


```
Carga Elétrica (q):

q = n x F (Coulombs - C)

n - mol de elétrons

F - Constante de Faraday (C/mol; F = 96.485,3 C/mol)
Corrente Elétrica (I): quantidade de carga fluindo através de um circuito em um segundo

I = q / t (Ampère: A = C / s)

t - tempo (s)
Potencial Elétrico (E): trabalho necessário (ou que pode ser realizado) para que uma carga elétrica se movimente entre dois pontos. A ≠ de Potencial (∆E) é medida em volts (V)

Trabalho = E x q (Joules = V x C)

Quanto maior ∆E entre dois pontos, maior é o trabalho "elétrico" que pode ser realizado
```

Relação entre ΔG e E:
ΔG = -nFE
Potência Elétrica (P): trabalho realizado por unidade de tempo P = E x q/s = E x I (W= V x A)
Lei de Faraday: "A quantidade de substância (reagente ou produto) que sofre uma transformação eletroquímica é equivalente à quantidade de energia elétrica envolvida no processo" m = q/nF e q = I x t Assim: m = 1/nF m - massa (g)

Potencial de célula (E): é uma medida da "habilidade" da reação global da célula em "empurrar" ou "puxar" elétrons através de um circuito.

 ↑ força → ↑ E

 ↓ força → ↓ E

E - volts (V)

Potencial-padrão de célula e Equilíbrio:

 ΔG° = -nFE°_{célula} = -RT ln K_{eq}

 Condições-padrão: reagentes e produtos em seus estados padrão, sendo R a constante dos gases e T a temperatura absoluta


```
Potencial-padrão de eletrodo (redução):
E°<sub>R</sub> - Potencial-padrão de redução
Mede a "força" da semi-reação de "empurrar" ou "puxar" os elétrons em um eletrodo
Determinado para um par redox em relação a um par redox referência
Ex: Ag<sup>+</sup><sub>(aq)</sub> | Ag<sub>(s)</sub> → E°<sub>R</sub> (Ag+, Ag)
Referência (Convenção): Eletrodo-padrão de Hidrogênio (EPH)
Eletrodo gasoso: H<sub>2</sub> adsorvido em Platina platinizada.
2H<sup>+</sup><sub>(aq)</sub> + 2e<sup>-</sup> = H<sub>2(g)</sub>
Pt, H<sub>2</sub> (p=1,00 atm) | H<sup>+</sup> (aH<sup>+</sup> = 1,00) | |
Por convenção, o potencial do EPH é definido como sendo 0,000 V sob todas a T.
```


Potenciais-padrão de redução (semi-célula)

- Considere: $Zn_{(s)} \to Zn^{2+}{}_{(aq)} + 2e^{\cdot}.$ Podemos medir o E_{cell} em relação ao EPH (catodo):

 $E^{\circ}_{cell} = E^{\circ}_{red}(catodo) - E^{\circ}_{red}(anodo)$

 $0,76 V = 0 V - E_{red}^{\circ}(anodo).$

- Consequentemente, o $E^{\circ}_{red}(anodo) = -0.76 V.$
- Os potenciais-padrão de redução devem ser escritos como as reações de redução:

$$Zn^{2+}_{(aq)} + 2e^{-} \rightarrow Zn_{(s)}, E^{\circ}_{red} = -0.76 V.$$

- Uma vez que o E°_{red} = -0,76 V, concluímos que a redução do Zn^{2+} na presença do EPH não é espontânea.
- A oxidação do Zn com o EPH é espontânea.
- A variação do coeficiente estequiométrico não afeta o E°_{red} .

TABELA 20.1 Potenciais-padrão de redução em água a 25 °C	
Potencial (V)	Semi-reação de redução
+2,87	$F_2(g) + 2e^- \longrightarrow 2F^-(aq)$
+1,51	$MnO_4^-(aq) + 8H^+(aq) + 5e^- \longrightarrow Mn^{2+}(aq) + 4H_2O(l)$
+1,36	$Cl_2(g) + 2e^- \longrightarrow 2Cl^-(aq)$
+1,33	$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \longrightarrow 2Cr^{3+}(aq) + 7H_2O(l)$
+1,23	$O_2(g) + 4H^+(aq) + 4e^- \longrightarrow 2H_2O(l)$
+1,06	$Br_2(l) + 2e^- \longrightarrow 2Br^-(aq)$
+0,96	$NO_3^-(aq) + 4H^+(aq) + 3e^- \longrightarrow NO(g) + 2H_2O(l)$
+0,80	$Ag^+(aq) + e^- \longrightarrow Ag(s)$
+0,77	$\operatorname{Fe}^{3+}(aq) + e^{-} \longrightarrow \operatorname{Fe}^{2+}(aq)$
+0,68	$O_2(g) + 2H^+(aq) + 2e^- \longrightarrow H_2O_2(aq)$
+0,59	$MnO_4^-(aq) + 2H_2O(l) + 3e^- \longrightarrow MnO_2(s) + 4OH^-(aq)$
+0,54	$I_2(s) + 2e^- \longrightarrow 2I^-(aq)$
+0,40	$O_2(g) + 2H_2O(l) + 4e^- \longrightarrow 4OH^-(aq)$
+0,34	$\operatorname{Cu}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Cu}(s)$
0	$2H^+(aq) + 2e^- \longrightarrow H_2(g)$
-0,28	$Ni^{2+}(aq) + 2e^{-} \longrightarrow Ni(s)$
-0,44	$\operatorname{Fe}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Fe}(s)$
-0,76	$Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s)$
-0,83	$2H_2O(l) + 2e^- \longrightarrow H_2(g) + 2OH^-(aq)$
-1,66	$Al^{3+}(aq) + 3e^{-} \longrightarrow Al(s)$
-2,71	$Na^+(aq) + e^- \longrightarrow Na(s)$
-3,05	$\text{Li}^+(aq) + e^- \longrightarrow \text{Li}(s)$

White, D. P.; Química - A Ciência Central; 9ª Ed.; Pearson; 2005.

Espontaneidade das reações redox• Em uma célula (espontânea) voltaica (galvânica) o E°_{red} (catodo) é
mais positivo do que o E°_{red} (anodo) uma vez que• Um E° positivo indica um processo espontâneo (célula galvânica).• Um E° negativo indica um processo não-espontâneo.• Podemos assumir que:• $\Delta G = -nFE$ • O ΔG é a variação da energia livre, n é a quantidade de matéria de
elétrons transferidos, F é a constante de Faraday e E é a fem da
célula.• Considerando-se que a carga de um mol de elétrons é 96.486 C/mol
(Constante de Faraday / F)• Já que n e F são positivos, se $\Delta G > 0$ logo E < 0.</td>

