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Cancer cells have distinctive metabolic features that 
allow the rapid manufacture of biomass to support cellu­
lar replication and other hallmarks of cancer, while man­
aging redox homeostasis (see review1). In recent years, 
the field has developed an increasingly sophisticated 
understanding of cancer metabolism and, in particular, 
its heterogeneity with respect to cancer types2–7, grades8,9 
and metastatic status10,11. In fact, it is clear that cancer 
cells exhibit considerable plasticity and flexibility in 
their metabolism to support rapid growth and survival 
in response to treatment and changes in environmental 
cues (see review12).

Fatty acid metabolism (Box 1) influences cancer cell 
biology in numerous ways, notably including the synthe­
sis of lipid building blocks for membranes, that is, glycero­
phospholipids, and signalling intermediates such as  
phosphatidylinositol (4,5)-​bisphosphate, diacylglycerol 
(DAG) and phosphatidate to facilitate mitogenic and/or  
oncogenic signalling13. Fatty acids are also substrates for 
mitochondrial ATP and NADH synthesis, eicosanoid 
production and post-​translational protein–lipid mod­
ifications of signalling proteins (see review14). Cancer 
cells can acquire fatty acids from a range of intracellular 
and extracellular sources, and the altered metabolism of 
these fatty acids is a feature of both tumorigenesis and  
metastasis (Fig. 1; see review15). More recently, mem­
brane lipid composition, as specified by fatty acyl satu­
ration (for example, saturated, monounsaturated or 
polyunsaturated) and length, has received significant 

attention with emerging common tumour-​associated 
features being identified16–20. The tumour lipidome charac­
teristically includes increased proportions of saturated 
fatty acyl chains, and particularly monounsaturated 
fatty acyl chains, in glycerophospholipids from cancer 
cell lines and clinical tumour specimens, compared with 
non-​malignant cells and benign tissues (see review14). 
Further, the clinical tumour lipidomes can distinguish 
malignant from normal tissue and reflect response 
and/or resistance to anticancer treatments. While data  
on clinical tumour metastases are lacking, comparisons 
between cell lines with different metastatic potential 
have identified increased DAGs and phosphatidylinosi­
tol lipids with greater levels of saturated and monoun­
saturated fatty acyl chains in metastatic as compared to 
non-​metastatic and normal cell lines21,22. The increased 
proportions of phosphoinositide-​based glycerophospho­
lipids likely play key roles as membrane scaffolds and sec­
ond messengers for oncogenic signalling pathways23,24. 
Beyond lipid and fatty acid abundance and desaturation, 
the elongation of fatty acid chains has been identified 
as a prominent feature of lung tumours25; however, its 
functional role remains to be defined. The importance 
of desaturation is of profound interest because it could 
be particularly advantageous to tumour cell survival by 
preventing both lipotoxicity from excess saturated fatty 
acyl chains (see review15) and ferroptosis triggered by 
the peroxidation of polyunsaturated fatty acyl chains 
(Box 2), as well as by reducing membrane permeability 
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to promote chemoresistance (see Fatty acid metabolism 
in therapy resistance).

Altered fatty acid metabolism is among a num­
ber of important potential mechanisms (see review26) 
that underpin the altered behaviour of many cancer 
types in patients with obesity, type 2 diabetes and/or 
metabolic syndrome27. In patients with obesity, it is likely 
that the combination of enhanced mitogenic and growth 
factor signalling in response to the altered hormonal 
milieu and the increased availability of carbon-​rich 
nutrients, such as lipids and glucose, supports biomass 
production and proliferation, thereby accelerating dis­
ease progression and treatment resistance. Worldwide, 
obesity has nearly tripled since 1975 according to data 
by the World Health Organization, with a more sub­
stantial proportion of adults not only having obesity 
but also likely to have had obesity for a more extended 
portion of their lives compared to previous generations. 
Worryingly, the rate of mortality from obesity-​associated 
cancers (for example, colorectal and breast cancer) 
has improved more slowly over the past 20 years than 
cancers not associated with obesity (for example, lung 
cancer and skin cancer)28. As such, the obesity-​related 
impacts on cancer incidence, progression and treatment 
efficacy will increasingly challenge cancer management.

While precision oncology is largely considered 
in terms of genomic-​driven treatment selection, the 
genomic alterations that define disease subtypes are 
invariably linked to altered metabolism14,24. Recent 
insights into the biological importance of lipidomic 
homeostasis have been reported and suggest a critical 
need for tumours to maintain optimal ratios of fatty 
acyl chain species (that is, monounsaturate to satu­
rate and monounsaturate to polyunsaturate ratios) to 
avoid lipotoxicity and ferroptosis. In this Review, we 
focus on the role that fatty acid metabolism plays in 
responding to altered extratumoural or systemic signals 
from cancer therapies and the obese environment. We 
discuss the lipid characteristics and pathways that are 
common features of resistance to a range of treatment 
modalities. Additionally, we highlight obesity-​associated 
changes in host fatty acid metabolism that likely influ­
ence the tumour microenvironment to affect cancer cell  
behaviour and response to therapy.

Fatty acid metabolism in therapy resistance
The concept of the tumour lipidome being reflective  
of changes in cancer cell behaviour extends to settings of 
extratumoural challenge, including in treatment-tolerant 
cancer cells as they rapidly adapt to enhance their survival 
and metastatic capacity (recently reviewed in detail12). 
Importantly, resistance to a range of cancer treatments 
is associated with changes in tumour cell fatty acid  
metabolism (Fig. 2).

Chemotherapy
The response and resistance of tumour cells to chemo­
therapeutic agents have long been linked to altered  
lipid composition of cellular membranes. However, the 
field has been largely restricted to studies comparing 
resistant immortalized cell lines with parental lines or 
have looked at the acute effects of treatment on selected 

Box 1 | Main fatty acid metabolism pathways

Cellular fatty acid (FA) metabolism encompasses a broad range of metabolic 
pathways15. Cancer cells can acquire FAs from extracellular sources, including 
lipoproteins (for example, chylomicrons, VLDL and LDL) that are processed via the 
endo-​lysosome, free FAs and those acquired via macropinocytosis, all of which are  
key inputs to the intracellular FA pool. Intracellular sources of FAs include de novo FA 
synthesis, lipid droplet lipolysis and lipophagy, and glycerophospholipid hydrolysis. 
De novo FA synthesis uses non-​lipid substrates such as extracellular acetate, glucose 
and amino acids, including glutamine, to produce palmitate in a process catalysed  
by acetyl-​CoA carboxylase and FA synthase. The mobilization of FAs stored in lipid 
droplets as triacylglycerol occurs via lipolysis and lipophagy. Lipolysis is catalysed by 
adipose triacylglycerol lipase (ATGL), hormone-​sensitive lipase and monoacylglycerol 
lipase, regulated by protein–protein interactions whereby ATGL activity is enhanced  
by α,β-​hydrolase domain containing 5 and suppressed by G0/G1 switch gene 2 and 
hypoxia-​inducible lipid droplet associated protein (HILPDA). Glycerophospholipids can 
be deacylated by phospholipase As and Bs to produce lysophospholipids, which can 
then be further deacylated via lysophospholipase As to produce glycerophosphate  
and a free FA. The molecular regulation of lipid droplet lipophagy is unknown.

FAs are ‘activated’ by conversion to fatty acyl-​CoAs by long-​chain acyl-​coenzyme  
A synthetases that are substrates for a range of reactions. Fatty acyl-​CoAs can be 
desaturated through the actions of stearoyl-​CoA desaturase or delta-5 (FADS1) and 
delta-6 (FADS2) FA desaturases and/or elongated via elongation of very long-​chain  
FA (VLCFA) enzymes to generate monounsaturated or polyunsaturated FAs that may  
be incorporated into more complex lipids, including membrane glycerophospholipid.  
The synthesis of membrane glycerophospholipids and glycerolipids commences  
with the acylation of glycerol 3-​phosphate to produce lysophosphatidate. Phosphatidate 
is produced via the acylation of lysophosphatidate and is a substrate for glycerophos
pholipids as well as diacylglycerol that is produced by phosphatidate phosphatase. 
Diacylglycerol is a substrate for glycerophospholipid synthesis and triacylglycerol 
synthesis. Glycerophospholipids can also be produced via the acylation of 
lysophospholipids by lysophospholipid acyltransferase.

FA-​CoAs can be broken down to provide cellular energy via oxidation in mitochondria 
and peroxisomes. VLCFA-​CoAs are processed by peroxisomal β-​oxidation to produce 
acetylcarnitine and shorter acylcarnitines that are substrates for mitochondrial 
oxidation. Long-​chain FA-​CoAs are transported into the mitochondria by the carnitine 
palmitoyltransferase (CPT) system, which consists of CPT1, carnitine-​acylcarnitine 
translocase and CPT2, whereas short-​chain and medium-​chain FA-​CoAs passively 
diffuse across the membrane. Saturated FA-​CoAs are oxidized through the combined 
activities of acyl-​CoA dehydrogenase, enoyl-​CoA hydratase, hydroxyacyl-​CoA 
dehydrogenase and 3-​ketoacyl-​CoA thiolase, which constitute β-​oxidation. The double 
bonds of unsaturated FA-​CoAs must be removed through the auxiliary pathway, which 
includes Δ3, Δ2-​enoyl-​CoA isomerase and 2,4-​dienoyl CoA reductase 1, before 
returning to β-​oxidation. These reactions produce acetyl-​CoA for the tricarboxylic acid 
cycle and FADH2 and NADH, which fuel the electron transport chain.
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Fig. 1 | The tumour lipidome and fatty acid metabolism pathways. Cancer 
cell membranes are characterized by increased monounsaturated fatty acyl 
(MUFA) side chains to saturated fatty acyl (SFA) side chains and MUFA to 
polyunsaturated fatty acyl (PUFA) ratios that results in reduced lipotoxicity 
and susceptibility to ferroptosis. These traits are a result of increased uptake 
of extracellular fatty acids (FA) from the bloodstream and microenvironment 
via a range of mechanisms, including LDL receptor (LDLR), fatty acid 
transport protein (FATP) and CD36, and other mechanisms that contribute to 
the intracellular FA pool. Cancer cells also have increased de novo FA 
synthesis using a range of non-​lipid substrates to produce palmitate, 
catalysed by acetyl-​CoA carboxylase (ACC) and fatty acid synthase (FAS). 
Intracellular FAs are also mobilized via lipid droplet lipolysis, catalysed by 
adipose triacylglycerol lipase (ATGL), hormone sensitive lipase (HSL) and 
monoacylglycerol lipase (MAGL), and lipophagy. FAs are also released via the 
hydrolysis of glycerophospholipid by phospholipase As (PLAs) and 
phospholipase Bs to produce lysophospholipids. FAs are ‘activated’ by 
conversion to fatty acyl-​CoAs (FA-​CoAs) by long-​chain acyl-​CoA synthase 
(ACSL). FA-​CoAs can be desaturated through the actions of stearoyl-​CoA 
desaturase (SCD) or FA desaturases (FADS) and/or elongated by elongation 

of very long-​chain fatty acid enzymes (ELOVLs) to increase MUFA-​CoAs 
compared to PUFA-​CoAs. These FA-​CoAs are substrates for glycerolipid 
storage in lipid droplets and glycerophospholipid synthesis or remodelling 
via the acylation of lysophospholipids by lysophospholipid acyltransferase 
(LPLAT) to produce glycerophospholipids to maintain cellular membrane 
homeostasis. FA-​CoAs can be oxidized in mitochondria and peroxisomes. 
Very long-​chain FA (VLCFA)-​CoAs are processed by peroxisomal oxidation to 
produce substrates for mitochondrial oxidation. Long-​chain FA (LCFA)-​CoAs 
are transported into the mitochondria by CPT1, whereas short-​chain and 
medium-​chain FA-​CoAs passively diffuse across the membrane. Saturated 
FA-​CoAs directly enter β-​oxidation whereas the double bonds of unsaturated 
FA-​CoAs (unFAs) are removed through the auxiliary pathway that includes 
Δ3, Δ2-​enoyl-​CoA isomerase (ECI) and 2,4-​dienoyl CoA reductase 1 (DECR1) 
before returning to β-​oxidation. These reactions fuel the electron transport 
chain (ETC). Overall, peroxisomal β-​oxidation is reduced in cancer cells likely 
due to less very long-​chain PUFA-​CoAs, whereas long-​chain PUFA-CoA  
β-oxidation is increased to lead to lower levels of PUFAs compared to MUFAs. 
ACLY, ATP-​citrate lyase; DAG, diacylglycerol; MAG, monoacylglycerol;  
TAG, triacylglycerol; TCA, tricarboxylic acid.
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metabolic enzymes and/or pathways. Clinical data 
linking lipid metabolism in tumours to drug resistance 
remain elusive. Based on the available preclinical data, 
among the characteristics of chemoresistant cancer cell 
lines is a reduced fluidity of lipid bilayers in the mem­
branes (Fig. 2). This reduced fluidity is based on the pre­
dominance of saturated fatty acyl chains in membrane 
lipids, particularly for lipogenic tumour cells17, and 
increased sphingomyelin and/or cholesterol content, 
for example, in chemotherapy-​resistant ovarian and leu­
kaemia cancer cell lines, compared to sensitive lines29,30. 
As a result of reduced fluidity, drug uptake via passive 
diffusion and/or endocytosis can be disrupted17–20. 
Furthermore, it results in the enhanced formation of 
detergent-​resistant membrane domains, which can 
activate membrane-​bound ATP-​binding cassette (ABC) 
multidrug efflux transporters such as ATP-​dependent 
translocase (also known as p-​glycoprotein; ABCB1), 

thereby contributing to the multidrug resistance pheno­
type (see review31) that affects other anticancer drugs 
beyond chemotherapeutics. Intriguingly, pharmacolog­
ical modulation of membrane fluidity (for example, via 
supplementation with polyunsaturated fatty acids) can 
alter ABCB1-​mediated drug efflux32, suggesting that 
clinical lipid-​modifying agents or dietary interventions 
could be promising chemosensitizing strategies.

With their relatively lower total cellular proportions 
of polyunsaturated to saturated fatty acyls, chemo­
resistant cancer cells are less susceptible than sensitive 
cancer cells to toxic lipid peroxidation (which can trigger 
apoptosis and ferroptosis), which occurs in response to 
the oxidative stress induced by many chemotherapeu­
tic agents17,33. Indeed, chemoresistance has been linked 
to a dependency on glutathione peroxidase 4 (GPX4), 
a selenocysteine-​containing enzyme that dissipates 
lipid peroxides and prevents ferroptotic cell death34,35 
(see Box 2 for more detail). The decreased suscepti­
bility to lipid peroxidation seems to be bolstered by 
enhanced antioxidant defences that are characteristic of  
chemoresistant cancer cells (reviewed in ref.36).

With the increasing body of evidence linking the 
above membrane changes to drug resistance, pharma­
cological intervention has focused on key pathways 
and enzymes driving the altered lipid features of cancer 
cells. As such, the pharmacological targeting of fatty acid 
synthase (FAS, encoded by FASN) sensitizes a range of  
cancer cell types to chemotherapy in vitro37,38, ex vivo37 and  
in vivo39,40, while the ectopic overexpression of FASN in 
breast cancer cells can confer broad chemoresistance 
in vitro38. Surprisingly, there has been limited focus on 
the mechanistic basis of FAS inhibition-​mediated sen­
sitization and the extent to which this reflects changes 
to fatty acid metabolism and lipid composition remains 
unclear, with only a single study demonstrating a rescue 
of in vitro chemosensitization of ovarian cancer cells by 
exogenous palmitate37. Interestingly, chemosensitiza­
tion by the FAS inhibitor orlistat has been linked to the 
reduced expression of multidrug resistance proteins39, 
suggesting that altered membrane properties are likely 
to be important.

Targeting fatty acid oxidation has also received atten­
tion as a chemosensitization strategy given its key role 
in promoting tumour cell survival via energy generation 
and maintaining redox balance. Tumour tissue derived 
from patients with breast cancer that subsequently 
recurred exhibited enhanced expression of CPT1B 
mRNA compared to tumours that did not recur, and 
CPT1B mRNA was increased in chemoresistant ver­
sus primary breast tumours41, while tumoural CPT1A 
expression was associated with poorer overall survival 
in patients with gastric cancer42. Pharmacological inhi­
bition of fatty acid oxidation using CPT1 inhibitors  
consistently chemosensitized tumour cells41–43.

The accumulation of lipid droplets is another character­
istic though less well-​studied phenotype of chemoresis­
tant cancer cell lines44–46 (Fig. 2). Interestingly, triacsin C,  
a long-chain fatty acyl-​CoA synthetase inhibitor that 
blocks fatty acid activation and thereby lipid droplet 
biogenesis, can chemosensitize colorectal cancer cells 
in vitro and in mouse xenografts46. Lipid droplets may 

Box 2 | PUFAs and ferroptosis

Coined by Dixon et al. in 2012, ferroptosis was a term initially used to describe the 
mechanism by which RAS-​selective lethal compounds, including erastin and RSL3, 
cause cell death in oncogenic RAS-​mutant cell lines147. Ferroptosis is a non-​apoptotic, 
iron-​dependent, oxidative cell death process, which involves the accumulation of  
lipid reactive oxygen species (also called peroxidation)148. Several proteins have been 
identified as regulating ferroptosis (see review148), including glutathione peroxidase 4 
(GPX4)149, acyl-​coenzyme A synthetase long-​chain 4 (ACSL4)150,151 and ferroptosis sup-
pressor protein 1 (FSP1; also known as apoptosis-​inducing factor mitochondrial 2)152,153. 
In general, most attention has centred on identifying ferroptosis initiation and exe
cution mechanisms, including the glutathione-​GPX4, FSP1-​coenzyme Q10 and GTP 
cyclohydrolase-1-​tetrahydrobiopterin pathways. Further, many of these pathways have 
been implicated as potential targets for cancer. For example, pharmacological target-
ing of FSP1 strongly synergizes with GPX4 inhibitors to trigger ferroptosis in a diverse 
panel of human cancer cell lines153, whereas targeting ACSL4 sensitized a range of 
human breast cancer cell lines150 and diffuse large B cell lymphomas and renal cell car
cinomas xenograft tumour models154 to ferroptosis. Importantly, the large-​scale charac-
terization of ferroptosis sensitivity of cancer cell lines showed highly varied sensitivity 
to ferroptosis activators154.

Central to ferroptosis is the abundance of polyunsaturated fatty acyls (PUFAs) in  
glycerophospholipids, which are highly susceptible to redox attack of bis-​allylic 
hydrogen atoms due to the presence of double bonds148. In fact, feeding cells deuterated 
polyunsaturated fatty acids, which are less susceptible to oxidation as they lack bis- 
allylic hydrogen atoms, prevents ferroptosis155. The monounsaturated to PUFA ratio  
in glycerophospholipids is emerging as an important ferroptosis-​regulating rheostat. 
ACSL4 is required for the incorporation of PUFA-​CoAs into membrane lipids150, whereas 
cells cultured in monounsaturated fatty acid-​supplemented media are protected from 
ferroptosis through an ACSL3-​mediated process156. Conversely, polyunsaturated fatty 
acid supplementation can sensitize prostate and gastric cancer cells to ferroptosis 
activators89,155,157. Furthermore, reducing PUFA levels in glycerophospholipids lowers 
ferroptosis sensitivity; knockdown of ACSL4 reduces the activation of polyunsaturated 
fatty acids to PUFA-​CoAs, whereas knockdown of LPCAT3 decreases the incorporation 
of PUFA-​CoAs into phosphoethanolamines150,156,158. These observations implicate 
essential roles for PUFAs in ferroptosis; however, it remains unclear what contribution 
the main pathways that regulate intracellular PUFA levels play in ferroptosis. 
Specifically, the synthesis of PUFA-​CoAs catalysed by delta-6 and delta-5 desaturases, 
catabolism through mitochondrial and peroxisomal β-​oxidation, or storage in lipid 
droplets. Recent reports in part provide some insights as PUFA-​CoA incorporation into 
triacylglycerols protects prostate cancer cells from ferroptosis89 but others have shown 
that inhibition of diglyceride acyltransferase to block lipid droplet synthesis does not 
impact ferroptosis sensitivity152,156. We and others recently reported that knockdown  
of DECR1, which encodes the rate-​limiting enzyme in mitochondrial PUFA-​CoA 
β-​oxidation, leads to the accumulation of cellular polyunsaturated fatty acids and 
PUFA-​CoAs, resulting in increased lipid peroxidation and induction of ferroptosis in 
prostate cancer cells90,159.

Macropinocytosis
An endocytic process that 
involves the engulfment of 
extracellular content, including 
soluble molecules, nutrients 
and antigens, in vesicles known 
as macropinosomes.

Type 2 diabetes
A progressive metabolic 
condition in which the body 
becomes resistant to the 
normal effects of insulin and/or 
gradually loses the capacity to 
produce enough insulin in the 
pancreas.
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directly contribute to chemoresistance by serving as 
an extra source of lipids for fatty acid oxidation under 
nutrient stress conditions, or as a ‘sink’ to sequester 
hydrophobic drugs47 (Fig. 2). Indeed, the total num­
ber of lipid droplets and the number colocalized with 
mitochondria were increased in a cell line model of 
chemoresistant breast cancer compared to the paren­
tal cells44. Subsequent profiling of these and clinically 
chemoresistant breast cancer cells revealed enhanced 
expression of the lipid droplet-​localized protein PLIN4, 
which is involved in fatty acid mobilization from lipid 
droplets. Transcriptional silencing of PLIN4 reduced 
viability of the chemoresistant but not of the sensitive 
parental cells, indicating that lipid droplet-​derived fatty 
acids are an important substrate for energy generation 
in the mitochondria of chemoresistant cancer cells. In 
chemoresistant colorectal cancer cells, marked lipid 
droplet accumulation was accompanied by induction 
of the lipid droplet-​associated enzyme lysophosphati­
dylcholine acyltransferase 2 (LPCAT2), which catalyses 
the acylation of lysophosphatidylcholine to form phos­
phatidylcholine (PC), a component for lipid droplet 
biogenesis46. Enhanced synthesis of lipid droplets via 
LPCAT2 suppressed caspase activation and T cell infil­
tration in a syngeneic mouse tumour model due to the 
failure of dendritic cell maturation, both actions having 
the potential to promote resistance to chemotherapy 
and, potentially, immunotherapy46. Importantly, the level 

of expression of the lipid droplet-​related genes PLIN4 or 
LPCAT2 were able to discriminate the degree of T cell 
infiltration in clinical colorectal cancer metastases and, 
while further detailed clinical validation is needed, pro­
vides encouraging evidence that the further study of 
lipid droplet biogenesis pathways will yield fruitful new 
targets.

Radiation therapy
Cancer cell lines that are resistant to radiation therapy 
commonly feature enhanced rates of fatty acid oxidation 
coupled with increased expression of CPT1A48–51, similar 
to chemoresistance41–43. Metabolic and expression analy­
ses of radioresistant nasopharyngeal cancer (NPG) and 
breast cancer cells revealed enhanced fatty acid oxida­
tion and CPT1A protein levels compared to radiosensi­
tive cells, while inhibition of fatty acid oxidation (using 
genetic or pharmacological approaches) sensitized 
resistant cells in vitro to radiation48,49. The increase in 
fatty acid oxidation rate reported in radioresistant NPG 
cells was fuelled by an enhanced supply of fatty acids, 
facilitated by a greater number of contact sites between 
lipid droplets and mitochondria48. Similar findings have 
been reported in lung carcinoma cells, where combining 
etomoxir and radiation further reduced spheroid num­
ber and size compared to monotherapies52. The clinical 
significance of increased fatty acid oxidation and CPT1A 
expression in radioresistance is supported by the lower 

Metabolic syndrome
A cluster of conditions, 
including abdominal obesity, 
high blood pressure, high  
blood glucose, high serum 
triglycerides and low serum 
high-​density lipoprotein, that 
occur together and increase 
the risk of heart disease,  
stroke and type 2 diabetes.

Lipophagy
The autophagic degradation  
of intracellular lipid droplets.
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Fig. 2 | Common features of therapy-resistant cells. Metabolism-​based common features of therapy-​resistant cells  
in different cancer or therapy settings can include increased lipid droplet (LD) number and size, increased LD and 
mitochondrial (mito) contacts that facilitate increased fatty acid (FA) oxidation, increased de novo FA synthesis catalysed 
by acetyl-​CoA carboxylase (ACC) and FASN, all of which are associated with the altered expression of genes involved in FA 
metabolism. These changes also include increased levels of saturated fatty acyl side chains of membrane glycerophospho-
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that promote cell survival and multidrug resistance (MDR) drug pump-​mediated drug efflux. ER, endoplasmic reticulum.
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overall survival after radiation therapy of patients with 
NPG with higher levels of tumoural CPT1A expression48.

The potential for other metabolic processes beyond 
fatty acid oxidation to contribute to radioresistance has 
been reported in isogenic cell lines of head and neck 
squamous cell cancer53, where radioresistant cells exhib­
ited reduced fatty acid uptake and enhanced glucose 
uptake compared to the sensitive cells. These resistant 
cells also upregulated FAS compared to the sensitive line, 
leading to enhanced fatty acid biosynthesis from glucose 
and enhanced oxidation of endogenous fatty acids54,55.

Targeted therapies
Biology-​targeted therapies. With the findings that 
HER2 signalling activates the expression and/or activ­
ity of FAS to drive cancer cell proliferation56–58 and that 
a two-​way crosstalk exists between these pathways59,60, 
FAS inhibition has been considered a rational strategy 
to overcome acquired resistance to the HER2-​targeting 
therapeutics trastuzumab or lapatinib in preclinical 
cancer models59–62. For example, increased FASN expres­
sion in gastrointestinal stromal tumours from patients 
compared with normal tissues has been associated 
with shorter disease-​free survival, while depletion of 
FASN or the inhibition of FAS (using C75) re-​sensitized 
treatment-​resistant gastrointestinal stromal tumour 

cell lines to the tyrosine kinase inhibitor imatinib63. 
However, mechanistically, C75 acted, at least in part, 
by reducing the transcription of the drug target (KIT) 
rather than by the predicted targeting of lipid synthesis 
and PI3K signalling63. Critically, no aspects of fatty acid 
metabolism were reported in this study and so it is chal­
lenging to determine whether the suppression of de novo 
fatty acid synthesis is central to overcoming trastuzumab 
resistance in this setting.

Similar to chemoresistance, cancer cells that sur­
vive pharmacological inhibition of the PI3K path­
way have enhanced lipid droplet size and number as 
well as increased fatty acid oxidation, which sustains 
cell survival and tumour growth64. In this setting, 
ATG5-​mediated autophagy and phospholipase A2 
hydrolysis mobilized fatty acids from organelle glycero­
phospholipids to produce lysophospholipids, leading to 
enhanced fatty acid oxidation as well as spill over of fatty 
acids into lipid droplets for temporary storage. Together 
with the known hyperinsulinaemic and hypoglycaemic 
actions of PI3K inhibitors65, these mechanisms may con­
tribute to the resistance to this class of agents observed 
clinically64. Interestingly, resistance to lapatinib (HER2 
and EGFR inhibitor) in breast cancer cells in vitro most 
notably features transcriptional upregulation of the  
fatty acid transporter CD36 and, in turn, the uptake of fatty  
acids with concomitant lipid droplet accumulation66. 
The induction of CD36 was also evident in clinical breast 
cancer tissues after HER2 targeting therapy and tumours 
with higher levels of CD36 had poorer clinical out­
comes, supporting the notion that fatty acid uptake and  
metabolism participate in drug resistance66.

Fatty acid oxidation is also an adaptive survival path­
way in response to the targeted inhibition of heat shock 
protein 90 (HSP90)67. Using prostate cancer cells and 
patient-​derived prostate tumours, we recently reported 
that culture with the HSP90 inhibitor luminespib sig­
nificantly increased the abundance of proteins involved 
in oxidative phosphorylation and fatty acid metabolism. 
Further, combination treatment of luminespib with a 
clinical inhibitor of fatty acid oxidation, perhexiline, 
synergistically decreased the viability of prostate cancer 
cell lines and had significant efficacy in patient-​derived 
tumour explants. Interestingly, this combination also 
attenuated the heat shock response (a known media­
tor of resistance), potentially through the regulation of 
intratumoural reactive oxygen species levels.

Endocrine-​targeted therapies. Consistent with their 
anabolic actions, sex hormones such as oestrogens and 
androgens profoundly influence lipid metabolism in 
their target tissues and in hormone-​dependent breast 
and prostate cancers68,69 (Box 3). The central role of 
endocrine therapies (targeting the production or action 
of sex hormones) in treating locally recurrent or meta­
static disease reflects the dependence of breast and pros­
tate cancer cells on these hormonal signalling pathways 
for survival; however, the development of resistance is 
common. In transcriptional or proteomic comparisons 
of hormone-​naive versus endocrine-​resistant breast 
and prostate cancers, lipid metabolism features promi­
nently in analyses of upregulated pathways and processes 

Box 3 | Endocrine regulation of lipid metabolism

Intrinsic and extrinsic mechanisms influence tumour fatty acid metabolism. Alongside 
extracellular substrate availability, growth factors such as insulin, insulin growth 
factor 1 and epidermal growth factor, as well as steroid hormones, catecholamines  
and adipokines (that is, adiponectin, leptin and so on) can stimulate and/or suppress the 
flux of various branches of lipid metabolism. Some examples include insulin-​stimulating 
free fatty acid uptake160 or triacylglycerol synthesis161, androgens and peptide 
hormones stimulating de novo fatty acid synthesis68, and insulin and adrenaline  
having opposing actions on lipolysis120.

Endocrine signals modify lipid metabolism via signal transduction pathways and 
transcriptional regulation. To date, the transcriptional regulation of genes involved in 
these pathways, in particular via sterol regulatory element-​binding protein 1-​regulated 
gene transcription, is relatively well defined compared to acute, post-​translational 
signal transduction mechanisms (see reviews14). In non-​tumour tissues, the activity  
and/or subcellular localization of many enzymes, including glycerol-3-​phosphate 
acyltransferases, hormone-​sensitive lipase, adipose triacylglycerol lipase and LPIN1, is 
regulated by phosphorylation; however, many other enzymes that participate in lipid 
metabolism have phosphorylation sites, yet the functional significance of these 
modifications in both cancer and non-​cancer tissues remains poorly understood, 
especially in relation to acute hormone stimulation161. One exception is the recent 
report that activated epidermal growth factor receptor leads to the phosphorylation 
and stabilization of stearoyl-​CoA desaturase to enhance the production of 
monounsaturated fatty acids in non-​small-​cell lung cancer162.

The relative potencies of each hormone signalling axis and the magnitude of the 
biological response or contribution to altered fatty acid metabolism in tumour and 
non-​tumour cells remain to be defined. These insights are critical as it is likely that the 
systemic (that is, circulating) and local microenvironment hormonal milieu influence 
tumour cell biology, are influenced by sex, and are altered in an obese and/or metabolic 
disease setting. For example, expanded adipose tissue in obesity changes steroid 
hormone (that is, oestradiol to testosterone ratio) and adipokine balances (that is,  
leptin to adiponectin) and hyperinsulinaemia is evident in insulin resistance; the degree 
to which hyperinsulinaemia influences cancer prognosis was recently discussed163.  
The influence that these hormone milieus have on whole-​body nutrient homeostasis, 
thereby altering extratumoural metabolic substrate availability, and the commonly 
reported amplification or mutation of endocrine receptors and activation of the 
PI3K-​Akt pathway (see reviews23,24) in many cancers point to highly complex 
interactions between substrate and hormonal control of tumour lipid metabolism.
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in clinical samples70–72 and preclinical models45,73–75. 
Combination studies of lipid-​altering agents (for exam­
ple, CPT1 or FAS inhibitors) with endocrine therapies 
show promising preclinical efficacy in vitro and in 
mouse models of breast and prostate cancers (see below), 
but clinical support for these observations, particularly 
for breast cancer, is lacking.

In prostate cancer, endocrine therapy resistance 
(resulting in an incurable clinical state termed castrate- 
resistant prostate cancer; CRPC) is characterized by the 
reactivation of androgen receptor signalling76. Androgen 
receptor signalling coordinately controls the transcrip­
tion of a suite of lipid metabolic genes in normal and 
malignant prostate epithelial cells72,77,78. Further, com­
panion metabolic assays have demonstrated andro­
genic stimulation of de novo fatty acid synthesis, fatty 
acid uptake and oxidation, and aerobic glycolysis79–82. 
Intriguingly, there is evidence that, unlike the wild-​type 
androgen receptor, which when activated primarily pro­
motes lipid synthesis and glycolysis, signalling via the 
androgen receptor slice variant, AR-​V7 — the predom­
inant androgen receptor variant expressed in CRPC — 
promotes the utilization of citrate to favour amino acid 
biogenesis rather than lipid synthesis82. Thus, androgen 
receptor variants may not only activate canonical andro­
gen receptor-​directed pathways but could provide fur­
ther metabolic plasticity as a survival advantage. Clinical 
CRPC tissues or experimental models typically feature 
the enhanced expression of androgen receptor-​regulated 
metabolic genes compared to androgen-​sensitive 
tumours or cell lines74,79, which has prompted strong 
interest in the therapeutic targeting of lipid metabolic 
processes, most notably de novo fatty acid synthesis but 
also, increasingly, fatty acid uptake and catabolism for 
the treatment of advanced prostate cancer83. Several 
recent studies have demonstrated the efficacy of target­
ing lipid metabolic enzymes as monotherapy in CRPC 
cell line and mouse models or, in combination, restoring 
sensitivity to androgen receptor-​targeting agents74,84–87. 
For example, targeting fatty acid oxidation via CPT1 
inhibition or targeting de novo fatty acid synthesis via 
FAS inhibition enhanced sensitivity to clinical androgen 
receptor antagonists in a range of preclinical models84–86. 
Mechanistically, targeting lipid synthesis has been shown 
to reduce the expression and/or activity of the andro­
gen receptor86,88, with FAS inhibition also decreasing the 
expression of the constitutively active AR-​V7 variant86. 
While a logical premise, it remains unclear whether 
crosstalk with androgen receptor expression and/or sig­
nalling is critical to the success of these re-​sensitizing 
combinations or if other, as yet undefined, factors are 
at play.

A mechanistic link between the enhanced uptake of 
extracellular lipids and the development of CRPC has 
recently emerged, with androgen-​sensitive prostate can­
cer cells revealing treatment-​related increases in intra­
cellular lipid content, notably glycerophospholipids 
and neutral lipids, as an adaptive response to androgen 
receptor targeting in vitro81,89. In particular, the develop­
ment of therapy resistance in cell lines was accompanied 
by increases in glycerophospholipid species containing 
longer and more unsaturated fatty acyl chains89. The 

potential significance of this increased polyunsaturated 
fatty acid uptake in CRPC is underscored by recent work 
by us and others67,90 reporting that the gene encoding 
DECR1, which catalyses the rate-​limiting step in poly­
unsaturated fatty acyl-​CoA oxidation, is robustly over­
expressed in clinical CRPC tissues compared to primary 
tumours and is associated with shorter relapse-​free and 
overall survival. DECR1 knockdown in prostate cancer 
cells in vitro selectively inhibited β-​oxidation of poly­
unsaturated fatty acyl-​CoAs and inhibited the prolifer­
ation and migration of prostate cancer cells, including 
treatment-​resistant lines, compared to DECR1-​replete 
control cells. Collectively, these observations place 
mitochondrial polyunsaturated fatty acyl-​CoA oxida­
tion as a key mechanism in the generation of energy 
and in protecting against lipid peroxidation and ferrop­
tosis (Box 2) to underpin the development of androgen 
receptor-​targeted treatment resistance.

In breast cancer, the interplay between oestrogenic 
signalling and lipid metabolism is complicated by the 
presence of two cognate receptors (ERα and ERβ), each 
of which features distinct transcriptional programmes, 
and the multiple molecular disease subtypes that exist 
but have not yet been adequately modelled for metab­
olism. There is evidence that sterols can promote cancer 
growth and metastasis in preclinical models91 as they can 
act as ERα ligands92 and stimulate ER signalling73. A com­
monly reported feature of endocrine therapy-​resistant 
breast cancer cell line models compared to isogenic sen­
sitive lines is sterol regulatory element-​binding protein 1  
(SREBP)-​driven upregulation of genes involved in 
lipid (notably cholesterol) biosynthesis45,73, and target­
ing of SREBP was effective in reducing the growth of 
these resistant cell lines45,73. However, the direct role  
of fatty acid metabolism in treatment resistance was not 
reported in these studies. One notable study reported 
that sublines of two invasive lobular breast cell lines that  
grew out after prolonged oestrogen deprivation all 
featured partial or complete loss of ERα activity and, 
interestingly, altered the expression of lipid metabolism 
genes, including increased SREBP1 and FASN, but also 
increased sensitivity to CPT1 inhibition of cell growth75. 
Again, little beyond gene expression was reported and 
these lipid phenotypes varied considerably between 
individual sublines, further emphasizing the caution 
that must be applied in interpreting the results from 
single treatment-​resistant sublines, which dominate the 
literature. Nevertheless, analysis of RNA sequencing data 
from a neoadjuvant clinical trial of the aromatase inhibi­
tor letrozole in breast cancer patients showed significant 
association between increased tumoural expression of 
SREBP1 post-​treatment and a lack of clinical response, 
supporting the notion that this may be an important 
clinical mechanism of acquired resistance75.

Obesity and cancer progression
There remains a need for a detailed mechanistic under­
standing of the key metabolic switches that occur in 
response to therapy, the plasticity of such switching 
events and the metabolic impact of tumour heterogene­
ity in a more complex microenvironment. A key example 
of this is the influence of obesity, where it is commonly 
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reported that cancer progression is altered in patients 
with obesity (see review93), including the development 
of treatment resistance. In this setting, tumour fatty acid 
metabolism adapts to ‘macro-​level’ host attributes and, 
at the local microenvironment level, to influence disease 
behaviour.

Host physiology
The risk and cancer-​related mortality of many cancer 
types are altered in populations with obesity93. This is 
supported by data arising from a range of preclinical 
cancer models fed an obesogenic high-​fat diet94–97. The 
mechanisms associated with reduced cancer survival 
in patients with obesity remains to be defined but have 
been proposed to include hyperinsulinaemia, low-​grade 
inflammation, altered adipokine levels, hyperglycaemia 
and dyslipidaemia (Fig. 3a; see review93). However, evi­
dence that any of these mechanisms are viable therapeutic  
targets in patients with obesity is lacking.

Of direct relevance to this Review, the Paris Prospective  
Study of ~7,700 men reported that the highest quintile 
of circulating free fatty acids was associated with great­
est all-​cancer mortality98, and other studies have assessed 
the associations between fatty acid intake (that is, diet) 
and/or circulating fatty acid levels and cancer risk and/or  
mortality94,99–101. While this would suggest that greater 
fatty acid availability is linked to cancer, in general, these 
studies have failed to identify consistent associations or 
fatty acid species and/or total intake relationships (that 
is, food intake) or to unravel patterns that differed in 
populations with obesity compared to those without. To 
date, there is little, if any, direct functional evidence in 
preclinical or clinical settings that the increased in vivo 
availability of fatty acids alone or specific fatty acid spe­
cies influence cancer cell behaviour in hosts with obesity. 
While this remains a major limitation in the field, one 
recent study reported a novel mechanism where tumour 
microenvironment levels of fatty acids are influenced by 
cancer cell fatty acid metabolism and thereby alter CD8+ 
T cell activity. Specifically, high-​fat diet feeding of mice 
resulted in large tumours of syngeneic MC38 colorectal 
adenocarcinoma cells, E0771 breast adenocarcinoma, 
B16 melanoma and Lewis lung carcinoma compared 
to control diet and this was associated with increased 
fatty acid uptake and metabolism and reduced glycoly­
sis in tumours96. Further, partitioning of fatty acids into 
tumours occurred at the expense of CD8+ T cells, with 
reduced T cell fatty acid content associated with impaired 
antitumour immunity. Critically, this partitioning was 
blocked by the overexpression of prolyl hydroxylase 3 
(PHD3), which led to reduced tumour fatty acid oxi­
dation and improved antitumour immune function in 
tumour-​bearing mice fed a high-​fat diet compared with 
mice bearing tumours expressing basal PHD3 levels. This 
observation suggests that the availability and competition 
for fatty acids between tumour and immune cells in the 
microenvironment supports tumour growth; however, 
the association with circulating fatty acids is lacking.

Free fatty acid availability in obesity is complex, 
with studies consistently reporting that total plasma 
free fatty acid levels are not increased in patients with 
obesity102,103 and are not associated with BMI98. There 

is certainly nuance surrounding adipose lipolysis and 
fatty acid turnover in patients with obesity informed 
by studies using stable isotope tracing techniques 
and accounting for differences in adipose mass102,104. 
Nonetheless, it is commonly reported that patients with 
obesity have increased plasma triacylglycerol (TAG) 
levels102,103. Additionally, it is important to acknowledge 
that the size of the circulating TAG pool is much greater 
than the free fatty acid pool and is further increased in 
patients with obesity compared with individuals without 
obesity103. These insights therefore suggest that increased 
systemic fatty acid availability to cancer cells in patients 
with obesity arises from lipoprotein-​contained TAGs 
and not from adipose-​derived free fatty acids. Since 
lipoprotein-contained TAGs are taken up by cells via 
multiple mechanisms (see reviews14,15), the increased 
availability of fatty acids to cancer cells in the circu­
lation of patients with obesity is likely to involve a 
diverse array of uptake mechanisms that can introduce  
redundancy and flexibility to the system.

Underpinning the proposed mechanisms that link 
reduced cancer survival in patients with obesity, including  
fatty acid availability, is the assumption that obesity is a 
homogenous environment, defined by hyperinsulinae­
mia, low-​grade inflammation, altered adipokine levels, 
hyperglycaemia and dyslipidaemia. However, it has been 
estimated that one-third of patients with obesity are meta­
bolically healthy, with the remaining being metabolically  
unhealthy105, highlighting the metabolic diversity within a 
population defined as having obesity by BMI. While cur­
rently there is no universally accepted criteria for identi­
fying metabolically (un)healthy individuals, generally it 
includes a combination of the presence of adiposity, insu­
lin sensitivity and inflammation as well as the levels of cir­
culating glucose and lipids106,107. As such, by determining 
whether ‘metabolically healthy obesity’ influences cancer 
behaviour the same way as ‘metabolically unhealthy obe­
sity’ or whether effects are similar to ‘lean, metabolically 
unhealthy’ individuals, we believe that important insights 
can be made into whether disease behaviour is influenced 
by expanded adipose mass alone or other metabolic fac­
tors. Interestingly, overall cancer risk in older adults is 
lower among those with overweight/obesity who are 
metabolically healthy than among those with overweight/
obesity who are metabolically unhealthy108 but it is not 
clear whether similar patterns are evident in terms of can­
cer progression. Of relevance for this review, a range of 
mechanisms that result in impaired lipid storage and cir­
culating levels of lipids have been proposed to distinguish 
between these subtypes106,107. It remains to be determined 
whether circulating lipid levels (for example, lipoprotein 
TAG) or other yet to be identified mechanisms alter can­
cer progression in obese populations or in metabolically 
unhealthy populations. Nonetheless, tumour behaviour is 
heavily influenced by host physiology and, therefore, the 
presence of obesity implies effects on systemic metabolic 
drivers as well as substrate availability.

Adipocyte–tumour interaction
A commonly proposed mechanism linking obesity 
and altered tumour biology is an interaction between 
local (stromal) adipocytes and cancer cells. Many 
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tumours co-​localize with adipose tissue at various 
stages of the disease. For example, breast cancer arises 
in adipose-​rich mammary tissue109, prostate cancer 
invades into periprostatic adipose tissue110, ovarian 
cancer metastasises into mesenteric adipose tissue111, 
pancreatic cancer invades local adipose tissue112 and 

many cancers metastasize to the bone, which is rich in 
bone marrow adipocytes113. Adipocytes are the predom­
inant cell type of adipose tissue, and those adipocytes 
that closely localize to tumours are smaller compared to 
those distal to the tumour–adipocyte interface112,114,115. 
This suggests that tumours delipidate nearby adipocytes; 
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in fact, it has been demonstrated that adipocyte-​derived 
fatty acids do accumulate in cancer cells in vitro (recent 
examples include refs4,115–118). The ability of tumours to 
influence peritumoral adipocytes results in a modified 
phenotype (cancer-​associated adipocytes)119. However, 
we recently reported that we did not observe any mean­
ingful difference in ex vivo periprostatic adipose tissue 
biology, including basal and stimulated lipolysis rates, 
the profile of fatty acid species secreted, and adipocyte 
size, that associated with the aggressiveness of local­
ized prostate cancer or obesity120. These findings do not 
negate the possibility that the in vivo milieu, influenced 
by local and systemic signals, including tumour-​derived 
signals, will result in altered lipolytic flux and other lipid  
attributes of periprostatic adipose tissue.

Adipocytes can influence cancer cell behaviour 
in vitro4,112,114–118,121–123. Numerous adipocyte-​derived 
factors have been proposed to mediate these effects, 
including adipokines, adipocytokines, hormones, 
proteases and lipids109, and we showed that adipocyte 
lipolysis was required for adipocyte-​mediated effects on 
breast cancer cell proliferation4. The accumulation of 
adipocyte-​derived fatty acids in cancer cells is facilitated 
by increased levels of a range of fatty acid uptake-​related 
proteins that are required for the pro-​growth effects of 
adipocytes116–118 (Fig. 3b). Adipocyte-​derived fatty acids 
can act as substrates for lipid synthesis and storage in 
cancer cells4,117,118,121. Interestingly, gastric cancer cells 
co-​cultured with adipocytes accumulated monoun­
saturated oleoyl-​acyl chains in cellular lipids but not  
saturated palmitoyl or stearoyl-​acyl chains114. This was 
likely due to either the selective uptake of adipocyte- 
derived oleate and/or uptake of palmitate and stearate, 
alongside oleate, which were then elongated and desatu­
rated into oleoyl-​CoA. This enrichment in oleoyl-​acyl 
chains in lipid droplets is likely to play a major role in 
maintaining membrane monounsaturated to saturated 
and monounsaturated to polyunsaturated fatty acyl side 
chain ratios. Further, the accumulation of lipid droplets 
in breast cancer cells co-​cultured with adipocytes was 
associated with changes in cancer cell protein levels of 
adipose TAG lipase (ATGL) and hormone-​sensitive 
lipase (HSL)117, which can hydrolyse TAG-​contained 
fatty acids and contribute to the intracellular fatty acid 
pool117,121. Silencing of ATGL in breast cancer cells 
impaired the migration ability of cells co-​cultured with 
adipocytes117,121, suggesting that adipocyte-​derived fatty 
acids influence cancer cell biology via actions at the lipid 
droplet.

The pro-​growth and migration effects of adipocytes 
on cancer cells involves mitochondrial fatty acid oxida­
tion (see review124). Adipocytes stimulate long-​chain 
fatty acid oxidation in a range of cancer cells4,116,118,121,123, 
which is associated with increased protein levels of 
CPT1A4,121 or CPT1B116 (Fig. 3b). Importantly, CPT1A 
expression in breast cancer cells was required to metabo­
lize adipocyte-​derived fatty acids and thereby supported 
the increased invasion and epithelial-​to-​mesenchymal 
transition induced by adipocytes121. The increase in fatty 
acid oxidation following adipocyte co-​culture may also 
arise from the increased phosphorylation of AMPK and 
acetyl-​CoA carboxylase, leading to reduced allosteric 

inhibition of CPT1 (ref.121). Downstream of CPT1, we 
reported increased protein levels of mitochondrial elec­
tron transport chain complex subunits in breast cancer 
cells4, which was likely due to increased mitochondrial 
number as has been observed in melanoma cancer cells 
co-​cultured with adipocytes123. However, others did not 
see these changes in similar conditions121.

While there is a growing body of evidence that adipo­
cytes in the tumour microenvironment are active  
participants, many studies that have explored this rela­
tionship have done so using an in vitro experimental 
design of minus/plus adipocytes. This in vitro experi­
mental design may model the commonly observed juxta­
positioning of cancer cells and adipocytes observed in  
invasive melanoma118, prostate125 and ovarian cancers126, 
as examples, but it is questionable whether co-​culture 
models are physiologically representative of an obese 
setting and, by inference, whether cells cultured with­
out adipocytes are representative of a lean setting. It is 
important to also highlight that adipose tissue is a het­
erogeneous mix of cell types comprising mature adi­
pocytes, resident immune cells (such as macrophages), 
fibroblasts, and the stem cell population termed ‘pread­
ipocytes’109 and that the common changes in the adipose 
tissue microenvironment during body-​weight gain and 
its potential influence on tumour initiation and pro­
gression have recently been discussed (see review127). 
The question here is whether fatty acid metabolism of 
obese adipocytes alters cancer cell biology beyond that 
observed with lean adipocytes. We and others have 
shown that culture with obese adipocytes (either in vitro 
models or adipose tissue from obese, high-​fat diet-​fed 
mice) enhances cancer cell fatty acid oxidation, lipid 
storage, and cell proliferation and migration compared 
to cancer cells cultured with lean adipocytes4,122,128–130. 
Interestingly, the pro-​growth effects of obese adipose 
tissue from obese ZDF rats on MCF-7 breast cancer 
cells were reversed by the supplementation of rats with 
resveratrol prior to adipose tissue harvesting and condi­
tioned media generation130. The resveratrol-​stimulated 
reduction in MCF-7 cell proliferation was associated 
with changes in the adiponectin to leptin ratio, which 
was similar to that of lean animals. These observations 
suggest that targeting patient physiology, including 
adipose tissue alongside altering growth factor and 
hormone signalling65, has potential for cancer control, 
including obesity-​stimulated cancer progression.

Obesity and treatment resistance
Obesity is associated with poorer clinical survival benefit 
from therapy for a range of cancers131–134. Mechanistically, 
this link is likely multifactorial, with some differences 
related to the systemic effects of obesity on drug pharma­
cokinetics and metabolism, reduced dosage due to poorer 
health, or lack of dosage adjustment for increased body 
weight135. Moreover, numerous agents are sequestered 
and metabolized in adipocytes136,137, while increased  
adipocyte size and hypoxia reduces blood flow and 
enhances inflammation138, potentially limiting the 
effective levels of drug exposure in patients with higher  
adiposity. However, drug availability and dosage factors 
cannot fully account for treatment resistance in obesity.

Resveratrol
A phenolic compound of the 
stilbene family present in wines 
and various parts of the grape 
that exhibits antioxidant and 
antiproliferative activities.
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There is increasing evidence of adipocyte-​driven 
mechanisms being involved in acquired treatment resis­
tance. Specifically, haematological or solid tumour cells 
co-​cultured with adipocytes developed resistance to a 
range of chemotherapies and targeted therapies137,139–142, 
while induced obesity promotes chemoresistance in ani­
mal models of cancer (summarized in ref.143). Notably, 
this behaviour was most common in cancer types that 
are intimately co-​located with adipocytes in primary or 
secondary tumour growth sites (see above; reviewed 
in ref.144). Much attention has focused on the impor­
tance of secreted adipokines, such as leptin or IL-6, in 
promoting chemoresistance in cancer cells41, at least 
in part by altering cancer cell fatty acid uptake and 
oxidation41. Together, the observations that cancer cells 
stimulate adipocyte lipolysis and transfer of fatty acids  
to cancer cells4,111 and adipocytes stimulate cancer  
cell fatty acid uptake and oxidation4,41, in addition to the 
fatty acid metabolism features of treatment-​resistant 
cells, which include increased fatty acid oxidation, 
lipid droplet expansion and changes in membrane 
composition (Fig. 2), imply that cancer cell fatty acid 
metabolism drives treatment resistance in the setting 
of obesity. Additionally, chemotherapeutic agents have 
direct effects on adipocyte lipid metabolism, resulting in 
enhanced free fatty acid availability that promotes cancer 
cell survival in animal models of cancer (see review143). 
On the other hand, co-​culturing cancer cells with adipo­
cytes has been linked to altered subcellular distribution 
of the chemotherapeutic doxorubicin into vesicles in 
breast cancer cells, culminating in enhanced drug efflux 
mediated by the major vault protein142. Importantly, in 
light of the preceding section, the effect of adipocytes 
on promoting treatment resistance is exacerbated in  
adipocytes derived from donors with obesity versus lean 
donors142,145. This is further supported by observations in 
a diet-​induced obesity model of breast cancer, which fea­
tures enhanced lipogenesis and lipolysis in tumour cells 
and increased resistance to doxorubicin146. As such, it is 

conceivable that the enhanced tumour fatty acid metab­
olic activity that occurs in the lipid-​rich obese setting2–4 
likely plays a central role in obesity-​induced treatment 
resistance.

Conclusion and perspectives
In recent years, there has been a growing appreciation 
that fatty acid metabolism profoundly influences tumour 
progression beyond ATP production via β-​oxidation 
and bulk availability for glycerophospholipid synthe­
sis. Specifically, this includes the maintenance of fatty 
acid homeostasis with respect to redox stress, thereby 
preventing ferroptosis as well as influencing membrane 
fluidity and permeability to promote motility and meta­
stasis. Many of these changes in fatty acid metabolism 
are also implicated in acquired treatment resistance, 
including in obesity-​associated resistance, and may 
underpin the changes in cancer cell behaviour reported 
in patients with obesity. Importantly, the many recent 
reports of targeting fatty acid metabolism to over­
come treatment resistance point to the likelihood that  
co-targeting strategies are a viable future approach  
and may be particularly crucial in a setting of obesity and  
metabolic dysfunction. All of these outcomes are reliant 
on future investigations involving emerging pharmaco­
logical agents that overcome some of the known defi­
ciencies and off-​target effects of current experimental 
and clinical inhibitors. Moreover, using more complex 
three-​dimensional and patient-​derived model systems 
and clinical specimens in these investigations is critical 
if co-​targeting strategies are to be effectively employed in 
clinical practice. Finally, we believe that valuable oppor­
tunities remain to integrate the genomic classification of 
tumours with environmental factors, including diet and 
systemic metabolism, to improve patient prognostica­
tion and to design more wholistic precision medicine 
strategies.
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