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Dependent Variable

wo people, identical but for their race, walk into a bank and apply for a mortgage,

a large loan so that each can buy an identical house. Does the bank treat them the
same way? Are they both equally likely to have their mortgage application accepted?
By law, they must receive identical treatment. But whether they actually do is a matter
of great concern among bank regulators.

Loans are made and denied for many legitimate reasons. For example, if the
proposed loan payments take up most or all of the applicant’s monthly income, a loan
officer might justifiably deny the loan. Also, even loan officers are human and they can
make honest mistakes, so the denial of a single minority applicant does not prove
anything about discrimination. Many studies of discrimination thus look for statistical
evidence of discrimination, that is, evidence contained in large data sets showing that
whites and minorities are treated differently.

But how, precisely, should one check for statistical evidence of discrimination
in the mortgage market? A start is to compare the fraction of minority and white
applicants who were denied a mortgage. In the data examined in this chapter,
gathered from mortgage applications in 1990 in the Boston, Massachusetts, area, 28%
of black applicants were denied mortgages but only 9% of white applicants were
denied. But this comparison does not really answer the question that opened this
chapter because the black applicants and the white applicants were not necessarily
“identical but for their race.” Instead, we need a method for comparing rates of denial,
holding other applicant characteristics constant.

This sounds like a job for multiple regression analysis—and it is, but with a twist.
The twist is that the dependent variable—whether the applicant is denied—is binary.
In Part Il, we regularly used binary variables as regressors, and they caused no
particular problems. But when the dependent variable is binary, things are more
difficult: What does it mean to fit a line to a dependent variable that can take on
only two values, 0 and 1?

The answer to this question is to interpret the regression function as a conditional
probability. This interpretation is discussed in Section 11.1, and it allows us to apply
the multiple regression models from Part Il to binary dependent variables. Section 11.1
goes over this “linear probability model.” But the predicted probability interpretation
also suggests that alternative, nonlinear regression models can do a better job
modeling these probabilities. These methods, called “probit” and “logit” regression, are
discussed in Section 11.2. Section 11.3, which is optional, discusses the method used
to estimate the coefficients of the probit and logit regressions, the method of
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maximum likelihood estimation. In Section 11.4, we apply these methods to the
Boston mortgage application data set to see whether there is evidence of racial bias
in mortgage lending.

The binary dependent variable considered in this chapter is an example of a
dependent variable with a limited range; in other words, it is a limited dependent
variable. Models for other types of limited dependent variables—for example,
dependent variables that take on multiple discrete values—are surveyed in
Appendix 11.3.

Binary Dependent Variables
and the Linear Probability Model

Whether a mortgage application is accepted or denied is one example of a binary
variable. Many other important questions also concern binary outcomes. What is the
effect of a tuition subsidy on an individual’s decision to go to college? What deter-
mines whether a teenager takes up smoking? What determines whether a country
receives foreign aid? What determines whether a job applicant is successful? In all
these examples, the outcome of interest is binary: The student does or does not go to
college, the teenager does or does not take up smoking, a country does or does not
receive foreign aid, the applicant does or does not get a job.

This section discusses what distinguishes regression with a binary dependent
variable from regression with a continuous dependent variable and then turns to the
simplest model to use with binary dependent variables, the linear probability model.

Binary Dependent Variables

The application examined in this chapter is whether race is a factor in denying a
mortgage application; the binary dependent variable is whether a mortgage applica-
tion is denied. The data are a subset of a larger data set compiled by researchers at
the Federal Reserve Bank of Boston under the Home Mortgage Disclosure Act
(HMDA) and relate to mortgage applications filed in the Boston, Massachusetts,
area in 1990. The Boston HMDA data are described in Appendix 11.1.

Mortgage applications are complicated. During the period covered by these data,
the decision to approve a loan application typically was made by a bank loan officer.
The loan officer must assess whether the applicant will make his or her loan pay-
ments. One important piece of information is the size of the required loan payments
relative to the applicant’s income. As anyone who has borrowed money knows, it is
much easier to make payments that are 10% of your income than 50%! We therefore
begin by looking at the relationship between two variables: the binary dependent
variable deny, which equals 1 if the mortgage application was denied and equals 0 if
it was accepted, and the continuous variable P/I ratio, which is the ratio of the appli-
cant’s anticipated total monthly loan payments to his or her monthly income.
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Figure 11.1 presents a scatterplot of deny versus P/I ratio for 127 of the 2380
observations in the data set. (The scatterplot is easier to read using this subset of the
data.) This scatterplot looks different from the scatterplots of Part II because the
variable deny is binary. Still, it seems to show a relationship between deny and P/I
ratio: Few applicants with a payment-to-income ratio less than 0.3 have their
application denied, but most applicants with a payment-to-income ratio exceeding
0.4 are denied.

This positive relationship between P/I ratio and deny (the higher the P/I ratio,
the greater the fraction of denials) is summarized in Figure 11.1 by the OLS regres-
sion line estimated using these 127 observations. As usual, this line plots the pre-
dicted value of deny as a function of the regressor, the payment-to-income ratio. For
example, when P/I ratio = 0.3, the predicted value of deny is 0.20. But what, pre-
cisely, does it mean for the predicted value of the binary variable deny to be 0.20?

The key to answering this question—and more generally to understanding
regression with a binary dependent variable—is to interpret the regression as model-
ing the probability that the dependent variable equals 1. Thus the predicted value of
0.20 is interpreted as meaning that, when P/I ratio is 0.3, the probability of denial is
estimated to be 20%. Said differently, if there were many applications with
P/l ratio = 0.3, then 20% of them would be denied.

This interpretation follows from two facts. First, from Part I1, the population regres-
sion function is the expected value of Y given the regressors, E(Y|Xj, . . ., X;).Second,
from Section 2.2,if Y'is a 0-1 binary variable, its expected value (or mean) is the prob-
ability that Y = 1;thatis, E(Y) =0 X Pr(Y =0) + 1 X Pr(Y=1) = Pr(Y =1).
In the regression context, the expected value is conditional on the value of the
regressors, so the probability is conditional on X. Thus for a binary variable,
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E(Y|X,,...,X;) = Pr(Y = 1|X,, ..., X;). In short, for a binary dependent vari-
able, the predicted value from the population regression is the probability that Y = 1
given X.

The linear multiple regression model applied to a binary dependent variable is
called the linear probability model: /inear because it is a straight line and probability
model because it models the probability that the dependent variable equals 1 (in our
example, the probability of loan denial).

The Linear Probability Model

The linear probability model is the name for the multiple regression model of Part 11
when the dependent variable is binary rather than continuous. Because the dependent
variable Y is binary, the population regression function corresponds to the probabil-
ity that the dependent variable equals 1 given X. The population coefficient 3; on a
regressor X is the change in the probability that Y = 1 associated with a unit change
in X. Similarly, the OLS predicted value, Y, computed using the estimated regression
function, is the predicted probability that the dependent variable equals 1, and the
OLS estimator [§1 estimates the change in the probability that Y = 1 associated with
a unit change in X.

Almost all of the tools of Part II carry over to the linear probability model. The
coefficients can be estimated by OLS. Ninety-five percent confidence intervals can
be formed as * 1.96 standard errors, hypotheses concerning several coefficients can
be tested using the F-statistic discussed in Chapter 7 and interactions between vari-
ables can be modeled using the methods of Section 8.3. Because the errors of the
linear probability model are always heteroskedastic (Exercise 11.8), it is essential that
heteroskedasticity-robust standard errors be used for inference.

One tool that does not carry over is the R2. When the dependent variable is con-
tinuous, it is possible to imagine a situation in which the R? equals 1: All the data lie
exactly on the regression line. This is impossible when the dependent variable is
binary unless the regressors are also binary. Accordingly, the R? is not a particularly
useful statistic here. We return to measures of fit in the next section.

The linear probability model is summarized in Key Concept 11.1.

Application to the Boston HMDA data. The OLS regression of the binary depen-
dent variable, deny, against the payment-to-income ratio, P/I ratio, estimated using
all 2380 observations in our data set is

deny = —0.080 + 0.604 P/I ratio.

(0.032) (0.098) (11.1)

The estimated coefficient on P/I ratio is positive, and the population coefficient is
statistically significantly different from 0 at the 1% level (the z-statistic is 6.13). Thus
applicants with higher debt payments as a fraction of income are more likely to have
their application denied. This coefficient can be used to compute the predicted
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The Linear Probability Model

11.1

The linear probability model is the linear multiple regression model,
Y= Byt BXu + BoXoi + - + B + u; (11.2)

applied to a binary dependent variable Y;. Because Y isbinary, E(Y | X, X5, . . ., Xi) =
Pr(Y = 1|X;, X, ..., X;), so for the linear probability model,

Pr(Y =1|X,X,...,X) = By + BX;) + BpXo + -+ + BXk.

The regression coefficient By is the difference in the probability that Y = 1 asso-
ciated with a unit difference in X7, holding constant the other regressors, and so
forth for B,, . . ., Br. The regression coefficients can be estimated by OLS, and the
usual (heteroskedasticity-robust) OLS standard errors can be used for confidence
intervals and hypothesis tests.

change in the probability of denial given a change in the regressor. For example,
according to Equation (11.1), if P/I ratio increases by 0.1, the probability of denial
increases by 0.604 X 0.1 = 0.060—that is, by 6.0 percentage points.

The estimated linear probability model in Equation (11.1) can be used to com-
pute predicted denial probabilities as a function of P/I ratio. For example, if projected
debt payments are 30% of an applicant’s income, P/I ratio is 0.3, and the predicted
value from Equation (11.1) is —0.080 + 0.604 X 0.3 = 0.101. That is, according to
this linear probability model, an applicant whose projected debt payments are 30%
of income has a probability of 10.1% that his or her application will be denied. [This
is different from the probability of 20% based on the regression line in Figure 11.1
because that line was estimated using only 127 of the 2380 observations used to esti-
mate Equation (11.1).]

What is the effect of race on the probability of denial, holding constant the P//
ratio? To keep things simple, we focus on differences between black applicants and
white applicants. To estimate the effect of race, holding constant P/I ratio, we aug-
ment Equation (11.1) with a binary regressor that equals 1 if the applicant is black
and equals 0 if the applicant is white. The estimated linear probability model is

deny = —0.091 + 0.559 P/I ratio + 0.177 black. (113)
(0.029) (0.089) (0.025)

The coefficient on black, 0.177, indicates that an African American applicant has a
17.7% higher probability of having a mortgage application denied than a white
applicant, holding constant their payment-to-income ratio. This coefficient is signifi-
cant at the 1% level (the ¢-statistic is 711).
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Taken literally, this estimate suggests that there might be racial bias in mortgage
decisions, but such a conclusion would be premature. Although the payment-to-
income ratio plays a role in the loan officer’s decision, so do many other factors, such
as the applicant’s earning potential and his or her credit history. If any of these vari-
ables is correlated with the regressors black given the P/I ratio, its omission from
Equation (11.3) will cause omitted variable bias. Thus we must defer any conclusions
about discrimination in mortgage lending until we complete the more thorough anal-
ysis in Section 11.3.

Shortcomings of the linear probability model. The linearity that makes the linear
probability model easy to use is also its major flaw. Because probabilities cannot
exceed 1, the effect on the probability that Y = 1 of a given change in X must be
nonlinear: Although a change in P/I ratio from 0.3 to 0.4 might have a large effect on
the probability of denial, once P/I ratio is so large that the loan is very likely to be
denied, increasing P/I ratio further will have little effect. In contrast, in the linear prob-
ability model, the effect of a given change in P/I ratio is constant, which leads to pre-
dicted probabilities in Figure 11.1 that drop below 0 for very low values of P/I ratio
and exceed 1 for high values! But this is nonsense: A probability cannot be less than
0 or greater than 1. This nonsensical feature is an inevitable consequence of the linear
regression. To address this problem, we introduce new nonlinear models specifically
designed for binary dependent variables, the probit and logit regression models.

Probit and Logit Regression

Probit and logit! regression are nonlinear regression models specifically designed for
binary dependent variables. Because a regression with a binary dependent variable
Y models the probability that Y = 1,it makes sense to adopt a nonlinear formulation
that forces the predicted values to be between 0 and 1. Because cumulative probabil-
ity distribution functions (c.d.f’s) produce probabilities between 0 and 1 (Section 2.1),
they are used in logit and probit regressions. Probit regression uses the standard
normal c.d.f. Logit regression, also called logistic regression, uses the logistic c.d.f.

Probit Regression

Probit regression with a single regressor. The probit regression model with a single
regressor X is

Pr(Y =1|X) = ®(By + B X), (11.4)

where @ is the cumulative standard normal distribution function (tabulated in
Appendix Table 1).

'Pronounced pro-bit and 16-jit.
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For example, suppose that Y is the binary mortgage denial variable (deny), X is
the payment-to-income ratio (P/I ratio), By = —2, and B; = 3. What then is the
probability of denial if P/I ratio = 0.4? According to Equation (11.4), this probability
is ®(By + BiP/Iratio) = ®(—2 + 3P/Iratio) = ®(—2 + 3 X 04) = &(-0.8).
According to the cumulative normal distribution table (Appendix Table 1),
®(-0.8) = Pr(Z = —0.8) = 21.2%. That is, when P/I ratio is 0.4, the predicted
probability that the application will be denied is 21.2%, computed using the probit
model with the coefficients B, = —2 and B; = 3.

In the probit model, the term B, + B;X plays the role of “z” in the cumulative
standard normal distribution table in Appendix Table 1. Thus the calculation in the
previous paragraph can, equivalently, be done by first computing the “z-value,”
z=B)+ B X =-2+3X04 = —0.8, and then looking up the probability in the
tail of the normal distribution to the left of z = —0.8, which is 21.2%.

The probit coefficient B; in Equation (11.4) is the difference in the z-value associ-
ated with a unit difference in X. If B, is positive, a greater value for X increases the
z-value and thus increases the probability that Y = 1;if 3, is negative, a greater value
for X decreases the probability that Y = 1. Although the effect of X on the z-value
is linear, its effect on the probability is nonlinear. Thus in practice the easiest way to
interpret the coefficients of a probit model is to compute the predicted probability,
or the change in the predicted probability, for one or more values of the regressors.
When there is just one regressor, the predicted probability can be plotted as a func-
tion of X.

Figure 11.2 plots the estimated regression function produced by the probit
regression of deny on P/I ratio for the 127 observations in the scatterplot. The
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estimated probit regression function has a stretched “S” shape: It is nearly 0 and flat
for small values of P/I ratio, it turns and increases for intermediate values, and it flat-
tens out again and is nearly 1 for large values. For small values of the payment-to-
income ratio, the probability of denial is small. For example, for P/I ratio = 0.2, the
estimated probability of denial based on the estimated probit function in Figure 11.2
isPr(deny = 1|P/I ratio = 0.2) = 2.1%.When P/l ratio = 0.3, the estimated prob-
ability of denial is 16.1%. When P/I ratio = 0.4, the probability of denial increases
sharply to 51.9%, and when P/I ratio = 0.6, the denial probability is 98.3%. Accord-
ing to this estimated probit model, for applicants with high payment-to-income ratios,
the probability of denial is nearly 1.

Probit regression with multiple regressors. In all the regression problems we have
studied so far, leaving out a determinant of Y that is correlated with the included
regressors results in omitted variable bias. Probit regression is no exception. In linear
regression, the solution is to include the additional variable as a regressor. This is also
the solution to omitted variable bias in probit regression.

The probit model with multiple regressors extends the single-regressor probit
model by adding regressors to compute the z-value. Accordingly, the probit popula-
tion regression model with two regressors, X; and X5, is

Pr(Y - 1|X1,X2) - q)(.BO + ‘Ble + B2X2) (115)

For example, suppose that By = —1.6, 8y = 2,and 3, = 0.5.If X; = 04and X; = 1,
the z-valueisz = —1.6 + 2 X 0.4 + 0.5 X 1 = —0.3.So the probability that Y = 1
given X; = 04and X, = 1isPr(Y = 1|X; = 04, X, = 1) = ®(—-0.3) = 38%.

Effect of a change in X. In general, the regression model can be used to determine
the expected change in Y arising from a change in X. When Y is binary, its conditional
expectation is the conditional probability that it equals 1, so the expected change in
Y arising from a change in X is the change in the probability that Y = 1.

Recall from Section 8.1 that, when the population regression function is a non-
linear function of X, this expected change is estimated in three steps: First, com-
pute the predicted value at the original value of X using the estimated regression
function; next, compute the predicted value at the changed value of X, X + AX;
finally, compute the difference between the two predicted values. This procedure
is summarized in Key Concept 8.1. As emphasized in Section 8.1, this method
always works for computing predicted effects of a change in X, no matter how
complicated the nonlinear model. When applied to the probit model, the method
of Key Concept 8.1 yields the estimated effect on the probability that Y = 1 of a
change in X.

The probit regression model, predicted probabilities, and estimated effects are
summarized in Key Concept 11.2.
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The Probit Model, Predicted Probabilities,
and Estimated Effects

The population probit model with multiple regressors is
Pr(Y =1|X, X;,..., X)) = ®(By + BiXy + BoXo + -+ BXy), (11.6)

where the dependent variable Y is binary, @ is the cumulative standard normal
distribution function,and X7, X5,and so on are regressors. The model is best interpreted
by computing predicted probabilities and the effect of a change in a regressor.

The predicted probability that Y = 1, given values of Xj, X5, . . ., X}, is cal-
culated by computing the z-value,z = B, + B X; + BX; + -+ + B X}, and then
looking up this z-value in the normal distribution table (Appendix Table 1).

The coefficient B; is the difference in the z-value arising from a unit difference
in X, holding constant X, . .., Xj.

The effect on the predicted probability of a change in a regressor is computed
by (1) computing the predicted probability for the initial value of the regressor,
(2) computing the predicted probability for the new or changed value of the
regressor, and (3) taking their difference.

11.2

Application to the mortgage data. As an illustration, we fit a probit model to the
2380 observations in our data set on mortgage denial (deny) and the payment-to-
income ratio (P/I ratio):

/\
Pr(deny = 1|P/Iratio) = ®(—2.19 + 2.97P/I ratio). (11.7)
(0.16) (0.47)

The estimated coefficients of —2.19 and 2.97 are difficult to interpret because they
affect the probability of denial via the z-value. Indeed, the only things that can be
readily concluded from the estimated probit regression in Equation (11.7) are that
the payment-to-income ratio is positively related to probability of denial (the
coefficient on P/I ratio is positive) and that this relationship is statistically significant
(t=1297/047 = 6.32).

What is the change in the predicted probability that an application will be denied when
the payment-to-income ratio increases from 0.3 to 0.4? To answer this question, we follow
the procedure in Key Concept 8.1: Compute the probability of denial for P/I ratio = 0.3
and for P/I ratio = 0.4, and then compute the difference. The probability of denial when
P/Iratio = 0.3 is ®(—2.19 + 2.97 X 0.3) = ®(—1.30) = 0.097. The probability of
denial when P/ ratio = 0.41is ®(—2.19 +2.97 X 0.4) = ®(—1.00) = 0.159. The esti-
mated change in the probability of denial is 0.159 — 0.097 = 0.062. That is, an
increase in the payment-to-income ratio from 0.3 to 0.4 is associated with an increase
in the probability of denial of 6.2 percentage points, from 9.7% to 15.9%.
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Because the probit regression function is nonlinear, the effect of a change in X
depends on the starting value of X. For example, if P/I ratio = 0.5, the estimated denial
probability based on Equation (11.7) is @ (—2.19 + 2.97 X 0.5) = &(—0.71) = 0.239.
Thus the change in the predicted probability when P/ ratio increases from 0.4 to 0.5
is 0.239 — 0.159, or 8.0 percentage points, larger than the increase of 6.2 percentage
points when P/I ratio increases from 0.3 to 0.4.

What is the effect of race on the probability of mortgage denial, holding constant
the payment-to-income ratio? To estimate this effect, we estimate a probit regression
with both P/I ratio and black as regressors:

/\

Pr (deny = 1|P/Iratio, black) = ®(—2.26 + 2.74 P/I ratio + 0.71black). (11.8)
(0.16) (0.44) (0.083)

Again, the values of the coefficients are difficult to interpret, but the sign and statisti-
cal significance are not. The coefficient on black is positive, indicating that an African
American applicant has a higher probability of denial than a white applicant, holding
constant their payment-to-income ratio. This coefficient is statistically significant at
the 1% level (the t-statistic on the coefficient multiplying black is 8.55). For a white
applicant with P/I ratio = 0.3, the predicted denial probability is 7.5%, while for a
black applicant with P/I ratio = 0.3,it is 23.3%; the difference in denial probabilities
between these two hypothetical applicants is 15.8 percentage points.

Estimation of the probit coefficients. The probit coefficients reported here were
estimated using the method of maximum likelihood, which produces efficient (mini-
mum variance) estimators in a wide variety of applications, including regression with
a binary dependent variable. The maximum likelihood estimator is consistent and
normally distributed in large samples, so ¢-statistics and confidence intervals for the
coefficients can be constructed in the usual way.

Regression software for estimating probit models typically uses maximum likeli-
hood estimation, so this is a simple method to apply in practice. Standard errors
produced by such software can be used in the same way as the standard errors of
regression coefficients; for example, a 95% confidence interval for the true probit
coefficient can be constructed as the estimated coefficient +1.96 standard errors.
Similarly, F-statistics computed using maximum likelihood estimators can be used to
test joint hypotheses. Maximum likelihood estimation is discussed further in
Section 11.3, with additional details given in Appendix 11.2.

Logit Regression

The logit regression model. The logit regression model is similar to the probit
regression model except that the cumulative standard normal distribution function ®
in Equation (11.6) is replaced by the cumulative standard logistic distribution function,
which we denote by F. Logit regression is summarized in Key Concept 11.3. The logistic
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11.3

Logit Regression

The population logit model of the binary dependent variable Y with multiple
regressors is
Pr(Y = 11X, X,,...,Xs) = F(Bo + BiXi + BoXy + -+ + BiXy)

_ 1 (11.9)
|l & e—(Bo+BlX1+BzX2+"' +BiXy)

Logit regression is similar to probit regression except that the cumulative distribu-
tion function is different.

cumulative distribution function has a specific functional form, defined in terms of the
exponential function, which is given as the final expression in Equation (11.9).

As with probit, the logit coefficients are best interpreted by computing predicted
probabilities and differences in predicted probabilities.

The coefficients of the logit model can be estimated by maximum likelihood. The
maximum likelihood estimator is consistent and normally distributed in large samples, so
t-statistics and confidence intervals for the coefficients can be constructed in the usual way.

The logit and probit regression functions are similar. This is illustrated in
Figure 11.3, which graphs the probit and logit regression functions for the dependent
variable deny and the single regressor P/I ratio, estimated by maximum likelihood
using the same 127 observations as in Figures 11.1 and 11.2. The differences between
the two functions are small.
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Historically, the main motivation for logit regression was that the logistic cumu-
lative distribution function could be computed faster than the normal cumulative
distribution function. With the advent of more powerful computers, this distinction
is no longer important.

Application to the Boston HMDA data. A logit regression of deny against P/I ratio and
black, using the 2380 observations in the data set, yields the estimated regression function

/\

Pr (deny = 1| P/I ratio, black) = F(—4.13 + 5.37P/I ratio + 1.27black). (11.10)
(0.35) (0.96) (0.15)

The coefficient on black is positive and statistically significant at the 1% level (the
t-statistic is 8.47). The predicted denial probability of a white applicant with
P/Iratio = 03 is 1/[1 + ¢ (7#B3F337X03+127x0)] = 1 /[1 4 ¢272] = 0.074, or
74%. The predicted denial probability of an African American applicant with
P/Iratio = 0.3 1is 1/[1 + €] = 0.222, or 22.2%, so the difference between the
two probabilities is 14.8 percentage points.

Comparing the Linear Probability, Probit,
and Logit Models

All three models—linear probability, probit, and logit—are just approximations to
the unknown population regression function E(Y|X) = Pr(Y = 1| X). The linear
probability model is easiest to use and to interpret, but it cannot capture the nonlin-
ear nature of the true population regression function. Probit and logit regressions
model this nonlinearity in the probabilities, but their regression coefficients are more
difficult to interpret. So which should you use in practice?

There is no one right answer, and different researchers use different models.
Probit and logit regressions frequently produce similar results. For example, accord-
ing to the estimated probit model in Equation (11.8), the difference in denial prob-
abilities between a black applicant and a white applicant with P/I ratio = 0.3 was
estimated to be 15.8 percentage points, whereas the logit estimate of this gap, based
on Equation (11.10), was 14.9 percentage points. For practical purposes, the two esti-
mates are very similar. One way to choose between logit and probit is to pick the
method that is easier to use in your statistical software.

The linear probability model provides the least sensible approximation to the
nonlinear population regression function. Even so, in some data sets there may be
few extreme values of the regressors, in which case the linear probability model still
can provide an adequate approximation. In the denial probability regression in
Equation (11.3), the estimated black/white gap from the linear probability model is
17.7 percentage points, larger than the probit and logit estimates but still qualitatively
similar. The only way to know this, however, is to estimate both a linear and a non-
linear model and to compare their predicted probabilities.
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11.3

Estimation and Inference in the Logit
and Probit Models?

The nonlinear models studied in Sections 8.2 and 8.3 are nonlinear functions of the
independent variables but are linear functions of the unknown coefficients (parame-
ters). Consequently, the unknown coefficients of those nonlinear regression functions
can be estimated by OLS. In contrast, the probit and logit regression functions are non-
linear functions of the coefficients. That is, the probit coefficients B, Bi, . . . , B in Equa-
tion (11.6) appear inside the cumulative standard normal distribution function ®, and
the logit coefficients in Equation (11.9) appear inside the cuamulative standard logistic
distribution function F. Because the population regression function is a nonlinear func-
tion of the coefficients By, B, . . . , By, those coefficients cannot be estimated by OLS.

This section provides an introduction to the standard method for estimation of
probit and logit coefficients, maximum likelihood; additional mathematical details
are given in Appendix 11.2. Because it is built into modern statistical software, maxi-
mum likelihood estimation of the probit and logit coefficients is easy in practice. The
theory of maximum likelihood estimation, however, is more complicated than the
theory of least squares. We therefore first discuss another estimation method, non-
linear least squares, before turning to maximum likelihood.

Nonlinear Least Squares Estimation

Nonlinear least squares is a general method for estimating the unknown parameters
of a regression function when, like the probit coefficients, those parameters enter the
population regression function nonlinearly. The nonlinear least squares estimator,
which was introduced in Appendix 8.1, extends the OLS estimator to regression func-
tions that are nonlinear functions of the parameters. Like OLS, nonlinear least
squares finds the values of the parameters that minimize the sum of squared predic-
tion mistakes produced by the model.

To be concrete, consider the nonlinear least squares estimator of the parameters
of the probit model. The conditional expectation of Y given the X’s is
E(Y|X,....X) =Pr(Y =1|X,,...,X) = ®P(By + B X, + - + BXi). Esti-
mation by nonlinear least squares fits this conditional expectation function, which is
a nonlinear function of the parameters, to the dependent variable. That is, the non-
linear least squares estimator of the probit coefficients is the values of by, . . . , b, that
minimize the sum of squared prediction mistakes:

DY, — D(by + biXy; + -+ +biXe) ]2 (11.11)
i=1

The nonlinear least squares estimator shares two key properties with the OLS esti-
mator in linear regression: It is consistent (the probability that it is close to the true

’This section contains more advanced material that can be skipped without loss of continuity.
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value approaches 1 as the sample size gets large), and it is normally distributed in
large samples. There are, however, estimators that have a smaller variance than the
nonlinear least squares estimator; that is, the nonlinear least squares estimator is
inefficient. For this reason, the nonlinear least squares estimator of the probit coef-
ficients is rarely used in practice, and instead the parameters are estimated by maxi-
mum likelihood.

Maximum Likelihood Estimation

The likelihood function is the joint probability distribution of the data, treated as a
function of the unknown coefficients. The maximum likelihood estimator (MLE) of
the unknown coefficients consists of the values of the coefficients that maximize the
likelihood function. Because the MLE chooses the unknown coefficients to maxi-
mize the likelihood function, which is in turn the joint probability distribution, in
effect the MLE chooses the values of the parameters to maximize the probability of
drawing the data that are actually observed. In this sense, the MLEs are the param-
eter values “most likely” to have produced the data.

To illustrate maximum likelihood estimation, consider two i.i.d. observations, Y;
and Y5, on a binary dependent variable with no regressors. Thus Y is a Bernoulli
random variable, and the only unknown parameter to estimate is the probability p
that Y = 1, which is also the mean of Y.

To obtain the maximum likelihood estimator, we need an expression for the
likelihood function, which in turn requires an expression for the joint probability
distribution of the data. The joint probability distribution of the two observations Y}
and Y, is Pr(Y; = y,Y> = y,). Because Y| and Y, are independently distributed,
the joint distribution is the product of the individual distributions [Equation (2.24)],
so Pr(Y, =y, Y, =) =Pr(Y, =y)Pr(Y, = y,). The Bernoulli distribution
can be summarized in the formula Pr(Y =y) = p*(1 — p)'™*: When y = 1,
Pr(Y =1) = p'(1 — p)° = p,andwheny = 0,Pr(Y=0)=p°(1 — p)! =1—p.
Thus the joint probability distribution of Y; and Y, is Pr(Y; =y,
Y= ) = [p(1=p) 7] X [pA(1 = p) ! 7] = prtad (1= p)2m0r),

The likelihood function is the joint probability distribution, treated as a function
of the unknown coefficients. For n = 2 i.i.d. observations on Bernoulli random vari-
ables, the likelihood function is

fp: M, o) = ptrii ¥ (1 — p)2- (i), (11.12)

The maximum likelihood estimator of p is the value of p that maximizes the likeli-
hood function in Equation (11.12). As with all maximization or minimization prob-
lems, this can be done by trial and error; that is, you can try different values of p and
compute the likelihood f(p; Y, Y,) until you are satisfied that you have maximized
this function. In this example, however, maximizing the likelihood function using
calculus produces a simple formula for the MLE: The MLE is p = %(Yl +Y,).
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In other words, the MLE of p is just the sample average! In fact, for general n, the
MLE p of the Bernoulli probability p is the sample average; that is, p = Y (this is
shown in Appendix 11.2). In this example, the MLE is the usual estimator of p, the
fraction of times Y; = 1 in the sample.

This example is similar to the problem of estimating the unknown coefficients of
the probit and logit regression models. In those models, the success probability p is
not constant but rather depends on X; that is, it is the success probability conditional
on X, which is given in Equation (11.6) for the probit model and Equation (11.9) for
the logit model. Thus the probit and logit likelihood functions are similar to the likeli-
hood function in Equation (11.12) except that the success probability varies from one
observation to the next (because it depends on X;). Expressions for the probit and
logit likelihood functions are given in Appendix 11.2.

Like the nonlinear least squares estimator, the MLE is consistent and normally
distributed in large samples. Because regression software commonly computes the
MLE of the probit coefficients, this estimator is easy to use in practice. All the esti-
mated probit and logit coefficients reported in this chapter are MLE:s.

Statistical inference based on the MLE. Because the MLE is normally distributed in
large samples, statistical inference about the probit and logit coefficients based on
the MLE proceeds in the same way as inference about the linear regression function
coefficients based on the OLS estimator. That is, hypothesis tests are performed using
the t-statistic, and 95% confidence intervals are formed as *1.96 standard errors.
Tests of joint hypotheses on multiple coefficients use the F-statistic in a way similar
to that discussed in Chapter 7 for the linear regression model. All of this is com-
pletely analogous to statistical inference in the linear regression model.

An important practical point is that some statistical software reports tests of joint
hypotheses using the F-statistic, while other software uses the chi-squared statistic. The
chi-squared statisticis ¢ X F,where ¢q is the number of restrictions being tested. Because
the F-statistic is, under the null hypothesis, distributed as X?; /q in large samples, g X F
is distributed as )(2 in large samples. Because the two approaches differ only in whether
they divide by ¢, they produce identical inferences, but you need to know which
approach is implemented in your software so that you use the correct critical values.

Measures of Fit

In Section 11.1, it was mentioned that the R? is a poor measure of fit for the linear
probability model. This is also true for probit and logit regression. Two measures of
fit for models with binary dependent variables are the fraction correctly predicted
and the pseudo-R?. The fraction correctly predicted uses the following rule: If Y; = 1
and the predicted probability exceeds 50% or if Y; = 0 and the predicted probability
is less than 50%, then Y; is said to be correctly predicted. Otherwise, Y; is said to be
incorrectly predicted. The fraction correctly predicted is the fraction of the n observa-
tions Yy, .. ., Y, that are correctly predicted.
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An advantage of this measure of fit is that it is easy to understand. A
disadvantage is that it does not reflect the quality of the prediction: If Y¥; = 1, the
observation is treated as correctly predicted whether the predicted probability is
51% or 90%.

The pseudo-R? measures the fit of the model using the likelihood function.
Because the MLE maximizes the likelihood function, adding another regressor to a
probit or logit model increases the value of the maximized likelihood, just like adding
a regressor necessarily reduces the sum of squared residuals in linear regression by
OLS. This suggests measuring the quality of fit of a probit model by comparing values
of the maximized likelihood function with all the regressors to the value of the likeli-
hood with none. This is, in fact, what the pseudo-R? does. A formula for the pseudo-R?
is given in Appendix 11.2.

Application to the Boston HMDA Data

The regressions of the previous two sections indicated that denial rates were higher
for black than white applicants, holding constant their payment-to-income ratio.
Loan officers, however, legitimately weigh many factors when deciding on a mort-
gage application, and if any of those other factors differ systematically by race, the
estimators considered so far have omitted variable bias.

In this section, we take a closer look at whether there is statistical evidence of
discrimination in the Boston HMDA data. Specifically, our objective is to estimate
the effect of race on the probability of denial, holding constant those applicant char-
acteristics that a loan officer might legally consider when deciding on a mortgage
application.

The most important variables available to loan officers through the mortgage
applications in the Boston HMDA data set are listed in Table 11.1; these are the
variables we will focus on in our empirical models of loan decisions. The first two
variables are direct measures of the financial burden the proposed loan would
place on the applicant, measured in terms of his or her income. The first of these is
the P/I ratio; the second is the ratio of housing-related expenses to income. The
next variable is the size of the loan, relative to the assessed value of the home; if
the loan-to-value ratio is nearly 1, the bank might have trouble recouping the full
amount of the loan if the applicant defaults on the loan and the bank forecloses.
The final three financial variables summarize the applicant’s credit history. If an
applicant has been unreliable paying off debts in the past, the loan officer legiti-
mately might worry about the applicant’s ability or desire to make mortgage pay-
ments in the future. The three variables measure different types of credit histories,
which the loan officer might weigh differently. The first concerns consumer credit,
such as credit card debt; the second is previous mortgage payment history; and the
third measures credit problems so severe that they appeared in a public legal
record, such as filing for bankruptcy.
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e N
WL TR AR Variables Included in Regression Models of Mortgage Decisions

Variable Definition Sample Average
Financial Variables
P/I ratio Ratio of total monthly debt payments to total monthly income 0.331
housing expense-to-income ratio  Ratio of monthly housing expenses to total monthly income 0.255
loan-to-value ratio Ratio of size of loan to assessed value of property 0.738
consumer credit score 1 if no “slow” payments or delinquencies 2.1

2 if one or two slow payments or delinquencies

3 if more than two slow payments

4 if insufficient credit history for determination

5 if delinquent credit history with payments 60 days overdue

6 if delinquent credit history with payments 90 days overdue
mortgage credit score 1 if no late mortgage payments 1.7

2 if no mortgage payment history

3 if one or two late mortgage payments

4 if more than two late mortgage payments
public bad credit record 1 if any public record of credit problems (bankruptcy, charge- 0.074

offs, collection actions)

0 otherwise
Additional Applicant Characteristics
denied mortgage insurance 1 if applicant applied for mortgage insurance and was denied, 0.020

0 otherwise
self-employed 1 if self-employed, O otherwise 0.116
single 1 if applicant reported being single, 0 otherwise 0.393
high school diploma 1 if applicant graduated from high school, 0 otherwise 0.984
unemployment rate 1989 Massachusetts unemployment rate in the applicant’s industry 3.8
condominium 1 if unit is a condominium, 0 otherwise 0.288
black 1 if applicant is black, O if white 0.142
deny 1 if mortgage application denied, 0 otherwise 0.120

\ J

Table 11.1 also lists some other variables relevant to the loan officer’s decision.
Sometimes the applicant must apply for private mortgage insurance.® The loan offi-
cer knows whether that application was denied, and that denial would weigh nega-
tively with the loan officer. The next four variables, which concern the applicant’s
employment status, marital status, and educational attainment, as well as the unem-
ployment rate in the applicant’s industry, relate to the prospective ability of the appli-
cant to repay. In the event of foreclosure, characteristics of the property are relevant
as well, and the next variable indicates whether the property is a condominium. The
final two variables in Table 11.1 are whether the applicant is black or white and

3Mortgage insurance is an insurance policy under which the insurance company makes the monthly pay-
ment to the bank if the borrower defaults. During the period of this study, if the loan-to-value ratio exceeds
80%, the applicant typically was required to buy mortgage insurance.
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whether the application was denied or accepted. In these data, 14.2% of applicants
are black, and 12.0% of applications are denied.

Table 11.2 presents regression results based on these variables. The base specifi-
cations, reported in columns (1) through (3), include the financial variables in
Table 11.1 plus the variables indicating whether private mortgage insurance was
denied and whether the applicant is self-employed. In the 1990s, loan officers com-
monly used thresholds, or cutoff values, for the loan-to-value ratio, so the base speci-
fication for that variable uses binary variables for whether the loan-to-value ratio is
high (=0.95), medium (between 0.8 and 0.95), or low ( <0.8; this case is omitted to
avoid perfect multicollinearity). The regressors in the first three columns are similar
to those in the base specification considered by the Federal Reserve Bank of Boston
researchers in their original analysis of these data.* The regressions in columns (1)
through (3) differ only in how the denial probability is modeled, using a linear prob-
ability model, a logit model, and a probit model, respectively.

Because the coefficients of the logit and probit models in columns (2)—(6) are not
directly interpretable, the table reports standard errors but not confidence intervals.
In addition, because the aim of these regressions is to approximate the loan officers’
decision rule, it is of interest to know whether individual variables—especially the
applicant’s race —enter that decision rule. Thus the table reports, through asterisks,
whether the test that the coefficient is 0 rejects at the 5% or 1% significance level.

Because the regression in column (1) is a linear probability model, its coefficients
are estimated changes in predicted probabilities arising from a unit change in the inde-
pendent variable. Accordingly, an increase in P/I ratio of 0.1 is estimated to increase
the probability of denial by 4.5 percentage points (the coefficient on P/Iratio in column
(1) is 0.449, and 0.449 X 0.1 = 0.045). Similarly, having a high loan-to-value ratio
increases the probability of denial: A loan-to-value ratio exceeding 95% is associated
with an 18.9 percentage point increase (the coefficient is 0.189) in the denial probabil-
ity, relative to the omitted case of a loan-to-value ratio less than 80%, holding the other
variables in column (1) constant. Applicants with a poor credit rating also have a more
difficult time getting a loan, all else being constant, although interestingly the coeffi-
cient on consumer credit is statistically significant but the coefficient on mortgage
credit is not. Applicants with a public record of credit problems, such as filing for bank-
ruptcy, have much greater difficulty obtaining a loan: All else equal, a public bad credit
record is estimated to increase the probability of denial by 0.197 or 19.7 percentage
points. Being denied private mortgage insurance is estimated to be virtually decisive:
The estimated coefficient of 0.702 means that being denied mortgage insurance
increases your chance of being denied a mortgage by 70.2 percentage points, all else

“The difference between the regressors in columns (1) through (3) and those in Munnell et al. (1996),
table 2 (1),1s that Munnell et al. include additional indicators for the location of the home and the identity
of the lender, data that are not publicly available; an indicator for a multifamily home, which is irrelevant
here because our subset focuses on single-family homes; and net wealth, which we omit because this vari-
able has a few very large positive and negative values and thus risks making the results sensitive to a few
specific outlier observations.
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L.\:18 - b W Mortgage Denial Regressions Using the Boston HMDA Data
Dependent variable: deny = 1 if mortgage application is denied, = 0 if accepted; 2380 observations.
Regression Model LPM Logit Probit Probit Probit Probit
Regressor (1) (2) (3) (4) (5) (6)
black 0.084#* 0.688** 0.389#* 0.371%%* 0.363%* 0.246
(0.023) (0.182) (0.098) (0.099) (0.100) (0.448)
P/I ratio 0.449%%* 4.76%* 2.44%%* 2.46%* 2.62%% 2.57%*
(0.114) (1.33) (0.61) (0.60) (0.61) (0.66)
housing expense-to-income ratio —0.048 —0.11 —0.18 —0.30 —0.50 —0.54
(0.110) (1.29) (0.68) (0.68) (0.70) (0.74)
medium loan-to-value ratio 0.031* 0.46%* 0.21%* 0.22%* 0.22%* 0.22%*
(0.80 = loan-value ratio = 0.95) (0.013) (0.16) (0.08) (0.08) (0.08) (0.08)
high loan-to-value ratio (loan-value 0.189%* 1.49%* 0.79%* 0.79%* 0.84%* 0.79%*
ratio > 0.95) (0.050) (0.32) (0.18) (0.18) (0.18) (0.18)
consumer credit score 0.031%#%* 0.29%%* 0.15%* 0.16%* 0.34%** 0.16%*
(0.005) (0.04) (0.02) (0.02) (0.11) (0.02)
mortgage credit score 0.021 0.28%* 0.15% 0.11 0.16 0.11
(0.011) (0.14) (0.07) (0.08) (0.10) (0.08)
public bad credit record 0.197%%* 1.23%%* 0.70%%* 0.70%%* 0.72%%* 0.70%%*
(0.035) (0.20) (0.12) (0.12) (0.12) (0.12)
denied mortgage insurance 0.702%* 4.55%* 2.56%* 2.59%* 2.59%* 2.59%*
(0.045) (0.57) (0.30) (0.29) (0.30) (0.29)
self-employed 0.060%* 0.67** 0.36%* 0.35%* 0.34%%* 0.35%*
(0.021) (0.21) (0.11) (0.11) (0.11) (0.11)
single 0.23%* 0.23%%* 0.23%%*
(0.08) (0.08) (0.08)
high school diploma —0.61%* —0.60* —0.62%*
(0.23) (0.24) (0.23)
unemployment rate 0.03 0.03 0.03
(0.02) (0.02) (0.02)
condominium —-0.05
(0.09)
black X P/I ratio —0.58
(1.47)
black X housing expense-to-income 1.23
ratio (1.69)
additional credit rating indicator no no no no yes no
variables
constant —0.183%*%  —5.71%* —3.04%%* —2.57%%* —2.90%* —2.54%%*
(0.028) (0.48) (0.23) (0.34) (0.39) (0.35)
\ J

(continued)
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(Table 11.2 continued)
F-Statistics and p-Values Testing Exclusion of Groups of Variables
(M (2) (3) (4) (5) (6)
applicant single; high school diploma; 5.85 5.22 5.79
industry unemployment rate (< 0.001) (0.001) (< 0.001)
additional credit rating indicator 122
variables (0.291)
race interactions and black 4.96
(0.002)
race interactions only 0.27
(0.766)
difference in predicted probability 8.4% 6.0% 71% 6.6% 6.3% 6.5%

of denial, white vs. black (percent-
age points)

These regressions were estimated using the n = 2380 observations in the Boston HMDA data set described in Appendix 11.1.

The linear probability model was estimated by OLS, and probit and logit regressions were estimated by maximum likelihood.
Standard errors are given in parentheses under the coefficients, and p-values are given in parentheses under the F-statistics.
The change in predicted probability in the final row was computed for a hypothetical applicant whose values of the regressors,
other than race, equal the sample mean. Individual coefficients are statistically significant at the *5% or **1% level.

.

J

equal. Of the nine variables (other than race) in the regression, the coefficients on all

but two are statistically significant at the 5% level, which is consistent with loan offi-

cers’ considering many factors when they make their decisions.
The coefficient on black in regression (1) is 0.084, indicating that the difference

in denial probabilities for black and white applicants is 8.4 percentage points, holding

constant the other variables in the regression. This is statistically significant at the 1%

significance level (¢ = 3.65).

The logit and probit estimates reported in columns (2) and (3) yield similar conclu-

sions. In the logit and probit regressions, eight of the nine coefficients on variables other

than race are individually statistically significantly different from O at the 5% level,and

the coefficient on black is statistically significant at the 1% level. As discussed in

Section 11.2, because these models are nonlinear, specific values of all the regressors

must be chosen to compute the difference in predicted probabilities for white applicants

and black applicants. A conventional way to make this choice is to consider an “average”

applicant who has the sample average values of all the regressors other than race. The

final row in Table 11.2 reports this estimated difference in probabilities, evaluated for

this average applicant. The estimated racial differentials are similar to each other:

8.4 percentage points for the linear probability model [column (1)], 6.0 percentage

points for the logit model [column (2)], and 71 percentage points for the probit model

[column (3)]. These estimated race effects and the coefficients on black are less than in

the regressions of the previous sections, in which the only regressors were P/I ratio and

black,indicating that those earlier estimates had omitted variable bias.

The regressions in columns (4) through (6) investigate the sensitivity of the

results in column (3) to changes in the regression specification. Column (4) modifies
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column (3) by including additional applicant characteristics. These characteristics
help to predict whether the loan is denied; for example, having at least a high school
diploma reduces the probability of denial (the estimate is negative, and the coeffi-
cient is statistically significant at the 1% level). However, controlling for these per-
sonal characteristics does not change the estimated coefficient on black or the
estimated difference in denial probabilities (6.6%) in an important way.

Column (5) breaks out the six consumer credit categories and four mortgage
credit categories to test the null hypothesis that these two variables enter linearly;
this regression also adds a variable indicating whether the property is a condomin-
ium. The null hypothesis that the credit rating variables enter the expression for the
z-value linearly is not rejected, nor is the condominium indicator significant, at the
5% level. Most importantly, the estimated racial difference in denial probabilities
(6.3%) is essentially the same as in columns (3) and (4).

Column (6) examines whether there are interactions. Are different standards
applied to evaluating the payment-to-income and housing expense-to-income ratios
for black applicants versus white applicants? The answer appears to be no: The interac-
tion terms are not jointly statistically significant at the 5% level. However, race contin-
ues to have a significant effect, because the race indicator and the interaction terms are
jointly statistically significant at the 1% level. Again, the estimated racial difference in
denial probabilities (6.5%) is essentially the same as in the other probit regressions.

In all six specifications, the effect of race on the denial probability, holding other
applicant characteristics constant, is statistically significant at the 1% level. The esti-
mated difference in denial probabilities between black applicants and white appli-
cants ranges from 6.0 percentage points to 8.4 percentage points.

One way to assess whether this differential is large or small is to return to a variation
on the question posed at the beginning of this chapter. Suppose two individuals apply for
a mortgage, one white and one black, but otherwise having the same values of the other
independent variables in regression (3); specifically, aside from race, the values of the other
variables in regression (3) are the sample average values in the HMDA data set. The white
applicant faces a 74% chance of denial, but the black applicant faces a 14.5% chance of
denial. The estimated racial difference in denial probabilities, 71 percentage points, means
that the black applicant is nearly twice as likely to be denied as the white applicant.

The results in Table 11.2 (and in the original Boston Fed study) provide statistical
evidence of racial patterns in mortgage denial that, by law, ought not be there. This
evidence played an important role in spurring policy changes by bank regulators.’
But economists love a good argument, and not surprisingly these results have also
stimulated a vigorous debate.

Because the suggestion that there is (or was) racial discrimination in lending is
charged, we briefly review some points of this debate. In so doing, it is useful to adopt
the framework of Chapter 9—that is, to consider the internal and external validity of

These policy shifts include changes in the way that fair lending examinations were done by federal bank
regulators, changes in inquiries made by the U.S. Department of Justice, and enhanced education programs
for banks and other home loan origination companies.
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the results in Table 11.2, which are representative of previous analyses of the
Boston HMDA data. A number of the criticisms made of the original Federal Reserve
Bank of Boston study concern internal validity: possible errors in the data, alternative
nonlinear functional forms, additional interactions, and so forth. The original data
were subjected to a careful audit, some errors were found, and the results reported
here (and in the final published Boston Fed study) are based on the “cleaned” data
set. Estimation of other specifications—different functional forms and/or additional
regressors —also produces estimates of racial differentials comparable to those in
Table 11.2. A potentially more difficult issue of internal validity is whether there is
relevant nonracial financial information obtained during in-person loan interviews,
but not recorded on the loan application itself, that is correlated with race; if so, there
still might be omitted variable bias in the Table 11.2 regressions. Finally, some have
questioned external validity: Even if there was racial discrimination in Boston in 1990,
it is wrong to implicate lenders elsewhere today. Moreover, racial discrimination might
be less likely using modern online applications because the mortgage can be approved
or denied without a face-to-face meeting. The only way to resolve the question of

external validity is to consider data from other locations and years.®

Conclusion

When the dependent variable Y is binary, the population regression function is the
probability that Y = 1, conditional on the regressors. Estimation of this population
regression function entails finding a functional form that does justice to its probabil-
ity interpretation, estimating the unknown parameters of that function, and inter-
preting the results. The resulting predicted values are predicted probabilities, and the
estimated effect of a change in a regressor X is the estimated change in the probabil-
ity that Y = 1 arising from the change in X.

A natural way to model the probability that Y = 1 given the regressors is to use a
cumulative distribution function, where the argument of the c.d.f. depends on the regres-
sors. Probit regression uses a normal c.d.f. as the regression function, and logit regression
uses a logistic c.d.f. Because these models are nonlinear functions of the unknown
parameters, those parameters are more complicated to estimate than linear regression
coefficients. The standard estimation method is maximum likelihood. In practice, statis-
tical inference using the maximum likelihood estimates proceeds the same way as it
does in linear multiple regression; for example, 95% confidence intervals for a coeffi-
cient are constructed as the estimated coefficient + 1.96 standard errors.

%If you are interested in further reading on this topic, a good place to start is the symposium on racial
discrimination and economics in the Spring 1998 issue of the Journal of Economic Perspectives.The article
in that symposium by Helen Ladd (1998) surveys the evidence and debate on racial discrimination in
mortgage lending. A more detailed treatment is given in Goering and Wienk (1996). The U.S. mortgage
market has changed dramatically since the Boston Fed study, including a relaxation of lending standards,
a bubble in housing prices, the financial crisis of 2008-2009, and a return to tighter lending standards. For
an introduction to changes in mortgage markets, see Green and Wachter (2008).
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James Heckman and Daniel McFadden, Nobel Laureates

T he 2000 Nobel Prize in Economics was
awarded jointly to two econometricians, James
J. Heckman of the University of Chicago and Dan-
iel L. McFadden of the University of California at
Berkeley, for fundamental contributions to the anal-
ysis of data on individuals and firms. Much of their
work addressed difficulties that arise with limited
dependent variables.

Heckman was awarded the prize for develop-
ing tools for handling sample selection. As discussed
in Section 9.2, sample selection bias occurs when the
availability of data is influenced by a selection process
related to the value of the dependent variable. For
example, suppose you want to estimate the relationship
between earnings and some regressor, X, using a ran-
dom sample from the population. If you estimate the
regression using the subsample of employed workers—
that is, those reporting positive earnings—the OLS
estimate could be subject to selection bias. Heckman’s
solution was to specify a preliminary equation with
a binary dependent variable indicating whether the
worker is in or out of the labor force (in or out of the
subsample) and to treat this equation and the earn-
ings equation as a system of simultaneous equations.
This general strategy has been extended to selection
problems that arise in many fields, ranging from labor

economics to industrial organization to finance.

Regression with a Binary Dependent Variable

McFadden was awarded the prize for develop-
ing models for analyzing discrete choice data (does
a high school graduate join the military, go to col-
lege, or get a job?). He started by considering the
problem of an individual maximizing the expected
utility of each possible choice, which could depend
on observable variables (such as wages, job charac-
teristics, and family background). He then derived
models for the individual choice probabilities with
unknown coefficients, which in turn could be esti-
mated by maximum likelihood. These models and
their extensions have proven widely useful in ana-
lyzing discrete choice data in many fields, including
labor economics, health economics, and transporta-
tion economics.

For more information on these and other Nobel
laureates in economics, visit the Nobel Foundation

website, http://www.nobel.se/economics.

Henrik Montgomery/
Pressens Bild/AP Images

Paul Sakuma/AP Images

James J. Heckman Daniel L. McFadden

Despite its intrinsic nonlinearity, sometimes the population regression function
can be adequately approximated by a linear probability model—that is, by the
straight line produced by linear multiple regression. The linear probability model,
probit regression, and logit regression all give similar bottom-line answers when they
are applied to the Boston HMDA data: All three methods estimate substantial dif-
ferences in mortgage denial rates for otherwise similar black applicants and white
applicants.

Binary dependent variables are the most common example of limited dependent
variables, which are dependent variables with a limited range. The final quarter of the
20th century saw important advances in econometric methods for analyzing other
limited dependent variables (see the box “James Heckman and Daniel McFadden,
Nobel Laureates”). Some of these methods are reviewed in Appendix 11.3.
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Summary

1. When Y is a binary variable, the population regression function shows the
probability that Y = 1 given the value of the regressors, Xj, X5, . .. , X.

2. The linear multiple regression model is called the linear probability model
when Y is a binary variable because the probability that Y = 1 is a linear func-
tion of the regressors.

3. Probit and logit regression models are nonlinear regression models used when
Y is a binary variable. Unlike the linear probability model, probit and logit
regressions ensure that the predicted probability that Y = 1 is between 0 and
1 for all values of X.

4. Probit regression uses the standard normal cumulative distribution function.
Logit regression uses the logistic cumulative distribution function. Logit and
probit coefficients are estimated by maximum likelihood.

5. The values of coefficients in probit and logit regressions are not easy to inter-
pret. Changes in the probability that Y = 1 associated with changes in one or
more of the X’s can be calculated using the general procedure for nonlinear
models outlined in Key Concept 8.1.

6. Hypothesis tests on coefficients in the linear probability, logit, and probit mod-
els are performed using the usual #- and F-statistics.

Key Terms

limited dependent variable (393) likelihood function (405)

linear probability model (395) maximum likelihood estimator
probit (397) (MLE) (405)

logit (397) fraction correctly predicted (406)
logistic regression (397) pseudo-R? (407)
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Review the Concepts

11.1 Suppose a linear probability model yields a predicted value of Y that is equal
to 1.3. Explain why this is nonsensical.
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11.2 In Table 11.2, the estimated coefficient on black is 0.084 in column (1), 0.688
in column (2), and 0.389 in column (3). In spite of these large differences, all
three models yield similar estimates of the marginal effect of race on the prob-
ability of mortgage denial. How can this be?

11.3 What is maximum likelihood estimation? What are the advantages of using max-
imum likelihood estimators such as the probit and the logit, instead of the linear
probability model? How would you choose between the probit and the logit?

11.4 What measures of fit are typically used to assess binary dependent variable
regression models?

Exercises

Exercises 11.1 through 11.5 are based on the following scenario: Seven hundred
income-earning individuals from a district were randomly selected and asked whether
they are government employees (Gov; = 1) or not (Gov; = 0); data were also col-
lected on their gender (Male; = 1 if male and = 0 if female) and their years of
schooling (Schooling;, in years). Note, Schooling refers to the number of years of
education received by people ages 25 and older. The following table summarizes
several estimated models.

11.1 Using the results in column (1):
a. Does the probability of working for the government depend on School-
ing? Explain.
b. Friedrich Fiirnrohr has 16 years of schooling. What is the probability that
he will be employed by the government?

c¢. Hans Schneider never went to college (12 years of schooling). What is
the probability that Hans will get a government job?

d. The sample included values of Schooling between 0 and 18 years, and
only five people in the sample had more than 15 years of schooling.
Giinter Mayer has completed his PhD and has been a student for

Gependent Variable: Gov \
Linear Linear
Probit Logit Probability Probit Logit Probability Probit
(1) () (3) (4 (5) (6) )

Schooling 0.272 0.551 0.035 0.548
(0.029) (0.062) (0.003) (0.091)

Male —0.242 —0.455 —0.050 4.352
(0.125) (0.234) (0.025) (1.291)

Male X Schooling —0.344
(0.096)

Constant —4.107 —8.146 —-0.172 —1.027 —-1.717 0.152 =7.702
(0.358) (0.800) (0.027) (0.098) (0.179) (0.021) (1.238)

N )
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24 years. What is the model’s prediction for the probability that Giinter
will be employed by the government? Do you think that this prediction
is reliable? Why or why not?

Answer (a) through (c) from Exercise 11.1 using the results in column (2).

Sketch the predicted probabilities from the probit and logit in columns (1)
and (2) for values of Schooling between 0 and 18. Are the probit and logit
models similar?

Answer (a) through (c) from Exercise 11.1 using the results in column (3).

Sketch the predicted probabilities from the probit and linear probability
in columns (1) and (3) as a function of Schooling for values of Schooling
between 0 and 18. Do you think that the linear probability is appropriate
here? Why or why not?

Using the results in columns (4) through (6):

a.

b.

Compute the estimated probability of being employed by the govern-
ment for men and for women.

Are the models in (4) through (6) different? Why or why not?

Using the results in column (7):

a.

Liam Johansson is a man with 10 years of schooling. What is the prob-
ability that government will employ him?

Anneli Karlsson is a woman with 12 years of schooling. What is the prob-
ability that government will employ her?

Does the effect of schooling on government employment depend on
gender? Explain.

Use the estimated probit model in Equation (11.8) to answer the following

questions:

a.

A black mortgage applicant has a P/I ratio of 0.35. What is the probabil-
ity that his application will be denied?

Suppose the applicant reduced this ratio to 0.30. What effect would this
have on his probability of being denied a mortgage?

c. Repeat (a) and (b) for a white applicant.

Does the marginal effect of the P/I ratio on the probability of mortgage
denial depend on race? Explain.

Repeat Exercise 11.6 using the logit model in Equation (11.10). Are the logit
and probit results similar? Explain.

Consider the linear probability model Y; = B, + B X; + u;, and assume that

E(

a.

u;| X;) = 0.

Show that Pr(Y;, = 1| X)) = B, + B.X.
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b. Show that var(u;|X;) = (By + BiX:)[1 — (By + BiX;) ]. [Hint: Review
Equation (2.7).]
c¢. Is u; heteroskedastic? Explain.

d. (Requires Section 11.3) Derive the likelihood function.

11.9 Use the estimated linear probability model shown in column (1) of Table 11.2
to answer the following:

a. Two applicants, one self-employed and one in salaried employment,
apply for a mortgage. They have the same values for all the regres-
sors other than employment status. How much more likely is the self-
employed applicant to be denied a mortgage?

b. Construct a 95% confidence interval for your answer to (a).

¢. Think of an important omitted variable that might bias the answer in (a).
What is it, and how would it bias the results?

11.10 (Requires Section 11.3 and calculus) Suppose a random variable Y has the
following probability distribution: Pr(Y = 1) = p,Pr(Y = 2) = ¢, and
Pr(Y =3) =1 — p — q. A random sample of size n is drawn from this dis-
tribution, and the random variables are denoted Y}, Y5, ... .Y,.

a. Derive the likelihood function for the parameters p and q.

b. Derive formulas for the MLE of p and q.
11.11 (Requires Appendix 11.3) State which model you would use for:

a. A study explaining the number of hours a person spends working in a
factory during one week.

b. A study explaining the level of satisfaction (0 through 5) a person gains
from their job.

¢. A study of consumers’ choices for mode of transport—bus, car, or bicycle.

d. A study of the number of rainy days in a week.

Empirical Exercises

E11.1 In April 2008, the unemployment rate in the United States stood at 5.0%. By
April 2009, it had increased to 9.0%, and it had increased further, to 10.0%,
by October 2009. Were some groups of workers more likely to lose their jobs
than others during the Great Recession? For example, were young workers
more likely to lose their jobs than middle-aged workers? What about workers
with a college degree versus those without a degree or women versus men?
On the text website, http://www.pearsonglobaleditions.com, you will find the
data file Employment_08_09, which contains a random sample of 5440 work-
ers who were surveyed in April 2008 and reported that they were employed
full-time. A detailed description is given in Employment_08_09_Description,
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available on the website. These workers were surveyed one year later, in

April 2009, and asked about their employment status (employed, unemployed, or

out of the labor force). The data set also includes various demographic measures

for each individual. Use these data to answer the following questions.

a.

e o

What fraction of workers in the sample were employed in April 2009?
Use your answer to compute a 95% confidence interval for the prob-
ability that a worker was employed in April 2009, conditional on being
employed in April 2008.

. Regress Employed on Age and Age?, using a linear probability model.

i. Based on this regression, was age a statistically significant determi-
nant of employment in April 2009?

ii. Is there evidence of a nonlinear effect of age on the probability of
being employed?

iii. Compute the predicted probability of employment for a 20-year-old
worker, a 40-year-old worker, and a 60-year-old worker.

. Repeat (b) using a probit regression.
. Repeat (b) using a logit regression.
. Are there important differences in your answers to (b)-(d)? Explain.

. The data set includes variables measuring the workers’ educational

attainment, sex, race, marital status, region of the country, and weekly
earnings in April 2008.
i. Construct a table like Table 11.2 to investigate whether the conclu-
sions on the effect of age on employment from (b)—(d) are affected
by omitted variable bias.

ii. Use the regressions in your table to discuss the characteristics of
workers who were hurt most by the Great Recession.

. The results in (a)—(f) were based on the probability of employment.

Workers who are not employed can either be (i) unemployed or

(ii) out the labor force. Do the conclusions you reached in (a)—(f) also
hold for workers who became unemployed? (Hint: Use the binary
variable Unemployed instead of Employed.)

. These results have covered employment transitions during the Great

Recession, but what about transitions during normal times? On the text
website, you will find the data file Employment_06_07, which measures
the same variables but for the years 2006-2007 Analyze these data and
comment on the differences in employment transitions during recessions
and normal times.

Believe it or not, workers used to be able to smoke inside office buildings.

Smoking bans were introduced in several areas during the 1990s. Supporters of

these bans argued that in addition to eliminating the externality of secondhand
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smoke, they would encourage smokers to quit by reducing their opportunities
to smoke. In this assignment, you will estimate the effect of workplace smoking
bans on smoking, using data on a sample of 10,000 U.S. indoor workers from
1991 to 1993, available on the text website, http://www.pearsonglobaleditions
.com, in the file Smoking. The data set contains information on whether indi-
viduals were or were not subject to a workplace smoking ban, whether the
individuals smoked, and other individual characteristics.” A detailed descrip-
tion is given in Smoking_Description, available on the website.

a. Estimate the probability of smoking for (i) all workers, (ii) workers
affected by workplace smoking bans, and (iii) workers not affected by
workplace smoking bans.

b. What is the difference in the probability of smoking between workers
affected by a workplace smoking ban and workers not affected by a
workplace smoking ban? Use a linear probability model to determine
whether this difference is statistically significant.

c. Estimate a linear probability model with smoker as the dependent
variable and the following regressors: smkban, female, age, age?,
hsdrop, hsgrad, colsome, colgrad, black, and hispanic. Compare the
estimated effect of a smoking ban from this regression with your answer
from (b). Suggest an explanation, based on the substance of this regression,
for the change in the estimated effect of a smoking ban between (b) and (c).

d. Test the hypothesis that the coefficient on smkban is 0 in the population
version of the regression in (c) against the alternative that it is nonzero,
at the 5% significance level.

e. Test the hypothesis that the probability of smoking does not depend on
the level of education in the regression in (c). Does the probability of
smoking increase or decrease with the level of education?

f. Repeat (c)—(e) using a probit model.
g. Repeat (c)—(e) using a logit model.

=

i. Mr. A is white, non-Hispanic, 20 years old, and a high school dropout.
Using the probit regression and assuming that Mr. A is not subject
to a workplace smoking ban, calculate the probability that Mr. A
smokes. Carry out the calculation again, assuming that he is subject
to a workplace smoking ban. What is the effect of the smoking ban
on the probability of smoking?

ii. Repeat (i) for Ms. B, a female, black, 40-year-old college graduate.
iii. Repeat (i)—(ii) using the linear probability model.

"These data were provided by Professor William Evans of the University of Maryland and were used
in his paper with Matthew Farrelly and Edward Montgomery, “Do Workplace Smoking Bans Reduce
Smoking?” American Economic Review, 1999, 89(4): 728-747.
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iv. Repeat (i)—(ii) using the logit model.
v. Based on your answers to (i)—(iv), do the logit, probit, and linear

probability models differ? If they do, which results make most sense?
Are the estimated effects large in a real-world sense?

The Boston HMDA Data Set

The Boston HMDA data set was collected by researchers at the Federal Reserve Bank of
Boston. The data set combines information from mortgage applications and a follow-up survey
of the banks and other lending institutions that received these mortgage applications. The data
pertain to mortgage applications made in 1990 in the greater Boston metropolitan area. The
full data set has 2925 observations, consisting of all mortgage applications by blacks and His-
panics plus a random sample of mortgage applications by whites.

To narrow the scope of the analysis in this chapter, we use a subset of the data for single-
family residences only (thereby excluding data on multifamily homes) and for black applicants
and white applicants only (thereby excluding data on applicants from other minority groups). This
leaves 2380 observations. Definitions of the variables used in this chapter are given in Table 11.1.

These data were graciously provided to us by Geoffrey Tootell of the Research Depart-
ment of the Federal Reserve Bank of Boston. More information about this data set, along with
the conclusions reached by the Federal Reserve Bank of Boston researchers, is available in
Munnell et al. (1996).

Maximum Likelihood Estimation

This appendix provides a brief introduction to maximum likelihood estimation in the context
of the binary response models discussed in this chapter. We start by deriving the MLE of the
success probability p for n i.i.d. observations of a Bernoulli random variable. We then turn to
the probit and logit models and discuss the pseudo-R% We conclude with a discussion of stan-

dard errors for predicted probabilities. This appendix uses calculus at two points.

MLE for n i.i.d. Bernoulli Random Variables

The first step in computing the MLE is to derive the joint probability distribution. For » i.i.d.
observations on a Bernoulli random variable, this joint probability distribution is the extension

of the n = 2 case in Section 11.3 to general n:
Pr()]l :thZ :yZ""’)]n :yn)

= [p(1 = p)I=] x [p2(1 = p)I=2)] x -+ x [p'(1 — p)=)]
= p(}’1+"‘ +)’n)(1 — p)"_(}’1+"' ), (1113)
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The likelihood function is the joint probability distribution, treated as a function of the unknown
coefficients. Let S = X}, V;; then the likelihood function is

fBernoulli(p; Y17 s Yn) = ps(l - p)n—S' (1114)

The MLE of p is the value of p that maximizes the likelihood in Equation (11.14). The likelihood
function can be maximized using calculus. It is convenient to maximize not the likelihood but
rather its logarithm (because the logarithm is a strictly increasing function, maximizing the
likelihood or its logarithm gives the same estimator). The log likelihood is
SIn(p) + (n — S)In(1 — p), and the derivative of the log likelihood with respect to p is

d S n-—S
Eln [chrnuulli (pv Ylv e 7Yn):| = ;

(11.15)

Setting the derivative in Equation (11.15) to 0 and solving for p yieldsthe MLE p = S/n = Y.

MVLE for the Probit Model

For the probit model, the probability that ¥; = 1, conditional on Xj;, ..., X, is
pi = ®(By + BiXy; + -+ + BXy). The conditional probability distribution for the i obser-
vationis Pr[Y; = y;| Xy, . . ., Xii] = pli(1 — p;) 177 Assuming that (X, . . ., X, ¥;) areiid.,
i = 1,...,n,the joint probability distribution of Y}, . . ., Y,,, conditional on the X’s, is

Pr(lll :yla---’)ln :ynl‘lei’---stiai: 1,...,}’1)
=Pr(Y; =y Xi1, .. s Xia) X oo X Pr(Y, = yu[ Xip o - s Xin)
=pP (1L —p)' 7 X X pie(1 = p,) (11.16)

The likelihood function is the joint probability distribution, treated as a function of the
unknown coefficients. It is conventional to consider the logarithm of the likelihood. Accord-
ingly, the log likelihood function is

ln[fprobit(BOv---ka; Yl?"'vyrlei?"'?invi: 17"'7”)]

Yin[®(By + B Xy + -+ + BiXii) ]

-

1

1

+ (1= Y[l - BB + By + + BXe) ] (1117)
=1

where this expression incorporates the probit formula for the conditional probability,
pi = (B + BiXy + -+ BXui)-

The MLE for the probit model maximizes the likelihood function or, equivalently, the
logarithm of the likelihood function given in Equation (11.17). Because there is no simple
formula for the MLE, the probit likelihood function must be maximized using a numerical
algorithm on the computer.

Under general conditions, maximum likelihood estimators are consistent and have a nor-

mal sampling distribution in large samples.
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MLE for the Logit Model

The likelihood for the logit model is derived in the same way as the likelihood for the probit
model. The only difference is that the conditional success probability p; for the logit model is
given by Equation (11.9). Accordingly, the log likelihood of the logit model is given by Equa-
tion (11.17),with ®(By + BXy; + -+ - + BiXy) replaced by [1 + e~ (Fot BiXut Bt -+ BiXi) =1,
As with the probit model, there is no simple formula for the MLE of the logit coefficients, so

the log likelihood must be maximized numerically.

Pseudo-R?

The pseudo-R? compares the value of the likelihood of the estimated model to the value of the
likelihood when none of the X’s are included as regressors. Specifically, the pseudo-R? for the

probit model is

In(fprobir)

seudo — R2=1— ——
P In(f Bemouti)

(11.18)
where f},7},; is the value of the maximized probit likelihood (which includes the X’s) and f git o

is the value of the maximized Bernoulli likelihood (the probit model excluding all the Xs).

Standard Errors for Predicted Probabilities

For simplicity, consider the case of a single regressor in the probit model. Then the predicted
probability at a fixed value of that regressor, x,is p(x) = ®(BYEE + BYLEX), where BYEE and

BYLE are the MLEs of the two probit coefficients. Because this predicted probability depends

on the estimators BY-F and BYLE, and because those estimators have a sampling distribution,
the predicted probability will also have a sampling distribution.

The variance of the sampling distribution of p(x) is calculated by approximating the
function @ (BYLE + BMEEx), a nonlinear function of BY“F and BY*F, by a linear function of

BMLE and BYLE. Specifically, let
p(x) = P(BYEE + BYIEx) = ¢ + ao(BYE — By) + a(BYEE — By),  (11.19)

where the constant ¢ and factors ay and a; depend on x and are obtained from calculus.
[Equation (11.19) is a first-order Taylor series expansion;c = ® () + Bix); and a, and a; are
the partial derivatives, ay = d® (B + Bix)/0Bo| gy, guee and ay = a®(By + Bix) /9By | guee, gy ]
The variance of p(x) now can be calculated using the approximation in Equation (11.19) and
the expression for the variance of the sum of two random variables in Equation (2.32):

N

var[c + ag(BYEE — By) + ay(BYEE — By) ]

advar (BYLEY + alvar(BYEE) + 2agaicov(BYLE, BYLE). (11.20)

var[p(x)]

Using Equation (11.20), the standard error of p(x) can be calculated using estimates of the
variances and covariance of the MLEs.
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APPENDIX

11.3

Other Limited Dependent Variable Models

This appendix surveys some models for limited dependent variables, other than binary
variables, found in econometric applications. In most cases, the OLS estimators of the
parameters of limited dependent variable models are inconsistent, and estimation is rou-
tinely done using maximum likelihood. There are several advanced references available to
the reader interested in further details; see, for example, Greene (2018), Ruud (2000), and
Wooldridge (2010).

Censored and Truncated Regression Models

Suppose you have cross-sectional data on car purchases by individuals in a given year. Car
buyers have positive expenditures, which can reasonably be treated as continuous random
variables, but nonbuyers spend $0. Thus the distribution of car expenditures is a combination
of a discrete distribution (at 0) and a continuous distribution.

Nobel laureate James Tobin developed a useful model for a dependent variable with a
partly continuous and partly discrete distribution (Tobin, 1958). Tobin suggested modeling the
™ individual in the sample as having a desired level of spending, Y, that is related to the
regressors (for example, family size) according to a linear regression model. That is, when there

is a single regressor, the desired level of spending is
Yi=B +BX +u,i=1,...,n (11.21)

If Y; (what the consumer wants to spend) exceeds some cutoff, such as the minimum price of
a car, the consumer buys the car and spends Y; = Y, which is observed. However, if Y is less
than the cutoff, spending of ¥; = 0is observed instead of Y.

When Equation (11.21) is estimated using observed expenditures Y; in place of Y;, the
OLS estimator is inconsistent. Tobin solved this problem by deriving the likelihood func-
tion using the additional assumption that u; has a normal distribution, and the resulting
MLE has been used by applied econometricians to analyze many problems in economics.
In Tobin’s honor, Equation (11.21), combined with the assumption of normal errors, is
called the robit regression model. The tobit model is an example of a censored regression
model, so called because the dependent variable has been “censored” above or below a

certain cutoff.

Sample Selection Models

In the censored regression model, there are data on buyers and nonbuyers, as there would be
if the data were obtained via simple random sampling of the adult population. If, however, the

data are collected from sales tax records, then the data would include only buyers: There would
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be no data at all for nonbuyers. Data in which observations are unavailable above or below a
threshold (data for buyers only) are called truncated data. The truncated regression model is a
regression model applied to data in which observations are simply unavailable when the
dependent variable is above or below a certain cutoff.

The truncated regression model is an example of a sample selection model, in which the
selection mechanism (an individual is in the sample by virtue of buying a car) is related to the
value of the dependent variable (expenditure on a car). As discussed in the box “James Heck-
man and Daniel McFadden, Nobel Laureates” in Section 11.5, one approach to estimation of
sample selection models is to develop two equations, one for Y; and one for whether Y is
observed. The parameters of the model can then be estimated by maximum likelihood, or, in
a stepwise procedure, estimating the selection equation first and then estimating the equation
for Y;. For additional discussion, see Ruud (2000, Chapter 28), Greene (2018, Chapter 19), or
Wooldridge (2010, Chapter 17).

Count Data

Count data arise when the dependent variable is a counting number —for example, the num-
ber of restaurant meals eaten by a consumer in a week. When these numbers are large, the
variable can be treated as approximately continuous, but when they are small, the continuous
approximation is a poor one. The linear regression model, estimated by OLS, can be used for
count data, even if the number of counts is small. Predicted values from the regression are
interpreted as the expected value of the dependent variable, conditional on the regressors. So
when the dependent variable is the number of restaurant meals eaten, a predicted value of
1.7 means, on average, 1.7 restaurant meals per week. As in the binary regression model,
however, OLS does not take advantage of the special structure of count data and can yield
nonsense predictions: for example, —0.2 restaurant meals per week. Just as probit and logit
eliminate nonsense predictions when the dependent variable is binary, special models do so
for count data. The two most widely used models are the Poisson and negative binomial
regression models.

Ordered Responses

Ordered response data arise when mutually exclusive qualitative categories have a natural
ordering, such as obtaining a high school diploma, obtaining some college education (but not
graduating), or graduating from college. Like count data, ordered response data have a natural
ordering, but unlike count data, they do not have natural numerical values.

Because there are no natural numerical values for ordered response data, OLS is inap-
propriate. Instead, ordered data are often analyzed using a generalization of probit called the
ordered probit model, in which the probability of each outcome (e.g., a college education),
conditional on the independent variables (such as parents’ income), is modeled using the

cumulative normal distribution.
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Discrete Choice Data

A discrete choice or multiple choice variable can take on multiple unordered qualitative values.
One example in economics is the mode of transport chosen by a commuter: She might take
the subway, ride the bus, drive, or make her way under her own power (walk, bicycle). If we
were to analyze these choices, the dependent variable would have four possible outcomes
(subway, bus, car, and human-powered). These outcomes are not ordered in any natural way.
Instead, the outcomes are a choice among distinct qualitative alternatives.

The econometric task is to model the probability of choosing the various options given
various regressors such as individual characteristics (how far the commuter’s house is from
the subway station) and the characteristics of each option (the price of the subway). As
discussed in the box in Section 11.5, models for analysis of discrete choice data can be devel-
oped from principles of utility maximization. Individual choice probabilities can be expressed
in probit or logit form, and those models are called multinomial probit and multinomial logit

regression models.



