
CHAPTER 6

CREATION AND ANNIHILATION OPERATORS

6.1 A SIMPLE MATHEMATICAL PROBLEM

In this chapter we shall describe an operator formalism that has widespread 
applications in quantum mechanics, notably in dealing with harmonic oscillators 
and in describing many-particle systems.

We begin by formulating and solving the following simple problem: 
Suppose an operator a satisfies

|> ,0 +] =  1. (6.1)

The problem is to find the eigenvalues of the Hermitian operator a+a, and to 
relate the eigenvectors. (Note: a+ denotes the Hermitian conjugate of a, and 
[A , B ] is, of course, the commutator AB — BA.)

We first note that, if |a) is a normalized eigenvector with

a +a\oc)  =  a|a>, (6.2)
then

a =  {<x\a+a\a) =  ||fl|a> ||2 >  0. (6.3)

That is, the eigenvalues are all real and nonnegative. Using the identity 
[AB, C] =  A[B, C] +  [A, C~\B, we observe that

[,a+a, a\ =  [a+, a]a =  —a, (6.4)

[<a+a, a +] -I- a +[a, a +] =  a + ; (6.5)
or, equivalently,

(<a+a)a =  a(a+a — 1), (6.4')

(a+a)a+ =  a +(a+a +  1). (6.5')

From Eq. (6.4') we have, for an eigenvector |a>,

(ia+a)a\(x)  =  a(a+a — l) |a ) =  a{ a — l) |a ) =  (a — l)a |a). (6.6)

Therefore a |a) is an eigenvector with eigenvalue a — 1, unless a\<x)  =  0. 
Similarly «+ |a) is an eigenvector with eigenvalue a +  1, unless a + \oC) =  0. The 
norm of a |a) is found from

||a|a) ||2 =  (a |a +a|a) =  a<a|a) =  a,
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or

||a|a> || =  Va. (6.7)
Similarly,

||a+1a) || = Va + 1. (6.8)

Now, suppose that c \̂cc) #  0 for all n. Then by repeated application of 
Eq. (6.6), o"|a) is an eigenvector of a +a  with eigenvalue a -  n. This contradicts 
Eq. (6.3), because a — n <  0 for sufficiently large n. Therefore we must have

ct\d)  #  0 but fl"+1|a> =  0 (6.9)

for some nonnegative integer n.
Let |a — ri) =  d 1 \ri)/ \<f\ri) ||, so that |a — ri) is a normalized eigenvector 

with eigenvalue a — n. Then from Eqs. (6.7) and (6.9),

Va — n =  \\a\oi — n)\\ =  0,

and therefore a =  n. This shows that the eigenvalues of a +a must be nonnega-
tive integers, and that there is a “ground state” |0> such that

a\0> =  0. (6.10)

By repeatedly applying a + to the ground state we see that (a+)w|0) has the 
eigenvalue n and, because of Eq. (6.8), it is never zero. Thus the eigenvalues of
a +a are 0, 1, 2, 3 ,___

If \ri) is a normalized eigenvector with eigenvalue «, then, from Eq. (6.8),

\n -  1) = (\!\Jri)a\ri)

is a normalized eigenvector with eigenvalue n — 1. Also

a + \n — 1) =  (\/yJ ri)a+a\ri) =  \ ln \n).

So applying a + to \n — 1) gives us back |ri) (within a factor), rather than some 
other state with eigenvalue n.

We may then construct the eigenstates of a +a as follows: First we find a 
state |0> such that

a\0) =  0. (6.11)

(|0> may be unique; if not, we find other operators commuting with a and a + , 

and classify the |0 )’s according to their eigenvalues.) Then we define

|l> = a+|0>; |2> = - ^ a +|l> = -J= (a+)2|0>; •••
V2 V 2
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and in general

|»> =  - L ( a +)"|0>.
V nl

(6.12)

(Note that we could have included arbitrary phase factors in the definition of 
|ri) ; our convention here is to make them unity.) With this definition, the |ri) 
are orthonormal* and satisfy

Equations (6.11) through (6.15) form the answer to the problem posed at the 
beginning of this section.

The operators a + and a are called “raising” and “lowering” operators, 
respectively, because they raise and lower the eigenvalue of a+a. In later 
applications a +a will be interpreted as the observable representing the number 
of particles of a certain kind, in which case a + and a are called “creation” and 
“annihilation” (destruction operators, or “emission” and “absorption” 
operators. Equations (6.13) and (6.14) may be alternatively expressed in terms 
of matrix elements:

a + \ ri) =  y/n +  1 \n +  1) 

a\ri) =  y/n\n — 1) 

a +a\n)  =  n\ri).

(6.13)

(6.14)

(6.15)

(m\a+\n) =  +  1 <5m>,

(m\a\n) =  \ln5m<n_ t .

m ,n+  1 j (6.13')

(6.14')

* For, by (6.12) we have

<k|w> = <0|a"(a+)m|0>(l/V n\m\).

From Eq. (6.1) we easily obtain

[a,(a+)n] = «(a+)n-1 ,
so that

<0|an(a+)m|0> = (0|a"~1(a+)mtf|0> + (Olna""1̂ ^ " 1!©) 

= n <0|a"_ 1(a+)m_ 110 >

= n(n -  1) • • • ( « -  m + l)<0|a"-mlO>

= rt! dnm

and the orthonormality follows.
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6.2 THE LINEAR HARMONIC OSCILLATOR

Our first application of the results of Section 6.1 will be to the one-dimensional 
harmonic oscillator, which has a Hamiltonian of the form

TT 1 2 . mC° 2 2H =  —  p2 +  ——- x2, (6.16)
2m 2

where x  and p  are the position and momentum operators for the particle and 
satisfy

[*,/>] =  ift- (6.17)

Our task is to find the eigenvalues and eigenstates of H.
Note that \J(mco/fi)x and (1 \\jmcoK)p are dimensionless. Let us define

1 /  I moo , . 1 \

a V 2 W  *

Because x  and p  are Hermitian it follows that

+ 1 /  mco . 1 \

From Eq. (6.17) we obtain

(6.18)

(6.19)

[>, a +] =  1. 1 (6.20)

Expressing x  and p  in terms of a and a +, we have

I ft a +  a + (x =  J -----------p — , (6.2 1 )
mco yj 2

-_ c +
i

We get, for the Hamiltonian,

p  =  V m(oh - — 7=̂ — . (6.22)
V 2

H =  (a +a +  aa+) =  hco(a+a 4* i).  (6.23)

Thus, the eigenstates of H  are those of a +a. Now we can apply the results of 
Section 6.1, obtaining the eigenstates |0>, |1>, |2>, . . .  that satisfy

H\n) =  (n +  %)h(D\n). (6.24)

The energy levels are thus En =  (n +  i)ftco.
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The eigenstates themselves are given by Eqs. (6.11) and (6.12). We can 
easily obtain the wave functions cpn(x) =  (x\n)  as follows: from Eqs. (6.18) 
and (6.11),

0 =  a l°> =  (x + — l°>- <6-25)V 2h \  mco J

Applying (x\ and noticing that <x\p\cp)  =  —ifi(d(x\cp)ldx), we get

0 =  l m ( x + A .± \  <x|0> (6.26)
V 2ft \  mco dx )

(where x  is now a number, rather than an operator.) Equation (6.26) is merely 
Eq. (6.11) in coordinate representation, in which it takes the form of a differ-
ential equation. Solving it, we get

(x \0) =  A e - (m<o/2h)x\

where A is a constant. Normalization requires that

1 =  <0|0> =  f°° <0|*><x|0> dx =  \A\2 f°° e- {m(0/h)x2 dx 
J — oo J — 00

2 i nh= Ml
' mco

so

nh J

The phase 0 of A is arbitrary, and we set it equal to zero. Then

nh J ’

so

<x|0> =  f e Y "  e~(mml2h)x\  (6.27)
y 7lh J

We have thus found the wave function for the ground state. For the other 
states we apply a+ according to Eq. (1.12):

<x|n> =  -^ =  <x|(a+)"|0>. (6.28)
yjn\
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Since

__ mco
~  V ~2h

we have
( x - — f ) <xU \  mco dx)

z , x 1 / mo)\n/2 (  h d Y  . ....<x|n> =  —  —  j x --------— J <x|0>
y/n \ \ 2 n J  \  m to d x j

= J_  ( m Y *  ( ™ y 2 ( x  _ A  AV (6 29)
^ \ \ n h )  \ 2 h )  \  mcodx) ' ( ’

The matrix elements of observables between harmonic oscillator states can 
be found without having to express the states in coordinate representation and 
integrating over x. We simply express the observable in terms of the raising and 
lowering operators. An example of this procedure is given in the following 
section.*

6.3 AN ANHARMONIC OSCILLATOR

Suppose a system has the Hamiltonian

H =  —  +  —  x2 +  Ax4. (6.30)
2m 2

Assume that X is small enough ( «  hco) that we can use first-order perturbation
theory, treating Ax4 as a perturbation of the Hamiltonian (Eq. (6.16)). Then
the perturbed energy levels are

En * ( n  +  i)hco +  A„, (6.31)
where

A„ =  <n\Xx4\n). (6.32)
From Eq. (6.21) we have

An = k ( d b j <n|(a + a+)4|w>' (6-33)

* Problem: Prove that

where f(a+) is interpreted as X! «n(«+)"> when/(x) = anxn. From this formula, find 
a generating function for (x\n). (Hint: Prove first that [a,f(a+)] =



6.4 Systems of harmonic oscillators 157

Expanding (<a +  a +)4 gives us 16 terms, but, thanks to the raising and lowering 
properties of a + and a, the only terms giving a nonzero expectation value are 
those with two d s and two a +’s:

<[n\(a +  a+)4|«) =  <[n\(a+a+aa +  a +aa+a +  a +aaa+ 
+  aa+a +a +  aa+aa+ +  aaa+a +)\n)

=  n(n — 1) +  n2 +  n(n +  1)
+  n(n +  1) +  (n +  l)2 +  (n +  1)(« +  2)

=  6n2 +  6n +  3,

where we have used Eqs. (6.13) and (6.14) repeatedly. Therefore

A„ =  3A ( — Y  (In2 +  2n +  1).
\2 mco J

6.4 SYSTEMS OF HARMONIC OSCILLATORS

Suppose a system has the Hamiltonian

H =  1 ^ - P f  +  ZV ijQ & j  (6.34)
i 2 m { i j

where Qt and P { are canonical coordinates and momenta:

I Q u  Qj l  = [̂ 1, PJ] = 0; [Qi, Pj] = (6.35)

and Vtj =  Vjt. To simplify the presentation a little let us make a change of
scale, defining

qt =  yJrtiiQc, p t =  P lj\Jm l (6.36)
and

Uij =  - j L =  VtJ. (6.37)
V

Then q{ andp t are also canonical:

[?!> Pj] =  iMij, (6.38)

and in terms of them the Hamiltonian is

H =  i  Z  Pt +  i  Z  Uifi&y (6.39)
i i j

We shall express H  in terms of raising and lowering operators as we did for the 
one-dimensional oscillator. The procedure involves two steps: the first is 
finding a set of normal coordinates qa with respect to which the potential is in
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diagonal form, and the second is expressing the coordinates and momenta in 
terms of raising and lowering operators.

Let the coordinates qt and qa be related by

<L = Z Caigf. (6.40)
i

Because {Utj) is assumed to be real and symmetric, the transformation matrix 
Cai that diagonalizes it is orthogonal:

Z CaiCfi =  6^ ,  £  CxiCaJ =  s u. (6.41)
i a

The inverse transformation of Eq. (6.40) is then

<li =  Z Cixqx. (6.42)
a

We further assume that the eigenvalues of (J7fj-) are all positive, that is, that 
the matrix is positive definite (this ensures that qt =  0 is a point of stable equi-
librium). Denoting these eigenvalues by co2(coa >  0), we have

X CxiCpjUij =  (oasap,

Uj

and thus

Z Vi##} = £ (6-43)
i , j  a

Finally, we define p a in such a way as to preserve the canonical commutation 
relations:

ft = Z c «iPt; (6-44)
i

[<L, (6-45)

The result of our efforts is that

H = i  Z (̂ 2 + (6-46)
a

which means we have a system of decoupled harmonic oscillators (one for each 
value of a).

Using the methods of Section 6.2, we form lowering and raising operators 
for each mode:

ax =  ~ ( V®, qx + - L px) ,  (6.47)
\ l 2 h \  yJ(Oa )

<  =  4= ( ^ X & -  -7= P°) ’ <6 '48 )
y j 2 h \  yJ(Oa J
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(6.49)

Pa  =  -  a *^-
(6.50)

[ a x, =  K + > =  °> (6.51)

[a=t- aP ]  = (6.52)

H = 2  nojx(a>a + i). (6.53)
a

The eigenstates of H  are described by giving, for each a, the eigenvalue nx of 
Thus,

# K «2«3 • • • > =  £ (» «  +  ’ ’ ’ >» (7-54)
a

K »2«3 • ''  > =  T n  1000 • • • >, (6-55)L a V nal J
where the ground state |000* • • > is defined by

tfJOOO- • •> =  0 for all a. (6.56)

Note that the energy of the ground state is For a system with
infinitely many degrees of freedom (which we will consider shortly), this quantity 
will generally be infinite. Because the zero point of energy is a matter of defini-
tion (only the difference between levels being of physical importance), it is 
convenient to redefine the Hamiltonian of such a system so that the ground- 
state energy is zero. Thus, if we let

H  =  i  S  (p i  +  Oilql -  ificox) (6.57)
a

with a corresponding (but more complicated) expression in terms of the original 
coordinates qh then

H =  I  (6.58)
a

and

# l«i«2»3 • • • > =  £  M k»«K»2»3 • • • >• (6.59)
a

6.5 PHONONS
The states of the system considered in the preceding section can be given a 
simple interpretation in terms of “noninteracting phonons”. Assume that the
Hamiltonian is given by Eqs. (6.57) and (6.58), so that the energy of the ground

Then,
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state is zero. The ground state is then called the “vacuum state” and represents 
the state of the system in which there are no phonons. If the system is in the 
state K « 2w3 * * * )  we say that there are na phonons of type a(a =  1, 2, 3 , . . . ) .  
The na are called “occupation numbers.” Note that the energy of this state is 
n1hco1 +  n2hco2 +  •• •, so that the energy of a single phonon of type a is hcoa, 
and the total energy is the sum of the energies of the individual phonons. In 
other words, the phonons are noninteracting.

Since

••• »«-i»a»a+i ••• > =  Vna +  l | n , . . . ,  (na +  1), na+1 • • • >,
(6.60)

aalni • • • ««-i»«»a+i • • • > =  ' jn jn ,  (na -  1), na+1 • • • >, (6.61)

we may call a+ and aa creation and annihilation operators for phonons of type a. 
The operator for the number of phonons of type a is a+aa9 and the operator 
for the total number of phonons is

N  =  £  aa+aa. (6.62)
a

Let the vacuum state be denoted by |0>, and let

|a> =  ax+ 10> =  | 0 , . . . , 0 ,  1 , 0 , . . . ) ,  (6.63)

be the state with na =  1 and n{ =  0 for o' ^  a. A phonon, then, is the system
that is decribed by the states |a> (i.e., the system whose quantum-mechanical
Hilbert space is spanned by the |a)). If |a) and |jS) are (one-) phonon states, 
then

<a|/?> =  <0|aaa;|0>

=  <0|(a;aa +  ^ ) |0 >

=  6*  (6.64)

so that the states |a> are orthonormal. To each normal mode of vibration of the 
original system of harmonic oscillators corresponds a one-phonon state (since 
they are both indexed by a).

We can also use a similar notation for states of two or more phonons, 
defining

l«i, . . . , «„>  =  < • • •  < |0 > . (6.65)

These states are normalized as they stand if ocj,. . . ,  a„ are distinct; otherwise,
they have a norm larger than 1. Assume for definiteness that a takes on the
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values 1, 2, 3 ,___Then the state with nu of the a’s equal to 1, n2 a’s equal to 2,
and so on, is

2̂ . .  A ,  • • • > =  ( a l T i a l  T  ■ ’ ' 10)
ui n2

=  V ! n2! • • • |ni«2 ’ • ‘ )  (6.66)

so that its norm is V « i ! n2! • • • •
When we deal with only a few phonons at a time, it is usually more con-

venient to use the notation |al9. . . ,  a„> rather than the occupation-number 
description \nxn2 * • • ) , especially when a can take on a continuum of values. 
The effects of creation and destruction operators on |al9. . . ,  a„> are

a + K , . . . ,  a„> =  |a, a1?. . . ,  a„> (6.67)

n
a j a l s . . . ,  a„> =  £  • • • > «t-i> «*+i. • • • > an) (6-68)

k = l

Equation (6.68) comes from Eq. (6.65) and the relation

n

\_aa> aai * * * aan] =  S  âa/ĉ ai ‘ * ‘ aak-ia<Xk+i ’ * ’ k= 1

Note that phonons act like Bose particles (insofar as we can call them 
particles*), as an arbitrary number of them may be in any given state (i.e., 
| a, . . .  , a)  exists for any number of a’s). Their Bose nature is also reflected in the 
symmetry of the states (e.g., |a, fi) =  |/?, a)). In Section 6.7 we shall show how 
the ordinary rules for quantum-mechanically describing systems of many Bose 
particles lead to a set of states and operators with the same form as those 
obtained here, so that the interpretation of the oscillator as a system of many 
Bose particles is correct.

We conclude this section by considering the qualitative effect of an anhar-
monic perturbation on the oscillator system. Suppose the perturbation has 
terms of the form

Z  r uk‘?i<7j<Zic and £  r
i, j,k  i,j,k ,l

In terms of creation and annihilation operators, the cubic terms are of the form 

a+a p d y , a * a / a y, . . . ,  aaafiay, 

which always changes the number of phonons (e.g., the first term creates three

* The phonons will look more like particles (e.g., carrying momentum and energy) 
when the oscillator system is a field as described in the next section.
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new phonons). Thus, if we start with a definite number of phonons and let the 
Hamiltonian drive the system forward in time,

IlKO) =  e _iH,|^(0)>
= \ m >  - m m y  + o « * ) ,

we will soon start finding different numbers of particles. The quartic terms 
similarly change the number of particles, except for terms like

a a a p a ya di a a a pa y a d> • • • ?

which conserve the number of particles but act as a mutual interaction between 
them; that is, the particles are no longer independent. The description of a 
mutual interaction will be considered in more detail later.

Exercise: Verify that the number-of-phonons operator N , defined by Eq. (6.62), 
commutes with a product of creation and destruction operators if and only if 
the number of a+,s equals the number of a’s in the product.

6.6 FIELD QUANTIZATION

A notable example of a system with infinitely many degrees of freedom is a 
field. Examples are the amplitude of sound waves, drumhead vibrations, light, 
and so on. Consider a real scalar* field cp(x) whose motionf is described by the 
LagrangianJ

L{cp, (p) =  \  J d 3x<p{x)<p{x) -  \  J**3* J d3x K (x "  (6.69)

where K(x — x') =  K(x' — x). The classical equations of motion, found by 
varying <p(x), are

=  d SL 8L
dt 8(p(x) 8(p(x)

=  (p(x) +  J  d 3x'K(x — x')(p(x'). (6.70)

* The following procedure can be generalized for a multicomponent field by putting 
indices on everything.
t Classically (̂jc) depends on t9 but (as with qt in Section 7.4) we will not show it 
explicitly. Besides, in the Schrodinger picture, the operator (p{x) is time-independent. 
t We assume that the system is invariant under translations, so that K  is only a 
function of x — x'.
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Note how Eqs. (6.69) and (6.70) resemble the corresponding equations for 
the system of harmonic oscillators described in Section 6.4:

Thus, we are justified in treating the field as a system of harmonic oscillators 
(at least formally): <p corresponds to the symbol “<7” and x corresponds to i. 
cp{x) can be thought of as a separate coordinate of the system for each x.

As an example, suppose that

which is the usual wave equation.
If we assume that cp(x) is a coordinate of the system for each x, the conjugate 

momentum to <p(x) is

To quantize the system we let (p(x) andn(jt) be Hermitian operators satisfying

and assume that the Hamiltonian is given by Eq. (6.75), except for a scalar term 
to make the ground-state energy zero.

We next express everything in terms of “normal modes.” The situation 
turns out to be slightly different from that of Section 6.4 because it is con-
venient here to use “complex” (that is, non-hermitian) normal coordinates.

0 = 4'i + Z u i f l j■
j

K(x -  x') = - c 2W2S3(x -  x'). 

Then Eq. (6.69) becomes, after a few integrations by parts,

(6.71)

L =   ̂ d 3x[(p(x)(p(x) — c2V<p(jt) • V<p(jt)], (6.72)

and Eq. (6.70) becomes

v2<M*) - [  <p(x) = 0,
c

(6.73)

(6.74)

The Hamiltonian is then

[>(*), </>(*')] = [n(*),noo] = 0,
|>(x), n(x')] = ifi53(x -  x'),

(6.76)

(6.77)
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Because the system is translationally invariant, we expect that it might help 
to express the fields in “momentum” representation. Therefore we define

q>(k) =  ^  d 3x<p(x)e~ik'x (6.78)

fl(A) =  j  d 3x n (x )e - “ -x. (6.79)

The inverse transformation is*

<pix) = j* ( 0  m e ‘kX  (6’80)
with a similar expression for II(x). Since (p(x) and n(.v) are Hermitian, we have 

<p+(k) =  v ( - k ) ;  n +( k ) = U ( - k ) .  (6.81)

From Eqs. (6.76) and (6.77) we obtain

i m ,  <?(*')] =  [fl(k), fl(A')] =  0, (6.82)

[£(*), fi(*')] =  ih(2n)3d3(k +  k'). (6.83)
Now let

w \ k )  = d 3xK(x)e~‘k x . (6.84)

From K(x) =  K ( - x )  = K*(x) it follows that

co2(k) =  io2(k)* =  <o2( —k). (6.85)

Rewriting the Hamiltonian of Eq. (6.75), we get

n  = I  [ft(-*)!!(*) + co2m (-k )< j> (ky \(In)

= I  f + a>2(k)<p+(k)<p(k)l (6.86)2 J (271)

We assume that o)2(k) >  0, so that the Hamiltonian is positive definite. [Thus 
o)(k) is real, and we take co(k) >  0.]

In the example described in Eqs. (6.71), (6.72), and (6.73), co(k) =  c\k\.

* Throughout all of this the following integrals will be useful:

f  d 3xe-ik 'x = (27z)3S3(k), f  ~  eik * = <53(x).
J J (2*)3
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Next we will define annihilation and creation operators (compare Eqs. (6.47) 
through (6.50)):

a(k) =  - L  I"Va(k) <p(k) +  - — = rt(A)"l, (6.87)
\J lh  L Vco(*) J

a +(k) =  |̂ V<u(A) q>( — k) -  —p = =  f l ( - * ) J  , (6.88)

or

^ ) =  / _ A _  [«(*) + a +( -* ) ] ,  (6.89)
V 2ft)(*)

fl(*) =  - i  [„(*) -  a +( —*)]. (6.90)

The commutation relations are, from Eqs. (6.82) and (6.83),

[a(k), a(h')~\ =  [a +(k), tf+(&')] =  (6-91)

[a(Jt), tf+(*')] = (2n)353(k -  k ’). (6.92)

If we write H  in terms of a and a +9 making the change of variable k -* —k
when necessary, we obtain

H = H  ^  M * ) [ « +(*M *) +  a(*)a+(A)]
2  J  ( 2 7 0

plus a correction term to make the vacuum energy zero. The corrected 
Hamiltonian is evidently

d3k H<o(k)a+(k)a(k). (6.93)- J (2n)3

[Note that the correction term is the infinite quantity — \  J d 3kfico(k)S3(Qi)]. 
Finally, we express the original field variables in terms of the creation and 
destruction operators, using Eqs. (6.80), (6.89), and (6.90):

= V d b  w ‘ y ‘ " + (6-94)

"(.<) = j''" * —  [ - M k k " -  +  (6.95)

Equations (6.91) through (6.95) are the important results of the quantization 
procedure.

The commutation relation of Eq. (6.92) may appear strange, in that
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[a(k), a+(k)~\ is infinite (instead of unity), so that the analysis of Section 6.1 
does not apply directly to a(k). Suppose, however, that we use a less singular 
representation. Choose a complete orthonormal set of functions \j/JJc), where a 
is a discrete index:

I

(6.96)
(2t i)

Z  =  (27i)383(k -  k') (6.97)

and define

Then

a“ =  j ( 0  ,p*(k)a(k)' (6.98)

K ,  « ; ]  =  ^  (6.99)

so that we can apply previous results and construct |« r  • •««• • •  >. these
states may not be eigenstates of H. The states

|k )  =  «+(^)|0>, I*, * ') =  a \ k ) a \ k f) |0>,

and so forth, though unnormalizable, are eigenstates of H.
What kind of phonons do that unnormalizable states represent? The state 

\k) is a phonon of energy ha>(k), and we may also say that it has momentum 
hk. To discover the reason for this, consider the operator

P  =  hka+(k)a(k), (6.100)
(In)3 

which satisfies

[P, a+(kj\ =  hka+(k), [P, a(k)\ =  -fika{k) (6.101)

so that
P\kl9 k2, . . . }  =  (fik +  hk2 +  • • • )| k l9 k 2, . . . , ) .  (6.102)

Now, from Eqs. (6.94) and (6.101) we obtain

[P, (p(x)~\ =  x). (6.103)

One can then show that

ea'plin(p(x)e- a'plih =  cp(x +  a), (6.104)

so that P  generates translations and is therefore the momentum operator.
In Sections 6.7 and 6.8 we will describe further the relation between the 

operators and the states they create and destroy, as well as how other operators,
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such as the Hamiltonian, can be written in terms of the creation and destruction 
operators using any basis of states.

Note: In relativistic quantum mechanics, when one quantizes a free-particle 
field with co(k) = \Jk2 + m2 (h = c =  1), a different normalization and 
summation convention is commonly used for momentum states. Everything is 
written in terms of J d 3kl(2n)32co(k) and (:2n)32co(k)d3(k -  k% which happen 
to be relativistically invariant; to accomplish this change of normalization one 
uses a “relativistic” a(k) equal to \l2a>(k) times our a(k). Equations (6.92), 
(6.93), and (6.94) then become

[a(k), a +(k')[] =  (2n)32co(k)83(k -  k );

In some texts the (2n)3 is also treated differently. We will not use the relativistic 
normalization here, but it is mentioned in case the reader finds it elsewhere and 
wants to reconcile it with our notation.

6.7 SYSTEMS OF INDISTINGUISHABLE PARTICLES

In the preceding sections we considered the quantum states of an oscillator 
system as being states of various numbers of a “particle” called a phonon. We 
identified certain states as one-phonon states, and others as states containing 
more than one phonon.

In this section we shall follow a different line of reasoning. We will start 
with a space of states describing a single particle, either Bose or Fermi, and 
construct the multiparticle states according to standard methods. For the Bose 
case we will arrive at a system of states and operators that is mathematically the 
same as that found previously for a system of oscillators, thereby showing that 
the interpretation of oscillator states as many-phonon states is consistent with 
the usual description of many-particle systems. In the meantime we will have 
also developed a formalism for dealing with Fermi particles, for which the states 
do not resemble those of a harmonic-oscillator system.

We will treat the Bose and Fermi cases simultaneously, distinguishing them 
by the number (;

r _  j  +1 if the particles are Bose
{  — 1 if the particles are Fermi. (6.105)

We will use the symbol (where P is a permutation) to denote 1 for the Bose 
case and ( — l)p for the Fermi case.

(p{.
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Consider first the case of distinguishable particles. If . . . ,  \\j/ny are 
one-particle states, then

l^> = 1̂ i >I*A2> - • • l«A„> (6.106)

describes the «-particle state with the /th particle in state |i//,}. If \cp) =  
l<Pi>l̂ f»2> • • • \<Pn), then we write

<<Pl<A> =  (<<P1 I<<P2I- • • <<P„l)(l^l>l0r2> • • • I'A„»

=  <<P1 I<A1X<P2 I<A2)  • • • <<Pnl<A«>> (6.107)

which defines the inner product <<p|iA>. The Hilbert space describing the
w-particle system is that spanned by all wth-rank tensors with the form of 
Eq. (6.106).

The state in which the /th particle is localized at the point x, is jx,) x 2)  • • • 
|x„). As each x, runs over all space, the resulting states form a complete 
orthonormal set for the n-particle space (ignoring spin and other variables):

« * i l -  • • <*J)(I.Pi>- • '  b « »  =  <53(* i -  y i ) "  -^(x„ -  y„), (6.108)

J d3x x • • • J r f ’x .d * , ) -  • • |* „ » « * i l -  • • <*J) =  1- (6.109)

Using this basis we can express the ^-particle states in coordinate representation:

ipiXi,.. . ,  x„) =  (<JCi I • • • <*„|)|^>. (6.110)

For the particle 11//) of Eq. (6.106), we have, using Eq. (6.107),

i//(xl9. . . ,x „ )  =  f l i ix j f a -  • •(*„)> (6.111)

where = ( x ^ i ) .
Next, let us consider indistinguishable particles. We assume that the particles 

obey Bose or Fermi statistics, which means that we must symmetrize or anti- 
symmetrize, respectively, the states obtained in Eq. (6.106). We therefore define

|«Al) X l<A2> X ••• X l«An> =  (1 /V «!) Z  CP|<Ap(1)>I<Ap(2)> ' ’ ‘ l<Aj>(n)X (6.112) P

where P runs through all permutations of n objects. It will often be convenient
to write |«Ai, t i ,  • • • , <A«> for l*Ai) x  l<A2> x • • • x |<A„>.

The space of w-particle states is that spanned by all “products” of the form 
of Eq. (6.112). Note that li/^) x • • • x \\j/n)  is totally symmetric in the Bose 
case and totally antisymmetric in the Fermi case, as it should be.
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Example: Let |a) and \b) be two single-particle states. If C = +1 (Bose 
particles),

\a} x |b)  =  \a, b> =  ~ ^ ( \a ) \b }  +  | 6>| a»,
V 2

|a> x |a) =  |a, a ) = \/2|a>|a>.

If £ =  — 1 (Fermi particles)

|a, b> =  -j= (|a)|2>) -  |&>|a»,
V 2

|a, a ) =  0.

Thus, we have the expected result that two Fermi particles cannot be in the 
same state.

What is the inner product of two of these ^-particle states? The answer is 
given by the following theorem*

••• <<Pil»/0

where, for any n x n matrix A =  (Ay),
W nWl) WnWn)

MIS = Z  ' ' ‘ A„p(„y
P

(6.113)

(6.114)

That is, |/4|_ is the determinant of A, and |^ |+ is what is often called the 
permanent of A.

Proof:

(<p u  <p m u  . . . ,  *„> =  1 2  2  1 • • • (<ppWm Q d ) >  • • • 1 • W )
n l  p  q

=  ~ } X  £  CPCQ(^P(1)I<Aq(1)) * ‘ * (typin^Qin)) 
n l  p  q

=  ~T 2  2  CPCG0P i I^QP-1(1)) ‘ * ’ 
n l  p  q

(where we have permuted the factors by P)

— —j 2  2  * * * (^nl^QP-Hn))
n l  p  q

* Compare this theorem with the well-known formula for vectors in 3-space,

a • c a • d(a x b) • (c x d) =
b c b d
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(since CP =  t P~' and Ce£p~‘ =  £eP~‘)

=  —; 2  Z  £*<<Pi I'/'r ( i )> ' ' '  ( ‘PJ’/'r oo)nl p  r

(letting R =  g P _1)

= 2  CK(^ll^/?(l)) ‘ * * ( <P/i I /?(„))
R

=  l« ^ # y » lc ,

which is the desired result.
Now let { 11), |2>, . . .  } be a complete orthornormal set of states:

<«l/0 =  2  |a><a| =  1. (6.115)
a

A complete set of w-particle states consists of \uu a2, . . . ,  a„>, where < • • • 
< a„ in the Bose case, and oc{ < • • • < a„ in the Fermi case. These states are 
orthogonal to one another, but not always normalized. The reader can show, 
using Eq. (6.113), that for a complete orthonormal set of states we may take

(ax < • • • <  a„) for bosons
y/nt l n2 \ • ••

|al5. . . ,  a/l)(a 1 < • • • < a„> for fermions,

where «a is the number of times that a occurs in the sequence a l5. . . ,  a„ (for 
Fermi particles, wa =  0 or 1).

For either case the completeness relation can be written in the following 
convenient form:

£  • • • Z  1*1’ • • • > a«X a 1> • • • ’ a»l =  '• (6.116)n ! ai an

Here the range of each a£ is unrestricted, duplication of states being taken care 
of by the l/nl and the normalization. In the Fermi case, the terms with non- 
distinct a t are, of course, zero. The 1 on the right-hand side of Eq. (6.116) 
means the unit operator on the space of (properly symmetrized) ^-particle states. 
Equation (6.116) can be verified by applying the left side to a state |/?,. . . ,  /?„) 
and using Eqs. (6.113) and (6.114).

The case n =  0 may require some explanation. The zero-particle states are 
tensors of rank zero, that is, scalars (complex numbers). They form a one- 
dimensional space, all of whose elements are proportional to the number 1. 
The “state” 1 will be denoted by |vac> (or sometimes by |0 »  and called the 
“vacuum state.” The zero-particle states are thus spanned by the state |vac).
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We have constructed, for each «, a Hilbert space that describes a system of n 
particles; thus we have an infinite sequence of spaces. In many processes the 
number of particles is not constant: particles can be created and destroyed. To 
describe such processes we need a Hilbert space that contains states of varying 
numbers of particles. To get such a space we simply combine all the ^-particle 
spaces into one big space that we may call the multiparticle space. A general
state in the multiparticle space is of the form

|V>) = l<A(0)> +  l<A(1)> +  l<A(2)> + l<A(3)> + • ’ (6.117)

where |iA(n))  is an w-particle state.
We define states of different numbers of particles to be orthogonal to each 

other, so that if \cp)  is another multiparticle state and is expressed in the manner 
of Eq. (6.117), then

<<?#> =  < y o) i^ 01)  + < y i)i'/'(i)> + • • •• (6.H8)

If { |a)} is a complete orthonormal set of states, so that Eq. (6.115) holds, 
then using Eqs. (6.113), (6.115), and (6.118) we may summarize orthogonality 
by

<*lPn

&nP t U<*nPn

From Eq. (6.116) we also have the completeness relation

1
2  — £  lot!, . . . ,  afl| =  1.

n = 0 f l ! ai, . . . ,an

(6.119)

(6.120)

In this equation “ 1” means the unit operator on the whole multiparticle space.
As an example, suppose we describe the states in coordinate representation. 

The (unnormalizable) state | x , , . . . ,  x„> describes the situation in which there 
is one particle each at points ^ ........ xn. Then Eqs. (6.119) and (6.120) become

<530 i  -  J’i ) 
<530 „  -  J>i)

(6.121)

d3*i  ‘ ‘ ' J  d 3xa\xu x„>Oi, • • • > *„l =  1 (6.122)

We may expand an arbitrary multiparticle state \ij/) as follows, using Eq. (6.122):

w y = n? 0 j*d3jCi ■ ■ ■ J*d3-c»ijri> • • • > x»y^inK x i , . • . ,  x„). (6.123)

IlfM(xu . . . ,  x„) =  (xu x„|tI/) (6.124)
Here
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is (if |i/̂ ) is normalized) the amplitude for the state |^ ) to have n particles, one 
at each x t. Note that \l/(n)(xu . . . , * „ )  is symmetric or antisymmetric according 
to the statistics. Note also that if \i//) is an ^-particle state and is of the form

• • • > where each |^ ;> is a one-particle state, then

where il/i(xj) =  Equation (6.125) follows from Eqs. (6.124) and
(6.113). In the Fermi case the determinant is called the “Slater determinant.”

We are now ready to define creation and destruction operators. These 
operators are fundamental for two reasons; first, we constructed the multi-
particle states so that we could describe changing numbers of particles, and we 
need some operators that can effect this change, and second, other operators, 
such as the total energy, will turn out to be simply expressible in terms of the 
creation and destruction operators.

Let |cp) be any one-particle state. We define a +(<p) to be that linear operator 
which satisfies

for any ^-particle state . . . ,  i)/n).  For n =  0 this is understood to mean 
# +(<p)|vac) =  \(p). We call a +(cp) the creation operator for the state |</>), and 
its adjoint a(cp) the destruction operator.

A creation operator clearly converts an w-particle state into an (n +  1)- 
particle state. It is easily seen that a destruction operator turns an ^-particle 
state into an (n — l)-particle state and annihilates the vacuum state. To find 
the effect of a(<p) on an ^-particle state • • • \pn)  we multiply on the left by an 
arbitrary (n — l)-particle state <Xi' ' ’ Xn-il-

<Zi ••• X n - i H v M i  •••'/'„>

. . . ,  xn) =  0 unless m =  n;

\ll(n\ x u . . . ,  xn) = •AiOi) • • • <M*„)
• • • W -O  c’

(6.125)

(6.126)

= <<Al • • • 'l 'n \a +(<P)\Xl - X n- 1>*

=  <<Al "■'l'n\(p, Xl ■■■Xn-1>*

= ••• *
<.'l'«\<pX'l'n\Xl> ■■■ i'i'nhn-l) ;

k= 1
I  ck- \ ^ k\<p )
rt
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(an expansion by minors)

=  Z  ? ~ 1('l'k\<P)*('l'l ■ • ' ( “O W " '  'I'n\Xl ■ ■ ■ Xn- 1>*
k= 1

=  II Cfc_1<<7#*><Xi ' ' '  Xn-il^i ' • ’ (no iK) • • •
k=l

Because this is for arbitrary • • • x„-, | we have finally,

a i v M i  ■ ■ ■ 'I'n) =  Z  ’ - - (no i/O • • ’ i/O. (6.127)
fc= 1

Thus the destruction operator removes the states |i/^), one at a time, leaving a 
sum of (n -  l)-particle states. In the Bose case (C = 1) the terms all have 
a + sign, whereas in the Fermi case (£ =  — 1) they alternate in sign.

Equations (6.126) and (6.127) describe the action of creation and destruction 
operators on many-particle states. From Eq. (6.126) it follows that

a +(<Pi)a+(<P2) =  Ctf+(<P2>*+(<Pi),
or

O+OiX a +((?2)]-c  =  0, (6.128)

where [A, =  AB — £BA; that is, [y42?]_(£ =  +1) is the commutator
and [A, B~\+(C =  —1) is the anticommutator.

Taking the adjoint of Eq. (6.128) we obtain the further result

[a(<jOi), a(<p2)]-c  =  0. (6.129)

Thus, the creation operators commute for Bose particles and anticommute for
Fermi particles, and similarly for destruction operators.

Now, what is [a((px), a +((p2)]_ c? Does it (or any similar expression) 
reduce to anything simple? We first calculate

=  a(<Pi)\(<P2,'I'1 • • ’ 'I'n)

= (<Pi\<P2)\'l'i ■•■'I'n) +  Z  Ck(<Pi\'l'k)\<P2, 'I'l • • • (no \!/k) ■ ■ ■ {//„), (6.130)
fc= 1

and then

a +(<p2)a((pl )\'l'l ■■■<]/„}= £  Ck~1Wi\'lfk) a +(<p2M i  • • • (no ipk)-- -^„>
k= 1

= Z  Ck~i<.(Pi\'l'k,\<P2 > 'I'l - • • (no \//k) • • •
(i=i

(6.131)
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Multiplying Eq. (6.131) by ( and subtracting it from Eq. (6.130) we see that

[<*(<?,), a +(<p2y] _ { =  ( (p1 \<p2}. (6.132)

Equations (6.128), (6.129), and (6.132) are the fundamental “commutation” 
relations for creation and destruction operators.

The relations we have derived are usually stated in terms of an orthonormal 
basis, and we shall now do that. Let {|a>} =  {|1>, | 2 ) , . . .  } be a complete 
orthonormal set of one-particle states. It is usual to let aa =  a(oc). Then, since 
<a|j?> =  8ap, we have [aa, = <5a/J. We consider the Bose and Fermi
cases separately.

Bose Case 

Let

\ni n2 ' ' '  )  =  , (6.133)
\ !n1! n2\ • • *

where na is the number of times a appears in the ket on the right. Then the 
\nin 2 ’ * ’ )  (each na =  0, 1, 2, 3 , . . . )  form an orthonormal basis for the whole 
multiparticle space. From Eqs. (6.133), (6.126), and (6.127) we find

ax \nln2 ■ • • ««• • • > =  + 1 |«1«2 • • •«„ + ! • • • >,  (6.134)

• • ««• • • > = V«a |«i«2 • • • w«-i • ••>• (6.135)

The commutation relations are

\aa, ap] =  [a+, a / ]  =  0; [ax, a / ]  = (6.136)

Equations (6.134), (6.135), and (6.136) are identical to Eqs. (6.60), (6.61),
(6.51), and (6.52) for raising and lowering operators for a system of harmonic 
oscillators. The operator for the number of particles in the state |a> is

Nx = ax aa.

The notation of Eq. (6.133) (in terms of “occupation numbers”) is generally 
not the most convenient. It is more natural, in fact, to continue using the nota-
tion we have been using all along in this section, that is, the notation |al5 a2, . . . ,  
aw). This notation was discussed in Section 6.5 in connection with phonons. 
Note that Eqs. (6.126) and (6.127) of this section, when applied to states of the 
form |al5. . . ,  aw>, become identical to Eqs. (6.67) and (6.68). Thus, creation 
and destruction operators for a system of Bose particles look just like those for 
what we called a “phonon” system.
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Fermi Case

Using the notation |a1?. . . ,  a„>, we have

d l |al9. . . ,  a„> = |a,a1? . . . , a„> (6.137)

and

k= 1

We could also use the occupation-number notation

K«2* ‘ a2* * * >

where <  a2 < • • -, and na is the number of times a occurs («a =  0 or 1) in 
this sequence. If na =  0, then changes it to 1, whereas aa annihilates the 
state. If na =  1, then aa changes it to 0, whereas a* annihilates the state. There 
are also factors of ±  1 involved, depending on what other states are occupied. 
It is easiest merely to remember Eqs. (6.137) and (6.138).

Note that a{cp)2 = a+(cp)2 = 0 for any one-particle state \(p). This state-
ment follows from Eqs. (6.128) and (6.129) (with £ = — 1 and cpl = cp2 = q>), 
and it is also equivalent to the fact that two fermions cannot be in the same state, 
that is, \cp, cp)  =  0-

One could also derive Eqs. (6.137) and (6.138) directly from the anti-
commutation relations

as was done in previous sections for the ax’s of the harmonic-oscillator system. 
But for the Fermi case there does not appear to be any a priori reason for pos-
tulating Eq. (6.139). (Remember, for oscillators the corresponding commutation 
rules followed from the canonical quantization procedure.) One may rather 
consider Eq. (6.139) as derived from the antisymmetrization postulate for 
fermions.

Let us return to the general case where Eqs. (6.126) through (6.132) apply. 
One advantage of deriving them in such a general form is that we are not tied 
down to a particular basis of states. Suppose we use a basis of momentum 
eigenstates, |/i>. Because ( p \p ')  =  (2n)353(p — p ') we have

[ax, ap} + =  [a + , a / ] + = 0 ;  [ax, a / ] + = 8xft (6.139)

[a(p), a+(/>')]-c = (2tt)3<53(/> -  />'),
\ a { p ) ,  a ( > ' ) ] _ ? =  [ a + ( p ) ,  a + ( /» ' ) ] - ;  =  0- 

From the vacuum state we can construct the other states by 

\ P u  =  a + ( P i )  • • • a + ( P n )  |vac>.

(6.140)

(6.141)
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If we use a basis of position eigenstates |x>, then since (x \xf)  =  <53(jc — x '),

[a(x), a +(x')]-c = S3(x -  x f), (6.142)

| * i , . . . ,  *„> =  a +(xt) • • • tf+0*„)|vac>. (6.143)

If we use a basis of hydrogen-atom energy eigenstates |nlm), then \a(nlm), 
a +(«7'm')]_^ = 6nn' 6lV Smms and so on.

How do the creation and destruction operators change when we make a 
change of basis? This question is easily answered by noting that if

lz> =  o # >  + p\ ( p ) ,  (6.144)
then

a +(x) =  oca+(4>) +  pa+((p\

a(x) =  a*a(^) +  P*a((p), (6.145)

This means that creation operators “transform” like kets, whereas destruction 
operators “transform” like bras (because =  a*<^| +  /?*<<p|). Equation 
(6.145) are readily generalized to infinite series and integrals. Now if we change, 
for example, from position to momentum representation, so that

d 3x\x)eip'x,| p )  =  J  d 3x\x}(x\p)  =

the creation operators are related by

a +(p) =  f  d 3x a +(x)eipx,

(6.146)

- I (6.147)

To relate the destruction operators a(p) and a{x), simply take the Hermitian 
adjoint of Eq. (6.147). One proceeds in a similar way for any other change of 
basis.

Exercise: Suppose we have a complete orthonormal set of states |a>, and we 
let the “wave functions” of these states be <Jt|a> =  wa(jc). Write down the 
formulas for a+(x) and a(x) in terms of a+ and aa, and vice versa.

6.8 THE HAMILTONIAN AND OTHER OPERATORS
In the last section we developed a method for describing systems containing 
many Bose or Fermi particles, and we defined creation and destruction operators
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for the particle states. We will now show that these operators have other uses 
than merely creating and destroying states.

Suppose A (1) is an operator that acts only on one-particle states. We 
wish to find an operator A  that represents the “sum of A (1) over all of the 
particles.” That is, for any ^-particle state

|^> =  | , ij j„)  =  1^,) x • • • x |ij/„) (6.148)

we want A\\j/) to satisfy

A W )  =  ^ (1)|«Ai> x \ t i )  x ••• x |^„> +  |^!> x A w \\I/2)  x ••• x |ij/n)

+ • • • +  |iAi> x x ••• x ^ (1,|0'„>- (6.149)

To see what this means, suppose each |i//,} is an eigenstate of A a }  with eigen- 
value ai. Then Eq. (6.149) implies that

A\i//) =  ( a t +  ■ ■ ■ +  a„)|<A>. (6.150)

For example, if A (1> is the single-particle Hamiltonian, then A  is the total energy 
(ignoring mutual interactions, which we shall consider later in this section). 
If A (1) is the momentum operator for a single particle, then A  is the total mo-
mentum. If A (1) =  1(1) (the unit operator on one-particle states), then A  =  N ,  

the “number-of-particles operator.”
The desired operator A  is easy to find. We first find it for the special case 

A (1) =  |a></?|. In this case Eq. (6.149) becomes

A l t ' )  =  < W l> |a , t l , - - - ,  t n )  +  ( P \ t i ) \ t u  a , . . II 'n)

+  ■ ■ ■ + \j/ 2, . . . ,  a>. (6.151)

Now look back at Eq. (6.131) and notice that when cp2 =  a and (Pi =  j? we
have

a+(°0a(P)\t)  = i  (6.152)
k=l

But

£*_1|a, (no i/'*),. . . ,  t/O =  It/' , , . . ., \l/k_ u  a, ^k+1, . . . ,  î „>

due to the symmetry property of the n-particle state. Using this equation in 
Eq. (6.152) and comparing it with Eq. (6.151) we find

A  =  a + (cc)a(P) when A (1) =  |a>(/?|. (6.153)

The generalization of Eq. (6.153) for an arbitrary one-particle operator A {1) is 
immediate. We choose a basis—any basis—of one-particle state |a>, and write

A (1> =  2  laXal^IjSX/SI =  £  A t y \ * X p \ .  (6.154)
a,P a,p



178 Creation and annihilation operators

Then, from Eq. (6.153) and linearity,

A =  I  A$>a+(a)a(fi). (6.155)

As a first example we consider A(1) = 1(1), so that A = N, the operator for 
the number of particles. Using various bases we have

i (1) = 2 1«)<«|

d 3x|jcX*|

• d 3p
(2n)3

from which we can immediately write

N  =  2  «.+a.

Ip X p I (6.156)

=  d 3xa +(x)a(x)J 
- f

d 3p
(2 n)3

Next, consider the momentum operator. Because

a +(p)a(p). (6.157)

I

we have for the total momentum

P  = I 0 f p a +(p)a{p)

=  I d 3x\x> * \ ( x \  (6.158)
I'

=  J d 3xa+(ac) * Va(x). (6.159)

(Compare the first of these expressions for P  with Eq. (6.100), another expression 
for P.)

Finally, suppose the Hamiltonian for a single particle is

H (1> =  —  +  V(x), (6.160)
2m
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where x is the position operator. In coordinate representation,

<*|tf(1V >  =  -  —  V2<53(* -  x') + K(*)<53(* -  x'), (6.161)
2m

so that

H =  jV *  J d 3x' ~  V253(x -  *') +  F(.t),53(x -  x')J a +(x)a(x’)

d 3xa +( x ) —  + K(jt)l a(x). (6.162)
|_ 2m J

In momentum representation*

<* |tf(1V >  =  (2n)3d3(p -  p') + f  d 3x e - ‘p xV(x)eip x'
2m J

=  2 —  ( 2 n ) 3S 3( p  -  p ’)  +  V ( p  -  p ' ) ,  (6.163)
2m

where

V(q) =  f d 3xV(x)e-iqx. (6.164)

Therefore
- / ■

H - i n  £ a H p M p ) +I0  j w P ( p ~  p ’ ^ p w )  

° ’ ( p M p ) + j  J H n , ) a t ( p + , M p ) -
(6.165)

The term V(q)a+(p + q)a{p) annihilates a particle of momentum p  and recreates
it with momentum p  + q, the amplitude for this process being V(q). If we use a
basis of eigenstate |a) of H (1\  so that

< a |//(1)|/?> =  Ejb" (6.166)
then

H =  £  Exa?ax, (6.167)
a

which is what we had for phonons with Ea = /za>a.

* The second term is obtained by noting that

and putting this between states </>| and \p').
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All of these expressions for H  can be derived from each other using the 
formulas relating a+(x) and a +(p)9 and so on, described at the end of Section 6.7. 
But it is often simplest to obtain such expressions directly from the single-
particle Hamiltonians, as we have done here.

The density of particles (that is, number per unit volume) at the point x 
is given by the operator

p(x) =  a +(x)a(x) (6.168)

(which corresponds to the one-particle operator |jc)< jc|). Thus the number-of- 
particles operator in Eq. (6.157) may be written as

N  =  |  d 3xp(x), 

and the potential-energy term in Eq. (6.162) as

V =  I d 3xV(x)p(x).
■ J '

This last equation represents the integral of the potential energy weighted by the 
density.

So far we have described a system of independent particles, each particle 
being (possibly) acted on by an external potential but no two particles influencing 
each other. Suppose, however, that there is an additional potential V(2\ x h Xj) 
between any two particles at x t and Xj (giving rise to a “two-body” force). We 
assume that V(2\ x h xj) =  V(2)(xj, x t). On two-particle states the operator 
is then

y (2) =  h j"d 3x  J*d 3y\x,  >>)F(2,(x, y) (x ,  y\, (6.169)

as can be verified by applying it to a two-particle state \xu x2)- We now want 
an operator V on the whole multiparticle space such that

V\xu 2  V^Xx-v xj)\xu . . . , x„)
i < j

=  i  Z  y(2)(xh *y)l*i> • • • > *«>• (6.170)
i*j

Looking at Eq. (6.169) and noticing that a +(x)a+(y) creates the state |x, j ) ,  
whereas a(j)a(x) destroys the same state, we might guess that

F =  i j  d 3x J  d 3y a +(x)a+(y )V(2)(x, y)a(y)a(x). (6.171)
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This is in fact correct, as can be verified by applying V to |x1?. . . ,  x„}. Using 
Eq. (6.127) twice, we have

a(y)a(x)\x1 •■•*„>

Then

a +(x)a+(y)a(y)a(x)\xl9

= 2  Cfc_1̂ 3(x -  xk) 8 \ y  -  xj)\x9 y 9x i9. . . 9 (no xk9 xj)9

Multiplying by \ V {1)(x9 y)  and integrating over x and y , we find that V as 
given by Eq. (6.171) indeed satisfies Eq. (6.170).

In view of Eq. (6.168) and the remarks following it, we might expect that 
the mutual interaction could also be described in terms of the particle density 
by the operator

However, V' is not quite the same as V. To see the difference we write

p(x)p(y) =  a +(x)a(x)a+(y)a(y)
=  Ca+(x)a+(^)a(x)a(j) + <53(x -  j )a +(x)a(j)
=  a +(x)a+(jOaO>)a(x) +  d3(x -  y)a+(x)a(x),

Thus V' contains an extra term, which may be interpreted as a self-energy; 
it contributes even when there is only one particle present. The true mutual 
interaction V is zero unless there are two or more particles. We want only the

=  a(y)  £  i k l 5 \x  -  • • • (no xk) • • • x„)
k =  1

n n
=  £  i k~l5 \x  -  xk) £  t\jkb \ y  -  xj)\x, • • • (no xk, Xj) • • • *„>,

J  =  A

where

=  Z  C* -  xk)S3( y  -  Xj)\xk, Xj, . . . ,  (no xk, Xj), . . . ,  x„)

(6.172)

so that

(6.173)
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Fig. 6.1 Operator V adds momentum q to one particle and subtracts it from the other.

mutual interaction, because any self-energy (if it exists in nature) can be included 
in the Hamiltonian of Eq. (6.162). Besides, for many potentials (for example, 
the Coulomb potential), V' is infinite and is not what we would consider to be 
the true energy.

If we express V in momentum representation, using Eqs. (6.171) and 
(6.147), and assume

V(2)(x, y) =  V(x - y ) =  V(y -  x), (6.174)
we arrive at

H l i S j S J w  n ^ p + ^ v  ~ q M p ' M p l  m 7 5 )
Here V(q) is as defined in Eq. (6.164) (in proving Eq. (6.175) we use V(q) =  
V( — q), because V(x) =  Note that

V\PuPi)  =  V(Q)\Pi +  9, Pi -  f>,

which says that V adds momentum q to one particle and subtracts it from the 
other with amplitude V(q). This process is denoted by the diagram in Fig. 6.1. 
The total momentum is conserved, as we would expect, because Eq. (6.174) 
implies that the mutual interaction is invariant under translations.

The Hamiltonian and mutual interactions described here all conserve the 
total number of particles (see the exercise at the end of Section 6.5).

6.9 GROUND STATE FOR A FERMION SYSTEM

In this section we will consider fermions, so that the results of Sections 6.7 and 
6.8 apply with £ = — 1. Suppose we know the eigenstates and eigenvalues of 
the single-particle Hamiltonians,

H^\oc) =  £Ja>, (a = 1 , 2 , 3 , . . . ) .  (6.176)
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Then, ignoring mutual interactions, we have for the multiparticle Hamiltonian:

H =  £  E X  a*. (6.177)
a

Every state may be built up from the vacuum state by applying creation 
operators:

l«i, ■■■,«„) =  a + , . . . ,  a+|vac>. (6.178)

(Both sides vanish unless the are all distinct.)
It is often inconvenient to refer everything to the vacuum state, as in 

Eq. (6.178). In practice we may be considering states that differ from some 
“ground” state only by the presence or absence of a few particles. Suppose 
there are G particles present. Assume that the energy levels are ordered such 
that

E1 < E2 < E3 <  •.

Then the state of lowest energy is

|gnd> =  |1 , . . . ,  G> =  a t  • • • a£|vac>, (6.179)

which we call the ground state; its energy is

£ gnd =  E x +  • • * +  Eg. (6.180)

Any other G-particle state will have some of the levels 1 , . . . ,  G unoccupied 
and some higher levels occupied. It is convenient to use |gnd> as a reference, 
describing the removal of a particle from 1, . . . ,  G as the creation of a “hole.” 
Particles in the levels G +  1, G +  2, . . .  are still called “particles.” If a 
particle is excited from the level a to the level /?(a < G < P), then we say that a 
hole with energy — Ea has been created as well as a particle with energy Ep.

The concept of holes may be formulated mathematically as follows: 
Define

ba =  a* for a <  G. (6.181)

From the anticommutation relations in Eq. (6.139) we have, if a, a' >  G and
P, P  <  G,

aa']+ =  [ fla> f̂i]+ “  U>p9 k/r] + =
[o„ <tf]+ =  <W; [ V  V 0 + =  8„>, (6.182)

[a« V 1+  =  °-
Thus the operators a * (a >  G) and b * (a <  G) behave like creation operators. 
We can now express the states in the form

|al5. . . ,  am, , Pn, gnd> =  a* • • • a«+ • • • 6/Jgnd) (6.183)
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(af >  G, Pi <  G). We call this a state with m particles and n holes. The 
ground state acts like a vacuum state in that

ajgnd) =  Z^lgnd) =  0. (6.184)

The Hamiltonian of Eq. (6.177) may be written in the form

H =  £  Exa*ax +  £  EabaK
a > G  a <  G

=  £  £«a.+«. +  £  Ea{ - K K  +  1)
a > G  a < G

=  £ g„d +  £  -  £  E X K ,  (6.185)
ot>G a < G

so that the energy of a hole in state a is — Ea. In other words, it takes an energy
— Ea to create the hole. The number-of-particles operator is

N  =  £  a« a*
a

=  £  a«+a« +  £  ( - K K  +  1)
a > G a < G

=  G +  £  aa+aa -  £  btK-,  (6.186)
a > G  a < G

thus a hole counts as — 1. The number of particles and holes outside the ground 
state (that is, the number m +  n in Eq. (6.183)) is given by the operator

N f =  X  +  I  K b „  (6.187)
a>G a<G

which counts a hole as +1 and the ground state as nothing.
Suppose now that a perturbation is applied to the system in the form of an 

external potential
U =  I  (6.188)

where we assume that the single-particle potential Uffl may be nondiagonal. 
Then

v  =  £  t / j /V a p  +  £  t / i / W
a >  G a > G
fi>G p<G

+  £  -  £  U f r b t K  +  £  (6.189)
a < G  a ^ G  a < G
p> G  p £ G

The first and fourth terms of this equation modify the energies of the particles 
and holes, respectively, and the fifth term modifies the ground-state energy.
The second term creates particle-hole pairs, and the third term destroys them.
Note that N , as given by Eq. (6.186), is conserved, whereas N f, as defined in 
Eq. (6.187), is not.
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Suppose further that there is a mutual interaction, a two-body potential 
of the form described in Section 6.8:

v =  I  V % 6a : a ; a dar  (6.190)

As in Eq. (6.189), we can express V in terms of aa (oc > G) and ba (a <  G), and 
then use the anticommutation rules of Eq. (6.182) to write V in a form such 
that in every term all of the creation operators are to the left of all of the de-
struction operators. Such terms are called “normal products.” The result 
will be a number of terms involving four operators, plus other terms that can be 
lumped into U or added to Egnd.

6.10 HAMILTONIAN FOR A PHONON-ELECTRON SYSTEM

Now we will consider, as an application of the creation and destruction operator 
formalism, the interaction between the electrons and lattice vibrations in a 
crystal. It is this interaction (as well as the presence of crystal impurities and 
imperfections) that accounts for the finite conductivity of metals under most 
conditions. (One might otherwise expect from the band theory of metals that, 
once an electron got into an unfilled band, it would move unhindered, resulting 
in infinite conductivity.) We will show how the Hamiltonian is derived and 
written in terms of creation and destruction operators.

We start with the electron in a lattice with no vibrations. Let N  =  +
n2a2 +  n3a3 (where nu n2, n3 are integers) describe the positions of the nuclei. 
The potential V(x) felt by an electron in the lattice is periodic and has the form

Vi(x) =  I  V0(x -  N).  (6.191)
N

The Hamiltonian for a system of independent electrons in the lattice is, from 
Section 6.8,

V2 +  Kj(x)J a(x). (6.192)

Now, suppose we have solved this part of the problem and know the one- 
particle eigenstates |a> and eigenvalues Ex. Denoting <x|a> by <px(x) we have

~  :2m V2 +  Vai*) =  Ex(px(x). (6.193)

Then we can express the electron Hamiltonian as

i =  I  Exax+ax. (6.194)
a

Because
l*> = H  l<*X«l*> = £  !«>?(*)

J d3xa+(x) j" —i i
2m
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we have
a +(x) =  £  a : r t ( x )  (6.195)

a

and similarly

d3 xa+(x)(pa(x). (6.196)«.* -  j .

To obtain relations between the destruction operators, simply take the Hermitian 
adjoints of Eqs. (6.195) and (6.196).

If, as in Section 6.9, we refer all states to a ground state (called the “electron
sea”), which is normally filled, then in the notation of that section,

Hei =  £ gnd +  I  E X  a. ~  I  E X b . .  (6.197)
a>G <x<G

In what follows we shall ignore the ground-state energy, so that the electron 
Hamiltonian becomes H'qX :

H'a =  I  E X  a. -  I  E X K  (6-198)
a>G a<G

Note that, in terms of electron and hole operators, Eq. (6.195) and its adjoint 
become

a +(*) =  E  «> .* (*) +  S
«>g «sg  (6.199)

<*(*) =  S  a«9«(*) +  2  K<P*(x\
a> G  a< G

Consider next the lattice vibrations. For each TV let ZN be the displacement of 
the corresponding nucleus from its equilibrium position N. The form a set 
of coordinates for a system of harmonic oscillators. The procedure for finding 
the normal modes and quantizing this system is similar to the field quantization 
of Section 6.6, except that Fourier transforms are replaced by Fourier series, 
with the “momentum” k  of the phonons running over a limited region. The nor-
mal coordinates qk a are related to the ZN by equations of the following form 
(assuming for simplicity that “a” runs from 1 to 3 as in the case of one atom per 
unit cell of the crystal):

4m _  v  p ~ ik Np* • 7—]=- — Zj  e ek,a
\ / V  N
w v  _  (6.200)

----------- ̂ _  r  y  e eik’N ^ aN “  Id ek,ae /— •
J K  ( 2n)  a=l  \ j V

Here the region of integration is K  =  {k\ — n < k  • at <  n; i =  1, 2, 3};
V =  | x a2 • a3 \ is the volume of the unit cell of the crystal lattice (recall that 
the a t are vectors describing the periodicity of the lattice), and ek a (a =  1, 2, 3)
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form an orthonormal basis of 3-space for each k (in that e%iQ • ek b =  8ab\  
chosen so that the mode (k, a) is a normal mode.

You should check the consistency of Eqs. (6.200) as an exercise. It is 
convenient to use the relation

I d3k  
(2n)3

iK (JV-JV') _  I 
e  — °N,N'>

and the easiest way to verify it is to make a change of variables rt =  K  • at. 
N  — N'  can be written as

3

Z  miai>i = 1

where are integers, so that K- (N — N') =  m f , and the Jacobian of the 
transformation is

—
dr

1

Equations 6.200 are essentially a special case of Eqs. (1.28) and (1.29). The 
change of notation is

Chapter 1

Qrik)

<£(*)

Z( t ,N

V

Chapter 6

Q k,r

V f

The ath component of ek r 

The ath component of ZN

The normalization conventions used in Eq. (6.200) are convenient because, 
in the limit that the lattice approaches a continuum (i.e., at -* 0), K  becomes all 
of momentum space and, letting jc =  N, we have

H '
iV Y . - +  I d3x and — dNN. -»■ 53(x -  oc'), (6.201)

Thus we have obtained the normalization of Section 6.6 for a field <p(x), where

s ! m ! V Z n -► <p(x).
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Following the procedure of Section 6.6 we have an expression for ZN in 
terms of creation and destruction operators:

(6.202)
where

lA(k, a), A +(k\  a')] =  (2n)3d3(k -  k')daa,  (6.203)

M  is the mass of the vibrating atom, and co(k, a) is the frequency of the cor-
responding mode. The Hamiltonian for the oscillator system (apart from a 
constant term) is

Hose =  f ^  s  M * ,  a)A+(k, a)A(k, a). (6.204)
Jk (27t) a

(We have used A for the phonon operators* to avoid confusion with the electron 
creation and destruction operators.)

Having written down Hamiltonians for the electrons and the phonons 
(lattice-vibration- states), we now turn to the interaction between them. The 
potential energy of an electron in an undisturbed lattice was given by Eq. (6.191). 
If the nucleus at N  is displaced by an amount Z n , then the potential energy 
changes to

V,(x) +  AFjOc) =  2  V0(x -  N  -  ZN), (6.205)
N

where we have assumed that each atom in the crystal acts like a rigid body 
when it is displaced, so that the potential V0 arising from it is simply displaced 
by Z N. (In practice, not all the electron shells around the nucleus move by the 
same amount, so that the potential changes its shape as well as being displaced; 
however, we shall ignore this fact.) The potential Vt(x) was already included
in Hcl. Writing

V0(x - N - Z n) &  V0(x  -  AO -  ZN VV0(x -  N)

we have for the interaction energy (that is, the extra energy of the system due to 
displacement of the lattice):

A n (x) =  -  X  Z N • VF0(jc -  AO. (6.206)

* Note that A+(k, a) (as well as the state it creates) has the dimensions of (length)3/2, as 
do the corresponding operators for other particles in momentum representation.
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For the many electron system the interaction Hamiltonian is 

H in t  =  |  d3x AVl(x)a+(x)a(x)

=  I  V ^ ; a „  (6.207)

where

Vxfi =  J  d3xcp*(x) AVfayppix)

=  -  2  ZN ■ J  d3xcp*Jx)\V0(x -  NWpix). (6.208)

Now VaP is also an operator on phonon states, because ZN is an operator.
Using Eq. (6.202) we get

V * -  f  «) +  «)]. (6-209)
J x (2 7 r) a

where

« * ■  -> -  -  • ?  *“ ■'
(6.210)

Therefore,

Hint =  f  ^  S  I  [Ca/)(ft, aM +(*, a) +  C,*(A, aM(A, «)]«,+ a,. (6.211)
J k  (27T) a a,/?

The total Hamiltonian of the system is

H  =  Hg1 +  Hosc +  tfint. (6.212)

Note: The states of our system are of the form

|al5. . . ,  aw; k u au . . . ,  km9 am)  (« electrons and w phonons),

or, if we use the hole notation,

K , * • * 9 &m’ /̂ 1» • • • 9 Pn> 1̂? 1̂9 • * * 9 kp9 Qp)
(n electrons, m holes, and p  phonons). 

The effect of a creation operator A +(k, a) on such a state may be defined as 

A +(k, tf)|electrons, holes, k u au . . . )  =  \k9 a, electrons, holes,au . . .  ), 

which is in turn defined to be

|electrons, holes, k , a, * 1? au . . .  ).
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The result of this definition is that all phonon operators commute with all 
electron (and hole) operators. (In general, it is conventional to say that creation 
and destruction operators for different particles always commute unless the 
particles are both fermions. In the latter case it is convenient to define the 
operators to anticommute; then everything is consistent if we decide to call the 
particles different states of the same particle, as with the proton and neutron.)

If we write Eq. (6.211) in terms of electron and hole operators, we get an 
expression four times as long, involving terms of the form

A +a+a, A +a +b+, A +ba, A +bb+,

A a+a, A a +b +, A ba, A bb+.

These terms represent the transition of an electron or hole from one state to 
another, or the creation or annihilation of an electron-hole pair. In each 
process a phonon is emitted or absorbed.

The foregoing derivation assumed that there is only one atom per unit 
cell of the crystal. However, the results are similar if there are more atoms 
(say A) per unit cell, the only difference in the final result being that there are 
more phonon modes for a given k (a running from 1 to 3A). As a simplification 
it may turn out that some of the modes do not “couple” to the electrons, that is, 
they do not influence the potential felt by the electrons; these modes are 
independent of the others and may be ignored. Such is the case in the Polaron 
Problem (Chapter 8), where only one phonon mode contributes for each k.

6.11 PHOTON-ELECTRON INTERACTIONS

Suppose we shine light on the crystal of Section 6.10. What is the Hamiltonian 
now? To H  we must add a term Hy for the free electromagnetic field (y refers 
to phonons) and a term Hey for the interaction between electrons and phonons. 

For the free electromagnetic field, the classical Lagrangian density is

se = #E2 -  c2B 2)

=  \ \ A 2 -  c2(V x A)2]

=  -  c2 t i (ViAjViAj -  , (6.213)

where A(x) satisfies the subsidiary condition*)

V • A =  0. (6.214)

* We assume also that the scalar potential is zero. We are using “rationalized units,” 
but with s0 = 1; thus e2/4nhc a  1/137 and V • E = p, V x B = (1 /c2)(j + dE/dt), 
etc.
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The equation of motion resulting from the Lagrangian is

0 = c2[V2A -  V(V • A)~] -  A =  c2 [v 2 -  ~  |^ J  A. (6.215)

Carrying out the quantization procedure of Section 6.6, we find a>(k) =  
c\k\ =  ck, and

= f 7TT3 t  [c (*> + C+(k ’ r )e~ik XW r -  (6.216)J (2ny r= i V 2ck

Here ek r (r =  1,2) are two unit vectors, perpendicular to each other and to k , 
and C +(&, r) is the creation operator for a photon with momentum hk and 
polarization ek r:

[C(k, r), C +(k', /•')] =  ( 2 n f 5 \ k  -  k')5„,  (6.217)

The Hamiltonian is

Hy =  f ^ 3  Z ^fcC +(*, r)C(k, r). (6.218)
J (2 tc) r = 1

To find the photon-electron interaction we replace the operator* P  by
P +  eA(x) (the charge of the electron being — e) in the single-particle
Hamiltonian

V P  =  f - + V lt
2m

so that

Hi,1* +  =  (P +  eA)2 +  Vt
2m

2

=  Hi,1’ +  —  (P • A +  A ■ P)  +  —  A 2. (6.219)
2m 2m

Writing

A(X)  =  J* ̂ /3jcv4(jc)|jc)<jc|, (6.219')

we have

# i y1} =  -  ^ d 3xA(x) v (1)(x) +  J ^ 3xy4(jc)2|jc)<x|, (6.220)

* P and AT are the electron momentum and position operators, and A(x) operates on 
photon states, so that A(X) (see Eq. (6.219')) operates on both photons and electrons.
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where

y(1)<X> =  -  ~  +  k X * !^ )2m

=  -  ^  i[(V|jc»<^| -  |*>(V<*|)]. (6.221)
2m

Note that j w (x) is the charge —e multiplied by the probability current-density 
operator. The expectation value in any one-electron state |i//) is

W ' X x m  =  -  ^  <[«a(x)v^*(jc) -  r ( x ) V H * ) i
2m

By inspection of Eq. (6.220) we have, for the interaction between photons and 
systems of arbitrary numbers of electrons,

Hey ==  — J* d3xA(x) -j(x) -f ~~  J  d 3xA(x)2a +(x)a(x), (6.222)

where
pif

j(x)  = ------- i [ \ a +(x)a(x) — a +(x) \a(x)] (6.223)
2m

is the electromagnetic current-density operator
In Eq. (6.222), A(x) is itself an operator for each x, given by Eq. (6.216). 

If we use Eq. (6.216) in Eq. (6.222), and also express a +(x) in terms of a+ using 
Eq. (6.195), we get terms involving

C +(k, r)a*dp, C(k, r)a^ap, C(k, r)C(k\ r ’)a+ap, C(k, r ) C +(k\  r')a+ap,

and so forth, which have interpretations similar to those of the phonon- 
electron interaction.

The electromagnetic current defined in Eq. (6.223) may be expressed in 
momentum representation as follows:

( 6 -2 2 4 )

This expression will be useful in Section 6.12.

6.12 FEYNMAN DIAGRAMS

A graphical method employing what have come to be called “Feynman diagrams” 
has proven to be very convenient in dealing with perturbation solutions of 
complicated Hamiltonians. These diagrams serve as a “bookkeeping” device 
to keep track of all the perturbation terms and a guide in writing down the value
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of each term. (The diagrams assume their full power in the relativistic case, 
with which we are not concerned here.) To show how the method works we 
will consider the Hamiltonian for a single, otherwise free, electron interacting 
with the electromagnetic field:

H  =  / / f r e e  +  # i n t >

where 

and

Hint =  -  J* d 3xj(x) -A(x) +

Here we denote the photon-creation operator by A +(k,r)  instead of by 
C +(k, r):

i  J w T  M * ’ r êik X +  A+(k’ (6-227)J (271)̂  r=l v 2ck

and j(x)  is given by Eqs. (6.223) and (6.224). In this section, h =  1.
The states under consideration are of the form

|p; k l9 rt ; . . .  ; kn, rn)  (one electron and n photons). (6.228)

According to standard quantum-mechanical techniques, the transition 
amplitude Mfi for a transition from an initial state |i> to a final state |f> can 
be expressed in terms of the Hamiltonian (to second order) as follows:

(2*)3<530;f -  pd M n =  <f|H|i> +  £  <flg l" X Blg l»> +  0(H 3). (6.229)
n — En +  18

Cross sections and transition rates are proportional to the absolute square of 
the amplitude:

Rate =  £  \Mn\2(2n)Ad \ p f -  Pi)d(E{ -  £,). 
f

In practice, the states |i> and |f> are usually states of the form given in Eq. 
(6.228), that is, states of particles of definite momentum. It is therefore con-
venient to express Hint in terms of the A(k, r), substituting Eq. (6.227) in 
Eq. (6.226), and to use Eq. (6.224) for j(x).

l- t  2  ckA+(k, r)A(k, r) (6.225)
i l l )  r = l

I d 3 X  —  a+(x)a(x)A(x)2. (6.226)
2m

Hiat =  H 1 +  H2, (6.230)
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where
d 3p  C d 3k

( 2 n ) 3 J (27c)3 r 2m
k ,r

V 2 ck

x [(2tt)3<53(/>' — p  — k)a+(p')a(p)A(k, r)

+  (27t)383(pf +  k — p)a+(p')a(p)A+(k, r)], (6.231)
and

rj  _  f  d 3p  C d 3k '  f  d 3fc y  e 2 1

2 J  (2 tt)3 J  (2n)3 J  (2ji)3 J  ( I n f  r \r 2m ^ 2 x k '^ 2 c k  ^  'r
x [(27r)3<53( / /  — p — k' — k)a+(p')a(p)A(k\ r')A(k, r)

+  (27t)3<53(/>' +  k f — p  — k)a+(p')a(p)A+(k \  r')A(k, r)

+  (27c)3<53(/>' +  * —/> — k')a+(p')a(p)A(k\ r')A+(k, r)

+ (27e)3<53(/>' + &' + & -  />)a+(/>'M/>M+(A;', r ')4 +(A:, r)]. (6.232)

Note that the total momentum is conserved.
Each of the terms in Eqs. (6.231) and (6.232) is represented by a diagram 

in which a straight line denotes an electron and a wavy line a photon. For H 1 
the diagrams are given in Fig. 6.2a and 6.2b, and the amplitude for each is

p '  +  p  1 
e — —  * ekir

2m \j2ck

For H2 the diagrams are those shown in Fig. 6.3a through 6.3d, and the 
amplitude for each is

e2 1

2 v

(p = p + k )  

(b)

Fig. 6.2 Feynman diagrams for H x.
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(a) (b)

(c) (d)

Fig. 6.3 Feynman diagrams for H2.

Note that parts b and c of Fig. 6.3 represent essentially the same process. In 
fact, after the integrations are performed, the second and third terms of 
Eq. (6.232) are equal;* so in any process involving such terms we need only 
calculate for the case shown in Fig. 6.3b, say, and multiply by 2.

Now suppose we have a definite amplitude to calculate, for example, that 
for Compton scattering. The whole process is denoted by Fig. 6.4. To find the

Fig. 6.4 Feynman diagrams for Compton scattering.

* We ignore the infinite self-energy of the electron that comes from rearranging the 
A and A+ of the third term in Eq. (6.232).
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2̂» r2

Pl + kl

ki, ri

(a)

Fig. 6.5 Feynman diagrams with the same ingoing and outgoing lines as Fig. 6.4.

amplitude we draw all diagrams having the same ingoing and outgoing lines as 
that of Fig. 6.4, using those of Figs. 6.2 and 6.3. Thus we get the three cases 
shown in Fig. 6.5a, b, and c. Parts 6.5a and b correspond to the second-order 
term of Eq. (6.229), in which the intermediate state |n} consists of one electron 
and H  =  H t +  0(e2). (The fact that the photon lines cross in Fig. 6.5b is of 
no significance.) Using Eqs. (6.229) and (6.231) and removing the factor 
(2n)383(p2 +  k2 — Pi — A:x), we get for these contributions to the amplitude

(  g Pi  +  Pi +  k x \ (  e Pi +  + Pl \
m W _ W 2 ^  2m ' " V K j l c k t  2m k"'')

A  +  cfcl _  O’L + M
2m 2m

(6.233)
and

Pi  +  Pi -  k2 
2m

g Pi -  k2 +  Pi
yj lck2 2m

• <?.*2,r2

A  +  c I c {P' ~  k >)2 
2m 2m

(6.234)

We may associate the two factors in the numerator with each vertex, and the 
denominator with the “propagation” of the intermediate electron.

Figure 6.5c corresponds to the first-order terms of Eq. (6.229) in which only 
H2 can contribute. Remembering the factor of 2 due to the two ways in which 
this process occurs in Eq. (6.232), we get

, 2
M(c> =  2 • — 1

2m y/2ck2\ / 2ckx
k̂2,t • et (6.235)
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The total amplitude for Compton scattering is

M  =  M (fl) +  M (b) +  M (c) +  0(e4) (6.236)

In equations (6.233) and (6.234)

Pi +  =  Pi  +  *2 and k l • ekuri =  k2 • ekltri =  0.

In fact, if the initial electron is at rest (i.e., p l — 0), then M (fl) and M (b) both 
vanish.

The results we have derived are satisfactory for low photon energies 
(<cky «  me2). For high energies we would have to use a relativistic theory and 
also take into account the spin of the electron.


