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Many pathogens encode proteases that serve to antagonize the host immune system.
In particular, viruses with a positive-sense single-stranded RNA genome [(+)ssRNA],
including picornaviruses, flaviviruses, and coronaviruses, encode proteases that are not
only required for processing viral polyproteins into functional units but also manipulate
crucial host cellular processes through their proteolytic activity. Because these proteases
must cleave numerous polyprotein sites as well as diverse host targets, evolution of these
viral proteases is expected to be highly constrained. However, despite this strong
evolutionary constraint, mounting evidence suggests that viral proteases such as
picornavirus 3C, flavivirus NS3, and coronavirus 3CL, are engaged in molecular ‘arms
races’ with their targeted host factors, resulting in host- and virus-specific determinants of
protease cleavage. In cases where protease-mediated cleavage results in host immune
inactivation, recurrent host gene evolution can result in avoidance of cleavage by viral
proteases. In other cases, such as recently described examples in NLRP1 and CARD8,
hosts have evolved ‘tripwire’ sequences that mimic protease cleavage sites and activate
an immune response upon cleavage. In both cases, host evolution may be responsible for
driving viral protease evolution, helping explain why viral proteases and polyprotein sites
are divergent among related viruses despite such strong evolutionary constraint.
Importantly, these evolutionary conflicts result in diverse protease-host interactions
even within closely related host and viral species, thereby contributing to host range,
zoonotic potential, and pathogenicity of viral infection. Such examples highlight the
importance of examining viral protease-host interactions through an evolutionary lens.

Keywords: viral proteases, host-virus evolution, innate antiviral immunity, molecular arms races, effector-triggered
immunity, inflammasome
INTRODUCTION

Positive-sense single-stranded RNA [(+)ssRNA, see Table 1 for glossary of abbreviations] viruses
represent the largest group of RNA viruses, spanning 30 divergent viral families that include
important human pathogens in Flaviviridae, Picornaviridae, and Coronaviridae such as dengue
virus, poliovirus, and SARS-CoV-2 (1). Despite their diversity, many viruses in this group share a
common replication strategy: their (+)ssRNA viral genomes are delivered to host cells as a
org November 2021 | Volume 12 | Article 7695431

https://www.frontiersin.org/articles/10.3389/fimmu.2021.769543/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.769543/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.769543/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:mddaugherty@ucsd.edu
https://doi.org/10.3389/fimmu.2021.769543
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.769543
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.769543&domain=pdf&date_stamp=2021-11-01


Tsu et al. Host Conflicts With Viral Proteases
translation-ready mRNA that encodes a multidomain viral
polyprotein. Following translation of the viral polyprotein by
host ribosomes, one or more embedded viral proteases cleave the
polyprotein into individual, functional proteins at numerous
sequence-specific positions (Figure 1A). Polyprotein cleavage
at these specific sites is necessary for sustained virus replication
and propagation, making viral proteases an attractive target for
development of antiviral therapeutics (2, 3).
Frontiers in Immunology | www.frontiersin.org 2
In addition to their essential role in the viral life cycle, (+)
ssRNA viral proteases also cleave host proteins to manipulate
host processes, including the host innate antiviral immune
response (4). Importantly, host targets are cleaved with the
same sequence specificity as sites within the viral polyprotein
(Figure 1B). These dual roles place viral proteases at the
intersection of two opposing selective pressures. On one side,
the virus and its polyprotein site targets are under strong
TABLE 1 | List of abbreviations and alternative names used throughout this review.

Acronym/Abbreviation Alternative Names Definition

General terms
ssRNA Single-stranded RNA
dsRNA Double-stranded RNA
PRR Pathogen recognition receptor
ETI Effector-triggered immunity
LF Lethal Factor

Host factors
NLRP1 NALP1 NACHT, LRR, and PYD domains-containing protein 1
CARD8 CARDINAL Caspase Recruitment Domain Family Member 8
eIF4F Eukaryotic translation initiation factor 4F, composed of subunits eIF4A, EIF4E, and eIF4G
PABP PABPC1 PolyA binding protein
eIF4A Eukaryotic translation initiation factor 4A
eIF4G Eukaryotic translation initiation factor 4G
G3BP1 Ras GTPase-activating protein-binding protein 1
RIG-I DDX58 Retinoic acid-inducible gene-I-like receptor; DEXD/H-box helicase 58
MDA5 IFIH1 Melanoma differentiation-associated protein 5; interferon-induced with helicase C domain 1
cGAS MB21D1; C6orf150 Cyclic GMP–AMP synthase; Mab-21 domain containing 1;
IFN Interferon
ISG Interferon-stimulated gene
STING TMEM173 Stimulator of interferon genes; transmembrane protein 173
MAVS IPS-1, CARDIF, VISA Mitochondrial antiviral-signaling protein; IFN-b promoter stimulator 1
NF-kB Nuclear transcription factor kB, often composed of p65 (RelA) and p50 (NFKB1) subunits
NEMO IKBKG, IKK-gamma Nuclear transcription factor kB essential modulator
STAT2 Signal transducer and activator of transcription 2
IL-1 Interleukin-1
IkBa NFKBIA NF-kB inhibitor alpha
IKK IkB kinase complex, includes NEMO

Picornaviridae
PV Poliovirus
CVB3 Coxsackievirus B3
FMDV Foot-and-mouth disease virus
HepA Hepatitis A virus
EMCV Encephalomyocarditis virus

Coronaviridae
3CL NSP5; Mpro 3C-like; nonstructural protein 5; Main protease
CoV Coronavirus
PLP Papain-like protease
SARS-CoV-2 Severe acute respiratory syndrome-associated coronavirus-2, causative agent on COVID-19
MHV Murine hepatitis virus
hCoV 229E Human coronavirus 229E
bCoV HKU4 Bat coronavirus HKU4
hCoV-OC43 Human coronavirus OC43
hCoV-HKU1 Human coronavirus HKU1
PDCoV Porcine deltacoronavirus

Flaviviridae
NS3 Nonstructural protein 3
HCV Hepatitis C Virus
DENV Dengue virus
YFV Yellow fever virus
WNV West Nile virus
JEV Japanese encephalitis virus
ZIKV Zika virus
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pressure to be conserved, as any changes to the protease
sequence specificity or protease sites without concomitant
changes to the other would be deleterious for viral fitness. On
the other side, viral fitness may be expected to benefit from a
protease’s ability to adapt to and cleave new host targets, newly
evolved sequences in the same host, or divergent sequences in
a different host to facilitate cross-species transmission. This type
of direct engagement between viral proteases and host factors
thus generates an evolutionary conflict where both sides may
be driven to adapt in a type of escalating molecular ‘arms
race’ (5–8).
Frontiers in Immunology | www.frontiersin.org 3
Molecular arms races exist as a result of the competing
evolutionary interests of viruses and their hosts. Such
competing interests establish an evolutionary equilibrium that
is characterized by cyclical adaptations that exemplify a so-called
‘Red Queen’ genetic conflict (9). In these cases, viral adaptations
that allow for successful infection of a host will provide a
temporary advantage to the virus. However, host adaptations
may restore the advantage to the host, applying selection
pressure back to the virus (Figure 2A). Thus, molecular
interactions between viruses and their hosts, particularly those
interactions that contribute to potentiation or inhibition of virus
A

B

FIGURE 1 | Viral proteases cleave specific sites within the viral polyprotein and host proteins. (A) Schematic of an enterovirus (family: Picornaviridae) polyprotein,
with the position of the 3C protease and sites of 3C-mediated cleavage shown. (B) 3C protease recognizes and cleaves viral polyprotein sites and host proteins with
the same sequence specificity.
A B

C

FIGURE 2 | Host-virus evolutionary arms races can be driven by protease-target interactions. (A) Host-virus arms races occur when there is direct interaction
between host and viral factors, which places evolutionary pressure to select for variants. In this scenario, a viral antagonist recognizes and inactivates a host protein,
driving host evolution away from this interaction. The necessity of host target cleavage for virus replication in turn drives evolution of the viral antagonist to reestablish
host target recognition. (B) Single amino acid changes in the sequence-specific cleavage motif can eliminate cleavage by a viral protease. (C) Across a phylogenetic
tree, changes can occur recurrently resulting in differential susceptibility between even closely related species. Red asterisks mark the branch in which an amino acid
change occurred that alters cleavage susceptibility.
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replication, are shaped by immense evolutionary pressure on
both parties: hosts are driven to both maintain interactions that
activate or carry out antiviral defenses and evade virus
interactions that prevent these responses, and viruses are
driven to do the opposite. The result is recurrent adaptation of
both virus and host to promote either virus replication or host
antiviral mechanisms, respectively (Figure 2A) (5–8). Due to
the fact that the direct molecular host-virus interfaces are those
that are being remodeled during such molecular arms races,
single amino acid changes can change the outcome of these
conflicts (5, 7). Indeed, traces of these host-virus conflicts can be
detected in host genomes by identifying gene codons that show
evolutionary signatures of recurrent diversifying (positive)
selection (5, 7, 10). Similarly, viruses are known to adapt during
or following cross-species transmission to a novel host, and such
adaptations can also be characterized by signatures of positive
selection in viral genomes (11–14). Importantly, whether the host
has evolved to the virus or the virus has evolved to the host, the
resulting genetic and molecular changes determine the host
range and pathogenesis of viruses, including influencing the
ability of viruses to zoonotically transmit into the human
population (7, 8, 13).

Due to the importance of sequence specificity to protease-
host interactions, evolutionary arms races at the interfaces of
proteases and their targets would be expected to exist. For
instance, a single amino acid change in a targeted host protein
at a position that is important for sequence-specific protease
cleavage could completely reverse cleavage susceptibility
(Figure 2B). As a result, single lineage-specific changes at any
number of positions in the cleavage motif would be expected to
alter cleavage susceptibility even among closely related hosts,
establishing species-specific host-virus interactions that could
drive viral host range (Figure 2C). Indeed, while a great deal of
research on viral proteases has focused on conserved elements of
protease function, emerging evidence suggests that both hosts
and viruses are evolving in ways that can impact the host- and
virus-specificity of cleavage. Here, we review the host-viral
molecular conflicts engaged by the main proteases of
flaviviruses, picornaviruses, and coronaviruses to emphasize
how proteases of (+)ssRNA viruses act as evolutionary drivers
of host innate immunity, and how viral proteases are being
shaped by these same molecular conflicts. This evolutionary
perspective highlights the importance of viral proteases and
their host targets as being an important determinant of viral
host range, tissue tropism and pathogenesis, and zoonotic
potential of (+)ssRNA viruses.
DESPITE EVOLUTIONARY CONSTRAINTS,
MAIN PROTEASES OF (+)SSRNA VIRUSES
CONTINUE TO EVOLVE

Virus-encoded proteases are essential to the life cycle of
numerous (+)ssRNA viruses. Newly synthesized viral
polyproteins mature into individual, functional proteins via a
Frontiers in Immunology | www.frontiersin.org 4
series of cleavage events carried out by virus-encoded and host
proteases. For Picornaviridae and Coronaviridae, the viral
cysteine proteases 3C and 3C-Like (3CL) respectively, are
responsible for the majority of polyprotein processing events
(Figures 3A, B) (4, 16–19). Most picornaviruses have six or more
3C cleavage sites throughout the polyprotein (Figure 1A), and
there is a preference to cleave between a glutamine (Q) in the P1
position and a small residue [e.g. glycine (G) or serine (S)] in the
P1’ position (Figure 3A) (15, 16, 20). Likewise, coronaviruses
(CoVs) have ten or more cleavage sites for the 3CL protease (also
known as MPro or nsp5 in several CoVs including SARS-CoV-2)
(Figure 3B) (17, 18, 21). Numerous other viral families,
including members of Caliciviridae (e.g. norovirus) (22) and
Potyviridae (e.g. tobacco etch virus) (23) encode a cysteine
protease with a similar specificity for cleavage between a Q and
a small residue, whereas members of Togaviridae (e.g.
Chikungunya virus) use a cysteine protease with different
cleavage specificity (24). Other viral families use a serine
protease, including Flaviviridae, where the serine protease NS3
processes at least four polyprotein cleavage sites (Figure 3C) (25,
26). Here and in subsequent sections, we will predominantly
discuss activities of the 3C, 3CL, and NS3 proteases of
Picornaviridae, Coronaviridae, and Flaviviridae, respectively,
due to their known roles in cleaving mammalian host factors.
It is important to point out that because the polyprotein is
sequentially processed, and not always to completion, protease
activity may also be carried out when 3C, 3CL, or NS3 remains
fused or associated with additional viral proteins (27, 28). This is
especially true in the Flaviviridae, where the NS3 protease usually
functions in association with NS2B (in the case of flaviviruses
such as dengue and Zika viruses) or NS4A [in the case of
hepatitis C virus (HCV)] (26, 29). However, for the sake
of clarity, we will subsequently only refer to the protease
domains of 3C, 3CL, or NS3. Moreover, many (+)ssRNA
viruses encode additional proteases involved in both
polyprotein processing and host antagonism, including the 2A
protease in some picornaviruses and the papain-like protease
(PLP) in coronaviruses (18, 30). Finally, viruses other than (+)
ssRNA viruses can encode proteases that are important for
polyprotein processing, most notably, the retrovirally-encoded
aspartyl protease (31). While all of these additional proteases
from (+)ssRNA viruses and retroviruses play important host
antagonism roles, and likely shape host and viral evolution, they
will not be extensively explored here.

The functions of the (+)ssRNA viral proteases described
above are, by definition of being required for completion of the
viral life cycle, well conserved. In addition to homology between
the proteases themselves, the positions and sequences of the
polyprotein cleavage motifs are often similar between members
of the same viral family. Indeed, this conservation of polyprotein
cleavage motifs has made it possible to compile sequences
surrounding the cleavage site from genome sequences alone to
generate a consensus motif for the viral protease that can be used
to predict host and viral targets (15, 20, 32, 33) (Figure 3A).
These consensus motifs are often generated using many diverse
viruses, relying on the assumption that protease sequence
November 2021 | Volume 12 | Article 769543
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specificity is well conserved among virus species. Interestingly,
despite the evolutionary constraint to maintain cleavage across
multiple sites in the polyprotein, virus-encoded proteases are
substantially divergent across viruses (Figure 3). For instance,
picornavirus 3C proteases can share less than 20% amino acid
sequence identity, despite sharing an overall similar fold and
many homologous cleavage sites (15). Similar evolutionary
distances are observed with other families of proteases,
including Coronaviridae 3CL and Flaviviridae NS3 (Figure 3).

Even with the divergence of protease sequences, protease
sequence specificity is expected to be well conserved within
closely related viruses given the essentiality of cleaving multiple
site-specific polyprotein sites. Surprisingly, there is mounting
evidence that this is not the case. For instance, among closely
related serotypes of dengue virus (DENV), biochemical
substrate profiling has revealed a subtle but clear shift in the
NS3 protease cleavage sequence specificity profile (34). This
type of in-depth comparative biochemical analysis of other (+)
ssRNA proteases has not been conducted, but assays on model
substrates have revealed differences in cleavage specificity even
Frontiers in Immunology | www.frontiersin.org 5
among 3C proteases within the Enterovirus genus of
Picornaviridae (35). Some of the best evidence that protease
sequence specificity is changing between related viruses has come
from studies using chimeric viruses in which the protease of one
virus species is inserted into the backbone of another virus. If
such protease swaps result in insufficient or improper cleavage of
the polyprotein and reduced viral replication, it would suggest
divergence in protease sequence specificity between the parental
viruses. For example, among enteroviruses (Figure 3A),
replacing the poliovirus (PV) 3C protease with 3C proteases
from human rhinovirus 14 or coxsackievirus B3 (CVB3)
resulted in reduced, changed, or loss of cleavage products
(36). Likewise, within the Flavivirus genus of Flaviviridae
(Figure 3C), swapping the protease domain of DENV NS3 for
the protease domain of yellow fever virus (YFV) ablates
processing of polyproteins containing DENV cleavage sites
(37). Additionally, West Nile virus (WNV) NS3 can cleave a
polyprotein site in only one of two closely related DENV2
strains, where the only difference is in the residue in the P1’
position (38). While some of these differences may be attributed
A B

C

FIGURE 3 | Main proteases in Picornaviridae, Coronaviridae, and Flaviviridae. (A) Phylogenetic tree of available RefSeq Picornaviridae 3C protease protein sequences
(151 total, top). Names of viruses with human relevance or referenced throughout the text are listed next to their respective genus or singular node. The consensus
enterovirus 3C cleavage motif (bottom) as was generated previously (15). The cleavage site is shown flanked by four amino acids upstream (labeled P4 through P1)
and four amino acids downstream (labeled P1’ through P4’). (B) Schematic of the SARS-CoV-2 (family: Coronaviridae) nonstructural (ORF1ab) polyprotein, with the
position of the 3CL protease and sites of 3CL-mediated cleavage shown. Phylogenetic tree of available RefSeq Coronaviridae 3CL protease protein sequences (64
total). Names of viruses with human relevance or referenced throughout the text are listed next to their respective genus. (C) Schematic of the dengue virus (DENV)
(family: Flaviviridae) polyprotein, with the position of the NS3 protease and sites of NS3-mediated cleavage shown. Phylogenetic tree of available RefSeq Flaviviridae
NS3 protease protein sequences (68 total). Names of viruses with human relevance or referenced throughout the text are listed next to their respective genus.
November 2021 | Volume 12 | Article 769543
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to the requirement for NS3 proteases to bind to lineage-specific
activating cofactors to further augment cleavage specificity (39–
47), it is also likely that these changes in cleavage specificity are
dependent on non-conserved residues in the binding pocket of
the NS3 protease (48). Similarly, within Coronaviridae,
replication competent chimeric murine hepatitis virus (MHV)
could not be recovered when the 3CL protease was replaced with
one of many related alpha- or beta-coronavirus proteases
including SARS-CoV, hCoV-229E and bat CoV-HKU4
(Figure 3B). Only when the MHV 3CL was replaced with the
two most closely related beta-coronaviruses, hCoV-OC43 and
hCoV-HKU1, could virus be recovered, but with a substantial
fitness cost (49). Altogether, these biochemical and chimeric
virus studies illustrate that (+)ssRNA viruses have undergone
lineage-specific evolution in both their protease sequence
specificity as well as their many polyprotein cleavage sites.
(+)SSRNA VIRAL PROTEASES HAVE
EVOLVED IN CONFLICT WITH
THEIR HOSTS

The above-described changes in protease sequence specificity do
not require invocation of adaptation. Indeed, evolutionary drift
could result in changes to the viral protease and its cleavage sites,
including those that result in loss of fitness for chimeric viruses.
However, there is another selective pressure that likely shapes
viral protease evolution: the advantage that viruses gain by
cleaving host targets. Proteins in multiple cellular processes
have been identified as targets of viral proteases, many of
which are involved in the host antiviral immune response (4).
Many of these host targets are divergent between species,
potentially establishing molecular barriers to cross-species
transmission. Although the ability to cleave the viral
polyprotein is an invariant function of viral proteases, we posit
that cleavage of specific host proteins may be selected for during
viral evolution, especially during or following cross-species
transmission. Indeed, pathogenicity of a mouse-adapted SARS
coronavirus required two mutations in 3CL to facilitate rapid,
robust virus replication (50). Although it has not been
established whether these 3CL changes result in changes in
host target cleavage, these data indicate that protease evolution
may be required for successful adaptation to a novel host species.

Several excellent reviews have been written describing the
diverse host targets that are cleaved by viral proteases (4, 16, 17,
19, 51). In many cases, the described host-virus interaction has
focused on a single or a small number of related viral proteases
and only a single host species, often humans. Thus, the
importance of host and virus diversity in these interactions is
often poorly understood. However, evidence is accumulating that
viral proteases and their host targets are engaged in species-
specific interactions. Below, we highlight such cases in which
host and viral diversity alter the outcome of the interaction
between host pathways and proteases of picornaviruses,
flaviviruses and coronaviruses, illustrating this ongoing
molecular arms race.
Frontiers in Immunology | www.frontiersin.org 6
Viral Proteases Target Essential Host
Processes in a Virus-Specific Manner
Some of the best studied targets of viral proteases, especially from
picornaviruses, are involved in well conserved processes such as
translation initiation or translation control (52, 53). In many
cases, the functional outcome is similar: viral proteases
antagonize a host molecular function in a way that benefits the
virus. However, the specific host protein or specific site within
that host protein can be divergent between different viruses,
highlighting differences in protease cleavage specificity between
related viruses, as well as the convergence of viral protease
cleavage on the same host pathways. Thus, even for host
functions that are ‘well conserved’ targets of protease cleavage,
there is surprising mechanistic diversity. Below we highlight two
such examples in well described targets of picornavirus proteases,
but likely many other similar examples exist.

Translation of picornavirus mRNAs occurs via an internal
ribosome entry site (IRES) (54). This bypasses the need to engage
with host cap-dependent translation machinery and offers the
opportunity to induce a ‘host-shutoff’ of translation of host
antiviral proteins while maintaining production of viral
proteins. Many picornaviruses inhibit host translation in a
protease-dependent manner via cleavage of subunits of the
eIF4F cap-binding complex, which binds to host mRNA cap
structures to establish the initiation complex, or poly-A binding
protein (PABP), which binds the 3’ polyA tail of mRNAs
and eIF4G to circularize mRNAs for optimal translation
initiation (55) (Figure 4A). For instance, Foot-and-mouth
disease virus (FMDV) 3C cleaves the eIF4G and eIF4A
subunits of eIF4F (56). Interestingly, neither hepatitis A
(HepA) virus nor encephalomyocarditis virus (EMCV) 3C
target eIF4G for cleavage, but both target PABP (57, 58).
Convergently, PV also targets PABP, but at a site that is ~100
residues away from the cleavage site of EMCV (59) and
additionally uses its 2A protease to cleave eIF4G (60). Despite
cleaving different host targets and/or host sites, these interactions
all result in host translation shut-off. These data highlight
functional conservation, rather than molecular conservation, of
picornavirus 3C-mediated inhibition of host translation and
suggests that even among related viruses, there are important
differences in the viral specificity of host target cleavage.

A similar phenomenon is observed in another well-
established target of picornavirus 3C proteases, the stress
granule protein G3BP1 (Figure 4B). Numerous viruses
manipulate stress granule formation for their benefit, as this is
a major intersection point between translation control and
cellular stress responses (53, 61). Among the mapped cleavage
sites in G3BP1, PV 3C cleaves at Q326 (62) while FMDV 3C
cleaves at E284 (63), but both of these cleavage events benefit the
virus by manipulating stress granule formation. These findings
further demonstrate the convergence of 3C cleavage onto the
same host target, while highlighting how subtle differences in
cleavage specificity can impact viral targeting of host factors. Of
note, the P1 and P3’ positions of the PV cleavage site are altered
in a way that would prevent cleavage of mouse G3BP1, which is
otherwise >90% identical to the human protein (Figure 4B).
November 2021 | Volume 12 | Article 769543
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Whether host G3BP1 is cleaved by enteroviruses that infect
rodents, and at what site, has yet to be determined.

Proteins in the Innate Antiviral Immune
Response Are Common Targets of
Viral Proteases
n addition to essential cellular processes, proteins in the innate
antiviral immune response are common targets of diverse viral
proteases. The host antiviral response is initiated when cells detect
viral products (Figure 5A). Following entry into a host cell, viral
nucleic acids can be detected by host pattern recognition receptors
(PRRs) such as RIG-I,MDA5, and cGAS.While RIG-I andMDA5
directly detect viral ssRNA or dsRNA as a product of (+)ssRNA
virus replication (67–71), the cytosolic DNA sensor cGAS can be
indirectly activated via virus-induced mitochondrial damage and
subsequent release of mitochondrial DNA that can occur during
(+)ssRNA viral infection (72). After ligand binding, PRRs recruit a
series of adaptor proteins, ultimately resulting in the production
and secretion of type I and III interferons (IFN-I and IFN-III) (73).
IFN-I and IFN-III are antiviral cytokines that signal in an autocrine
or paracrinemanner to induce expression of interferon-stimulated
genes (ISGs), which act to directly and indirectly inhibit virus
replication and establish an antiviral state in the host
(74) (Figure 5A).

Induction of IFN and subsequent upregulation of ISGs is
critical to the host antiviral defense. Therefore, proteins involved
in these pathways are common targets of viral antagonism (73),
including several that are cleaved by (+)ssRNA viral proteases
(Table 2 and Figure 5A). For instance, NS3 from DENV and
other flaviviruses can cleave and inactivate STING to prevent
sensing of cytoplasmic mitochondrial DNA (65, 75), whereas PV
and possibly other 3C proteases cleave RIG-I during infection
(76, 96) (Figure 5A). Tellingly, many proteases convergently
Frontiers in Immunology | www.frontiersin.org 7
cleave the same host targets. For instance, CVB3 3C and HCV
NS3 are both able to cleave MAVS (77, 78), a critical innate
immune adaptor for both MDA5 and RIG-I (Figure 5A). 3CL
proteases from Porcine Epidemic Diarrhea Virus (PEDV),
porcine deltacoronavirus (PDCoV), and feline infectious
peritonitis virus (FIPV), as well as 3C proteases from FMDV
and HepA can also inhibit RIG-I/MDA5 pathways by cleaving
nuclear transcription factor kB (NF-kB) essential modulator
(NEMO), a bridging adaptor protein involved in activating
both NF-kB and interferon-regulatory factor signaling
pathways (89–93, 97) (Figure 5A). Finally, STAT2, one of the
critical transcription factors that transmits the signaling of IFN
to ISG production (Figure 5A), is cleaved by the 3CL from
PDCoV (85), although whether other 3CLs cleave this protein is
unknown. Altogether these data show that viral protease-
mediated cleavage of innate immune signaling proteins is a
common strategy across (+)ssRNA viruses to prevent the
antiviral response and promote virus replication.

Many proteins in the innate antiviral immune response are
rapidly evolving within and between host populations (98–100).
One potential consequence of these host changes is that a
cleavage site for a viral protease may be present in one host
but not another. If there is strong selection for the virus to restore
antagonism of that host function, there would be selection for
viral proteases that would change the sequence specificity of host
target cleavage to either restore cleavage of the original site,
cleave another site on the host protein, or cleave another protein
in the host pathway (Figure 5B). Such an evolutionary model
can be used to understand the genetic bases for host- and viral-
specificity of protease cleavage. For many of the known
interactions between host immunity proteins and viral
proteases, there is little information on how host and viral
evolution shapes the outcome. However, analyses on two host
A

B

FIGURE 4 | Antagonism of host cellular processes by viral proteases. (A) Diverse viral proteases inhibit translation of host mRNA through cleavage of initiation factors
and/or poly(A)-binding protein. (B) Host and virus species-specific cleavage of the stress granule protein G3BP1 by picornavirus proteases.
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A B

C D E

FIGURE 5 | Protease antagonism of IFN induction and signaling pathways. (A) Examples of viral proteases that antagonize the innate antiviral immune response,
including antagonism of IFN-induction (left) or signaling downstream of IFN (right). (B) Model for how protease sequence specificity may be driven to evolve by
conflicts with host factors. Following host evolution, or cross-species transmission, viral proteases may no longer be able to antagonize a given host factor. To re-
establish host antagonism, the protease can evolve to cut a different sequence at same host site (left) or may evolve to cut a new site elsewhere in the host protein
(right). (C, D) Evolution of MAVS (64) (C) and STING (65) (D) across primates and other mammals confers resistance or susceptibility to flaviviral protease cleavage.
Red asterisks mark the inferred branch in which an amino acid change occurred that alters cleavage susceptibility. (E) Human STING cleavage by flavivirus NS3
proteases is virus species-specific. Data adapted from (66).
TABLE 2 | Select list of IFN pathway-related targets of (+)ssRNA virus proteases.

Host target Viral protease References

STING NS3 (NS2B3) (ZIKV, JEV, WNV, YFV, DENV) (65, 66, 75)
RIG-I 3C (PV) (76)
MAVS NS3 (NS3-4A) (HCV, GBV-B) (64, 77–82)

3C (CVB3, SVV)
Riplet NS3 (NS3-4A) (HCV) (83)
MDA5 3C (FMDV) (84)
STAT2 3CL (PDCoV) (85)
TRIF NS3 (NS3-4A) (HCV) (78, 81, 86–88)

3C (CVB3, SVV, EV68)
3CD (HAV)

NEMO 3CL (PEDV, FIPV, PDCoV) (89–93)
3C (FMDV, HAV)

IRF7 3C (EV68) (94)
IRF9 3C (EV71) (95)
Frontiers in Immunology | www.frontiersin.org
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Viral abbreviations are as follows: ZIKV, Zika virus; JEV, Japanese encephalitis virus; WNV, West Nile virus; YFV, Yellow fever virus; DENV, Dengue virus; PV, Poliovirus; HCV, Hepatitis C
virus; GBV-B, GB virus B or Pegivirus B; CVB3, Coxsackievirus B3; SVV, Seneca Valley virus; FMDV, Foot and mouth disease virus; PDCoV, Porcine deltacoronavirus; EV68, Enterovirus
D68; HAV, Hepatitis A virus; PEDV, Porcine epidemic diarrhea virus; FIPV, Feline infectious peritonitis virus.
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targets, described in more detail below, provide evidence for an
arms races between host immunity proteins and viral proteases.

MAVS and STING Have Evolved in
Conflict With Viral Proteases
One well-characterized instance of viral proteases shaping host
gene evolution is in HCV NS3 protease antagonism of the host
protein MAVS. MAVS serves as a critical signaling node to
integrate signals from the nucleic acid sensors RIG-I and MDA5
to downstream IFN production (Figure 5A). Early observations
indicated that MAVS cleavage by HCV NS3 was site specific and
important for viral evasion of the immune system (101).
Subsequent evolutionary analyses revealed that one residue
within the HCV cleavage site in MAVS has evolved under
recurrent positive selection, suggestive that MAVS evolution
has been shaped by NS3 antagonism (64). Variation at this site
across primates affects susceptibility to cleavage by HCV NS3.
Importantly, primate MAVS proteins that have evolved
resistance to cleavage retain a functional IFN response during
HCV infection, providing a potential explanation for the
restricted host range of HCV (Figure 5C) (64). This work also
identified a site evolving under positive selection that is known to
be antagonized by the CVB3 3C protease, and variation at this
site across primates could also alter protease-mediated
antagonism and antiviral signaling through MAVS (64, 78).

Another adaptor protein that connects nucleic acid sensing to
the IFN response is STING, which operates downstream of the
cytoplasmic DNA sensor cGAS (Figure 5A). Originally
described as a species-specific target of DENV NS3 cleavage
(65, 75), STING has evolved under positive selection in primates
and the NS3 cleavage site within STING contains several amino
acid differences across primates that alter the outcome of
cleavage (Figure 5D) (65). Expanding this analysis to a
broader panel of mammals, the NS3 site of cleavage in human
STING has evolved to be cleavage resistant in mice, pigs, and
ground squirrels, whereas naked mole rat and desert woodrat are
susceptible to cleavage (65) (Figure 5D). Interestingly,
differences in protein sequences that affect cleavage do not just
occur between host species; polymorphisms within a host can
also alter the ability of a viral protease to cleave a given target.
Evidence of this process can be observed in human STING
polymorphisms, where the three most common human STING
haplotypes are differentially cleaved by DENV NS3 (102). Not
only is host diversity important, but viral diversity is as well. For
instance, ZIKV, DENV, JEV, and WNV NS2B3 can cleave
human but not mouse STING, whereas YFV NS3 cannot
cleave STING from either species (66) (Figure 5E). Additional
work to identify more divergent flaviviral protease interactions
will further define evolution of STING antagonism.
IMMUNE SENSORS OF VIRAL PROTEASE
ACTIVITY: WHO IS CHASING WHOM?

Cleavage of host proteins by viral proteases often inactivates
the host protein and results in a fitness advantage for the virus.
Frontiers in Immunology | www.frontiersin.org 9
In these cases, host evolutionary signatures reveal adaptations
that are presumed to evade cleavage. However, another
possibility exists, in which the host protein can sense the
presence of the viral protease in the cytoplasm through an
evolved sequence that mimics the viral polyprotein cleavage
site. Sensing of pathogen-encoded activities such as toxins and
effector enzymes, known as effector-triggered immunity (ETI), is
well-described in plants but is also emerging as an important
immune mechanism in animals (103–106). Three such signaling
pathways, described below, are known to detect the main
protease activity of human viruses.

NLRP1 Mimics Diverse Picornaviral 3C
Cleavage to Trigger Inflammation
One of the best described cases of mammalian ETI involves
NLRP1 (NACHT, LRR, and PYD domains-containing protein 1;
Figure 6A), a critical sensor for the innate immune complex
known as the inflammasome. Mouse NLRP1B was identified in a
genetic screen as a determinant of differential susceptibility
between mouse strains to Lethal Toxin, a virulence factor
responsible for the major pathologies seen during infection by
the bacterial pathogen Bacillus anthracis (107). Further research
identified that NLRP1B was a target of cleavage by the secreted
bacterial protease component of Lethal Toxin, termed Lethal
Factor (LF). Interestingly, mice with a cleavage-susceptible
variant of NLRP1B were protected from B. anthracis challenge,
indicating that cleavage of NLRP1B was immunologically
protective (108, 109). The mechanism by which this occurs,
termed ‘functional degradation’ (110, 111), depends on the
FIIND domain encoded within NLRP1B, which undergoes a
constitutive self-cleavage event (known as ‘auto-processing’)
such that the N-terminal domains and C-terminal CARD-
containing fragment of NRLP1B exist as two distinct,
noncovalently associated polypeptides (112, 113) (Figure 6B).
Once LF cleaves upstream of the FIIND domain in NLRP1B, the
released product has a new N-terminus that is recognized by the
N-end rule cellular machinery and targets it for proteasome-
mediated degradation. However, as a result of the break in the
polyprotein backbone within the FIIND domain, proteasome-
mediated degradation of NLRP1B ceases after degrading the N-
terminal domains, leaving the bioactive C-terminal fragment
intact and able to assemble into an active inflammasome
(Figure 6B) (110, 111). The unusual domain architecture of
NLRP1B thus facilitates the mounting of the inflammasome
response upon proteolytic cleavage of the N-terminus.

LF cleaves within the rapidly evolving ‘tripwire’ region of
mouse NLRP1B but fails to cleave or activate human NLRP1.
Interestingly, human NLRP1 has an analogous rapidly-evolving
‘tripwire’ region (Figure 6A), and cleavage of human NLRP1 via
an engineered tobacco etch virus (TEV) protease cleavage site can
activate the inflammasome (114). These data suggested that
human NLRP1 may also detect pathogen-encoded proteases and
activate the inflammasome via a functional degradation
mechanism. Indeed, we and others recently identified that
human NLRP1 recognizes picornavirus 3C protease activity and
serves as a tripwire for inflammatory cell death and downstream
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inflammatory signaling (15, 115). During enterovirus infection, 3C
cleavage of NLRP1 results in assembly of the active inflammasome
and subsequent pro-inflammatory cytokine release (15, 115),
including in human primary airway epithelial cells (115).
Interestingly, based on phylogenetic analyses, the 3C-protease
site mimic in this specific region of NLRP1 only evolved in the
primate lineage, and is only cleavable in some primates (15).
Differences across simian primates and a SNP within the human
population prevent cleavage and inflammasome activation (15).
Although mice lack this human-aligned cleavage site, we
discovered a similar phenomenon where picornavirus 3C
proteases cleave NLRP1B at different sites to activate the
inflammasome in a virus- and mouse-strain-specific manner (15).

In addition to host diversity, viral diversity also determines
NLRP1 cleavage. While all enteroviruses cleave the same site
within NLRP1 and activate the inflammasome, other
picornaviruses cleave NLRP1 at different sites within the
N-terminal domain or do not cleave NLRP1 (15). For instance,
the 3C protease of EMCV does not cleave NLRP1, and
resultingly no activation of the NLRP1 inflammasome was
observed upon EMCV infection (15). As numerous sites in the
protease-sensing N-terminal region of NLRP1 are evolving
under positive selection (114), other independently evolved
tripwire sites within NLRP1 may sense divergent 3C or other
viral proteases.
Frontiers in Immunology | www.frontiersin.org 10
Intracellular HIV-1 Protease Activity
Triggers Inflammation via CARD8
Another inflammasome mediator, CARD8, is known to share the
unusual C-terminal domain structure critical for the sensing
mechanism of NLRP1 – the FIIND domain followed by a CARD
domain (Figure 6A) (116, 117). In addition to these domain
similarities, CARD8 inflammasome assembly can also be
activated by the same small molecules as NLRP1 (117). Such
similarities initially suggested that CARD8 could also be
activated using a functional degradation model to act as a
tripwire sensor of pathogen-encoded activities (116). Indeed,
the protease of human immunodeficiency virus 1 (HIV-1) can
cleave and activate the CARD8 inflammasome in an activation
mechanism that resembles NLRP1 (118). While HIV-1 protease
is normally important for cleaving viral polyproteins in the
maturing capsid, treatment with specific non-nucleoside
reverse transcriptase inhibitors (NNRTIs) can result in
protease activity in the cytoplasm (119). Under these NNRTI
treatment conditions, HIV-1 proteases from four prevalent HIV-
1 subtypes cleave CARD8 and activate the inflammasome,
resulting in pro-inflammatory cytokine release and influencing
clearance of latent HIV-1 in primary CD4+ T cells (118). While
the extent to which host evolution or evolution of other viruses
influences the activation of the CARD8 system remains
unknown, these findings reveal a broader role for host encoded
A

B
C

FIGURE 6 | Sensing of pathogen-encoded protease activities by host ‘tripwires’. (A) NLRP1 and CARD8 serve as effector-triggered immunity (ETI) sensors to detect
cleavage by viral proteases. Schematic of mouse NLRP1B, human NLRP1, and human CARD8, highlighting the tripwire region (left) and the known protease
effectors (right). (B) Model for how protease cleavage initiates functional degradation of the N-terminal region of inflammasome activators. Activation recruits and
activates caspase-1, which cleaves multiple host proteins, including processing proinflammatory cytokines such as IL-1b, into their mature, bioactive form. (C) Model
for how evolution of host protease site mimics may drive viral protease evolution to either evade cleavage of the host tripwire or antagonize the host in other parts of
the protein or pathway.
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tripwires for viral proteases that can activate a robust immune
response using mimicry of viral protease cleavage sites.

3C-Mediated Cleavage of a Regulator of
NF-kB Triggers Apoptosis
‘Tripwire’ mechanisms such as NLRP1 and CARD8 rely on a
specific elegant, but rare, domain architecture that allows for
coupling of a cleavage event to generation of a bioactive signaling
molecule. An additional mechanism for sensing of viral proteases
arises from the intricate ways that the innate immune response is
negatively regulated. For instance, downstream of NLRP1 and
CARD8, mature inflammatory cytokines are detected by the IL-1
receptor to activate the transcription factor NF-kB, which can
amplify the inflammatory response (120). NF-kB is an essential
transcription factor involved in many innate immune pathways
and can mediate a variety of downstream responses depending
on the input stimuli (121), including pro- or anti-apoptotic
responses (122). Within the cytoplasm, the NF-kB heterodimer,
composed of the Rel family proteins p65 and p50, remains bound
and inactive by members of the inhibitor of kB (IkB) family,
including IkBa (Figure 5A). In response to cytokines such as
IL-1b, IkB kinase (IKK) family proteins phosphorylate IkB
proteins, releasing the active transcription factor to translocate
into the nucleus (120). A previous study demonstrated that IkBa
senses CVB3 3C protease activity (123). The 3C protease was
shown to cleave IkBa, producing a fragment that stably
complexes with p65 and translocates to the nucleus. This stable
complex blocks NF-kB transcriptional activation, resulting in
increased cell apoptosis and decreased viral replication (123).
Thus, cleavage of IkBamay have evolved as another way to sense
viral protease activity and induce cell death to prevent further
virus propagation. Many viral proteases are known to cleave
proteins in theNF-kB pathway (Table 2). Additional characterization
of these virus-host interactions may reveal additional antiviral
mechanisms associated with this critical immune pathway.

Evolutionary Advantages of ETI
In the continual evolutionary conflict between viruses and their
hosts, cleavage mimicry encoded in NLRP1, CARD8 and NF-kB
serve as examples of a successful strategy emerging in host
organisms to exploit highly constrained pathogenic processes.
Viruses are known to use molecular mimicry to antagonize or
subvert the host immune response (124). In the cases of ETI
described above, the host is turning the tables and using mimicry
of viral protease cleavage sites to support the antiviral response.
Rather than mimicry of entire proteins or protein domains,
mimicry of these cleavage sites as ‘short linear motifs’ (SLIMs)
require only a small number of amino acids to hijack the highly
conserved protease activity (125, 126). In order to avoid these
‘tripwires’ and negative regulators of the immune response, these
viruses must either evolve their respective main proteases along
with all affiliate cleavage sites or antagonize the process some
other way (Figure 6C). Supporting this idea, 3C proteases from
some picornaviruses cleave NLRP1 but do not activate the
NLRP1 inflammasome, suggesting that 3C proteases have
evolved to evade detection by NLRP1 by antagonizing NLRP1
Frontiers in Immunology | www.frontiersin.org 11
function elsewhere (15). We expect that this work may lead to
the discovery that protease-driven ETI strategies may have
evolved more broadly at other sites of host-pathogen conflicts.
DISCUSSION

The proteases of (+)ssRNA viruses have multiple roles in
establishing and maintaining virus infection within a host.
First and foremost, virally-encoded proteases cleave numerous
sequence-specific sites within the viral polyprotein, which is
essential for completion of the viral replication cycle. As a
consequence of this essential activity, the ability of proteases to
evolve novel sequence specificity is highly constrained. However,
viral proteases also serve to manipulate numerous host processes
in the infected cell through site-specific cleavage of host targets.
In this context, changes in protease sequence specificity would
allow the virus to cleave new host targets that might benefit the
virus, or avoid cleaving host targets that are detrimental to the
virus. It is at this intersection that viral proteases are engaged in
evolutionary ‘arms races’ with the host, resulting in varied
interactions across viral and host species and across
evolutionary time. Several examples, including virus-specific
cleavage of essential mRNA translation machinery and host-
specific evasion of cleavage of innate antiviral immune
components, highlight the consequences of these evolutionary
conflicts. More recently, the discovery of host-encoded effector-
triggered immunity (ETI) sensors such as NLRP1 and CARD8
suggest that host mimicry of viral protease cleavage sites is an
efficient strategy to detect the cellular activity of viral proteases.

The extent to which viral protease evolution, and host target
diversity, shape viral host range and pathogenesis remains
unknown and is an exciting area of future research. The
majority of characterized protease-host interactions have been
described for a single virus against a single host, leaving open the
opportunity for more detailed exploration of the evolutionary
dynamics of these interactions. Indeed, examples such as
cleavage of host proteins such as MAVS, STING, and NLRP1
highlight the insights that can be gained from additional analyses
of host and viral diversity in these interactions. Likewise, future
studies aiming to discover additional host targets of viral
proteases, especially those that may be cleaved in a virus-
specific manner, will advance our knowledge of the ways that
protease-host interactions shape viral phenotypes. Finally, ETI
sensors such as NLRP1 and CARD8 may represent just the start
of host proteins that mimic viral protease cleavage sites to induce
an immune response. Further studies aimed to identify ETI
mechanisms against both viral and other pathogen-encoded
proteases will likely continue to reveal novel mechanisms and
evolutionary principles of the host innate immune response.
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