BRIEF INTRODUCTION	The LGMSZ model	Phase Behavior	Conclusions	Extras
00	000	0000000	00	0

Phase behavior of a diluted model for biaxial nematics

William Gabriel Carreras Oropesa Physics Institute University of São Paulo

Supervisor: Prof. Dr. André Pinho Vieira Collaborator: Dr. Eduardo Nascimento

April 6, 2022

Phase behavior of a lattice-gas model for biaxial nematics

William G. C. Oropesa,^{1,*} Eduardo S. Nascimento,^{2,†} and André P. Vieira^{1,‡}

¹Universidade de Sao Paulo, Instituto de Fisica, Rua do Matao, 1371, 05508-090, Sao Paulo, SP, Brazil
²Dept. of Physics, PUC-Rio, Rua Marquês de São Vicente 225, 22453-900 Rio de Janeiro, Rio de Janeiro, Brazil

(Dated: April 1, 2022)

Abstract

We employ a lattice-gas extension of the Maier-Saupe model with discrete orientation states to study the phase behavior of a statistical model for biaxial nematogenic units in mean-field theory. The phase behavior of the system is investigated in terms of the strength of isotropic interaction between anisotropic objects, as well as the degree of biaxiality and the concentration of those units. We obtain phase diagrams with isotropic phases and stable biaxial and uniaxial nematic structures, various phase coexistences, many types of critical and multicritical behaviors, such as ordinary vapor-liquid critical points, critical end points and tricritical points, and distinct Landau-like multicritical points. Our results widen the possibilities of relating the phenomenological coefficients of the Landau-de Gennes expansion to microscopic parameters, allowing an improved interpretation of theoretical fittings to experimental data.

BRIEF INTRODUCTION	The LGMSZ model	Phase Behavior	Conclusions	Extras
• 0	000	0000000	00	0

MOLECULAR IDEALIZATION (LIKE-BRICKS)

• Orientation of a nematogen

$$\mathbf{\Lambda} = \mathbf{I} - \frac{\mathrm{Tr}\{\mathbf{I}\}}{3}\mathbf{1} = \lambda \boldsymbol{\omega}_1,$$

where

$$m{\omega}_1 = rac{1}{2} egin{pmatrix} -1-\Delta & 0 & 0 \ 0 & -1+\Delta & 0 \ 0 & 0 & 2 \end{pmatrix},$$

and

$$\Delta = \frac{b^2 - a^2}{a^2 + b^2 - 2c^2}.$$

BRIEF INTRODUCTION	THE LGMSZ MODEL	Phase Behavior	Conclusions	Extras
0•	000	0000000	00	0

ZWANZIG APPROXIMATION

THE LGMSZ MODEL

Hamiltonian

$$\mathcal{H} = -A \sum_{(i,j)} \gamma_i \mathbf{\Omega}_i : \gamma_j \mathbf{\Omega}_j + U \sum_{(i,j)} \gamma_i \gamma_j \quad \text{com} \quad A > 0,$$

Thermodynamic behavior of the system

$$\mathcal{Z} = \sum_{\{\boldsymbol{\Omega}_i\}} \sum_{\{\gamma_i\}} \exp\left(\beta A \sum_{(i,j)} \gamma_i \boldsymbol{\Omega}_i : \gamma_j \boldsymbol{\Omega}_j - U \sum_{(i,j)} \gamma_i \gamma_j\right).$$

(i) {Ω_i} → Orientational degree of freedom.
(ii) {γ_i} → Occupation degree of freedom.

BRIEF INTRODUCTION	THE LGMSZ MODEL	Phase Behavior	Conclusions	Extras
00	000	0000000	00	0

ANNEALED CASE

System with *N* sites and N_m nematogens such that ($N \le N_m$)

$$\mathcal{Z}_A = \sum_{\{\mathbf{\Omega}_i\}} \sum_{\{\gamma_i\}} ' \exp\left(eta A \sum_{(i,j)} \gamma_i \mathbf{\Omega}_i : \gamma_j \mathbf{\Omega}_j - U \sum_{(i,j)} \gamma_i \gamma_j
ight).$$

where

$$\frac{1}{N}\sum_{i=1}^{N}\gamma_i = \frac{N_m}{N} = \phi \longrightarrow \text{concentration}.$$

Grand canonical ensemble

$$\Xi_A = \sum_{\{\boldsymbol{\Omega}_i\}} \sum_{\{\gamma_i\}} \exp\left(\beta A \sum_{(i,j)} \gamma_i \boldsymbol{\Omega}_i : \gamma_j \boldsymbol{\Omega}_j - U \sum_{(i,j)} \gamma_i \gamma_j + \beta \mu \sum_{i=1}^N \gamma_i\right).$$

BRIEF INTRODUCTION	THE LGMSZ MODEL	Phase Behavior	Conclusions	Extras
00	000	0000000	00	0

MEAN-FIELD SOLUTION

Integral representation of Ξ_A

$$\Xi_A \propto \int_{\mathbb{R}^4} \exp\left[-Neta\Psi(oldsymbol{Q},\phi;\{oldsymbol{lpha}_i\})
ight] d[oldsymbol{Q}] \, d\phi.$$

where $\{ \boldsymbol{\alpha}_i \} := \{ \boldsymbol{\beta}, \boldsymbol{\Delta}, \boldsymbol{\mu} \}$ and

$$oldsymbol{Q} = \langle oldsymbol{\Omega}_i
angle = rac{1}{2} egin{pmatrix} -S - \eta & 0 & 0 \ 0 & -S + \eta & 0 \ 0 & 0 & 2S \end{pmatrix}$$

- (i) $S = \eta = 0 \longrightarrow$ isotropic phase (*ISO*),
- (ii) $S \neq 0$ e $\eta = 0$ (or $\eta = \pm 3S$) \longrightarrow uniaxial nematic phase (N_U^{\pm}) ,
- (iii) $\eta \neq 0 \longrightarrow$ biaxial nematic phase (*N*_{*B*}).

BRIEF INTRODUCTION	THE LGMSZ MODEL	PHASE BEHAVIOR	Conclusions	EXTRAS
00	000	•••••	00	0

Brief introduction	THE LGMSZ MODEL	Phase Behavior	Conclusions	Extras
00	000	•0000000	00	0

▶ P. I. C. Teixeira, Liquid Crystals **25**, 721 (1998).

M. A. Bates, Physical Review E 64, 051702 (2001).

BRIEF INTRODUCTION	The LGMSZ model	PHASE BEHAVIOR	Conclusions	Extras
00	000	0000000	00	0

- Landau Point
 - $\Delta = 1.$ $(\beta A 1)e^{\beta \mu} 1 = 0.$ $\beta A = 1/\phi.$
- Landau Tricritical Point
 - ► $(\phi, \beta, \mu, \Delta) = (\frac{1}{2}, \frac{2}{A}, 0, 1)$

BRIEF INTRODUCTION	The LGMSZ model	PHASE BEHAVIOR	Conclusions	Extras
00	000	0000000	00	0

- Landau Point
 - $\Delta = 1.$ $(\beta A 1)e^{\beta \mu} 1 = 0.$ $\beta A = 1/\phi.$
- Landau Tricritical Point
 - $(\phi, \beta, \mu, \Delta) = (\frac{1}{2}, \frac{2}{A}, 0, 1)$

 D. D. Rodrigues, A. P. Vieira, and S. R. Salinas, Crystals 10, 632 (2020).

BRIEF INTRODUCTION	The LGMSZ model	PHASE BEHAVIOR	Conclusions	Extras
00	000	0000000	00	0

INTRINSICALLY BIAXIAL NEMATOGENS

BRIEF INTRODUCTION	The LGMSZ model	PHASE BEHAVIOR	Conclusions	Extras
00	000	0000000	00	0

INTRINSICALLY BIAXIAL NEMATOGENS

BRIEF INTRODUCTION	The LGMSZ model	PHASE BEHAVIOR	Conclusions	Extras
00	000	00000000	00	0

Maximum degree of biaxiality ($\Delta = 1$)

BRIEF INTRODUCTION	THE LGMSZ MODEL	Phase Behavior	Conclusions	Extras
00	000	00000000	00	0

Maximum degree of biaxiality ($\Delta = 1$)

 H. Zhang and M. Widom, Physical Review E 49, R3591 (1994).

00 0000 00 00	0

Maximum degree of biaxiality ($\Delta = 1$)

BRIEF INTRODUCTION	THE LGMSZ MODEL	PHASE BEHAVIOR	Conclusions	EXTRAS
00	000	00000000	00	0

MULTICRITICAL LINES (ISOTROPIC INTERACTION)

BRIEF INTRODUCTION	THE LGMSZ MODEL	PHASE BEHAVIOR	Conclusions	Extras
00	000	0000000	00	0

MULTICRITICAL LINES (DEGREE OF BIAXIALITY)

CONCLUSIONS

- We considered a lattice-gas version of the Maier–Saupe model for biaxial nematics with discrete orientations, in addition to an energetic term that described an isotropic interaction.
- We find different types of high-density-low-density transitions (off-lattice models).
- Large number of critical phenomena, mainly for the maximum degree of biaxiality of nematogens (all analytically described).
- Our results widen the possibilities of relating the phenomenological coefficients of the Landau–de Gennes expansion to microscopic parameters.

BRIEF INTRODUCTION	The LGMSZ model	Phase Behavior	CONCLUSIONS	Extras
00	000	0000000	0•	0

The End

BRIEF INTRODUCTION	THE LGMSZ MODEL	Phase Behavior	Conclusions	EXTRAS
00	000	0000000	00	•

MEAN-FIELD FREE-ENERGY FUNCTIONAL

$$\Psi(S,\eta,\phi;\{\boldsymbol{\alpha}_i\}) = \frac{A}{4}(3S^2+\eta^2) + \frac{U}{2}\phi^2 - \mu\phi$$
$$+ \frac{1}{\beta}\left[(1-\phi)\ln\left(\frac{1-\phi}{6}\right) + \phi\ln(\phi)\right] - \frac{\phi}{\beta}\ln[\Lambda(S,\eta)]$$

where

$$\begin{split} \Lambda(S,\eta) &= 2e^{\frac{3\beta A}{2}S} \cosh\left(\frac{3\beta A}{2}\eta\Delta\right) \\ &+ 2e^{-\frac{3\beta A}{4}(S+\eta)} \cosh\left[\frac{3\beta A}{4}\left(S-\frac{\eta}{3}\right)\Delta\right] \\ &+ 2e^{-\frac{3\beta A}{4}(S-\eta)} \cosh\left[\frac{3\beta A}{4}\left(S+\frac{\eta}{3}\right)\Delta\right]. \end{split}$$