Molecular dynamics of surfactants at fluid-fluid interface.

Jacqueline Teixeira Santos

Department of Materials Physics and Mechanics Institute of Physics University of São Paulo Jacqueline.teixeira@usp.br

Outline

INTRODUCTION AND MOTIVATION Highlight

Contextualization Literature review Surfactants Phase diagrams of microemulsion

METHODOLOGY

Molecular Dynamics

PARTIAL RESULTS

One-Component Oil Interfaces with Surfactants Multi-Component Oil Interfaces with Surfactants

NEXT STEP

Contextualization

LITERATURE REVIEW(PRE-SALT)

Vasquez, Guilherme, et al. "Petrogeophysics of the Brazilian pre-salt rocks." SEG International Exposition and Annual Meeting. OnePetro, 2019.

Surfactants

NAGARAJAN, R.; RUCKENSTEIN, E. Theory of surfactant self-assembly: a predictive molecular thermodynamic approach. Langmuir, v. 7, n. 12, p. 2934-2969, 1991.

Exploring phase diagrams of microemulsion systems

Solubilization,

• Transition of Winsor:

positive curvature

Exploring phase diagrams of microemulsion systems

• Transition of Winsor:

Methodology

Molecular Dynamics

Surfactants Dodecyl box

INTERFACES

- Surfactant/Water
- Surfactant/Brine
- Surfactant-Brine/Heptane
- Surfactant-Brine/Toluene
- Surfactant-Brine/Heptol

CGenFF CHARMM General Force Field and SPCE.

$$U = \sum_{\text{bonds}} k_b (b - b_0)^2 + \sum_{\text{angles}} k_\theta (\theta - \theta_0)^2 + \sum_{\text{dihedrals}} k_\phi [1 + \cos (n\phi - \delta)]$$

+
$$\sum_{\text{impropers}} k_\omega (\omega - \omega_0)^2 + \sum_{\text{Urey-Bradley}} k_u (u - u_0)^2$$

+
$$\sum_{\text{nonbonded}} \epsilon \left[\left(\frac{R_{\min_{ij}}}{r_{ij}} \right)^{12} - \left(\frac{R_{\min_{ij}}}{r_{ij}} \right)^6 \right] + \frac{q_i q_j}{\epsilon r_{ij}}$$

$$\mathbf{F}_{i} = -\nabla U(\mathbf{r}) = -\sum_{j \neq i}^{N} \frac{\partial u(r_{ij})}{\partial r_{ij}} \hat{\mathbf{r}}_{ij}$$

Partial Results

Computational Details

- Thermostat: Nosé-Hoover
- LJ cutoff : 8,5Å e 10,0Å
- Integrator: 0.5 fs time step
- PPPM 10,0Å
- Ensemble: NVT, NPT
- T = 300K and P = 1atm
- 100 molecules of the DTAB (N=1, H=34 E C=15)
- Tolerance 2.0

- \rightarrow 50 ps NVT
- \rightarrow 1 ns NVT
- \rightarrow 1 ns NPT
- \rightarrow 1 ns NPT

One-Component Oil Interfaces with Surfactants

- 70 x 140 x 70 Å
- 5 τ % NaCl
- Toluene/Surfactant-Brine → number 2.901 / 17.118

- \rightarrow 50 ps NVT
- \rightarrow 2 ns NPT
- \rightarrow 2 ns NVT structural property and dynamics
- \rightarrow 2 ns NPT to calculed IFT

DTAB

 ρ = 0,8623 g/cm³

One-Component Oil Interfaces with Surfactants

- 70 x 140 x 70 Å
- 5 τ % NaCl
- Heptane/Surfactant-Brine
 → number 2.089 / 11.468

- \rightarrow 50 ps NVT
- \rightarrow 2 ns NPT
- \rightarrow 2 ns NVT structural property and dynamics
- \rightarrow 2 ns NPT to calculed IFT

Heptane/Surfactante-Brine

Multi-Component Oil Interfaces with Surfactants

- \rightarrow 50 ps NVT
- \rightarrow 2 ns NPT
- \rightarrow 2 ns NVT structural property and dynamics
- \rightarrow 2 ns NPT to calculed IFT
- HEPTOL: 50% Heptane and 50% Toluene

ρ = 0,6795 g/cm³

Next step

- Calculate the Tilt and Rotation Angle of Chain Molecules. (Surfactant Bilayers: Temperature-dependent tilt)
- Interfaces between multi-component oil and brine/surfactant.
- Oil model 8 and 36 components.
- CMC

 $\label{eq:table} \begin{array}{l} \textbf{Tabela 6.3.1} - \textit{Valores de IFT} \textit{ das interfaces entre os modelos de cloretos e cada tipo de óleo, incluindo a água do mar. O erro padrão é de 0,2 mN/m \end{array}$

Components Oil models

Classe	Porcentagem (%)	Componentes		
C_3	0,61	Propano		
NC_4	0,32	Butano		
IC_4	1,07	Isopropano		
NC ₅	0,82	Pentano		
IC_5	1,46	Isobutano		
C_6	3,17	Hexano, ciclohexano		
C ₇	5,78	Heptano, benzeno, cicloheptano, tolueno		
C_8	7,45	Octano, ciclooctano, o-xileno, m-xileno, p-xileno		
C_9	6,59	Nonano, 1,2,3-Trimetilbenzeno, 1,2,4-trimetilbenzeno 1,3,5-trimetilbenzeno		
C_{10}	6,03	Decano, naftaleno		
C ₁₁	4,94	Undecano		
C ₁₂	4,43	Dodecano		
C ₁₃	4,51	Tridecano		
C_{14}	3,80	Tetradecano, antraceno, fenantreno		
C ₁₅	3,74	Pentadecano		
C_{16}	2,86	Hexadecano, pireno		
C ₁₇	2,50	Heptadecano		
C ₁₈	2,67	Octadecano		
C ₁₉	2,38	Nonadecano		
C ₂₀₊	34,88	Eicosano, benzopireno		

 ${\bf Tabela} \ {\bf 4.0.1-Composição} \ {\rm das} \ {\rm mol}{\rm \acute{e}culas} \ {\rm para} \ {\rm o} \ {\rm modelo} \ {\rm de} \ {\rm \acute{o}leo} \ {\rm proposto} \ {\rm neste} \ {\rm trabalho}.$

Componente	Número de moléculas	$\rho_{calculado}$	ρ_{expt}^{131}	Erro (%)
Hexano	2343	0,6436	0,6549	1,7
Heptano	2105	0,6704	0,6795	1,3
Octano	1885	0,6912	0,6984	1,0
Nonano	1718	0,7075	0,7142	0,9
Decano	1582	0,7226	0,7300	1,0
Undecano	1460	0,7328	0,7402	1,0
Dodecano	1357	0,7421	0,7495	1,0
Benzeno	3450	0,8513	0,8738	2,6
Tolueno	2902	0,8505	0,8623	1,4

CELASCHI,YURE M. Modelagem de fenômenos interfaciais combinando simulações moleculares e aprendizado de máquina com aplicações em processos de recuperação de petróleo. 2019. 174. Tese (Doutorado em Nanociências e Materiais Avançados) - Universidade Federal do ABC, São Paulo, 2019.

Gibbs free energy model

$$\begin{split} G_{f} &= N_{w}\mu_{w}^{o} + N_{sA}\mu_{1A}^{o} + N_{sB}\mu_{1B}^{o} + \sum_{g=2}^{\infty}N_{g}g\Delta\mu_{g}^{0} \qquad g\Delta\mu_{g}^{o} = \mu_{g}^{o} - g_{A}\mu_{1A}^{o} - g_{B}\mu_{1B}^{o}. \\ G_{m} &= kT \bigg[N_{w}\ln X_{w} + N_{1A}\ln X_{1A} + N_{1B}\ln X_{1B} + \sum_{g=2}^{\infty}N_{g}\ln X_{g} \bigg] \\ G' &= G - N_{w}\mu_{w}^{o} - N_{sA}\mu_{1A}^{o} - N_{sB}\mu_{1B}^{o} \\ &= \sum_{g=2}^{\infty}N_{g}g\Delta\mu_{g}^{0} + kT \bigg[N_{w}\ln X_{w} + N_{1A}\ln X_{1A} + N_{1B}\ln X_{1B} + \sum_{g=2}^{\infty}N_{g}\ln X_{g} \bigg] \\ \frac{G'}{kT} &= \sum_{g=2}^{\infty}N_{g}\bigg(g\frac{\Delta\mu_{g}^{0}}{kT} + N_{w}\ln X_{w} + N_{1A}\ln X_{1A} + N_{1B}\ln X_{1B} + \sum_{g=2}^{\infty}N_{g}\ln X_{g} \bigg] \end{split}$$

NAGARAJAN, R.; RUCKENSTEIN, E. Theory of surfactant self-assembly: a predictive molecular thermodynamic approach. Langmuir, v. 7, n. 12, p. 2934-2969, 1991.

Free energy of formation of the aggregate-water core interface.

$$\left(\frac{\Delta\mu_g^0}{kT}\right)_{\text{int}} = \frac{\sigma_{agg}}{kT} \left(a - \alpha_{gA}a_{oA} - \alpha_{gB}a_{oB}\right)$$

Aggregate-water core interfacial tension.

$$\sigma_{tail} = 35,0 - 325M^{-2/3} - 0,098(T - 298)$$

$$\sigma_w = 72, 0 - 0, 16(T - 298)$$

$$\sigma_{agg} = \sigma_{tail} + \sigma_w - 2\sqrt{\sigma_{tail}\sigma_w}$$

Hydrocarbon surface tension

NAGARAJAN, R.; RUCKENSTEIN, E. Theory of surfactant self-assembly: a predictive molecular thermodynamic approach. Langmuir, v. 7, n. 12, p. 2934-2969, 1991.

Acknowledgments

Cluster Josephson

Conselho Nacional de Desenvolvimento Científico e Tecnológico Thank you for your attention