UNIVERSIDADE DE SÃO PAULO - PIRASSUNUNGA

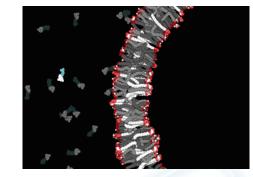
ZEB0562 CÁLCULO NUMÉRICO

PROF. DR. JOSÉ A. RABI

DEPTO. ENGENHARIA DE BIOSSISTEMAS

ZEB0562 – TÓPICO 11: PARTE 1/4

COMPUTATIONAL FLUID DYNAMICS: INTRODUÇÃO


- MODELAGEM COMPUTACIONAL: ESCALAS
- MODELAGEM COMPUTACIONAL: ETAPAS
- > CFD SOFTWARE: IN-HOUSE / OFF-THE-SHELF

Modelagem computacional: escalas

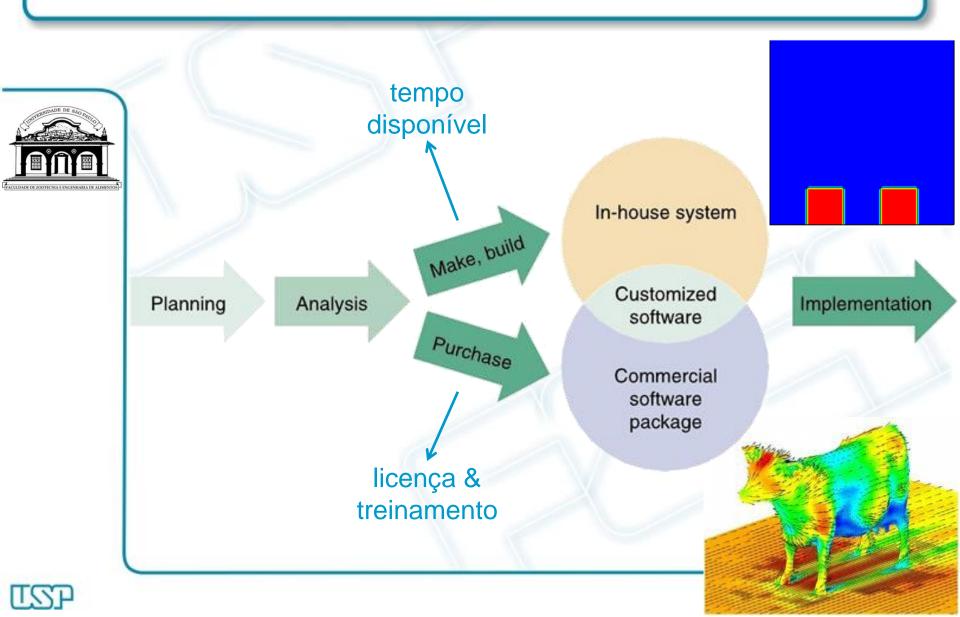
- Simulação em microescala
 - Identificação das partículas e interações mútuas: aplicação das leis de Newton
 - Exemplo: dinâmica molecular (MD)

- Simulação em mesoescala
 - Efeitos estocásticos / física estatística:
 autômatos celulares, funções de distribuição
 - Exemplos: LGCA, LBM, Monte Carlo

- Princípios de conservação expressos via equações diferenciais → discretização
- Exemplos: FDM, FEM, FVM

Modelagem computacional: etapas

- Declaração / identificação do problema
 - Compreensão do problema e objetivos a serem atingidos


- Esboço realista + informações relevantes (dados / resultados)
- Hipóteses e aproximações
 - Suposições adequadas para simplificar (dentro do possível)
- Modelo matemático e parâmetros necessários
 - Expressões matemáticas + propriedades / valores necessários
- Programação / implementação do método numérico
 - Determinação numérica dos resultados (atenção às unidades)
- Análise e interpretação dos resultados numéricos
 - Validação numérica / validação física (experimental)

CFD software: in-house / off-the-shelf

