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A B S T R A C T

Mosquito-borne diseases affect millions of individuals worldwide; the area of endemic transmission has been
increasing due to several factors linked to globalization, urban sprawl, and climate change. The Aedes aegypti
mosquito plays a central role in the dissemination of dengue, Zika, chikungunya, and urban yellow fever.
Current preventive measures include mosquito control programs; however, identifying high-risk areas for
mosquito infestation over a large geographic region based only on field surveys is labor-intensive and time-
consuming. Thus, the objective of this study was to assess the potential of remote satellite images (WorldView)
for determining land features associated with Ae. aegypti adult infestations in São José do Rio Preto/SP, Brazil.
We used data from 60 adult mosquito traps distributed along four summers; the remote sensing images were
classified by land cover types using a supervised classification method. We modeled the number of Ae. aegypti
using a Poisson probability distribution with a geostatistical approach. The models were constructed in a
Bayesian context using the Integrated nested Laplace Approximations and Stochastic Partial Differential
Equation method. We showed that an infestation of Ae. aegypti adult mosquitoes was positively associated with
the presence of asbestos roofing and roof slabs. This may be related to several other factors, such as socio-
economic or environmental factors. The usage of asbestos roofing may be more prevalent in socioeconomically
poor areas, while roof slabs may retain rainwater and contribute to the generation of temporary mosquito
breeding sites. Although preliminary, our results demonstrate the utility of satellite remote sensing in identifying
landscape differences in urban environments using a geostatistical approach, and indicated directions for future
research. Further analyses including other variables, such as land surface temperature, may reveal more complex
relationships between urban mosquito micro-habitats and land cover features.

1. Introduction

Aedes aegypti (Linnaeus, 1762) mainly inhabits urban and suburban
environments in close association with humans (Service, 1992;
Gibbons and Vaughn, 2002) and is considered the primary vector of the
etiological agents of dengue, Zika, chikungunya, and urban yellow fever
(Kyle and Harris, 2008; Paupy et al., 2010). It is estimated that every
year, approximately 3 billion people in the world are at risk of dengue

infection (Bhatt et al., 2013; WHO, 2016). In 2016, in Brazil alone,
802,249 new suspected cases of dengue fever, 63,810 confirmed cases
of chikungunya, and 64,311 confirmed cases of Zika fever were re-
ported in 1840 municipalities (MS, 2019). Female Ae. aegypti mosqui-
toes blood-feed during the day and usually lay their eggs in artificial
containers such as buckets, drums, and tires, where water accumulates
and remains for several days (Service 1992; Focks and Chadee, 1997;
Gubler, 1998; Calderón-Arguedas et al., 2004). The presence of Ae.
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aegypti is also strongly associated with poor sanitary conditions and a
lack of residual waste recycling, typical of rapidly expanding urban
areas; these are considered important contributory factors to epidemics
of vector-borne diseases (Costa et al., 2017). Source reduction by the
elimination of larval habitats is an important measure for mosquito
eradication efforts in Brazil (MS, 2019). However, Ae. aegypti generally
breeds in small artificial habitats (Chadee et al., 2004; Calderón-
Arguedas et al., 2004), thereby complicating environmental manage-
ment. The local habitat conditions that influence mosquito life history
often vary at spatial scales significantly finer than the land use and
census tract boundaries that inform many social and ecological vari-
ables (Leisnham et al., 2014; Little et al., 2017). Aedes aegypti infesta-
tion is likely influenced by local biophysical conditions that support
larval development, resting survivorship, and host access, all within the
hundred-meter flight range (Marini et al., 2010; Little et al., 2017).
However, the identification of these mosquito breeding hotspots over a
large geographic region based on field surveys alone is labor-intensive,
time-consuming, and ineffective. Hence, more efficient tools for the
accurate and rapid determination of mosquito habitat distribution are
essential to implement larval and adult mosquito control.

Remotely sensed data can supply spatial information to study the
epidemiology of many vector-borne diseases (Bergquist, 2001;
Correia et al., 2004; Mushinzimana et al., 2006; Fuller et al., 2010).
Previous studies have proven the utility of remote sensing technology in
the estimation of vector populations on a large spatial scale. For in-
stance, Welch et al. (1989) used infrared aerial photos in Texas to detect
potential Psorophora columbiae breeding sites, such as ditches, low-lying
areas, and tire tracks. Roberts et al. (1996) surveyed southern Mexican
villages and showed that aerial photos were useful for the identification
of oviposition sites of Anopheles albimanus. They discovered that low
elevations in flooded, unmanaged pastures were the most important
determinants for adult Anopheles abundance. Moloney et al. (1998)
tested aerial photography as a surveillance tool for identifying re-
sidential premises at high risk of Ae. aegypti breeding and found that the
premise condition index could be accurately identified from these in-
frared photographs. Moreover, newly developed remote sensors with
high spatial resolution may be particularly useful for determining
mosquito habitat distribution in urban areas, and for supporting vector
control measures. Commercial imaging satellites such as WorldView-3
offer new opportunities to evaluate urban habitats for disease vectors
providing very high spatial resolutions (0.3 m), which are appropriate
for identification of city blocks, roadways, buildings, individual roads,
tree crowns, and rooftops. Thus, the aim of our study was to assess the
suitability of high-resolution (0.3 m) WorldView-3 imagery to assess
urban structural variables that may be associated with Ae. aegypti in-
festation. We analyzed empirical relationships between these variables
derived from the classification of WorldView-3 imagery and adult
mosquito habitats in an endemic area in Brazil.

2. Materials and methods

2.1. Study area and mosquito collection

Our study was conducted in the Vila Toninho neighborhood
(20°49′11″ S and 49°22′46″ W), in the city of São José do Rio Preto,
Brazil (Fig. 1). This study site encompasses an area of approximately
4 × 106 m², at an elevation of 475 m above sea level (CPTEC, 2015).
Census data indicated the presence of approximately 2000 households
in the neighborhood, with a human population of about 6000. The
climate is tropical, with an average temperature of 25 ºC, and a yearly
average rainfall of 1410 mm. Reinfestation by Ae. aegypti in São José do
Rio Preto was detected in 1985 (Chiaravalloti-Neto, 1997). Dengue was
first reported in this municipality in 1990, and it has been significantly
affected by the disease ever since. In 2019 alone, more than 10,000
cases of dengue were reported by the Ministry of Health (MS, 2019). We
chose the neighborhood of Vila Toninho for our study because this area

shows a high prevalence and incidence of dengue (Chiaravalloti-Neto
et al., 2019). This study area represents the most vulnerable part of the
city for the occurrence of dengue. Additionally an ongoing arbovirus
surveillance is being conducted in this area on a cohort of the general
population (Chiaravalloti-Neto et al., 2019).

The procedures followed in our study were based on a study by
Parra et al. (2018). To capture adult mosquitoes, we used 30 BG Mos-
quitito™ traps (Biogents BGS) installed on 2016 until 2019 between
December and February of each year, a time of peaking Aedes infesta-
tion, near plant pots, with no direct exposure to the sun and rain in
preselected residences with shaded areas. These traps were installed
twice a week, once per month, allowing us to gather data from up to 60
houses per week. Traps were installed on Mondays and Thursdays and
collected respectively on Tuesdays and Fridays. The traps set always at
the same houses and they were maintained at each residence for 24 h.
The Cartesian coordinates (UTM 22 zone, SIRGAS 2000) of these houses
were obtained using a GPS for each specific trap. Mosquitos collected
from the traps were identified at the Laboratory of Entomology from
Medical School of São José do Rio Preto (FAMERP) with specific
taxonomic keys (Consoli and Oliveira, 1994; Forattini, 2002).

2.2. Remote sensing data acquisition and classification

Cloud-free images of the study area were obtained from WorldView-
3 satellite (0.31 m in panchromatic mode and 1.24 m in the multi-
spectral – resampled accordingly) and were acquired on March 2017.
The datasets are composed of one panchromatic band (450–800 nm)
and four multispectral bands comprising blue (450–510 nm), green
(510–580 nm), red (630–690 nm), and near-infrared (770–895 nm).
Urban land cover maps were generated by applying supervised image
classifiers. Classification algorithms included the following classifiers:
maximum likelihood, mahalanobis distance, and minimum distance.
These classifiers assigned each pixel to specific, predetermined 10 land
cover classes including: asphalt, tile roof, asbestos roof, roof slab, tree,
grass, exposed soil, pavement, water, and shadow areas. We precisely
selected training samples (50 per class) and test samples (50 per class)
corresponding to these 10 categories. The classification accuracy was
quantitatively assessed by test samples using a confusion matrix and the
kappa coefficient. The overall, user's, and producer's accuracies were
defined for testing the classification accuracy (Congalton, 1991). The
kappa coefficient is a statistical measure of agreement that considers all
of the categories. It has a value close to zero when the observed
agreement is the same as expected by chance and a value approaching
one with perfect agreement (Monserud and Leemans, 1992).

For the 60 traps, buffers of 30 m, 50 m, and 100 m radii were
constructed around each trap, representing the assumed mean distance
traveled by an Ae. aegypti mosquito (Muir and Kay, 1998; Getis et al.,
2003). A study by Getis et al. (2003) showed that Ae. aegypti adults
clustered strongly within houses and weakly at a distance of 30 m be-
yond the household. We calculated the percentage of each remote
sensing image category into each buffer to relate with the number of Ae.
aegypti adult females and males found in each trap.

2.3. Data analysis

Initially, an exploratory analysis of the covariates was performed to
detect possible outliers. Once detected, the covariates containing these
outliers were transformed by logarithm or square root. A principal
component analysis (PCA) was performed, for each buffer, among 10
land cover categories to reduce the complexity related to these vari-
ables. We chose this approach because of the comparatively lesser
mosquito data (60 traps) in relation to the number of classes (10). We
standardized the 10 variables and obtained the principal components
(PC) and their respective eigenvalues. For each buffer we retained the
PC whose eigenvalues were greater than one. Next we rotated the ob-
tained PC for each buffer using varimax and produced the scores to
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calculate the values of PC for each trap. These procedures were per-
formed using psych package (Revelle, 2017) of R statistical software.

Next, the number of Ae. aegypti adult mosquitoes (NAM) that were
found in each trap between 2016 and 2019 was modeled using a
Poisson probability distribution in a Bayesian context, which is re-
presented by the following equations:

∼

= + ∑ +
=

NAM P μ
μ α β X W s

( )
log( ) ( )

i

i p
p

p pi i1

where:

• i = 1,…, 60 represents the ID of a particular house with mosquito
adult traps

• μi: mean

• α: intercept
• β: regression parameters

• X: matrix of PC values for each house with adult traps (for buffer of
30, of 50 and of 100 m)

• si: Cartesian coordinates of each house with adult traps

• W(si): realization of a latent stationary Gaussian field

W, which modeled the spatial dependence among the locations of
the houses with adult mosquito traps, has a multivariate normal dis-
tribution with zero mean and a spatially structured covariance matrix.
To obtain this matrix, we considered the Euclidean distance between
the houses with traps and used a Matérn function (Cressie, 1993). We
also used a Gaussian Markov random field to represent the Gaussian
field. Bayesian inference was performed using the Integrated Nested
Laplace Approximations (INLA) and a geostatistical approach, with
stochastic partial differential equations (SPDE) (Rue et al., 2009). For
these procedures we used the R statistical software suite and the R li-
brary INLA (www.r-inla.org).

First, we modeled the NAM alone considering the intercept and the
spatial dependence (W) using only females mosquitoes. Then we
modeled using both sexes. Next, we considered each PC and modeled
the total possible combinations among the obtained components for
each buffer. To identify the best model, for each buffer and among all
buffers, we used the Deviance Information Criteria (DIC)
(Blangiardo and Cameletti, 2015) and the models with lowest values of
DIC were considered to be the best. To build an infestation map of NAF
we used ordinary kriging technique. We performed a statistical inter-
polation of data using geoR package of R statistical software. Weight
was defined using a semivariogram estimated from core parameters,
contribution, and amplitude (Ribeiro-Jr and Diggle, 2001). The maps
were edited using QGis software 2.10.1.

3. Results

Our traps captured 705 Ae. aegypti adults (460 females and 245
males) in the four-summer study period. Ordinary kriging at different
levels of spatial aggregation showed an important local variability in
vector infestation (Fig. 2). It is possible to note that the areas of greatest
infestation are essentially the same in both maps. Regarding World-
View-3 image classification, the most accurate thematic map resulted
from Maximum Likelihood classifier, with images accurately classifying
90.6% of the urban land cover and having a Kappa index of 0.89. The
confusion matrix was used to provide a site-specific assessment of the
correspondence between image classification and ground conditions
(Foody, 2002). The global accuracy index of the classification was sa-
tisfactory.

Exploratory analysis for the 30 m buffers covariates revealed out-
liers in the asbestos roof, roof slab, and grass covariates, which were
transformed by logarithms. For the 50 m buffers, this analysis revealed
outliers in the asbestos roof, grass, and tree covariates, the first two

Fig. 1. Left: Municipality of São José do Rio Preto, state of São Paulo, Brazil, South America; Right: Vila Toninho neighborhood (study area) in the municipality of
São José do Rio Preto.
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being transformed by logarithm and the third one by square root. For
the 100 m buffers, the covariates asbestos roof, roof slab, grass, and
trees, all transformed by logarithm, were identified with outliers.
Regarding PCA, the first four components presented eigenvalues greater
than one for 30 m and 50 m buffers and explained at least 75% of the
variation; for 100 m buffers, the first three components presented ei-
genvalues greater than one and explained 76% of the variation. The
proportion explained by each component is presented in Supplementary
Material 1 (S1). Standardized PCA loadings (rotated components) based
upon correlation matrix can be visualized in Table 1. The percentage of
each land cover category was similar in all buffers. Vila Toninho
neighborhood is an urban area, so the categories with the largest per-
centage were pavement, exposed soil, and asphalt.

We tested all possible combinations among RCs using INLA; this can
be visualized in Supplementary Material 2 (S2). The best models (with
the lowest values of DIC) obtained for all buffers are presented in
Table 2. Each mean in the tables represents the variation in the mean of

Fig. 2. Aedes aegypti infestation map obtained by ordinary kriging in Vila Toninho neighborhood, São José do Rio Preto, São Paulo State, Brazil.

Table 1
Standardized PCA loadings of each land use category based upon correlation matrix.

Classes Buffer 30m Buffer 50m Buffer 100m

% RC1 RC2 RC3 RC4 % RC1 RC2 RC3 RC4 % RC1 RC2 RC3

Water 1.83 0.14 0.16 0.26 0.85 1.71 0.05 0.17 0.21 0.11 1.5 0.67 0.11 0.18
Tree 11.35 0.75 −0.40 −0.19 0.15 12.1 −0.55 −0.69 −0.01 −0.25 12.56 −0.53 −0.72 −0.25
Asphalt 16 −0.87 −0.02 0.05 −0.17 14 0.88 0.09 −0.06 −0.05 11.2 0.85 0.41 0.07
Pavement 24.57 −0.59 −0.56 −0.38 0.00 24.01 0.88 −0.06 0.22 −0.02 20.01 0.93 0.19 0.00
Shadow areas 9.38 0.04 −0.34 −0.33 0.73 8.21 0.23 −0.21 0.26 −0.19 7.02 0.85 −0.02 −0.04
Exposed soil 18.95 0.08 0.73 −0.20 −0.05 19.45 −0.04 0.79 0.05 0.09 14.97 0.31 0.55 −0.16
Tile roof 8.25 −0.06 0.87 0.10 0.02 8.75 0.02 0.84 −0.05 −0.29 6.71 0.01 0.90 −0.07
Asbestos roof* 3 0.00 −0.39 0.65 −0.36 3.5 −0.04 −0.20 0.54 0.87 3.54 −0.11 −0.12 0.95
Grass 5.95 0.77 0.19 −0.05 −0.07 7.45 −0.70 −0.07 −0.30 −0.33 8.24 −0.73 −0.01 −0.33
Roof slab 0.72 −0.14 0.09 0.80 0.16 0.8 0.20 0.22 0.32 0.53 0.8 0.37 0.15 0.86

⁎ The term “asbestos” is used to refer to a group of fibrous silicate minerals.

Table 2
Posterior mean fixed effects and 95% credible intervals (CI) of the best DIC
models for the number of Ae. aegypti adult females and both sexes for the 30 m,
50 m, and 100 m buffers, Vila Toninho neighborhood, São José do Rio Preto,
state of São Paulo, Brazil.

Only females mosquitoes Both males and females

Covariate Mean 95% CI DIC Mean 95% CI DIC

Intercept model 0.54 0.16 to
0.9

979.5 0.89 0.4 to
1.3

1202.66

Buffer 30m RC3 0.12 0.05 to
0.2

977.8 0.075 0.01 to
0.17

1200.47

Buffer 50m RC3 0.09 0.02 to
0.18

977.9 0.08 0.003
to 0.18

1201.53

Buffer 100m RC3 −0.004 −0.08
to 0.07

978.2 0.005 −0.07
to 0.08

1202.19
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the logarithm of the NAM for the variation of one standard deviation of
a specific RC. The best models considering each buffer separately were
as follows: for 30 m buffers, RC3 was the most significant, with best
Deviance Information Criterion (DIC), indicating better fit of this
model. RC3 is negatively associated with asbestos roof and roof slab
(Table 1). In the same way, buffers of 50 m and 100 m had the best DIC
using RC3, also represented mainly by asbestos roof and roof slab. The
best model of all was the RC3 in the 30 m buffers, because it was the
one that lowered the DIC value the most compared to the intercept
model. In this type of modeling, a covariable model is considered to be
good if it presents a DIC lower than the DIC of the intercept model; in
this case, DIC using only females decreased from 979.5 to 977.8 and
DIC using both sexes decreased from 1202.66 to 1200.47. Although
these results do not show statistical significance, they are all consistent
with the finding of higher number of Ae. aegypti mosquitoes in areas
with a large proportion of asbestos roofing and roof slabs. Modeling
using both sexes and only females mosquitoes showed essentially the
same results. We also performed the modeling using only male mos-
quitoes, but no model had a DIC lower than the DIC of the intercept
model (data not shown).

4. Discussion

Although the results presented here are preliminary, our study in-
dicates the direction that further research may focus on. Most research
till date has focused on sylvatic mosquitoes such as Anopheles
(Mushinzimana et al., 2006) and Culex (Lacaux et al., 2007). However,
we have shown the utility of remote sensing in the prediction of Ae.
aegypti infestations in urban scenarios. The identification of essential
features of households that are hotspots for Ae. aegypti breeding has
been a goal to facilitate surveys (Tun-Lin et al., 1995). Our findings
align with those of Little et al. (2017) and highlight the huge fine-scale
spatial heterogeneities in mosquito habitats within urban environ-
ments. We showed that the higher the percentage of asbestos roof and
roof slabs used in a given area, the greater the number of adult Ae.
aegypti mosquitoes found there. This may be related to several other
factors, such as socioeconomic and environmental factors. For example,
asbestos roof is an inexpensive type of construction, generally used in
poor areas with precarious infrastructure (Berman, 1986). The positive
association between socioeconomically poor areas and a higher in-
cidence of dengue or a higher number of mosquito infestations confirms
the findings of several other studies (Chan et al., 1971; Oliveira and
Valla, 2001; Ferreira and Chiaravalloti-Neto, 2007).
LaDeau et al. (2013) showed that Aedes immatures were more likely to
be found in neighborhoods categorized as being below the median in-
come level and the Aedes pupae density was greater in container ha-
bitats found in these lower income neighborhoods. Socioeconomic
factors have been shown to have a significant effect on the reproductive
rates of Ae. aegypti (Reiter, 2007). According to Kuno (1995), social
factors that influence the occurrence of larval habitats depend on two
main factors: (i) human community behavior, which is related to factors
such as education, income, occupation, and population density in an
area, and (ii) the condition of human habitations, including sanitation
of the surrounding environment. Infrastructural systems prevalent in
many neighborhoods also limit human–mosquito exposure, including
regular waste management, which limits larval habitats, and screens
and air conditioning, which reduce vector–host contact rates
(Reiter et al., 2003; Little et al., 2017). Urban areas with unsanitary
conditions tend to create more larval habitats for Ae. aegypti (Souza-
Santos and Carvalho, 2000; Ferreira and Chiaravalloti Neto, 2007;
Scandar et al., 2010; Teixeira and Cruz, 2011). As our study was con-
ducted in a small area of approximately 4 × 106 m2, it is possible that
sanitary conditions were similar for the entire area.

However, the association of asbestos roofing with Ae. aegypti in-
festations may be related to the ability of asbestos to retain heat at the
specific site (i.e., balconies or garages with this type of roof tend to be

much warmer than those with ceramic tiles), optimizing the re-
production and life cycle of mosquitoes. Breeding sites do not ne-
cessarily form on the asbestos roof itself, but in the places that are
covered by it. Cator et al. (2013) analyzed urban resting habitats of
Anopheles mosquitoes and found that homes with asbestos roofs were
the warmest habitats, with a mean temperature of 30–33ºC throughout
the year. Azevedo et al. (2018) demonstrated that even when tem-
perature conditions adversely affected the occurrence and development
of Ae. aegypti infestations, oscillations in urban microclimates were
responsible for alterations in the usual patterns of mosquito dispersal
and activity. Temperatures between 20°C and 31°C can increase the
metabolic rate of mosquitoes, shorten the larval development period,
and optimize foraging and egg-laying behavior, leading to increased
mosquito abundance when larval habitats become available
(Scott et al., 2000; Araujo et al., 2015; Misslin et al., 2016;
Murdock et al., 2017). Thus, the higher temperatures generated by
materials such as asbestos could increase mosquito infestation in spe-
cific areas. Flat slab roofing can retain rainwater and contribute to the
generation of temporary mosquito breeding sites. Tinker (1964) found a
positive association between the infestation levels and the density of
containers per house. Regarding container capacity,
Vezzani et al. (2004) and Abe et al. (2005) reported that Ae. aegypti
productivity was higher in containers with a capacity of 1–5 L than in
those with capacities up to a liter; thus, flat slab roofing may provide a
major temporary breeding site for mosquitoes.

We found little correlation between tree cover and Ae. aegypti in-
festation; this negative association was observed mainly in 50 m buf-
fers. Troyo's (2007) analysis using QuickBird imagery showed that
moderately built-up residential areas with moderate tree cover were
likely to contain relatively high numbers of habitats positive for Ae.
aegypti larvae. This is also supported by studies that indicate that tree
crowns reduce the evaporation from containers, thus providing some
benefit to Ae. aegypti larvae (Vezzani et al., 2004; Barrera et al., 2006;
Bisset-Lazcano et al., 2006). This inconsistency with our results may be
due to the difference between habitats of immature forms and adult
mosquitoes or due to indoor breeding sites. Getis et al. (2003) noted
that there were significant differences in spatial structure of adult
mosquito populations compared with immature mosquito populations.
Adult mosquitoes cluster most at distances of approximately 10 m and
to a lesser extent up to 30 m, which could include neighboring houses.
McDonald (1977) found that most adult Ae. aegypti dispersed to less
than 20 m, and the majority of those recaptured were collected in the
same house where they were released. Edman et al. (1998) similarly
collected most of their recaptured Ae. aegypti in Puerto Rico from their
release house. Accordingly, these evidences indicate that in urbanized
areas such Vila Toninho neighborhood most adult Ae. aegypti do not fly
far from the container where they developed as larvae and pupae inside
households.

Our findings are in disagreement with other studies carried out in
Thailand (Morrison et al., 2004) and in Peru (Getis et al., 2003) that
concluded that homes infested by Ae. aegypti were randomly scattered
in the neighborhood. We showed that physical characteristics of land-
scape can influence the distribution of adult mosquitoes. However, it is
worth mentioning that the association between the existence of mos-
quito clusters and occurrence of dengue cases is an issue that needs to
be further investigated. According to Getis et al. (2003), “until we
quantitatively define the relationship between mosquito density and
risk of virus transmission, we cannot predict the effect that eliminating
key premises will have on the risk of human infection and disease. For
example, eliminating key premises may not reduce the adult mosquito
population below the threshold density and, depending on the nature of
the relationship between virus transmission and vector density, the
pattern of human infections could continue unabated”. Another study
carried out in Puerto Rico (Morrison et al., 1998) suggested that control
measures should be adopted uniformly throughout the whole area af-
fected by arbovirus transmission to be efficient, because clusters of
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dengue cases were identified within very short distances, most probably
in the same homes (Ferreira and Chiaravalloti-Neto, 2007).

In this study we demonstrated the utility of satellite remote sensing
to identify landscape differences in an urban environment approach. It
is believed that this modern high-resolution remotely sensed approach
of assessing adult mosquito habitats, if combined with monitoring ac-
tivities and if properly coordinated by entomologists, could improve the
understanding of factors involved with urban Ae. aegypti infestation and
arboviruses dissemination. However, this application is surely more
difficult than others, because of the epidemiological complexity and the
involvement of pathogens and vectors in an urban environment.
Deducing specific associations for areas that are biologically different is
not an easy task. Complementary methods at different scales and re-
solutions might confront this problem, but the legitimate use of remote
sensing data is still dependent of the quality of information coming
from the field (Rocque et al., 2004). Besides, further analysis using
other variables, such as land surface temperature and precipitation,
may present more complex relationships between urban mosquito ha-
bitats and landscape features.

Several limitations of our study are worth noting. We do not directly
consider environmental data in the model, such as thermal temperature
of the surfaces of each urban material. Nevertheless, these results
should be of concern to public health professionals looking to improve
control measures in areas where asbestos roof and roof slab are pre-
ponderant landscape features. In future studies we suggest including
different types of areas and different seasons of the year in the model,
which may contribute to further understanding of mosquito habitat
abundance, although insufficient sample size of 60 traps in our study
precluded the use of more independent variables in the analysis. For
building the buffers, we assumed the average flight radius of an adult
Ae. aegypti, but depending on environmental conditions they might fly
further than this distance. Among the strengths of our study, it should
be mentioned that the statistical model selected (INLA) allowed the
control of the spatial correlation between the number of mosquitoes
and traps.

We encourage future studies to expand their study area and test
models using freely available images such as those obtained from
Landsat 8. Medium-resolution images may also identify patterns in the
urban landscape useful for identifying Ae. aegypti habitats. In addition,
it would be interesting to correlate infestation rates with surface tem-
peratures within the urban environment and define landscapes more
likely to be infested with adult mosquitoes. Urban land cover maps
obtained from such imagery may initiate the development of arbovirus
risk maps that support the prediction and identification of priority
zones for vector control measures, particularly in areas where prompt
action is needed and detailed epidemiological and entomological data
are unavailable or restricted.

5. Conclusions

This study provides promising descriptive results and proposes in-
sights that need to be tested over longer periods of time using satellite
data from larger areas. We showed that the physical characteristics of a
landscape can influence the distribution of Ae. aegypti adult mosquitoes:
it was found to be positively associated with the presence of asbestos
roofing and roof slabs. This may be related to several other specific
features of the landscape, such as socioeconomic or environmental
factors. The usage of asbestos roofing may be more prevalent in poorer
areas. Moreover, roof slabs can retain rainwater and increase the
number of temporary mosquito breeding sites. We also demonstrated
the utility of a high-resolution satellite remote sensing approach in
identifying landscape differences in an urban environment. We believe
that applying this modern remote sensing approach towards studying
adult mosquito habitats and their characteristics will improve the un-
derstanding of factors associated with urban Ae. aegypti infestations and
arbovirus dissemination.
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