Respostas

- 1. Os Países A e B têm a seguinte função de produção: $Y = F(K, L) = K^{1/2} \cdot L^{1/2}$
- a. Esta função de produção tem retornos constantes à escala?
- b. Qual é a função de produção por trabalhador resultante, Y / L = f (K / L)?
- c. Presuma que nenhum país experimenta crescimento populacional ou progresso tecnológico e que 5% do capital se desvaloriza a cada ano. Suponha ainda que o país A economize 10% da produção a cada ano e o país B economize 20% da produção a cada ano. Encontre o nível de capital no estado estacionário por trabalhador, o nível de renda no estado estacionário por trabalhador e o consumo por trabalhador.
- d. Suponha que ambos os países começam com um estoque de capital por trabalhador igual a 2. Quais são os níveis de renda por trabalhador e consumo por trabalhador?
- 1. a) sim, pois multiplicando K e L por uma constant positive (λ), a produção também se multiplica por esse valor.
- b) $y = k^{0.5}$
- c) País A: k=4, y=2, c=1.8. País B: k=16, y=4, c=3.2

d)

País A						
Ano 1	k	$y = k^{0.5}$	$c = (1 - s) \cdot y$	i = sy	$\delta \cdot k$	$\Delta k = i - \delta \cdot k$
1	2	1.414	1.273	0.141	0.1	0.041
2	2.041	1.429	1.286	0.143	0.102	0.041
3	2.082	1.443	1.299	0.144	0.104	0.040
4	2.122	1.457	1.311	0.146	0.106	0.040
5	2.101	1.47	1.323	0.147	0.108	0.039

País B						
Ano	k	$y = k^{0.5}$	$c = (1 - s) \cdot y$	i = sy	$\delta \cdot k$	$\Delta k = i - \delta \cdot k$
1	2	1.414	1,131	0.283	0.1	0.183
2	2.183	1.478	0.182	0.296	0.109	0.187
3	2.37	1.539	1.231	0.308	0.119	0.189
4	2.559	1.6	1.28	0.32	0.128	0.192
5	2.751	1.659	1.327	0.332	0.138	0.194

Levará 5 anos para que o consume em B seja maior que em A.

- 2. Mostre no diagrama de Solow e explica em palavras:
- a. O efeito de um aumento da taxa de poupança nos níveis de produção por trabalhador (Y / L), de capital por trabalhador (K / L) e salário real (W / P) no estado estacionário.
- b. O efeito de uma menor taxa de crescimento populacional nos níveis de produção por trabalhador $(Y \ / \ L)$, capital por trabalhador $(K \ / \ L)$ e salário real $(W \ / \ P)$ no estado estacionário.
- c. O efeito de uma melhor tecnologia nos níveis de produção por trabalhador (Y / L), capital por trabalhador (K / L) e salário real (W / P) no estado estacionário.

2.a. todos eles aumentam.

- b. A taxa de crescimento a longo prazo de Y e K é de 2 por cento (= n + g), e as taxas de crescimento de longo prazo de Y / L, do salário real, e de K / L é 0 (= g).
- c. A taxa de crescimento a longo prazo de Y e K é 4 por cento (= n + g), e as taxas de crescimento a longo prazo de Y / L, do salário real, e de K / L é 2 (= g).
- 3. Considere uma economia descrita pela função de produção: $Y = F(K, L) = K^{0.3} \cdot L^{0.7}$
- a. Qual é a função de produção por trabalhador?
- b. Supondo que não há crescimento populacional ou progresso tecnológico, encontre o estoque de capital por trabalhador, a produção por trabalhador e o consumo por trabalhador em função da taxa de poupança e da taxa de depreciação no estado estacionário.
- c. Suponha que a taxa de depreciação seja de 10% ao ano. Faça uma tabela mostrando capital estacionário por trabalhador, produção por trabalhador e consumo por trabalhador para taxas de poupança de 0 por cento, 10 por cento, 20 por cento e 30 por cento e assim por diante. Qual taxa de poupança maximiza a produção por trabalhador? Qual taxa de poupança maximiza o consumo por trabalhador?
- d. Use o cálculo para encontrar o produto marginal do capital. Adicione à sua tabela o produto marginal do capital líquido de depreciação para cada uma das taxas de poupança.

3. a.
$$y = k^{0.3}$$

b.
$$k^* = \left(\frac{s}{\delta}\right)^{1/0.7}$$
, $y^* = \left(\frac{s}{\delta}\right)^{0.3/0.7}$, $c^* = (1-s) \cdot y^* = (1-s) \cdot \left(\frac{s}{\delta}\right)^{0.3/0.7}$

Taxa de	k^*	<i>y</i> *	c^*	MPK
poupança				
0	0	0	0	
0.1	1.00	1.00	0.9	0.3
0.2	2.69	1.35	1.08	0.15
0.3	4.8	1.6	1.12	0.1
0.4	7.25	1.81	1.09	0.08
0.5	9.97	1.99	1	0.06

0.6	12.93	2.16	0.86	0.05
0.7	16.12	2.3	0.69	0.04
0.8	19.5	2.44	0.49	0.04
0.9	23.08	2.56	0.26	0.03
1.0	26.83	2.68	0	0.03

Uma taxa de poupança de 100 por cento (s=1,0) maximiza a produção por trabalhador. O consumo por trabalhador é maximizado a uma taxa de 0,3 por cento - ou seja, onde s é igual à participação do capital no resultado. d. veja Tabela.

MPK-taxa de depreciação = retorno real ao capital.

$$MPK = 0.3 \cdot \frac{K^{0.3} \cdot L^{0.7}}{K} = 0.3 \cdot \frac{Y}{K} = 0.3 \cdot \frac{y}{k}$$
, see TABLE.

- 4. Mostre cada uma das seguintes afirmações sobre o estado estacionário do modelo Solow com crescimento populacional e progresso tecnológico.
- a. A relação capital-produto é constante.
- b. O capital e o trabalho ganham uma parcela constante da renda de uma economia.
- c. A renda total do capital e a renda total do trabalho crescem à taxa de crescimento da população mais a taxa de progresso tecnológico, n + g.
- 4. a) No estado estacionário: $s\hat{y} = (n+g+\delta)\cdot(\hat{k}) \Rightarrow \hat{k}/\hat{y} = s/(n+g+\delta)$, que é constante porque s, n, g, e δ são constantes.

Como $\hat{k}/\hat{y}=K/AL/Y/AL=K/Y$, conclui-se que K/Y é constante no estado estacionário.

- b) A parcela de capital na renda = $MPK \cdot K/Y = \alpha \cdot (Y/K) \cdot K/Y = \alpha$ Isso porque a parcela de capital na renda é constante (= α), e também a parcela do trabalho na renda é constante = 1- α . Note que isso é uma propriedade da função Cobb-Douglas.
- c) Sabe-se que no estado estacionário a taxa de crescimento de Y é n+g. No item anterior, b, mostramos que as parcelas do capital e do trabalho na renda é constante e a renda total cresce à taxa n+g, então a renda do trabalho e do capital devem também crescer a taxa n+g.
- 5. Nos EUA, a parcela de capital do PIB é de cerca de 30% (ou K/Y); o crescimento médio da produção é de cerca de 3% ao ano; a taxa de depreciação é de cerca de 4% ao ano; e a relação capital-produto é de cerca de 2,5. Suponha que a função de produção seja Cobb-Douglas, de modo que a participação de capital no produto seja constante e que os EUA tenham estado em estado estacionário.
- a. O que deve ser a taxa de poupança no estado estacionário inicial? (Sugestão: use a relação estado estacionário,.)
- b. Sendo o produto marginal do capital descrito por $PMK = \partial \times K^{\partial 1}(E \times L)^{1 \partial}$, calcule seu valor no estado estacionário inicial?
- c. Suponha que a política pública eleva a taxa de poupança para que a economia atinja o nível de capital da Regra de Ouro. Qual será o produto marginal do capital no estado

estacionário da Regra de Ouro? Compare o produto marginal do capital no estado estável da regra de ouro com o produto marginal do capital no estado estacionário inicial? d. Qual será o índice de capital-produto no estado estacionário da Regra de Ouro? (Sugestão: Para a função de produção Cobb-Douglas, a relação capital-saída está relacionada ao produto marginal do capital).

5. A participação do capital no PIB é cerca de 30 %, o que implica que:

$$Y = K^{0.3}(E.L))^{(1-0.3)=0.7} \Rightarrow \tilde{y} = \tilde{k}^{0.3}$$

Se a economia está no estado estacionário: a taxa de crescimento do produto = n + g, que corresponde a 0.03. A taxa de depreciação é 0.04.

a) A taxa de poupança no estado estacionário é (lembre-se que poupança é igual a investimento): $s\hat{y} = (n + g + \delta) \cdot (\hat{k}) \Rightarrow$

$$s = (n + g + \delta) \cdot (\hat{k} / \hat{y}) = (0.03 + 0.04)(2.5) = 0.175$$

b)
$$PMK = \partial \times K^{\partial - 1} (E \times L)^{1 - \partial} = \partial \times (Y / K) = \frac{\partial}{K / Y} = 0.3 / 2.5 = 0.12$$

c) Na regra de ouro do estado estacionário: PMK = (n + g + O) = 0.03 + 0.04 = 0.07Então, é necessário elevar \tilde{k} para alcançar a regra de ouro do estado estacionário.

d)
$$K/Y = \frac{\alpha}{MPK} = 0.3/0.07 = 4.29$$

$$s = (n + g + O) \times (k / \hat{y}) = (0.03 + 0.04)(4.29) = 0.3$$