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Deposits of crystals, misfolded proteins, or airborne particu-
late matter of nanoparticle or microparticle size (all of which are hereafter 
referred to as crystal deposits) (see the Glossary) cause diverse medical 

disorders (Table 1) that can manifest as either acute or chronic organ injuries 
(Fig. 1). Recent discoveries in the study of crystal biology suggest that unifying 
pathophysiological mechanisms underlie these disorders and may identify molecu-
lar targets for innovative therapies.

Gener a l Fe at ur es of Cr ys ta l -A sso ci ated Dise a ses

In nature, organisms catalyze the aggregation of atoms and ions into amorphous 
crystals, which are built into complex structures such as corals, shells, bones, and 
teeth; these structures provide structural stiffness and durability. In the wrong 
place, the same process can be injurious — for example, calcifications of vascular 
walls or tendons. The aggregation of atoms or ions in a periodic manner leads to 
self-perpetuating growth of regular-shaped crystals (Fig. 2). Single crystals stick-
ing together or glued together by cement-like amorphous crystals can form poly-
crystalline masses, such as calculi.

Intrinsic and Extrinsic Sources of Crystals

Local supersaturation with minerals, dietary metabolites, or drug metabolites oc-
curs most often in excretory organs, such as the biliary and urinary tracts, where 
concentration and supersaturation are thought to be common initiators of the 
crystallization process and stone formation. Endogenous proteins or paraproteins 
can also undergo self-aggregation to form polycrystalline-like microparticles 
(Table 1). For example, the process of beta-sheet fibrils self-perpetuating fibrilla-
tion to form plaquelike amyloid deposits in amyloidosis or Alzheimer’s disease 
resembles mineral crystallization.

Crystals and particulate matter from outside the body usually enter the lungs 
from airborne occupational or environmental sources, including dust from ciga-
rette smoke (Table 1).1 Other sources of extrinsic particles include cosmetics, 
nanoparticle carriers for drugs, and metallic, plastic, or silicone implants.

Particle Size

Particle size is a critical determinant of the tissue response (Fig. 2). Macrophages 
and other phagocytes are usually the first cells to engulf particles for phago-
cytosis; this process is possible for nanoparticles and microparticles of a few 
micrometers in diameter.2 Phagosomes fuse with lysosomes that contain lytic 
proteases. The inability to digest crystalline nanoparticle or microparticle cargo 
destabilizes lysosomes and induces cell stress, autophagy, and leakage of lyso-
somal proteases into the cytosol. Massive loads of particles may give macrophages 
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a “foam cell” appearance.3 Crystal needles and 
other larger particles that exceed the size of 
macrophages may induce the formation of giant 
cells, which are able to internalize even larger 
particles.4 The presence of calculi or implants 
can result in a state called “frustrated phagocyto-
sis,” which involves the formation of giant cells 

and a persistent release of phagocytic enzymes 
attempting extracellular digestion (Fig. 2).2

Mechanical Obstruction

Nonaggregating crystal masses remain in liquid 
form — for example, monosodium urate crys-
tals in bird droppings or tophi in persons with 

Apoptosis-associated speck-like (ASC) protein speck complex: ASC protein is a central component of cytosolic inflamma-
somes. On inflammasome activation, ASC assembles into a single large protein complex up to 1 μm in size, which  
is termed a “speck.” On release from dying macrophages, ASC speck microparticles activate inflammasomes in 
 other cells.

Autophagy: Catabolism-like adaptive mechanism of stressed or starving cells that reduces energy expenditure by break-
ing down cell organelles.

Calciphylaxis: Severe form of medial calcific (Mönckeberg’s) sclerosis leading to vascular obstruction, thrombosis,  
or both. The most frequent clinical presentation is painful skin necrosis.

Crystal: Solid particle with a geometric shape because its atoms, ions, or molecules are arranged in a regular ordered 
structure. Polycrystals are crystals irregularly fused together — for example, in a stone. Amorphous solids also form 
crystal-like microparticles but have no periodic arrangement.

Crystallopathy: Disease that involves crystals of crystal-like particulate matter in the pathogenesis of tissue injury.

Damage-associated molecular pattern (DAMP): Intracellular elements that are released into the extracellular space  
by plasma membrane rupture during cell necrosis and act as danger signals by eliciting proinflammatory effects 
through the activation of receptors of the innate immune system on other cells.

Ferroptosis: An iron-dependent form of regulated necrosis involving impaired glutathione peroxidase 4 generation, 
which promotes lipid peroxidation–driven cell death.

Hydroxyapatite: An amorphous calcium phosphate crystal that occurs in bone, dental enamel, dentin, kidney stones, 
and vascular or soft-tissue calcifications.

Inflammasome: A multiprotein oligomer complex that integrates numerous danger signals inside the intracellular cyto-
sol to activate the inflammatory caspase 1 and sometimes caspase 5 (caspase 11 in mice). The consequences are 
 release of mature interleukin-1β and eventually pyroptosis.

Mixed lineage kinase domain–like (MLKL): A pseudokinase that, when phosphorylated by RIPK3, contributes to the 
 execution of necroptosis.

NACHT, LRR, and PYD domains–containing protein 3 (NLRP3): A central component of the inflammasome.

Necroinflammation: Necrotic tissue injury associated with an intense inflammatory response. This occurs because cell 
necrosis triggers inflammation and vice versa. Examples include the crescendo phase of acute gouty arthritis and 
crystal-induced acute kidney injury.

Necroptosis: Receptor-interacting protein kinase 3 (RIPK3)–dependent form of regulated necrosis, which is induced  
by extracellular signals through tumor necrosis factor receptor 1 (TNFR1), toll-like receptor 4 (TLR4)–TRIF, toll-like 
receptor 3 (TLR3)–TRIF, or CD95.

Nephrocalcinosis: Deposition of calcium salts such as calcium phosphate or calcium oxalate in the parenchyma of the 
kidney.

NETosis: A form of neutrophil death associated with the formation of a neutrophil extracellular net (NET).

Particulate matter: Microscopic solid or liquid matter — for example, suspended in the air. Such atmospheric particu-
late matter can be atmospheric dust, biologic particles (e.g., viruses, bacteria, allergens, and pollen), or particulate 
contaminants (e.g., tobacco smoke, smog, fly ash, and occupational dusts).

Pyroptosis: A form of regulated necrosis dependent on caspase 4, caspase 5, or caspase 11, described mainly as occur-
ring on recognition of bacterial endotoxin inside the cytoplasm of infected macrophages.

Receptor-interacting protein kinase 1 (RIPK1): One of the possible upstream triggers of the necrosome formation.

Receptor-interacting protein kinase 3 (RIPK3): The key molecule in necroptosis.

Sialolithiasis: Salivary stones, usually in the duct of the salivary gland.

Urolithiasis: Calculi or stones in the kidney (nephrolithiasis), ureter (ureterolithiasis), or urinary bladder (cystolithiasis).

Glossary
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gout. In contrast, polycrystalline aggregates may 
solidify and grow into cavity-filling calculi that 
can cause tissue injury through mechanical ob-
struction that leads to colic and organ failure or 
vascular obstruction. The concentration of min-
erals in excretory fluids promotes supersatura-
tion and crystallization, and therefore the biliary 
and urogenital tracts are susceptible to stone 
formation.

Bile is rich in electrolytes, bile acids, choles-
terol, phospholipids, and conjugated bilirubin 
and frequently forms stones inside the gallblad-
der. Mobilization of calculi into extrahepatic bile 
ducts causes biliary colic. In the urinary tract, 
crystallization usually starts in the renal tubules, 
where supersaturation results from a stepwise 
concentration of the glomerular filtrate and from 
the active secretion of calcium, uric acid, oxa-
late, phosphate, or drug metabolites (Table 1).5 
After single crystals adhere to the luminal mem-
brane of renal tubules by attaching to annexin 
II, CD44, or osteopontin, they serve as a nucleus 
for the building of larger polycrystalline plugs 
that obstruct the tubules.6 Diffuse crystal-plug 
formation can cause acute kidney injury — for 
example, in acute oxalate nephropathy induced 
by polyethylene glycol intoxication or in myelo-
ma cast nephropathy (Table 1).7 In genetic forms 
of hyperoxaluria or hypercalciuria, persistent 
crystallization leads to progressive nephrocalci-
nosis and chronic kidney disease (Table 1).8 Such 
“stony kidneys” have a white appearance on ultra-
sonographic or radiographic images.8 Larger 
crystal aggregates may form in the renal pelvis, 
where there is more space and where calcified 
Randall’s plaques (mineral concentrations on 
renal papillae) are sites of stone formation.5 Dis-
location of such calculi causes transient or persis-
tent obstruction of urine flow, which manifests 
clinically as renal colic. In addition, drug-related 
or diet-related crystalluria can lead to unilateral 
or bilateral renal colic and even to acute renal 
failure.9,10 Gallstones blocking the pancreatic out-
f low cause acute pancreatitis. Hydroxyapatite 
calculi in the ducts of salivary glands (sialoliths) 
cause sialdenitis (Table 1).

Crystal masses may also cause vascular ob-
struction through a number of different mecha-
nisms. Atherosclerosis is caused by accumula-
tions of cholesterol crystals in the intima of the 
arterial wall, or atheromas.11 Atheromatous 
plaques eventually obstruct the vascular lumen 

and lead to tissue ischemia, as well as to plaque 
cap rupture and subsequent thrombotic vascular 
occlusion and tissue infarction.3 Plaque rupture 
in the aorta or its major branches can cause 
cholesterol emboli or ischemic necrosis (Fig. 2).12 
Cholesterol crystals appear as spindle-shaped 
luminal clefts in tissue biopsy specimens or on 
funduscopic inspection of retinal arteries.12 Final-
ly, vascular calcifications — calcium phosphate 
deposits in the medial layer of muscular arteries 
— are common among the elderly, patients with 
uremia, and patients with primary hyperpara-
thyroidism.13 This medial calcific sclerosis con-
fers a loss of vascular compliance and eventually 
causes peripheral artery disease or calciphylaxis, 
as well as possible ischemic tissue necrosis in 
association with high mortality. Together, ob-
structions caused by crystals can result in colic, 
inflammation, and tissue necrosis and can some-
times lead to fatal organ failure.

Necroinfl a mm ation

Crystals elicit direct cytotoxic effects, inflam-
mation, and inflammation-driven cell necrosis 
(Fig. 3), in an autoamplifying loop that is re-
ferred to as “necroinflammation.”14

Crystal Cytotoxic Effects

Crystals kill cells in various ways (Fig. 3). Phago-
cytosis of indigestible nanocrystals overloads 
phagolysosomes. As is the case in metabolic 
storage diseases, such cells undergo substantial 
stress, actin depolymerization, production of re-
active oxygen species, and enhanced autophagy, 
but the mode of cell death can vary.15 Amor-
phous calcium phosphates in acidic lysosomes 
release large amounts of calcium into the cytosol, 
driving cell necrosis.16 In addition, crystals of 
calcium oxalate, calcium pyrophosphate, cystine, 
or monosodium urate induce a type of epithelial 
and mesenchymal cell necrosis through receptor-
interacting protein kinase 3 (RIPK3)–mediated 
phosphorylation of the pseudokinase mixed 
lineage kinase domain–like (MLKL).17 This form 
of regulated necrosis is referred to as necropto-
sis.18 Ripk3-deficient or Mlkl-deficient mice are 
protected from acute kidney injury related to 
oxalate crystal–induced tubular necrosis.17 Ferrop-
tosis, another form of regulated necrosis, con-
tributes to the same disease; whether this happens 
in parallel with necroptosis remains unclear.19 
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Crystal or Particle and Disorder Major Disease Manifestations

Intrinsic inorganic crystals

Brushite: nephrolithiasis or urolithiasis Renal colic

Calcium carbonate

Cholecystolithiasis or choledocholithiasis Biliary colic

Nephrolithiasis or urolithiasis Renal colic

Calcium oxalate monohydrate (whewellite) and calcium oxalate  
dihydrate (weddellite)

Nephrolithiasis or urolithiasis Renal colic

Acute oxalate nephropathy Acute kidney injury

Polyethylene glycol poisoning Acute kidney injury

Dietary oxalosis: black tea, starfruit, rhubarb, vitamin C, nuts Acute kidney injury, renal colic

Bariatric surgery–related or short bowel–related Acute kidney injury, renal colic

Chronic oxalate nephropathy (e.g., primary hyperoxaluria) Chronic kidney disease, organ oxalosis

Calcium pyrophosphate or calcium phosphate

Pseudogout, chondrocalcinosis, hemochromatosis, hyperparathy-
roidism

Acute monarthritis, periarthritis, bursitis, osteoarthritis

Hyperphosphatemic familial tumoral calcinosis Soft-tissue calcification, tissue ischemia, ischemic necrosis

Vascular calcification, calciphylaxis, warfarin calcification Tissue ischemia, ischemic necrosis, chronic kidney disease

Dent’s disease Nephrocalcinosis

Hydroxyapatite

Vascular calcification, calciphylaxis Tissue ischemia, ischemic necrosis

Atherosclerosis Tissue ischemia, ischemic necrosis

Acute phosphate nephropathy Acute kidney injury

Nephrolithiasis or urolithiasis Renal colic

Sialolithiasis Painful swelling of the salivary gland

Breast microcalcifications —

Struvite: nephrolithiasis or urolithiasis Renal colic

Intrinsic organic crystals or microparticles

Adenine: adenine phosphoribosyltransferase deficiency Nephrolithiasis or urolithiasis, renal colic, chronic kidney disease

Amyloid

Amyloid-β in Alzheimer’s disease Dementia

Amylin in diabetes Hyperglycemia

Transthyretin amyloidosis Polyneuropathy, cardiomyopathy

Bile pigment

Cholecystolithiasis or docholithiasis Biliary colic, pancreatitis

Bile cast nephropathy Acute kidney injury

Cholesterol

Atherosclerosis Tissue ischemia, ischemic necrosis

Cholesterol embolism Ischemic necrosis

Nonalcoholic steatohepatitis Acute lipotoxic liver disease

Cholesteryl ester storage disease Chronic lipotoxic liver disease

Cholesterol granuloma Bone lesions

Cholecystolithiasis or docholithiasis Biliary colic

Table 1. Diseases Related to Crystals and Other Microparticles.*
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RIPK1 in its unstimulated polyubiquitinated form 
and drugs that maintain this state, such as 
necrostatin-1, suppress necroptosis20 — for exam-
ple, in crystalline acute kidney injury.17 Necro-
statin-1 also suppresses heme-related cytotoxicity,21 
which may contribute to rhabdomyolysis-related 
muscle or tubular epithelial-cell necrosis. In con-
trast, malaria parasites convert heme into hemo-
zoin crystals to reduce the toxic effects of heme.22

The RIPK3–MLKL–dependent signaling path-
way also mediates monosodium urate crystal–
induced neutrophil necrosis — that is, neutrophil 
necroptosis.23 Neutrophil necrosis is a central 
process in acute gouty arthritis: it releases 
alarmins (molecules produced by damaged tissue 

that activate inflammation) such as interleukin-
1α and neutrophil extracellular traps (NETs), the 
latter of which consist of chromatin that has 
become “decorated” with (i.e., that has become 
secondarily attached to) cytoplasmic components 
such as neutrophil elastase, cathepsins, and 
myeloperoxidase.24 Crystal-induced necroptosis 
of parenchymal cells and neutrophils promotes 
the release of large amounts of histones into the 
extracellular space that elicit further direct cyto-
toxic effects on surrounding cells.25 In this man-
ner, crystals induce autoamplification of necro-
inflammation involving numerous processes of 
cell necrosis (Fig. 3). Silica crystals, however, pro-
mote caspase-dependent apoptosis of bronchial 

Crystal or Particle and Disorder Major Disease Manifestations

Cystine: cystinosis Chronic kidney disease, urolithiasis, extrarenal manifestations

Light chains

Myeloma cast nephropathy Acute kidney injury

Crystalloglobulinemia Thrombotic microangiopathy

Light-chain Fanconi’s syndrome Renal tubulopathy, chronic kidney disease

Crystal-storing histiocytosis Renal tubulopathy, chronic kidney disease

Fibrillary glomerulonephritis Proteinuria, chronic kidney disease

Immunotactoid glomerulopathy Proteinuria, chronic kidney disease

Monosodium urate

Gout Acute monarthritis, bursitis; chronic tophous gout

Nephrolithiasis or urolithiasis Renal colic

Urate nephropathy Acute kidney injury

Myoglobin or heme: myoglobin cast nephropathy Acute kidney injury

Fibrillar α-synuclein: Parkinson’s disease Motor symptoms (parkinsonism)

Prion peptide: spongiform encephalopathy diseases Variable encephalopathies

Uromodulin: cast nephropathies Acute kidney injury

Extrinsic crystals or particulates

Asbestos: lung asbestosis, cancer Pulmonary fibrosis, mesothelioma

Drugs (acyclovir, methotrexate, indinavir, sulfadiazine) causing  
drug-related kidney injury

Acute kidney injury, renal colic

Hemozoin: malaria Hemolysis, systemic inflammatory response syndrome

Implants, implant debris particles: implant-related injury Monarthritis, aseptic osteolysis, foreign-body reactions

Occupational dusts: silica, asbestos, cotton, charcoal

Acute dust-induced lung injury Dust-induced respiratory failure

Pneumoconiosis (silicosis, asbestosis, anthracosis) Lung fibrosis

Tobacco smoke particulates: smoking-related COPD, emphysema Chronic respiratory distress

Air pollutants: smog-related asthma, pneumonitis, COPD Acute and chronic respiratory distress

*  COPD denotes chronic obstructive pulmonary disease.

Table 1. (Continued.)
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epithelial cells, which leads to epithelial barrier 
damage.26 Whether the variety of the observed 
forms of regulated cell death depends on the 
crystal type, crystal size, or the affected cell type 
remains to be further characterized in detail.

 Crystal-Induced Inflammation

By killing cells, crystals trigger inflammation 
through the release of proinflammatory elements, 
such as alarmins, proteases, and so-called 
damage-associated molecular patterns (DAMPs), 
by necrotic cells. These elements have the capac-
ity to activate toll-like receptors or inflamma-
somes (Fig. 3). DAMPs include nucleoprotein 
HMGB1, histones, mitochondrial DNA, demethy-
lated DNA or RNA, ATP, uric acid, and double-
stranded DNA.27 Through the activation of toll-
like receptors or inflammasomes, dying cells 
induce the expression and secretion of cyto-
kines, kinins, and lipid mediators, leading to a 
local inflammatory response — vasodilation 

(redness), pain, endothelial dysfunction with in-
creased vascular permeability (swelling), and leu-
kocyte adhesion (leukocyte influx). Local com-
plement activation can also be involved.28 These 
processes contribute to the typical clinical pre-
sentation of acute crystallopathies — for exam-
ple, in gouty arthritis, dust-related respiratory 
distress, and crystalline acute kidney injury.

However, crystals also trigger inflammation 
directly.29 In fact, Martinon, Tschopp, and col-
leagues made a seminal discovery when they 
found that monosodium urate and calcium pyro-
phosphate dihydrate crystals activate the NLRP3 
inflammasome to trigger the release of mature 
interleukin-1β from macrophages.30 Subsequent-
ly, research teams all over the world confirmed 
this finding and reported that many types of 
inorganic crystals and organic or synthetic micro-
particles have the same effect.29,31 These include 
crystals or particulates of cholesterol,32 calcium 
oxalate,33 calcium phosphate,34 calcium pyrophos-

Figure 1. Crystallopathies Grouped According to Predominant Pathologic Mechanism.

Crystal-related or microparticle-related disorders can be grouped in three categories, according to their predominant pathologic mecha-
nism: necroinflammation, chronic tissue remodeling leading to tissue atrophy and scarring, and obstruction of ducts, cavities, or vessels 
by large crystal masses, calculi, or stones. COPD denotes chronic obstructive pulmonary disease.

A   Acute Necroinflammation B    Chronic Tissue Remodeling C   Obstruction by Crystal Masses
            

Alzheimer’s 
disease

Cerebrovascular
calcification

Coronary, heart 
   valve, or myocardial 
   calcification
Amyloidosis

Cholesteryl ester 
   storage disease
Gallstones

Biliary colic

Biliary
pancreatitis

Nephrolithiasis
Urolithiasis

Acute limb ischemia
Cholesterol embolism
Calciphylaxis

Implant-related 
granulation and scarring
(foreign-body reactions)

Chondro-
   calcinosis
Osteoarthritis

Calcification of 
   vascular media 
   or soft tissue
Atherosclerosis

Amyloid 
neuropathy

Tophaceous 
gout

Cystinosis
Nephrocalcinoses 
  (adenine nephropathy,
   primary hyperoxaluria,
   familial tumoral 
   calcinosis)
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   tactoid glomerulopathy
Renal amyloidosis

Pneumoconiosis 
  (e.g., silicosis, 
   asbestosis, anthracosis)
Smoking- and air
   pollution–related COPD

Nonalcoholic 
steatohepatitis

Implant-related
   inflammation 
Implant debris–
   related arthritis

Gouty arthritis
Pseudogout

Acute lung injury by 
   occupational dust or 
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Crystalline acute kidney
injury (urate, phosphate, 
drugs, light chains, 
calcium oxalate, myoglobin, 
and bile salts)
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phate,35 cystine,36 silica,37,38 asbestos,38 aluminum 
salts,37,39 malarial hemozoin,40 uromodulin gly-
coprotein,41 ASC speck complexes,42 myoglobin,43

misfolded protein aggregates or amyloid fibrils 
(such as Alzheimer’s-related amyloid-β),44 Parkin-
son’s-related fibrillar α-synuclein,45 neurotoxin 
prion peptide,46 diabetes-related amyloid polypep-

tide,47 cigarette smoke–related microparticles,48

and nanoparticles49 (e.g., formed by titanium 
dioxide, carbon, polysterene, or liposomes). These 
findings suggested the concept of a unifying 
pathophysiological mechanism underlying other-
wise apparently diverse disorders.29 The NLRP3 
inflammasome is a multiprotein oligomer com-

Figure 2. Handling of Crystalline Solids of Different Sizes.

Mineral solids form in the human body during homeostasis (bone formation and turnover) and during excretion 
of organic metabolites (urates and oxalates), but sometimes they cause disease (e.g., cholesterol crystals in athero-
sclerosis, urate crystals in gout, and oxalate crystals in kidney-stone disease). Extrinsic solids can also enter the 
body (as a result of air pollution, exposure to occupational dusts, and implants). Particle size is a critical determi-
nant of crystal handling by phagocytes. Extracellular nanoparticle deposits increase tissue stiffness and reduce tis-
sue compliance — for example, in vascular calcifications. The inability to digest microparticles inside lysosomes 
promotes lysosomal instability and leakage, which is an intracellular danger signal that triggers inflammation and 
cell death. “Frustrated phagocytosis” of larger particles (the inability of phagocytes to engulf the particles) fosters 
the formation of giant cells, a polyploid version of proinflammatory macrophages. Calculi, stones, or implants that 
are too large to be internalized even by giant cells are segregated from the parenchymal tissue by phagocytes in a 
granuloma-like lesion. The persistent attack of the particle by enzyme release is also associated with injury and scar 
formation in the surrounding tissue. The result is a fibrotic destruction of organs — for example, progressive lung 
fibrosis in silicosis, asbestosis, and chronic lung diseases related to occupational dusts.
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plex formed by the cytosolic proteins NLRP3, 
ASC, and caspase 1.31 In this complex, NLRP3 
serves as a sensor that integrates intracellular 
danger signals, such as mitochondrial release 
of reactive oxygen species, potassium efflux, or 
protease leakage from lysosomal compartments, 
into the formation of inflammasome complex-
es.31 In this manner, NLRP3 translates danger 
recognition into danger response by activating 

caspase 1, which subsequently cleaves pro–
interleukin-1β into its bioactive and secreted 
form, promotes macrophage polarization into 
the proinflammatory M1 phenotype, and leads to 
cell necrosis. However, the precise crystal-induced 
and NLRP3-mediated mode of necrosis is still 
unclear (Fig. 3).50 The NLRP3 inflammasome is 
specifically active in macrophages and dendritic 
cells that act as danger sentinels in all tissues 

Figure 3. Molecular Mechanisms of Crystal-Related Necroinflammation.

Crystal-induced necroinflammation involves numerous signaling pathways that lead to cell death (apoptosis, necroptosis, and ferrop-
tosis), inflammation, or both. Crystals may suppress glutathione peroxidase-4 (GPX-4) directly or by suppressing system Xc− to induce 
loss of NADPH abundance and ferroptosis. The activation of death receptors involves receptor-interacting protein kinase 1 (RIPK1) for 
triggering either caspase 8–dependent apoptosis or receptor-interacting protein kinase 3 (RIPK3)–mixed lineage kinase domain–like 
(MLKL)–dependent necroptosis. Any cytokine or toll-like receptor induces the transcription of pro–interleukin-1β. After crystal phago-
cytosis leads to lysosomal destabilization, the leakage of cathepsin B, among other signals, triggers the activation of the NACHT, LRR, 
and PYD domains–containing protein 3 (NLRP3) inflammasome, which is a central primary and secondary driver of crystal-related in-
flammation. This mechanism induces the enzymatic cleavage of pro–interleukin-1β into its mature form. Mature interleukin-1β is either 
secreted or passively released together with interleukin-1α on inflammatory necrosis of the cell. New therapeutic options are shown in 
red boxes. BHB denotes β-hydroxybutyrate, DAMP danger-associated molecular pattern, DFO desferoxamine, FADD Fas-associated pro-
tein with death domain, GSH glutathione, IKK IκB kinase, NF-κB nuclear factor κB, P phosphorylated, ROS reactive oxygen species, and 
TNFR tumor necrosis factor (TNF) receptor.
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(Fig. 3). The released interleukin-1β activates the 
interleukin-1 receptor (interleukin-1R) on various 
cells in tissues.51 Cells activated by interleukin-
1R signaling promote inflammation by secreting 
cytokines and chemokines.51 Systemic release of 
interleukin-1β induces fever and a systemic in-
flammatory response syndrome, as occurs dur-
ing acute gout and other crystalline acute organ 
injuries.

The molecular mechanism whereby crystals 
trigger NLRP3 activation can vary. For example, 
extracellular cholesterol crystals trigger cytokine 
release on binding to the human macrophage-
inducible C-type lectin (hMincle).52 Silica and 
monosodium urate crystals can trigger NLRP3 
activation by attaching to the outer plasma 
membrane.53 Monosodium urate crystal uptake 
into acidic lysosomes causes massive release of 
sodium into the cell, which increases tonicity 
and leads to secondary water influx. This pro-
cess dilutes the intracellular potassium concen-
tration, which is an intracellular danger signal 
that activates the NLRP3 inflammasome.54 When 
amorphous calcium phosphate crystals reach the 
acidic environment of phagolysosomes, they re-
lease large amounts of calcium. Calcium release 
activates not only NLRP3 but also the calcium-
dependent protease calpain,55 which processes 
interleukin-1α into its mature form (Fig. 3). 
However, most phagocytosed crystals and micro-
particles probably activate the NLRP3 inflamma-
some by destabilizing phagolysosomes, which 
prompts the release of lytic proteases into the 
cytosol (Fig. 3).37,44,56 In malaria, plasmodium-
infected red cells trigger the release of inter-
leukin-1β by host immune cells through a dual 
mechanism. While hemozoin crystals induce 
lysosomal destabilization and uric acid release 
and activate the NLRP3 inflammasome, plasmo-
dium-derived DNA attached to hemozoin activates 
the AIM2 inflammasome in the cytosol.57 In 
summary, crystals induce interleukin-1–dependent 
inflammation in dendritic cells and macrophages 
and possibly other immune and nonimmune 
cells. In addition, crystal-induced cell necrosis 
triggers inflammation by releasing numerous 
elements that induce proinflammatory media-
tors. In turn, some cytokines trigger necroptosis 
(Fig. 3). This autoamplifying necroinflammation 
leads to the crescendo of painful swelling or 
organ dysfunction during the first hours after 
exposure to crystals.14

Immune A nergy

Not all pathologic crystal deposits are associated 
with acute necroinflammation. Gallstones and 
kidney stones, chondrocalcinosis, heart-valve 
calcifications, tophi in chronic gout, and silica-
related lung fibrosis are instead associated with 
chronic tissue remodeling and scarring. One 
explanation is compartmentalization — for ex-
ample, of gallstones in the gallbladder or kidney 
stones in the renal pelvis. In addition, crystals 
and calculi are covered with proteins that mask 
their cytotoxic and immunostimulatory potential. 
For example, the glycoprotein uromodulin is 
selectively secreted in the kidney in the ascend-
ing loop of Henle. Within the tubular lumen, 
uromodulin is immunologically inert and binds 
crystals together with other urinary proteins, a 
process that masks their cytotoxic potential and 
that enhances their clearance from the urinary 
tract. However, uromodulin itself has a tendency 
to form immunostimulatory microparticles that 
activate toll-like receptor 4 (TLR4) and the 
NLRP3 inflammasome, but this occurs only 
when tubular epithelial-cell damage exposes 
uromodulin particles to interstitial dendritic 
cells.41,58 Granuloma formation is another form 
of compartmentalization. For example, silica and 
asbestos particles in the lung cannot be cleared 
by alveolar and infiltrating macrophages and 
remain within granulomata, and the impaired 
wound-healing process leads to pulmonary scar-
ring. This process involves numerous immune-
cell subsets with antiinflammatory and wound-
healing phenotypes.59

The mystery of why monosodium urate crys-
tals cause necroinflammation in an acute gout 
attack but not in a chronic gout tophus was re-
cently solved. Tophus formation involves large 
numbers of neutrophils undergoing “NETosis” 
(a form of neutrophil death associated with NET 
formation) but surprisingly without any release 
of proinflammatory cytokines.24 The process of 
massive NETosis results in the release of large 
amounts of proteases that digest all cytokines 
and chemokines; this process now appears to be 
a central element of immune anergy within tophi 
in chronic gout. The same mechanism may con-
tribute to the spontaneous resolution of an acute 
gout attack.

Finally, crystals can interact directly with cell-
surface receptors that down-regulate immuno-
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stimulatory pathways. For example, monosodium 
urate crystals bind specifically to C-type lectin 
receptor Clec12a (also called myeloid inhibitory 
C-type lectin–like receptor), which counterbal-
ances sterile inflammation in macrophages, 
dendritic cells, and neutrophils.60,61 Whether this 
mechanism also contributes to the absence of 
inflammation in association with calcium phos-
phate crystals in soft tissues or vascular walls is 
currently unclear, but this process resembles 
proactive ossification. Thus, crystals and other 
microparticles do not always cause acute necro-
inflammation. Despite the irritating nature of 
microparticles, several molecular mechanisms 
counterbalance persistent inflammation and 
promote chronic wound healing processes that 
eventually destroy tissues through granuloma 
formation associated with scarring.

Molecul a r Ta rge t s for 
Innovati v e Ther a pies

The shared pathologic mechanisms of crystal-
related and microparticle-related diseases may 
provide new therapeutic targets, as illustrated 
in Figure 3. Inflammasome-mediated release of 
interleukin-1β was validated as a pathway common 
to most of the diseases discussed here, through 
demonstration of protection from inflammation 
and injury in Nlrp3-deficient mice32,33,38,44,47,56,62 and 
of amelioration of inflammation and injury by 
interleukin-1 antagonist therapy in mice and hu-
mans.33-35,40,63 Drugs that can suppress interleukin- 
1–related inflammation include the interleukin-
1β neutralizing antibody canakinumab, the fusion 
protein of the interleukin-1R and human IgG 
rilonacept, and the recombinant human inter-
leukin-1R antagonist anakinra. Canakinumab 
was approved in Europe for the treatment of re-
current gouty arthritis on the basis of its capacity 
to rapidly suppress inflammatory pain in gouty 
arthritis and to prevent further gout attacks.64 In 
addition, α1-antitrypsin–Fc fusion protein can 
abrogate interleukin-1–driven inflammation in 
gouty arthritis.65 These data indicate that similar 
effects might be achieved in the treatment of 
other acute crystallopathies. Canakinumab was 
tested for the treatment of early type 1 diabetes 
in two clinical trials, but no major effect was 
shown.66 Studies involving type 2 diabetes and 
atherosclerosis are still under way.67 Several 
small-molecule–based NLRP3 antagonists have 

been validated in preclinical studies,68-70 but it 
remains unclear whether they offer benefits be-
yond interleukin-1 blockade in acute and chronic 
diseases related to crystals or particulate matter.

The discovery of crystal-related cytotoxicity 
involving the pathways of necroptosis and fer-
roptosis offers a new set of molecular targets for 
the treatment of crystallopathies. Small-molecule 
inhibitors are available to block necroptosis and 
ferroptosis (Fig. 3).71 There is a concern that 
long-term therapy with cell-death inhibitors may 
increase the risk of cancer, but short-term therapy 
with these agents might abrogate necroinflam-
mation at an early stage of acute crystal-induced 
tissue injuries — for example, in the lung imme-
diately after dust exposure.

Disease related to misfolded proteins may be 
targeted by pharmacologic chaperones or aro-
matic small molecules that specifically refold or 
stabilize misfolded proteins.72,73 However, the 
most intriguing concept is the dissolution of 
crystals as a cure for chronic crystallopathies. 
Many crystals easily dissolve at a certain pH. 
Cyclodextrin can dissolve cholesterol crystals in 
vitro and in animals with atherosclerosis.74 
Remedies that were claimed to dissolve gallblad-
der or kidney stones proved largely inefficient 
and have been replaced by surgical or shock-
wave interventions. However, gout tophi can be 
resolved effectively with recombinant uricase, an 
enzyme that breaks down urates, including mono-
sodium urate crystals. Unfortunately, repeated 
use of rasburicase is associated with anaphy-
laxis in up to 6.2% of patients.75 However, re-
combinant uricase remains in use for prophy-
laxis of the tumor lysis syndrome, although its 
potential to reduce the rate of death or of acute 
kidney injury has been questioned in a large 
meta-analysis.76

Finally, the immunostimulatory potential of 
microparticles has been implemented in vaccina-
tion strategies. Aluminum salts exert their vac-
cine-adjuvant effects by activating the NLRP3 
inflammasome,37,39 and nanoparticles construct-
ed from biocompatible polyesters can have the 
same effect.77

Conclusions

Clinically diverse crystal-related and particulate 
matter–related disorders are now known to share 
molecular pathologic mechanisms, such as necro-
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inflammation driven by NLRP3, caspase 1, cas-
pase 11, and interleukin-1 or by RIPK1, RIPK3, 
and MLKL. Since therapeutic blockade of inter-
leukin-1 has reached the clinic for the treatment 
of gout, there is increasing hope that some of 
the other evolving drug molecular targets will 

also eventually become innovative cures for pa-
tients with diseases related to crystals, particu-
late matter, or misfolded proteins.

Disclosure forms provided by the authors are available with 
the full text of this article at NEJM.org.
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