UNIVERSIDADE DE SÃO PAULO - PIRASSUNUNGA

ZEB0562 CÁLCULO NUMÉRICO

PROF. DR. JOSÉ A. RABI

DEPTO. ENGENHARIA DE BIOSSISTEMAS

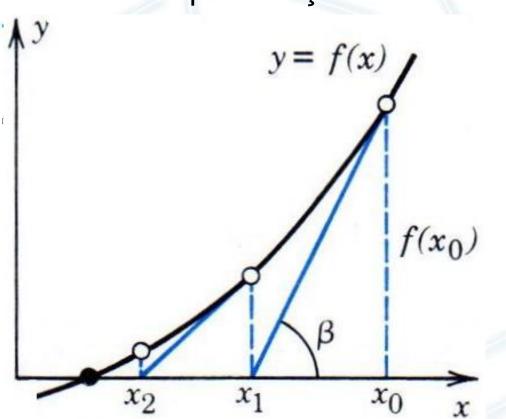
ZEB0562 – TÓPICO 03: PARTE 3/5

ZEROS DE FUNÇÕES: MÉTODO DAS TANGENTES

- > MÉTODO DAS TANGENTES: NEWTON-RAPHSON
- > IMPLEMENTAÇÃO -> EXEMPLO DIDÁTICO
- > IMPLEMENTAÇÃO VIA PLANILHA MS EXCEL

Método Newton-Raphson (tangentes)

Aproximação numérica com auxílio de tangentes a f(x)



$$\tan \beta = \begin{cases} f'(x_0) \to \text{derivada} \\ \frac{f(x_0)}{x_0 - x_1} \to \text{catetos} \end{cases}$$

$$\therefore x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Por analogia: $x_2 = x_1 - \frac{f'(x_1)}{f'(x_1)}$

Relação de recorrência partindo de x_0 : $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Método Newton-Raphson (tangentes)

- Raízes:
$$x = 1.5 \pm \sqrt{1.25}$$
 $\xrightarrow{4 \text{ casas}}$ $x_I = 0.3820$, $x_{II} = 2.6180$

- Derivada (no caso): f'(x) = 2x 3
- Relação de recorrência (a mesma para todas as raízes):

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
, sendo
$$\begin{cases} f(x) = x^2 - 3x + 1\\ f'(x) = 2x - 3 \end{cases}$$

- Observações
 - Diferentes aproximações iniciais ↔ diferentes raízes
 - Necessidade de saber analiticamente f(x)... e f'(x) também!

