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100 years of Mycobacterium bovis bacille Calmette-Guérin
Christoph Lange, Peter Aaby, Marcel A Behr, Peter R Donald, Stefan H E Kaufmann, Mihai G Netea, Anna M Mandalakas

Mycobacterium bovis bacille Calmette-Guérin (BCG), an experimental vaccine designed to protect cattle from bovine 
tuberculosis, was administered for the first time to a newborn baby in Paris in 1921. Over the past century, BCG has saved 
tens of millions of lives and has been given to more humans than any other vaccine. It remains the sole tuberculosis 
vaccine licensed for use in humans. BCG provides long-lasting strong protection against miliary and meningeal tuberculosis 
in children, but it is less effective for the prevention of pulmonary tuberculosis, especially in adults. Evidence mainly from 
the past two decades suggests that BCG has non-specific benefits against non-tuberculous infections in newborn babies 
and in older adults, and offers immunotherapeutic benefit in certain malignancies such as non-muscle invasive bladder 
cancer. However, as a live attenuated vaccine, BCG can cause localised or disseminated infections in immunocompromised 
hosts, which can also occur following intravesical installation of BCG for the treatment of bladder cancer. The legacy of 
BCG includes fundamental discoveries about tuberculosis-specific and non-specific immunity and the demonstration that 
tuberculosis is a vaccine-preventable disease, providing a foundation for new vaccines to hasten tuberculosis elimination.

Introduction
Tuberculosis is the leading cause of death by a bacterial 
infectious disease worldwide.1 Global tuberculosis control 
is limited by the absence of a vaccine that effectively 
protects people exposed to Mycobacterium tuberculosis from 
infection and disease.1 The only vaccine licensed for the 
prevention of tuberculosis is Mycobacterium bovis bacille 
Calmette-Guérin (BCG), a vaccine based on attenuation 
of bacteria naturally causing tuberculosis in cattle, other 
animals, and occasionally humans. Analogous to the 
development of the smallpox vaccine by Edward Jenner 
in 1796, Léon Charles Albert Calmette (1863–1933; a 
physician) and Jean-Marie Camille Guérin (1872–1961; a 
veterinarian) applied the similia similibus curentur (like 
cures like) principle to develop a tuberculosis vaccine 
(figure 1). First administered to a neonate in Paris in 1921,2 
BCG has probably been administered to more humans 
than any other vaccine for the prevention of infectious 
disease. In 2019, 88% of children globally received BCG 
vaccination during their first year of life.3 The BCG vaccine 
offers greater than 70% protection against disseminated 
tuberculosis and tuberculous meningitis in neonates 
and school-age children. Nevertheless, vaccine efficacy is 
much lower in adults.4 In addition to preventing tuber
culosis and reducing tuberculosis-specific morbidity 
and mortality, epidemiological studies show non-specific 
benefits of childhood BCG vaccination for prevention of 
other communicable and non-communicable diseases and 
improved overall survival.5–7 The mechanism underlying 
these heterologous or non-specific effects, mediated by a 
combination of trained innate and adaptive immunity, has 
only begun to be unravelled.8–10

In celebration of the 100th anniversary of BCG use in 
humans, we provide a historical review of the development 
and application of the BCG vaccine and a perspective on 
the current status of and future prospects for tuberculosis 
vaccination.

The origin of BCG: from Koch’s tuberculin to BCG
Robert Koch’s identification of M tuberculosis as the 
causative agent of tuberculosis in 1882 clearly demarcated 

a new era.11 Nevertheless, only in 1901 did Koch accept 
that two different organisms caused human and bovine 
tuberculosis (M tuberculosis vs M bovis). Although it was 
clear that M bovis-contaminated cow’s milk caused a 
substantial proportion of tuberculosis cases, notably in 
young children, Koch considered M bovis transmission 
from cattle to humans to be negligible. More serious was 
Koch’s 1890 claim to have discovered a tuberculosis 
vaccine, termed tuberculin, that he considered effective 
for tuberculosis prevention and therapy.11 Tuberculin 
was a concentrated liquid culture of M tuberculosis 
with bacteria removed by filtration; today it would be 
defined as a subunit vaccine comprising M tuberculosis 
proteins and glycolipids serving as antigen and adjuvant, 
respectively. Unfortunately, in numerous clinical studies, 
tuberculin was ineffective. Emil von Behring, Koch, and 
their colleagues attempted to reduce the virulence of 
M tuberculosis without success.2,12–14 Mycobacteria from 
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Figure 1: The founders of BCG
Jean-Marie Camille Guérin (1872–1961), left, and Léon Charles Albert Calmette (1863–1933), right.
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other host species, including avian-derived bacilli or 
mycobacteria derived from cold-blooded animals, such 
as turtles or blind worms, were investigated, but their 
efficacy was low and short-lived.2,15 Researchers repeatedly 
failed to inactivate experimental vaccines by heat, 
chemical treatment, and solvents.2,16,17

Calmette and Guérin finally concluded that the only 
way forward was development of a live attenuated 
vaccine. They followed the strategy developed by their 
mentor, Louis Pasteur, of performing serial passages of 
the bacterium on a medium thought to affect virulence 
and testing the success of attenuation in animal models.18 
In 1906, development of BCG began with the treatment 
of M bovis with ox bile that altered the appearance of the 
bacilli.2 When M bovis was cultured on potato slices 
soaked with ox bile and glycerine, the dry-crumbly 
colonies became smooth with a greenish-brownish 
colour. The mycobacteria grew on these solid cultures 
for 3–4 weeks; thereafter, transfer to new cultures was 
required. Accordingly, between 1908 and 1920, Calmette 
and Guérin renewed their cultures every 3 weeks, 
reaching 230 passages in 1920. The resulting strain was 
innocuous for a variety of animal species usually 
susceptible to M bovis. During these years, the bacterium 
lost a nine-gene locus (encoding for proteins Rv3871, 
PE35, PPE68, ESAT-6, CFP-10, Rv3876, Rv3877, Rv3878, 
and Rv3879c), referred to as region of difference 1 (RD1) 
as it is present in virulent M bovis and absent from all 
BCG strains.19 Gene complementation and gene deletion 
studies have confirmed the importance of the RD1 
locus for full virulence of the bacterium.19–21 In addition 
to being of reduced virulence, the bacterium—when 
injected intravenously—protected cattle against 
challenge infection for approximately 1·5 years, especially 
newborn calves.2 Even high bacillary doses were safe 
in guinea pigs, rabbits, and non-human primates. 
Although tuberculosis foci developed in the lungs, lymph 
nodes, liver, and spleen, caseation was never observed 
and pathological alterations soon resolved. Ultimately, 
efficacy trials in animals revealed that multidose oral 
administration held the greatest promise.2

On the basis of these observations, on July 18, 1921, 
Calmette, Guérin, and Benjamin Weill-Hallé performed 
the first vaccination of a neonate.2 The neonate received 
three 2 mg BCG doses suspended in milk; neither 
disease nor adverse events developed during the 
subsequent 5·5 years. Between July, 1921, and July, 1922, 
120 additional infants were vaccinated and the vaccination 
schedule evolved to three 1 mg applications every second 
day within 10 days post-birth (total 1·2 × 10⁹ bacilli). 
BCG vaccination initially targeted newborn babies 
living in tuberculosis-affected families. By Feb 1, 1927, 
21 200 infants had received BCG vaccination.2 1 year later, 
the intradermal route, still used today, was found to be 
more reliable because it allowed precise and reproducible 
dosing22 (of note, oral delivery of BCG is still used 
to control tuberculosis in both domestic livestock and 

wildlife23). Moreover, intradermal administration was 
found to induce 100% tuberculin skin test conversion 
with a reduction of 10–15% over 5 years. By contrast, oral 
application induced 40–85% conversion with a loss of 
40–60% over 1 year.24

Calmette observed that among 8075 vaccinated children 
mortality was only 4·6%, whereas among non-vaccinated 
children it was at least 16%; this finding suggested that 
BCG not only reduced tuberculosis-specific mortality 
but also substantially reduced all-cause infant mortality. 
In a 1931 lecture, Calmette provided two speculative 
explanations for the higher general mortality in 
non-vaccinated versus vaccinated neonates: first, “Can it 
be that tuberculous infection plays a more important part 
in infant mortality than we have supposed?” Or second, 
“…does the harbouring of BCG, followed by its digestion 
and elimination, confer on the organism a special 
aptitude to resist those other infections which are so 
frequent in young children?”25

Although it is possible that tuberculous infections 
might have been underdiagnosed, the second alternative 
describing protection against other infections appears 
more intriguing and foreshadowed later observations of 
BCG’s heterologous or non-specific protection.

The Lübeck disaster
By 1929, in France alone, approximately 250 000 neonates 
had received oral BCG without noticeable adverse events. 
However, strong concerns remained that reversion to 
pathogenicity of any live vaccine was an ever-present 
threat.26 During the second half of 1929, George Deycke 
and Ernst Altstaedt, the medical personnel responsible 
for tuberculosis control in Lübeck, Germany, requested a 
supply of BCG from Calmette for an immunisation 
programme targeting infants born into tuberculosis-
endemic environments.

After delivery, the vaccine was unfortunately stored 
and processed in a hospital laboratory where virulent 
M tuberculosis was also stored. During the spring of 1930, 
BCG vaccination was offered to all 412 newborn babies in 
Lübeck. Tragically, 251 of these newborn babies received 
oral BCG that had been inadvertently contaminated 
by virulent M tuberculosis. Subsequently, the majority of 
them developed tuberculosis and 72 infants died from 
this (figure 2).27

An in-depth assessment of the disaster, coordinated by 
Albert Moegling,27 found no evidence that BCG had 
reverted to pathogenicity; the disaster was rather the 
consequence of negligent contamination of BCG.28

Different BCG strains: current vaccination policies
Following demonstration of BCG safety and efficacy 
in France in the 1920s, there was global interest in 
introducing BCG to countries with a high prevalence 
of tuberculosis. The introduction of BCG faced 
challenges such as identifying the target population and 
ensuring consistent manufacturing.29 From a production 
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standpoint, one key challenge was that BCG was not a 
defined biochemical entity; it was a living, mutating 
microbe propagated in the laboratory by transferring 
clumps of bacteria at regular intervals into fresh media.30

The donor laboratory (Institut Pasteur) propagated 
BCG until 1961 and provided unique passage numbers 
with each BCG lot sent to requesting laboratories, where 
it was grown on non-standardised culture media. Hence, 
BCG was mutating both at the Institut Pasteur and 
at other BCG production laboratories worldwide for 
40–50 years31 (depending on when laboratories created 
lyophilised seed lots), resulting in genetically distinct 
BCG strains.32,33 This early history of BCG propagation 
leads to three pertinent questions: (1) are BCG strains 
phenotypically different in the laboratory; (2) do different 
BCG strains have similar rates of adverse effects; and (3) 
do different BCG strains confer differing levels of 
protection?

A number of phenotypic differences have been noted 
between BCG strains, when conducting in-vitro bio
chemical analyses.34,35 For some strains, the responsible 
mutation has been causally identified.36,37 For others, an 
in-vitro phenotype has been noted but not confidently 
assigned to one specific mutation. As an example of the 
latter, a higher concentration of isoniazid is required 
to inhibit BCG-Denmark growth in the laboratory; the 
clinical significance of this remains undetermined.38 
Some of the in-vitro variants have been subject to in-vivo 
study in experimental infection models. While it is clear 
that licensed BCG vaccines differ markedly in their 
content of viable mycobacteria, possibly contributing to 
formulation-dependent activation of innate and adaptive 
immunity and distinct protective effects,39 it has not been 
shown that this affects protection afforded against an 
M tuberculosis challenge.40

Although genetic sequencing has conclusively docu
mented that BCG strains are different33 and distinct levels 
of virulence might be explained by strain-specific 
duplications and deletions of genomic DNA,41 a more 
pressing concern is whether BCG strains behave 
differently in the more than 100 million infants vaccinated 
each year. Natural experiments in strain-change have been 
associated with higher or lower rates of adverse events,42 
but changes have also been seen when the same 
strain is made by a different producer.43 Likewise, natural 
experiments of BCG strain-change have been associated 
with fluctuations in the rate of childhood tuberculosis, but 
clinical trials looking at protection against tuberculosis 
that used two strains are few, and none have directly 
compared early BCG strains that produce antigenic 
proteins, such as MPT64, MPT70, and MPT83, with late 
strains that fail to make these proteins (table 1). Currently, 
India uses both an early strain (BCG-Russia) and a late 
strain (BCG-Denmark); pharmacosurveillance in this 
large country with a high tuberculosis burden might 
provide data on relative rates of adverse effects and 
disease.

National BCG vaccination policies vary broadly with 
respect to dosing and strains47 and are catalogued in the 
BCG World Atlas.48 Because studies have shown minimal 
or no evidence of additional benefit in the protection 
against tuberculosis or for overall survival from repeat 
BCG vaccination,49 WHO does not recommend 
revaccination even if the tuberculin skin test is negative. 
Countries with a low tuberculosis prevalence might 
selectively vaccinate high-risk neonates, such as those 
born to mothers with pulmonary tuberculosis or 
into families originating from countries with high 
tuberculosis prevalence.

Prevention and reduction of morbidity and 
mortality
For the prevention of pulmonary tuberculosis, clinical 
trials have estimated BCG vaccine efficacy to range 
broadly from 0% in the Chingleput trial in south India 
(rate ratio 1·05, 95% CI 0·88–1·25)4,50 to 80% in the UK 
Medical Research Council trial (0·22, 0·16–0·31).4,51 
There are many hypothesised reasons for this wide 

Figure 2: The unfolding of the BCG disaster in Lübeck in 1930
Note that three of the 251 infants were vaccinated before the start of the BCG campaign on Feb 24, 1930.
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variation, including age at and time since vaccination,52–55 
sex,56 risk of tuberculosis in the study population,57 
geographical latitude of the study setting,58,59 and study 
design.55 The protective effect of BCG is inversely 
associated with age at vaccination, with neonatal 
vaccination affording greater protection than vaccination 
of older children and adults (table 2).4 Furthermore, BCG 
efficacy appears to be higher in studies that use tuberculin 
skin testing to stringently limit eligibility to participants 
with no evidence of previous M tuberculosis infection 
compared with studies that include participants with 
reactive tuberculin skin tests.4 There is a direct linear 
relationship between the protective effect of BCG and the 
distance of the study setting from the equator.4,59,60 The 
possible causes for this variation (eg, a higher prevalence 
of non-tuberculous mycobacteria in equatorial regions) 
remain speculative, and the explanation is likely to be 
multifactorial.58

There is evidence indicating that BCG vaccination 
affords protection in high-risk populations in settings 
with a low burden of tuberculosis, while being a 
cost-effective strategy.61,62 Similarly, computer-simulated 
modelling suggests that, within the US population, 
tuberculosis elimination can be achieved through the use 
of targeted BCG vaccination combined with targeted 
preventive treatment.63 Key assumptions in this model 
include low risks of M tuberculosis infection, multidrug-
resistant tuberculosis, and HIV infection.

The greatest benefit of BCG immunisation, which drives 
its high cost-effectiveness, is prevention of paediatric 
tuberculosis, particularly extrapulmonary tuberculosis in 
young children.64 In this age group, the potential impact of 
BCG is amplified due to children’s high risk of progression 
to severe forms of tuberculosis.65 The protective effect of 
vaccination against all forms of paediatric tuberculosis has 
been estimated at 0·74 (95% CI 0·62–0·83) in randomised 
controlled trials (RCTs), and 0·52 (0·38–0·64) in 
case-control studies.66 When analysis is limited to 
laboratory-confirmed tuberculosis reported in case-control 
studies, estimated effectiveness against tuberculosis is 
0·83 (0·58–0·93).66 Among children without evidence of 
previous M tuberculosis infection, the protective effect of 
BCG increases to 0·92 (rate ratio 0·08 [0·03–0·25]).4 The 
greatest impact of BCG has been shown in infants, in 
whom the protective effect is 0·90 (rate ratio 0·10 
[0·01–0·77])4,67,68 for the prevention of meningeal and 
miliary tuberculosis.

BCG also prevents primary infection with M tuberculosis. 
Among European children completing testing for latent 
infection with M tuberculosis, previous BCG vaccination 
was associated with a negative result (QuantiFERON-TB 
Gold In-Tube: odds ratio [OR] 0·41, p<0·001; T-SPOT.TB: 
OR 0·41, p<0·001).69 Among adults with recent household 
tuberculosis exposure, there was also a negative association 
between BCG vaccination and latent tuberculosis infection 
(adjusted OR 0·70, 95% CI 0·56–0·87; p=0·0017) yielding 
a vaccine efficacy of 0·30.70 Although vaccine efficacy 
declined with time since vaccination, the prevalence of 
latent tuberculosis infection was lower among vaccinated 
than non-vaccinated participants, even 20 years or more 
after vaccination. Similarly, among adolescents in a 
tuberculosis high-risk setting, BCG revaccination reduced 
the rate of sustained QuantiFERON-TB Gold In-Tube 
conversion with an efficacy of 0·45 (p=0·03).71

Complications of BCG applications
As a live vaccine, BCG can cause localised adverse 
reactions including hypersensitivity, abscess formation, 
and regional lymphadenitis when applied by intradermal 
injection.72–75 These complications are mostly self-limiting 
and rarely require surgical or medical interventions. The 
risk of regional suppurative lymphadenitis following 
intradermal vaccination of children younger than 1 year 
is less than five per 1000 in most countries (range 
0·0006–36 cases per 1000).76

Age at vaccination Study excluded 
tuberculin-reactive 
individuals

Efficacy* 
RR (95% CI)

Between-study 
heterogeneity (τ2)

Infants Neonatal Assumed non-reactive 0·41 (0·29–0·58) 0·0065

Children School age Yes 0·26 (0·18–0·37) 0·048

Children School age No 0·59 (0·35–1·01) 0·095

Mixed community 
and institutional

Older than school 
age

Yes 0·88 (0·5–1·31) 0

Mixed community 
and occupational

Older than school 
age

No 0·81 (0·55–1·22) 0·091

Data are from Mangtani and colleagues’ sytematic review on protection against tuberculosis by BCG.4 RR=rate ratio. 
*Random effects within strata summary effect estimate.

Table 2: BCG efficacy against pulmonary tuberculosis stratified by age at vaccination and study design

Current manufacturer(s)44 Produces antigenic 
proteins MPT64, 
MPT70, and MPT8345

Produces the 
virulence lipids 
PDIM and PGL46

Efficacy in 
randomised 
trial4

BCG-Russia Microgen; Serum Institute of 
India

Yes Yes Not tested

BCG-Sofia BulBio Yes Not reported Not tested

BCG-Tokyo Japan BCG laboratory Yes No Not tested

BCG-Moreau Fundação Ataulpho de Paiva Yes No Not tested

BCG-
Denmark

AJ Biologics; Green Signal 
Pharma

No Yes Variable (0–80%)

BCG-China China National Biotec Yes Not reported Not tested

BCG-Tice Merck No Yes Variable (0–90%)

BCG-Glaxo Aventis Pasteur No No ~30%

BCG-Pasteur ANLIS, Argentina; BioFarma,
Indonesia; Pasteur Institute of
Iran, Iran; Institute of Virology,
Vaccines and Sera (Torlak), 
Serbia; Institut de Pasteur 
Tunis, Tunisia; Institute of 
Vaccines and Medical
Biologicals, Vietnam

No Yes Variable (0–75%)

PDIM=phthiocerol dimycocerosates. PGL=phenolic glycolipid.

Table 1: Summary of currently produced BCG strains
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Children who develop disseminated BCG infection 
usually have an underlying genetic or acquired 
immunodeficiency. The risk of disseminated BCG disease 
was 0·06–1·56 per million vaccinated children in the pre-
HIV era.77 Today, HIV infection is the most common 
cause for disseminated BCG disease in neonates. In a 
South African multicentre surveillance study, the pooled 
incidence for disseminated BCG disease in vaccinated 
children living with HIV was 992 (95% CI 567–1495) 
per 100 000.78 After a decade of debate regarding the risk–
benefit ratio of BCG in people living with HIV, WHO 
guidelines recommend that adults, children, and neonates 
living with HIV should receive BCG vaccination if they are 
stable on antiretroviral therapy.79 Furthermore, the revised 
WHO guidelines recommend that in settings with high 
HIV and tuberculosis burden, all healthy neonates should 
receive a single dose of neonatal BCG.79

BCG vaccination is one of the most common causes of 
death in children with primary immunodeficiencies 
worldwide,74 with an overall lethality of 50% and higher.80 
Genetic risk factors include severe combined immune 
deficiency, chronic granulomatous disease, combined 
immunodeficiency, leukocyte adhesion deficiency type 1, 
and mendelian susceptibility to mycobacterial disease.81–85

Intravesical BCG application is the preferred treatment 
for high-risk non-muscle-invasive bladder cancer (NMBIC) 
and an optional treatment for intermediate-risk NMIBC.86,87 
Intravesical BCG therapy of NMIBC can be complicated by 
local adverse events such as cystitis, bladder contracture, 
bladder ulceration, granulomatous balanitis, epididymo-
orchitis, prostatitis, urethritis, and kidney infections, or 
systemic complications including mycotic aneurysms, 
granulomatous hepatitis, reactive arthritis, spondylitis, 
miliary tuberculosis (appendix p 1), and rarely (1 in 
15 000 patients) sepsis.88–90 Treatment requires anti-
tuberculosis therapy over 9 months or longer. Like other 
strains of M bovis, BCG is intrinsically resistant to 
pyrazinamide.91

Non-specific benefits of BCG vaccination
BCG immunotherapy induces initial complete response 
rates of 55–65% for high-risk NMIBCs and 70–75% for 
carcinoma in situ; however, 40% of patients will eventually 
relapse despite initially successful BCG immunotherapy.92 
BCG is administered once a week for 6 weeks intravesically, 
followed by maintenance therapy for 1–3 years, depending 
on the risk of tumour progression. BCG induces a complex 
immunological cascade of innate and adaptive immune 
responses resulting in cell-mediated tumour-specific 
killing of urothelial carcinoma cells.92 Compared with BCG 
vaccination, the number of bacteria given for intravesical 
therapy is orders of magnitude greater (~10⁶ bacilli for 
vaccination; ~10⁹ bacilli for bladder cancer).

In the 1970s to 1980s, the measles vaccine was found to 
have major beneficial effect for non-measles-specific 
child survival.93 Observational studies examining other 
childhood vaccines suggested that BCG also had major 

non-specific benefits.94,95 Because neonatal BCG was 
recommended by WHO, it was impossible to test these 
benefits in RCTs. To circumvent observational bias, 
studies compared BCG-vaccinated children with and 
without a BCG scar6 and interpreted differences in 
mortality to reflect the non-specific benefits of effective 
versus ineffective BCG vaccination. BCG scarring was 
linked to the quality of vaccination (supervision, quantity, 
depth of vaccination, and BCG strain). In the most recent 
meta-analysis, BCG scarring was associated with a 52% 
(95% CI 38–63) reduction in infant mortality.5 It is, 
however, important to underline that the presence of the 
BCG scar could alternatively signify a stronger immune 
response itself, which could subsequently explain the 
association with improved outcome.

In Guinea-Bissau, recommendations against BCG vacci
nation of low-birthweight children created an opportunity 
for randomised trials. In three RCTs, random assignment 
to receive BCG-Denmark at hospital discharge was 
associated with a 38% (95% CI 17–54) reduction in neonatal 
mortality.96 Similar effects were found for physician-
diagnosed non-tuberculous disease in an RCT of BCG-
Denmark in Uganda.97 RCTs from intensive care units 
have not found similar non-specific effects,98 possibly 
because of differences in BCG strain or cause-specific 
mortality. BCG’s non-specific benefits primarily result 
from reduction in neonatal sepsis and respiratory 
infections.96,99 BCG also provides protection against leprosy 
(overall protective effect of 26% [95% CI 14–37] with an 
enhanced effect after revaccination),100 non-tuberculous 
mycobacteria lymphadenitis (relative risk 0·04 [95% CI 
0·01–0·21]),101 and Buruli ulcer (0·50 [0·37–0·69]).101–103

Child survival is correlated with the quality of BCG 
vaccination, which is assessed by the size of early 
reactions, scarring, and tuberculin skin test responses.104 
BCG vaccination enhances non-specific effects for child 
survival.105 Notably, non-specific effects are much stronger 
if the child’s mother has a BCG scar.106,107

BCG has the strongest effect on survival in the 
first months of life, when infants have received only 
two live vaccines—BCG and oral polio. Following 
vaccination with non-live vaccines, such as diphtheria-
tetanus-pertussis (DTP), it becomes difficult to measure 
non-specific effects because live and non-live vaccines 
interact immunologically. WHO recommends neonatal 
BCG and the first of three doses of DTP at the age of 
6 weeks. Administration of DTP after BCG reduces the 
non-specific benefits of BCG, and mortality is increased 
particularly for girls.108 However, co-administration of 
BCG and DTP can partly rectify the interaction.109 In four 
studies examining vaccine sequence (appendix p 2), 
simultaneous administration of BCG and DTP was 
associated with a 43% (95% CI 27–56) reduction in 
mortality compared with administration of DTP after 
BCG in accordance with WHO guidelines. Given the 
strong effects of BCG on child survival, vaccination 
coverage, age, and quality should be monitored. The 

See Online for appendix
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findings from these studies of BCG and DTP suggest 
that BCG might modify the immunological effects of 
other sequences of vaccines.

Research on non-specific effects has focused on 
childhood BCG, but there is growing interest in whether 
BCG administered in childhood affects adults and whether 
BCG’s immune training used among adults can modify 
disease patterns. The largest study showed that BCG 
(together with vaccinia) was associated with 46% (95% CI 
19–64) lower mortality from natural causes between 7 years 
and 45 years of age in Denmark.110 BCG has been shown to 
modify the course of diabetes and multiple sclerosis.111–113 
Observations further suggest that BCG therapy lowers the 
incidence of Alzheimer’s disease in patients with bladder 
cancer.114 BCG given to older adults has also been associated 
with major reductions in respiratory infections.115

Given the observed non-specific effects of BCG, dis
continuation of BCG vaccination programmes in countries 
of low tuberculosis prevalence might substantially reduce 
these beneficial BCG effects as well. Furthermore, BCG 
has also been tested extensively against COVID-19 infection 
in more than 20 RCTs, the largest being the BRACE trial 
(NCT04327206) which aims to recruit more than 10 000 
health-care workers; in an RCT among older adults in 
Greece, BCG revaccination reduced the risk and severity of 
COVID-19, according to one manuscript that has not yet 
been peer reviewed.116

BCG vaccination and induction of heterologous 
T-cell and trained immunity
Although epidemiological evidence for non-specific 
beneficial effects of BCG has accumulated over the 
past century,117 the lack of a biological explanation 
hampers recognition of the importance of these effects. 
One suggested mechanism through which BCG 
vaccination might induce beneficial non-specific effects 
is activation of heterologous lymphocyte responses. 
Studies during the 1960s demonstrated cross-protection 
between unrelated bacterial pathogens,118 mediated by 
lymphocytes with an increased capacity for production of 
IFN-γ after BCG vaccination. Subsequently, macrophage 
activation induced by IFN-γ promoted innate immunity 
against a secondary infection.119 These experimental 
animal studies were later complemented by human 
studies reporting that BCG increases IFN-γ production 
by peripheral blood mononuclear cells upon stimulation 
with unrelated microorganisms.120 However, these data 
cannot explain all these effects, and increasing evidence 
showed that innate immune cells are also able to build 
memory characteristics, termed trained immunity,121 
which partially drive the heterologous protection induced 
by BCG.

Trained immunity induced by BCG results in improved 
cytokine (TNF, IL-1, IL-6) responses by monocytes and 
macrophages,120 and more effective release of reactive 
oxygen species, antimicrobial proteases, and enhanced 
pathogen killing by neutrophils.122 To achieve long-term 

effects, functional changes are also induced by BCG at the 
level of bone marrow progenitors of myeloid cells biasing 
towards myelopoiesis.123,124 The memory characteristics of 
innate immune cells can last for months and even years.125 
The molecular processes responsible for these effects are 
represented by changes in chromatin accessibility due to 
chemical processes at the DNA (methylation) and histone 
(methylation, acetylation) level, leading to more effective 
transcription of genes important for host defense126 
(figure 3).

Next-generation vaccines
Tuberculosis vaccine research and development has 
produced a number of novel vaccine candidates in the 
clinical trial pipeline with some encouraging results.24,128 
Principally, vaccines target prevention of disease. This 
can be achieved in three ways, either by (1) preventing 
infection; (2) containing infection with dormant 
M tuberculosis; or (3) preventing recurrence in patients who 
have been cured of tuberculosis but who are at risk of 
reinfection or relapse. Vaccine strategies include inacti
vated or viable whole-cell vaccine approaches and subunit 
approaches comprising fusion proteins of selected 
antigens in combination with a strong T-cell stimulating 
adjuvant. All vaccines are considered as boost vaccines on 
top of BCG prime given to different age groups either 
before or after exposure to M tuberculosis; in addition, 
viable vaccines are also considered as BCG replacement 
vaccines given pre-exposure with M tuberculosis to 
neonates. Improved application regimes for BCG are 
being considered as well. A study in non-human primates 
revealed that intravenous administration of BCG induced 
profound, and in some cases sterilising, immunity against 
M tuberculosis challenge.129 Moreover, a BCG revaccination 
trial showed approximately 50% prevention of infection as 
measured by sustained IFN-γ release assay conversion, 
which measures antigen-induced IFN-γ secretion.71 By 
contrast, immediate infection was not inhibited, indicating 
short-term survival of M tuberculosis which was 
subsequently terminated by host mechanisms—either 
innate immunity, or perhaps involving training or rapid 
mobilisation of acquired immune memory.

Major vaccine candidates are listed in the 
appendix (pp 3–4). Two adjuvanted subunit vaccines have 
reached an advanced stage of clinical assessment. 
Approximately 50% of active tuberculosis was prevented 
by the protein-adjuvant vaccine M72:AS01E over a 3-year 
clinical trial period.130 This trial comprised HIV-uninfected 
individuals with latent infection with M tuberculosis, and 
the result might not apply to interferon-γ release assay-
negative, non-BCG-vaccinated individuals. The H56:IC31 
vaccine candidate is another protein adjuvant formulation 
undergoing phase 2b testing of prevention of tuberculosis 
recurrence (NCT03512249).

RUTI is composed of detoxified fragments of 
M tuberculosis and is administered as a liposomal 
preparation for therapy in adjunct to canonical drug 
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treatment of tuberculosis; it is currently being evaluated in 
a phase 2a trial (NCT02711735).128 DAR-901 is composed of 
inactivated Mycobacterium obuense and was found to be 
safe and well tolerated, but failed to prevent infection as 
determined by both immediate and sustained IFN-γ 
release in a phase 2b trial.131 The third inactivated vaccine is 
based on Mycobacterium indicus pranii and has already 
been licensed as a leprosy vaccine. It demonstrated safety 
in a subgroup of patients with tuberculosis and provided 
evidence for improved bacillary clearance as determined 
by sputum culture conversion.132 This candidate is currently 
being tested head-to-head with VPM1002 in household 
contacts of patients with newly diagnosed tuberculosis in 
India (Clinical Trials Registry India CTRI/2019/01/017026). 
VPM1002 is one of the two advanced viable vaccines. It is 
the only vaccine among all candidates in clinical evaluation 
that is based on BCG. It has been generated by exchanging 
the gene encoding urease C with the listeriolysin gene.133 
This genetic modification leads to several intracellular 
modifications in macrophages harbouring the vaccine, 
which increases immunogenicity of VPM1002 over BCG. 
After successful completion of phase 1 and 2 safety trials in 
adults and neonates134,135 and in addition to the above-
mentioned head-to-head trial, VPM1002 is also undergoing 
phase 3 trials in previously drug-treated patients in India to 
assess for prevention of recurrence (NCT03152903) and in 

neonates at different clinical trial sites in sub-Saharan 
Africa to assess for prevention of infection (NCT043451685). 
The other viable vaccine candidate is MTBVAC, a 
genetically attenuated M tuberculosis strain with two 
independent gene deletions that affect expression of a 
whole variety of virulence factors, but leave proteins of M 
tuberculosis (which are absent from M bovis BCG) 
unaffected. Following phase 1 and 2 trials that showed 
safety and immunogenicity in adults and neonates, 
MTBVAC is currently prepared for phase 3 efficacy trials 
in both age groups.136,137 Not only are different vaccine 
candidates being tested, but there are also novel regimes 
being considered, notably aerosol vaccination to activate 
mucosal immunity in the lung, the major portal of entry 
and site of residence of M tuberculosis.138–140

Conclusion
During the past century, millions of lives have been saved 
by BCG vaccination due to the induction of anti-
mycobacterial immunity and the prevention of 
tuberculosis, particularly its most severe forms. Lives 
have also potentially been saved by the non-specific 
effects of BCG vaccination on other infectious and non-
communicable diseases. During the past decade, we 
have begun to unravel the molecular mechanisms of 
BCG’s beneficial non-specific effects. 100 years after the 

Figure 3: Trained immunity induced by BCG
The accessibility of chromatin, in particular of promoters and enhancers, is modulated by BCG vaccination. Upon cellular activation of innate immune cells, histone 
chemical modifications (eg, methylation, acetylation) result in an increased accessibility for transcription factor binding and initiation of gene transcription. 
Upon elimination of the stimulus, many of these changes are lost, but some histone marks (such as methylation) are preserved, bookmarking the genes important 
for host defense. Upon reinfection, chromatin architecture changes and induction of gene transcription can take place more quickly and strongly in an 
antigen-independent manner. The enhanced chromatin accessibility and gene transcription result in an improved innate immune response after 
BCG vaccination. Adapted from Chumakov and colleagues.127
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first human inoculation with BCG, we are close to 
improving tuberculosis vaccine effectiveness. The 
revitalisation of tuberculosis vaccine research and 
development programmes promises to propel our strides 
towards the WHO 2030 goal of reducing tuberculosis 
morbidity by 90% and mortality by 95%.141
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