Introdução às Medidas em Física 4300152 3ª Aula

Experiência II Densidade de Sólidos

Objetivos

Medidas indiretas

 $\rho = M/V$

Noções de Estatística

Propagação de Incertezas

Compatibilidade entre medidas

Características de uma medida

Medidas repetidas são diferentes

- Diferentes experimentadores
- Diferentes instrumentos

Nunca iremos obter o valor verdadeiro em nossas medições

- características da própria grandeza sendo medida
- limitações intrínsecas e inevitáveis dos nossos instrumentos e técnicas de medida

Como realizar medidas

- Análise do instrumento de medida
 - Conhecer e saber usar corretamente o instrumento.
- Fundo de escala e unidade adequados.
- Avaliação das incertezas nas medidas

Como avaliar incerteza

Tipos de incerteza

Instrumental

Aquela associada à precisão do instrumento utilizado para realizar a medida direta de uma grandeza

Estatística

Incerteza associada à flutuação no resultado de uma mesma medida

Sistemática

Aquela onde a medida é desviada em uma única direção, tornando os resultados viciados

Incertezas instrumentais

Em geral é a metade da menor divisão

Cuidado com instrumentos que possuem escalas auxiliares tipo nônio (ex:paquímetro). Nesse caso a incerteza é a menor divisão do nônio!

Dificuldade de leitura

Posicionamento objeto/instrumento ou estabilidade de leitura (digital)

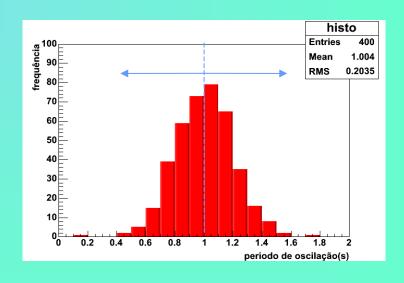
incerteza instrumental maior pode ser definida maior do que a precisão do instrumento de medida

Incertezas estatísticas

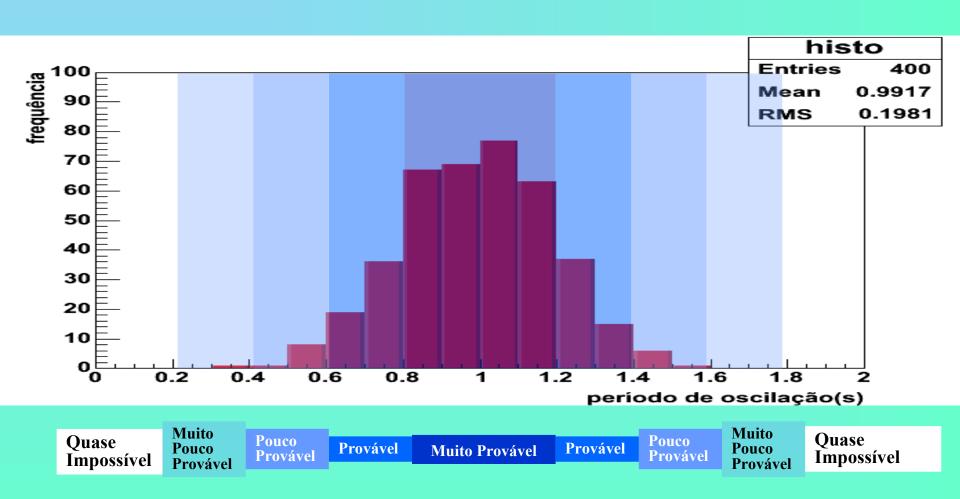
Flutuação no resultado das medidas

medida = média de todas as medidas efetuadas

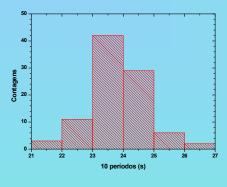
$$\bar{x} = \frac{\sum x_i}{N}$$

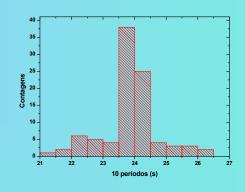

incerteza estatística = desvio padrão da média

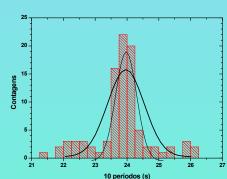
$$s = \sqrt{\frac{\sum_{i} d_{i}^{2}}{N-1}} = \sqrt{\frac{\sum_{i} (x_{i} - \overline{x})^{2}}{N-1}} \qquad s_{m} = \frac{s}{\sqrt{N}}$$

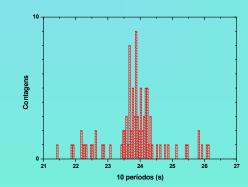

Erros Estatísticos ou Aleatórios

Inicialmente, que características devemos esperar para a distribuição dos dados obtidos?

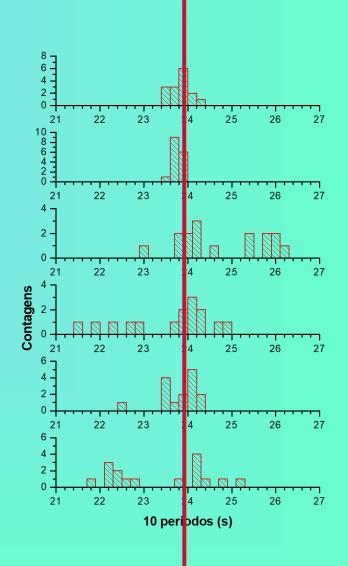

Simétrica em torno de um certo valor, e decresce ao se afastar desse valor.




Interpretação Estatística da Média e Desvio Padrão



Dados Período do Pêndulo



Média DP Inc média 23,85 s 0,885 s 0,09 s

> Para L = 141,5 cm 10 períodos = 23,89 s

Incertezas sistemáticas

Aquelas que falseiam a medida

Ex: uma régua onde o primeiro mm está faltando e o experimentador não percebe

Todas as medidas serão 1 mm maiores do que deveriam

Ex: uma balança descalibrada e/ou com o zero deslocado

Esse tipo de incerteza, em geral, só é percebida quando um resultado difere do esperado

Devem ser corrigidas ou refeitas

Medida da Densidade de Sólidos

Objetivo

Identificar os diferentes tipos de plásticos que compõem um conjunto de objetos

Identificação

Comparação das medidas (+incertezas) com valores tabelados de diferentes tipos de plásticos

Densidade (materiais sólidos homogêneos)

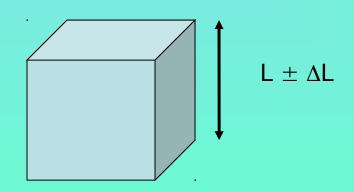
d = m/V

Necessário medir a massa e o volume do objeto

Cálculo da densidade

A densidade é dada por:

$$d=mV$$

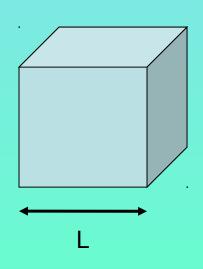

onde, o volume V é:

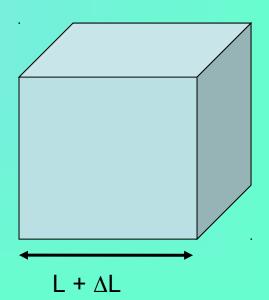
$$V=p\cdot\left(\frac{D}{2}\right)^2\cdot h$$

e *m*, *h* e *D* são, respectivamente, a massa, a altura e o diâmetro do cilindro.

Uma medida obtida de outra medida tem incerteza?


Por exemplo, vamos medir o volume de um cubo. Inicialmente medimos o tamanho de sua aresta com uma régua (que tem incerteza).



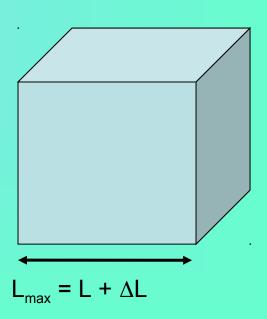

Uma medida obtida de outra medida tem incerteza?

O volume do cubo tem uma incerteza?

A incerteza de uma medida (neste caso, a incerteza na aresta do cubo) se propaga para as medidas obtidas da mesma (o volume do cubo).

Como calcular essa incerteza?

Neste exemplo, temos:

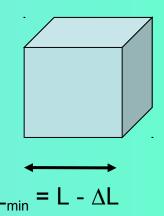

$$V = L^3$$

onde: $(L \pm \Delta L)$ é a aresta do cubo (medido com a régua) e sua incerteza.

A incerteza no volume do cubo será dado pelo comprimento máximo que acreditamos que a aresta pode ter:

$$L_{max} = L + \Delta L$$
, que leva a:

$$\mathbf{V}_{\text{max}} = (\mathbf{L}_{\text{max}})^3$$


Como calcular essa incerteza?

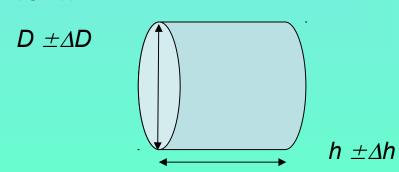
e o comprimento mínimo acreditamos que ela possa ter:

$$L_{\min} = L - \Delta L,$$

que leva a um volume mínimo dado por:

$$\mathbf{V}_{\min} = (\mathbf{L}_{\min})^3$$

Com isso, a incerteza no volume pode ser dada inicialmente por:

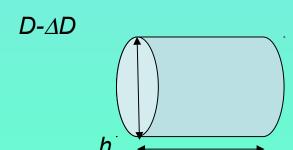

$$\Delta \mathbf{V} = [\mathbf{V}_{\text{max}} - \mathbf{V}_{\text{min}}] / 2$$

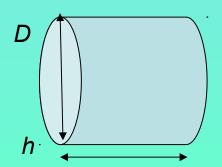
E se uma grandeza depende de outras duas medidas, como por exemplo, na medida do volume de um cilindro? O que fazer?

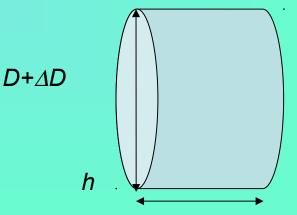
O volume de um cilindro é dado por:

$$V = \pi (D/2)^2 h$$

onde, D é o diâmetro do cilindro e h a sua altura ambos com incerteza

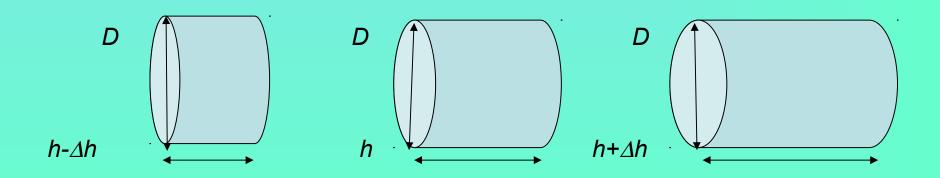

Neste caso iremos calcular a incerteza no volume devido a incerteza no raio e a incerteza no volume devido a incerteza na altura e depois combinar as duas incertezas.


Incerteza no volume devido a incerteza no raio:

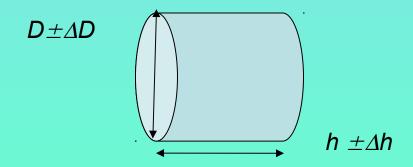

$$V_{max}(devido \ a \ \Delta D) = \pi[(D+\Delta D)/2)]^2h$$

$$V_{min}(devido \ a \ \Delta D) = \pi[(D-\Delta D)/2]^2h$$

$$\Delta V_{devido\ a\ \Delta D} = (V_{max} - V_{min})/2$$



Neste caso iremos calcular a incerteza no volume devido a incerteza no raio e a incerteza no volume devido a incerteza na altura e depois combinar as duas incertezas.


Incerteza no volume devido a incerteza na altura:

$$V_{max}$$
 (devido a Δh) = $\pi (D/2)^2 (h + \Delta h)$
 V_{min} (devido a Δh) = $\pi (D/2)^2 (h - \Delta h)$
 $\Delta V_{devido a \Delta h} = (V_{max} - V_{min})/2$

E combinamos as duas incertezas com uma soma quadrática. Fazemos isso pois assumimos que a incerteza devido ao diâmetro é independente da incerteza devido à altura:

$$\Delta V^{2} = (\Delta V_{devido\ a\ \Delta D})^{2} + (\Delta V_{devido\ a\ \Delta h})^{2}$$

Cálculo da incerteza do volume do cilindro

Mesmo cientes que a contribuição das incertezas do diâmetro e altura são independentes, nesta primeira avaliação calcularemos a incerteza do volume do cilindro (s_{ν}) como a propagação simultânea dos valores das incertezas do diâmetro e da altura :

$$s_{V} = \frac{(V_{+} - V_{-})}{2} = \frac{\pi}{4} \left(\frac{(D + s_{D})^{2} (h + s_{h}) - (D - s_{D})^{2} (h - s_{h})}{2} \right)$$

Cálculo da incerteza da densidade

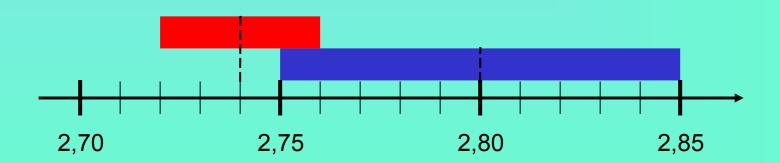
Analogamente ao cálculo do volume, usaremos como primeira avaliação para incerteza da densidade o cálculo da variação máxima levando em consideração a propagação simultânea dos valores das incertezas do volume e da massa:

$$s_{d} = \frac{d_{+} - d_{-}}{2} = \frac{1}{2} \left[\frac{(m + s_{m})}{(V - s_{v})} - \frac{(m - s_{m})}{(V + s_{v})} \right]$$

Como interpretar o significado da incerteza?

O que significa dizer que minha medida, é 2,74 ± 0,02 mm?

Eu tenho confiança que o valor verdadeiro da grandeza medida está entre (2,74 - 0,02) e (2,74 + 0,02)



Como comparar os resultados de duas medidas?

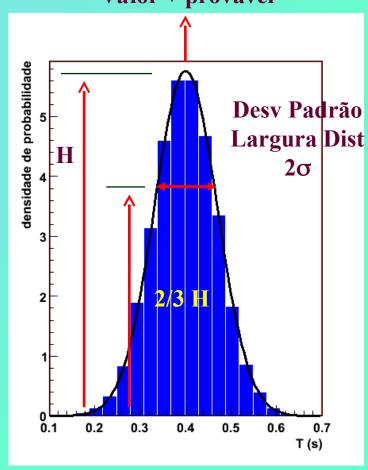
É preciso se levar em consideração sempre a incerteza de medida.

Como devemos considerar a incerteza, nos perguntamos se as medidas são compatíveis ao invés de "iguais";

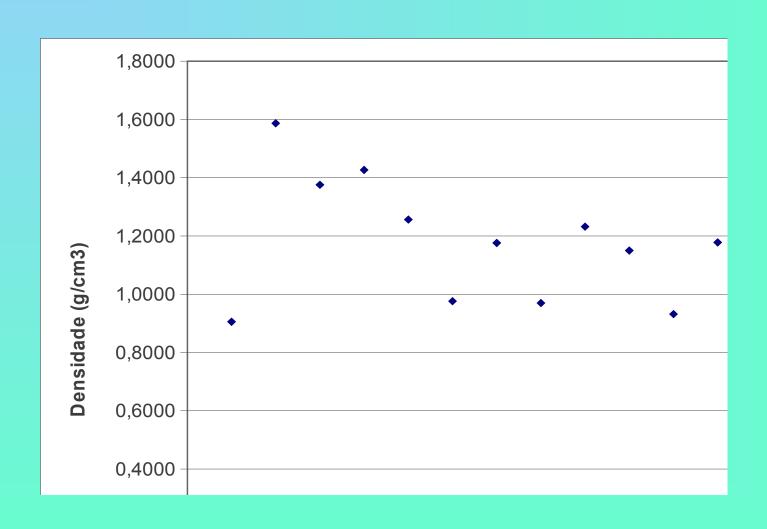
Por exemplo, 2,74 \pm 0,02 mm é compatível com 2,80 \pm 0,05 mm ?

Compatibilidade

Incerteza = Intervalo confiança


Média Valor + provável

Paralelo com distribuição estatística


$$[M-\sigma; M+\sigma]=68\%$$

$$[M - 2\sigma; M + 2\sigma] = 95\%$$

$$[M - 3\sigma; M + 3\sigma] = 99,9\%$$

Resultados - Tipos de plástico?

Procedimento Experimental:

- Cada aluno da dupla escolhe dois dos cilindros da caixa (anote o número para usar a mesma na próxima aula)
- Em seguida, determina seu volume fazendo todas as medidas necessárias com uma régua. Cada aluno deve determinar quantas vezes é necessário repetir cada medida
- Mede sua massa usando a balança digital da sala de aula

Análise dos dados

- Calcular a densidade do objeto estudado e sua incerteza
- Como calcular a incerteza da densidade já que ela não é medida diretamente, mas é obtida através de outras medidas (diâmetro, altura e massa do cilindro)?
- Calcular a densidade do objeto estudado e sua incerteza e colocar os valores no gráfico;

Conclusões Parciais

Será que é possível que exista mais de um tipo de plástico nas peças do grupo?

Como seria possível saber isso?

Melhorando a precisão do experimento, ou seja, diminuindo as incertezas nas densidades.

Mas, como?

Procedimento Experimental:

Melhorar a medida de massa e a medida do volume dos cilindros

Cada aluno da dupla fará novamente a medida da massa, mas desta vez usando uma balança analítica (somente com o cilindro de menor massa)

Análise dos dados

Calcular novamente a densidade do objeto estudado e sua incerteza com as novas medidas;

Comparar os valores novos com os antigos.

Que podemos concluir dessa comparação?