Prof. Cassio Guimaraes Lopes

This exam covers the Homeworks from Lectures 9, 10 and 11. The topics are: Vector and Matrices norms, QR decomposition and the SVD decomposition.

1. Let $A_{N \times N}$ be a matrix with complex entries. If $\left\|A^{*} A-A A^{*}\right\|_{2}=0$, what can be said about matrix A ? Show your derivations to justify your answer.
2. Show that the matrix p-norms for a square matrix $A_{M \times M}$, with $p=1$ and $p=\infty$, may be obtained from
(a) $\|A\|_{1}=\max _{j=1, M}\left(\sum_{i=1}^{M}\left|a_{i j}\right|\right)$;
(b) $\|A\|_{\infty}=\max _{i=1, M}\left(\sum_{j=1}^{M}\left|a_{i j}\right|\right)$.
3. Consider an orthonormal vector $q_{1} \in \mathbb{C}^{3}$. Create an orthonormal basis from q_{1} via
(a) Gram-Schmidt;
(b) Householder matrices (Hint: Laub).
4. Consider the Frobenious norm $\|\cdot\|_{F}=\left(\sum_{i, j}\left|a_{i j}\right|^{2}\right)^{1 / 2}$ for a square matrix $A_{N \times N}$.
(a) Show that it can be calculated from $\|A\|_{F}=\left(\operatorname{Tr}\left(A^{*} A\right)\right)^{1 / 2}=\left(\operatorname{Tr}\left(A A^{*}\right)\right)^{1 / 2}$;
(b) Prove that $\|\cdot\|_{F}$ is, indeed, a consistent norm.
5. Create a numeric 3×3 matrix A with integer entries. Propagate quantities as norms and square roots literally (i.e., do not approximate: use $\|a\|$ and \sqrt{b} whenever necessary). In other words, you are not to use the decimal point.
(a) Find its $Q R$ decomposition via Householder transformations;
(b) Find its $Q R$ decomposition via Givens transformations;
(c) Compute four iterations of the $Q R$ algorithm to find the spectrum of A. Are four iterations enough? Comment.
6. Create an inconsistent linear system of equations of the form $A x=b$, in which A is a 4×3 matrix with column rank $r=2$ and integer entries; and $b \in \mathbb{Z}^{4}$.
(a) Find a least-squares approximation for x via QR decomposition;
(b) Find a least-squares approximation for x via SVD decomposition.
7. Find the SVD decomposition of the following matrix. Show all you calculations.

$$
A=\left[\begin{array}{ccc}
-1 & 2 & 1 \\
2 & -4 & -2 \\
-2 & 4 & 2 \\
-1 & 2 & 1
\end{array}\right]
$$

