure arises due to the curvature of phase
. Let us substitute Eq. (B3) into Eq. (B2):

o
A(�),r = Uo

A(�) + po · Vo
A(�) − T · So

A(�) +
2 · Vo

A(�) · ��/�

r�
(B4)

At infinitely small curvature, i.e. at infinitely large size of phase
, Eq. (B4) transforms into the standard Gibbs energy of a large
hase � at p = po:

o
A(�) = Uo

A(�) + po · Vo
A(�) − T · So

A(�) (B5)

Substituting Eq. (B5) into Eq. (B4):

o
A(�),r = Go

A(�) +
2 · Vo

A(�) · �o
�/�

r�
(B6)

Now, let us substitute Eq. (B6) into Eq. (B1):

o
A(�) +

2 · Vo
A(�) · �o

�/�

r�
= Go

A(�) + R · T · ln xA(�) (B7)

he equilibrium mole fraction can be expressed from Eq. (B7) as:

A(�) = xo
A(�) · exp

(
2 · �o

�/� · Vo
A(�)

R · T · r�

)
(B8)

Eq. (B8) is the result of this derivation, as it appears in text-
ooks, whenever the Freundlich version of the Ostwald equation is
erived. One can see that Eq. (B8) is identical with Eq. (1b).

Although the above derivation is mathematically correct, it is
ncorrect physically. Indeed, the inner Laplace pressure described
y Eq. (B3) is not identical with the outside pressure p of Eq. (B2).
herefore, Eq. (B3) should not be substituted into Eq. (B2) and then
q. (B8) cannot be derived. Thus, the Freundlich equation is incor-
ect, as the Laplace equation should not be substituted into the
quation for the Gibbs energy. Actually, just an opposite is the case:
he Laplace equation can be derived from the general equation of
ibbs, Eq. (A1), as shown by Kaptay (2005, 2012c).
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