Prof. Cassio Guimaraes Lopes

1. Exam starts at 14:00 h and finishes at 17:00 h. NO DELAYS!
2. Write your solutions in blank sheets (A4), number and name everything, then submit to the course Moodle in the proper link.

Name: \qquad

1. Let $A x=b$ be a system of linear equations where

$$
A=\left[\begin{array}{cccc}
2 & 1 & 2 & 0 \\
-2 & -1 & 0 & 2 \\
4 & 2 & 3 & 1 \\
-4 & -1 & -3 & 5
\end{array}\right]
$$

(a) Find the LU decomposition of A, showing your steps. Then show that matrix A can be retrieved from your decomposition;
(b) Solve the linear system by blocks for $b^{T}=\left[\begin{array}{lll}2 & -4 & 5\end{array}-3\right]$. Show your steps.
2. Solve the matrix linear system $A X+X B=C$, knowing that the solution is a circulant matrix, when

$$
A=\left[\begin{array}{ccc}
1 & 2 & -1 \\
-1 & 1 & 2 \\
2 & -1 & 1
\end{array}\right], \quad B=\left[\begin{array}{lll}
0 & 2 & 3 \\
3 & 0 & 2 \\
2 & 3 & 0
\end{array}\right], \quad C=\left[\begin{array}{lll}
1 & 4 & 9 \\
9 & 1 & 4 \\
4 & 9 & 1
\end{array}\right] .
$$

3. Consider the vector space $V=\mathbb{R}^{4}$ and the subspace S formed by the vectors $s_{1}=\left[\begin{array}{lll}1 & 0 & 2\end{array} 0\right]^{T}$ and $\left.s_{2}=\left[\begin{array}{lll}0 & 2 & 1\end{array}\right]\right]^{T}$. Find an orthogonal complement subspace for S.
4. Consider two square matrices, T and C, not necessarily of the same size.
(a) Matrix T must be built from the quantities a, b, c, \ldots, so that it is a 4×4 Toeplitz matrix;
(b) Show how to augment your matrix T into a circulant matrix C.
5. Decompose the matrix A below into the product of three matrices, one of them being its rank normal form. You must obtain the three matrices explicitly, showing all the steps. Perform the product to show that the original matrix is recovered. What is the matrix rank? Hint: elementary matrices.

$$
A=\left[\begin{array}{cccc}
1 & -2 & 0 & -1 \\
0 & 2 & 1 & 3 \\
1 & -4 & -1 & -4 \\
1 & 0 & 1 & 2
\end{array}\right] .
$$

