
Chapter 5 

 

Using MATLAB Optimization Toolbox 

 

In this Chapter, the use of MATLAB Optimization Toolbox is presented. This 

program is an extremely user-friendly numerical analysis and simulation tool. It 

facilitates, in particular, the use of vectors and matrices, hence its name, which can be 

translated as Matrix Lab. 

The MATLAB program installation package can include several toolboxes each 

dedicated to a specific application, bringing together preprogrammed algorithms from 

that area. Here, the optimization toolbox will be used. 

The basic ideas of the program and its usual commands are NOT given in this 

book. To learn that, the reader should look for one of the many good books on the subject 

and we will consider he knows how to use the basic tools of the program. 

 

5.1 Optimization functions of MATLAB Toolbox 

The MATLAB optimization toolbox includes the following 6 basic functions. 

 

fminbnd – Optimization of a function of a single variable within a fixed range, ie:  

find  UL xxx  that minimizes ( )xf  

fminunc, fminsearch – Minimization without restriction of several variable functions, 

ie: 

  find x that minimizes f (x) 

fmincon – Minimization of several variable function with constraints, ie:  

  find x that minimizes f (x) subjected to 

  
( )

( )

iUiiL

j

i

xxx

pjh

mig



=

=

=

,...,1,0

,...,1,0

,

x

x

eNxbAx

 

linprog – Linear programming, ie: 

  find x that minimizes ( ) xcx
T=f  subjected to 

  eNxbAx = ,  

quadprog – Quadratic programming, ie: 



  find x that minimizes ( ) Hxxxcx
TT

2

1
+=f  subjected to 

  eNxbAx = ,  

These functions issue outputs that the user must verify: 

x – is the vector or solution matrix found by the optimization function used. If 

ExitFlag> 0, then x is the solution; if not, x is the last value obtained by the 

function. 

FunValue – the objective function value, ObjFun, for solution x. 

ExitFlag – The output condition code of the optimization function. If ExitFlag> 0, 

then x is the solution; if not, x is the last value obtained by the function; if null, 

the maximum number of evaluations of the objective function was reached; if 

negative, the routine did not converge to a solution. 

Output – It is an output structure of the optimization function that contains 

information about the process.  

(Output.iterations), Provides the number of evaluations of the objective function 

(Output.algorithm), the name of the algorithm used to solve the problem 

It is strongly suggested that the problem should be formulated as a main program 

that calls a MATLAB optimization subroutine which in turn calls a subroutine that 

contains the objective function and constraint function, if necessary. The general form of 

the command is 

 [x, FunValue, ExitFlag, Output]=fminX(‘ObjFun’, ..., ‘ConFun’, options, other 

parameters) 

where ObjFun is the name of a subroutine, an .m file, which contains the objective 

function to be called by the optimization function. This subroutine may also contain the 

explicitly the objective function gradient, if necessary. If this is not given, MARLAB will 

numerically compute the gradient, via finite differences. options are parameters of the 

optimization function the user wants to change in relation to the pre-programmed default 

values. After that it is possible to pass other problem related parameters from the main 

program to the subroutines. In problems with constraints, a subroutine ConFun containing 

these constraints and their gradients is also required. 

Next, we will only detail the use of two of these basic functions: fminserch for 

multivariable unconstrained optimization problems and fmincon for constrained 

multivariable optimization problems. These are the two most popular features of the 

MATLAB Optimization Toolbox. 

 

5.1.1 Multivariable unconstrained optimization problems 

We strongly recommend to write a main program MATLAB script where we may 

first furnish a set of options that may differ from the default setting of this function such 

as, typically,  



options=optimset ('LargeScale','off','TolCon',1e-8,'TolX',1e-8); 

Next, we provide lower and upper bound for the design variables, such as 

minimum and maximum thickness of plates etc. This may be line matrices, if we have a 

multivariable problem, or a scalar value otherwise. For example: 

Lb=[MinX1 MinX2];Ub=[MaxX1 MaxX2]; 

It is also necessary to provide an initial design, a line matrix with initial values of 

the design variables: 

x0=[InitX1 InitX2]; 

The fundamental feature of this main program script is the optimization function 

call: 

[x,FunVal,ExitFlag,Output]=fminsearch('ObjFun’,x0,options,Prob_data); 

Here, Prob_data may be an optional set of physical values we wish to pass to the 

optimization function, in the same fashion it would be done in any computer code from a 

main program to the subroutines. Of course, although this is an elegant procedure, it is 

not necessary, as we can write those values in the subroutines themselves.  

Any information not used, such as the absence of the options matrix, in a 

particular problem, must be substituted by an empty matrix []. 

 

5.1.2 Multivariable constrained optimization problems 

We strongly recommend to write a main program MATLAB script where we may 

first furnish a set of options that may differ from the default setting of this function such 

as, typically,  

options=optimset ('LargeScale','off','TolCon',1e-8,'TolX',1e-8); 

Next, we provide lower and upper bound for the design variables, such as 

minimum and maximum thickness of plates etc. This may be line matrices, if we have a 

multivariable problem, or a scalar value otherwise. For example: 

Lb=[MinX1 MinX2];Ub=[MaxX1 MaxX2]; 

It is also necessary to provide an initial design, a line matrix with initial values of 

the design variables: 

x0=[InitX1 InitX2]; 

The fundamental feature of this main program script is the optimization function 

call: 

[x,FunVal,ExitFlag,Output]=... 

    fmincon('ObjFun',x0,A,b,Aeq,beq,Lb,Ub,'ConFun',options, Prob_data ) 

Here, A is the matrix of coefficients of possible linear inequality constraint 

equations, b the right-hand side constants vector of these equations (the so called 



“available resources”). Aeq is the matrix of coefficients of possible linear equality 

constraint equations, b the right-hand side constants vector of these equations. 

Prob_data may be an optional set of physical values we wish to pass to the 

optimization function, in the same fashion it would be done in any computer code from a 

main program to the subroutines. Of course, although this is an elegant procedure, it is 

not necessary, as we can write those values in the subroutines themselves.  

Any information not used, such as the absence of linear constraints, in a particular 

problem, must be substituted by an empty matrix [], as: 

x,FunVal,ExitFlag,Output]=... 

    fmincon('ObjFun',x0,[],[],[],[],Lb,Ub,'ConFun',options, Prob_data ) 

 

5.1.3 Linear Programming problems 

A linear programming problem is set as 

Minimize an objective function 

𝑓(𝐱) = 𝐜𝑇𝐱          (5.1) 

Subjected to a set of constraint equations 

𝐀𝐱 = 𝐛          (5.2) 

All n inequality constraint equations are must be transformed into equality 

equations by including unknow positive slack variables. Thus, the size of the design 

variables vector x will be the number m of real design variables we wish to determine in 

order to minimize f plus the number n of slack variables. In consequence, matrix A is n x 

m, the “available resources” vector b will be n x 1, and vector c will be (n+m) x 1, the 

same size of vector x. 

We strongly recommend to write a main program MATLAB script where we may 

first furnish a set of options that may differ from the default setting of this function such 

as, typically,  

options=optimset ('LargeScale','off','TolCon',1e-8,'TolX',1e-8); 

Next, we may provide lower and upper bound for the design variables. In linear 

programing problems it is usual to have zero lower bound values and no upper bound 

values specification 

We may also provide an initial design, a line matrix with initial values of the 

design variables. Again, in linear programming it is not usual to do so. 

The fundamental feature of this main program script is the optimization function 

call: 

[x,FunVal,ExitFlag,Output]=linprog(c,[],[],A,b,Lb,Ub,x0,options); 

Any information not used, such as the absence of the upper bound and initial 

values, in a particular problem, must be substituted by an empty matrix []. 



 

5.2 Examples of Structural Engineering 

5.2.1 Nonlinear cable problem 

Consider the steel cable (Young’s modulus E = 21,000 KN/cm²) originally 

straight under prestress force N0 = 50 KN of Fig. 5.1. At a point at a distance La from 

the left support and Lb from the right support, a horizontal force H = 100 KN and a 

vertical force V = 200 KN are applied. The design variables are u, the horizontal 

displacement, renamed x1 (in cm), and the vertical v, renamed x2 (in cm). 

It is important to note that this is a non-linear problem, in which equilibrium can 

only be written in the deformed position, initially unknown. 

The basic idea is that stable equilibrium corresponds to a minimum of the Total 

Potential Energy: 

𝛱 = 𝑈 − 𝑊 

where U is the strain energy and W is the work of external forces 

𝑊 = 𝐻𝑢 + 𝑉𝑣 

The change in length is 

∆𝑎= 𝐿′𝑎 − 𝐿𝑎 = √𝑣2 + (𝐿𝑎 + 𝑢)2 − 𝐿𝑎 

∆𝑏= 𝐿′𝑏 − 𝐿𝑏 = √𝑣2 + (𝐿𝑏 − 𝑢)2 − 𝐿𝑏 

The axial forces are 

𝑁𝑎 = 𝑘𝑎∆𝑎 

𝑁𝑏 = 𝑘𝑏∆𝑏 

where  

𝑘𝑎 =
𝐸𝐴

𝐿𝑎
        𝑘𝑏 =

𝐸𝐴

𝐿𝑏
 

Thus, the Strain Energy is 

𝑈 = (𝑁0 + 𝑁𝑎/2)∆𝑎 + (𝑁0 + 𝑁𝑏/2)∆𝑏 

A steel cable with a length of 200 cm and transverse section A = 1 cm² was 

adopted, divided into two equal lengths. 

Using Matlab's fminsearch function in the solution, for unconstrained 

minimization, results x1 = 0.248 cm, x2 = 20.6733 cm, and the Total Potential Energy at 

this minimum point is – 3 KJ. As an exercise, check the equilibrium of the central node. 

The correspondent MATLAB script is provided in the Appendix. 



 

Figure 5.1 

 

5.2.2 Eccentrically loaded tubular column 

Minimize the mass of a tubular steel column of Fig. 5.2, clamped in the base and 

free at the upper end where an eccentric compression load is applied. 

 



Figure 5.2 – Column to be optimized 

 

Data: 

P vertical compressive load, 100 KN 

e eccentricity of load application, 2% of section average radius 

L column length, 5 m 

R section average radius, m 

t steel wall thickness, m 

E elastic modulus, 210 GPa 

  allowable normal stress, 250 MPa 

  allowable displacement, 0.25 m 

  density, 7850 kg/m³ 

A transverse section area, tR2 , m² 

I transverse section moment of inertia, tR 3 , m4 

W bending modulus, tR 2 , m³ 

From the Resistance of Materials, the following design expressions are taken. 

Normal stress: 

 

























+=

EI

P
L

W

eA

A

P
sec1  

Critical buckling load: 

P
L

EI
Pcr =

2

2

4


 

Lateral displacement: 













−














= 1sec

EI

P
Le  

In addition to these constraints given by the Resistance of Materials, there are 

design conditions that 

2,0005,0,101,0e50  tR
t

R
 

The design variables are, of course, the section radius (x1) and the steel wall 

thickness (x2). The objective function to be minimized is the mass of the column LA . 



Answer: R = 0.0537 m; t = 0.0050 m 

The correspondent MATLAB script is provided in the Appendix. 

 

5.2.3 Constrained optimization of a statically loaded redundant truss 

Consider the 3-time redundant truss Fig. 5.3. The cross-sectional areas are x1 (in 

m²) for vertical and horizontal bars, of unit length, and x2 (in m²) for diagonal bars, of 

length √2 m. 

It is important to remember that in a redundant (hyper-static) structure the 

distribution of internal forces depend on the dimensions of the cross sections. 

It is assumed a gravity load P = 1 KN applied to the mobile pinned support 2. The 

vertical displacements p1 and p2 of these mobile pinned supports are the only unknowns 

in the solution by the Displacement Method (or stiffness method, or equilibrium 

method). 

The properties of the material, supposed to be homogeneous, isotropic and linear 

elastic, are: allowable stress 10 KN/m²; elastic modulus E = 100 KN/m²; density  = 1000 

kg/m³. 

The objective function to be minimized is the total mass of the truss: 

𝑓 = 𝜌 (3 𝑥1 + 2 √2 𝑥2) 

subjected to the inequality constraint: normal stress less than the allowable stress 

of the material, buckling neglected. 

The determination of the 2 unknown displacements, using the Displacement 

Method, is obtained from the algebraic linear system solution: 

[𝐾]{𝑝} = {𝑃} 

𝐸 [
𝑥1 + 𝑥2  √2 4⁄ −𝑥1

−𝑥1 𝑥1 + 𝑥2  √2 4⁄
] {

𝑝1

𝑝2
} = {

𝑃1

𝑃2
} = {

0
−𝑃

} 

 

The normal forces on horizontal bars 2 and 3 are zero. 

The normal tensile force on vertical bar 1 is: 𝑁1 =
𝐸𝑥1 (𝑝1 − 𝑝2)  

The normal tensile force on diagonal bar 4 is: 𝑁4 =
−𝐸𝑥2 𝑝2 2⁄  

The normal compression force on diagonal bar 5 is: 𝑁5 =
𝐸𝑥2 𝑝1 2⁄  

 

Matlab's fmincon function solution: x1 = 0.0333 m², x2 = 0.0943 m², minimum 



total mass of the truss 366.66 kg. 

The correspondent MATLAB script is provided in the Appendix. 

 

Figure 5.3 

5.2.4 Frequency optimization of a redundant truss 

Consider the 3-time redundant truss of Fig 5.4. The cross-sectional areas are x1 (in 

m²) for vertical and horizontal bars, of unit length, and x2 (in m²) for diagonal bars, of 

length √2 m. An undamped free vibration frequency bound is required. 

It is important to remember that in a redundant (hyper-static) structure the 

distribution of internal forces depend on the dimensions of the cross sections. 

The vertical displacements p1 and p2 of the mobile pinned supports are the only 

two generalized coordinates of the problem. 

The properties of the material, supposed to be homogeneous, isotropic and linear 

elastic, are: elastic modulus E = 100 KN/m²; density  = 1000 kg/m³. 

The objective function to be minimized is the total mass of the truss:  

𝑓 = 𝜌 (3 𝑥1 + 2 √2 𝑥2) 

subjected to the inequality constraints: the first frequency f1 must be larger than 1 Hz and 

the second one f2 less than 2 Hz. These two undamped free vibrations frequencies are 

obtained from the eigenvalue problem  

[[𝐾] − 𝜔2[𝑀]]{𝜑} = {0} 

where the stiffness matrix is 

[𝐾] = 𝐸 [
𝑥1 + 𝑥2  √2 4⁄ −𝑥1

−𝑥1 𝑥1 + 𝑥2  √2 4⁄
] 

and a simplified lumped mass matrix is adopted as 

[𝑀] = 𝜌 [
𝑥1 + 𝑥2 √2 2⁄ 0

0 𝑥1 + 𝑥2 √2 2⁄
] 



Matlab's function eig(K,M) returns the squares of the two frequencies, in rad/s. 

Matlab's fmincon function solution: x1 =0.01m², x2 =0.0531m², minimum total truss mass 

180 kg. 

The correspondent MATLAB script is provided in the Appendix. 

 

Figure 5.4 

5.2.5 Thickness optimization of a rectangular steel plate simply supported under 

uniformly distributed loading and its own weight 

Optimize the thickness t (with a minimum of 10 mm) of a rectangular plate simply 

supported under uniformly distributed loading q given and its own weight. The smallest 

dimension, a, is in the x direction and the largest dimension, b, in the y direction. 

Only b / a ratios between 1 and 2 are considered, rounded to the first decimal 

place. 

The calculations are based on Table 8 of the book “Theory of Plates and Shells”, 

by Timoshenko, incorporated into the Matlab program. 

Steel data: E = 210e9 N / m², Poisson’s ratio 0.3, allowable stress 15e7 N / m², 

density 7850 kg / m³. 

A maximum vertical displacement limit is also imposed in the middle of the span, 

equals to a / 400. 

For a 4 m square plate with a load of 1 tf / m² plus its own weight, a minimum 

thickness of 41.5 mm was obtained using the Matlab fmincon function, corresponding to 

a total plate mass of 5217 kg. 

The correspondent MATLAB script is provided in the Appendix. 

 

5.2.6 Redundant wood planar portal frame 

Optimize the pinned redundant wood planar portal frame of Fig. 5.5. Column 

height h = 3 m and beam span L = 6 m. 



Data: section width b = 7.5 cm, minimum section height 15 cm, characteristic 

force Pk applied in the middle of the beam 10 KN, characteristic strength of wood fck = 

40 MPa, average elasticity modulus E = 19,500 MPa. 

As a pinned-pinned planar portal frame is once hyperstatic, the stresses in the 

structure depend on the sections. The horizontal reactions in the pinned supports fixed 

at the base of the columns, X, were chosen as hyperstatic unknowns. Their value is: 

𝑋 = −
𝑃ℎ𝐿2 8𝐼𝑣⁄

2ℎ3 3𝐼𝑐 + 𝐿ℎ2 𝐼𝑣⁄⁄
 

where Iv e Ic are, respectively, the section moments of inertia of the beam and the column. 

Thus, the column’s maximum axial force and the bending moment are 

𝑁𝑐 =
𝑃

2
              𝑀𝑣 = 𝑋ℎ 

and the beam’s maximum axial force and bending moment are 

𝑁𝑣 = 𝑋              𝑀𝑣 =
𝑃𝐿

4
− 𝑋ℎ 

(neglecting self-weight). 

Verification of wood parts to design axial force 𝑁𝑑  and bending moment 𝑀𝑑 is 

carried out using a Load and Resistance Factor Design scheme, as follows. 

Design action: 𝑃𝑑 = 𝛾𝐹𝑃𝑘 , where it is adopted a load factor 𝛾𝐹 = 1.5. 

Design resistance: 𝑓𝑐𝑑 = 𝐾𝑚𝑜𝑑
𝑓𝑐𝑘

𝛾𝑤
 , where it is adopted resistance factor 𝛾𝑤 = 1.4,

𝐾𝑚𝑜𝑑 = 0.7 is a modification factor due to wood particular behavior. 

Accidental eccentricity: 𝑒𝑎 =
𝐿0

300
 , where L0 is the bar length. 

Initial eccentricity: 𝑒𝑖 =
𝑀𝑑1

𝑁𝑑
  , where 𝑀𝑑1 is initial design bending moment. 

Design eccentricity: 𝑒𝑑 = (𝑒𝑖 + 𝑒𝑎) (
𝐹𝐸

𝐹𝐸−𝑁𝑑
) , where 𝐹𝐸 =

𝜋2𝐸𝐼

𝐿0
2  is Euler’s buckling load. 

Design bending moment: 𝑀𝑑 = 𝑁𝑑𝑒𝑑 . 

Verification: (
𝑁𝑑

𝐴
+

𝑀𝑑

𝑊
) /𝑓𝑐𝑑 ≤ 1 . 

where A and W are the section area and the elastic bending modulus. 

Using Matlab's fmincon function, we arrive at a section of 7.5x15 cm for the 

columns and 7.5x27.5 cm for the beam. The minimum total mass of the frame is 191.4 

kg.  

The correspondent MATLAB script is provided in the Appendix. 



 

Figure 5.5 

 

5.3 Linear Programming 

We revisit example 1.4 of Chapter 1, the same as example 3.1 of Chapter 3 and 

example 4.1 of Chapter 4, of maximization of profit of a toy factory (see Chapter 4): 

𝑓 = −400𝑥1 − 600𝑥2 

This is an example of a problem with linear constraint equations. These are: 

𝑥1 + 𝑥2 + 𝑥3 = 16 

𝑥1/28 + 𝑥2/14 + 𝑥4 = 1 

𝑥1/14 + 𝑥2/24 + 𝑥5 = 1 

where 𝑥1 and 𝑥2 are, respectively, the number of type A and type B toys produced. The 

other 3 design variables are slack variables, that is, surplus resources. In this case, related, 

respectively, to delivery, production and sales capabilities. 

We call linprog MATLAB function  

[x,FunVal,ExitFlag,Output]=linprog(c,[],[],A,b,Lb,[],[],options) 

where 

[c] = [−400 −600 0 0 0] 

[A] = [
1 1

1/28 1/14
1/14 1/24

1 0 0
0 1 0
0 0 1

] 

[b] = [16 1 1] 

We get the same results as those of the previous methods, that is: 



[𝑥] = [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5] = [4 12 0 0 3/14] 

𝑥1 and 𝑥2 are, respectively, the number of type A and type B toys that must be produced 

for the maximum profit objective function value f = 8,800 Euros.  

The slack variables, that is, surplus resources, indicate that delivery and 

production departments are fully occupied and there is a little surplus capacity in the sales 

department. 

The correspondent MATLAB script is provided in the Appendix. 


