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A quadratic discriminant classification technique was used to classify spectral measurements

from vowels spoken by men, women, and children. The parameters used to train the

discriminant classifier consisted of various combinations of fundamental frequency and the three

lowest formant frequencies. Several nonlinear auditory transforms were evaluated. Unlike

previous studies using a linear discriminant classifier, there was no advantage in category

separability for any of the nonlinear auditory transforms over a linear frequency scale, and no

advantage for spectral distances over absolute frequencies. However, it was found that

parameter sets using nonlinear transforms and spectral differences reduced the differences

between phonetically equivalent tokens produced by different groups of talkers.
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A problem of longstanding interest in experimental phonetics concerns the infor-
mation that is used by human listeners in vowel identification. It has long been
recognized that perceived vowel quality is strongly correlated with the frequencies of
the two or three lowest formants (see Jenkins, 1987; Miller, 1989; Nearey, 1989,
Strange, 1989; for reviews). However, it is equally well known that the acoustic
properties of vowels vary depending on the individual talker, the rate of speech, and
the phonetic context in which the vowel occurs (e.g., Gay, 1978; Lindblom, 1963;
Peterson & Barney, 1952; Shankweiler, Strange, & Verbrugge, 1977). One result of
these complex mapping relationships between spectral patterns and perceived vowel
quality is that a good deal of emphasis has been placed on understanding the
normalizing mechanisms that might be involved in adjusting for these talker- and
context-dependent variations in spectral patterns.

Numerous models have been proposed for classifying vowels based on some
combination of fundamental frequency (FO) and formant frequencies. As Disner
(1980) pointed out, the goal of these models has generally been to (a) maximize
differences between vowel categories, and (b) minimize differences in the same vowel
spoken by different talkers, particularly those differences associated with vocal-tract
length variability. Miller and his colleagues (Fourakis & Miller, 1987, Miller, 1984,
1989) proposed a vowel classification scheme based on perceptual “target zones” in
a three-dimensional space consisting of log-transformed spectral distances: logF3-
logF2, logF2-logF1, and logF1-SR, where SR ("'sensory reference”) is a transform of
the speaker's FO (SR = 168/(F0/168)").» Miller (1989) tested his normalization

The figure of 168 Hz in the sensory reference formula is the geometric mean of the fundamental frequency
(GMFO) calcutated across all talkers in the Peterson and Barney (1952) database. In some applications, Miller
(1989) calculates GMFO as a running geometric average of fundamental frequency throughout the course of
each individual token. It is important to note that the running average is calculated over the course of the
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scheme with FO and formant measurements from 435 utter-
ances that were taken from several different databases (see
Appendix B of Miller, 1989, for a description of the vowel
database). The classification scheme involved determining
whether individual tokens fell within the boundaries of the
appropriate target zones. The boundaries of the target zones
were drawn by hand for optimal fit to the data. Miller reported
93.0% classification accuracy using this scheme.

A normalization scheme proposed by Syrdal (1985) is very
similar to the Miller model except that spectral distances are
represented on the critical-band-based bark scale rather than
a logarithmic scale. The three parameters in the Syrdal
model are B3-B2 (F3 in bark minus F2 in bark), B2-B1, and
B1-B0. Syrdal & Gopal (1986) evaluated the model with FO
and formant measurements from the Peterson & Barney
(1952) database (76 talkers, 10 vowels, two repetitions of
each vowel). Linear discriminant analysis was used to clas-
sify each token in the database. Syrdal & Gopal reported
significantly better classification performance for a discrimi-
nant model that was trained on the three bark spectral
distances (85.7% correct classification) than a model trained
on the absolute frequencies of FO-F3 in Hz (81.8% correct
classification).

The vowel classification results reported by Syrdal & Gopal
(1986) address the first of Disner’s (1980) two requirements
for normalization schemes: maximizing differences between
phonetically distinct vowel categories. Syrdal (1985) evalu-
ated the second requirement—minimizing differences in the
same vowel spoken by different talkers-—by determining how
well the discriminant model classified tokens on the basis of
talker group (i.e., men vs. women vs. children). Syrdal
argued that an ideal normalization algorithm should minimize
differences between vowels produced by different talkers.
Consequently, a classifier should find it difficult to differenti-
ate among tokens on the basis of talker group. Syrdal’s
results showed that a linear discriminant classifier was quite
good at identifying tokens by talker group when trained on
FO-F3 in Hz (89.6% correct). However, performance fell to
41.7% when the classifier was trained on bark spectral
differences. Although this is better than the 33.3% that would
be expected by chance, it is quite clear that the normalization
algorithm greatly reduces differences among tokens pro-
duced by different groups of talkers. There is also the
possibility that the above-chance performance of the pattern
recognizer reflects dialect differences among men, women,
and child talkers (Byrd, 1992; Syrdal, 1985).

Several closely related classification schemes were pro-
posed and tested by Peterson (1961) and Nearey (1978;
1892; Nearey, Hogan, & Rozsypal, 1979). As Miller (1989)
noted recently, many of these models are variations of
“formant ratio” or “relative resonance” theory, a very old idea
suggesting that vowels with similar qualities have similar
formant ratios (e.g., Lloyd, 1890). A long-recognized weak-
ness of formant ratio theory is that there are many pairs of

individual token, not across tokens produced by the talker. This means that the
Miller model, like that of Syrdal (1985), is an intrinsic normalization scheme. In
the case of the present study, the running average did not come into play since
the Peterson and Barney database contains a single measure of fundamental
frequency for each token.
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distinct vowels with similar formant ratios (e.g., /a/-/2/, /u/-
fuf). In the Miller and Syrdal models this problem is ad-
dressed by including the spectral distance between FO and
F1 as a parameter Hillendbrand & Gayvert: Vowe! Classi-
fication (see also Traunmdiller, 1981). In this way, a vowel
such as /a/ can be distinguished from /o/ by virtue of a greater
spectral distance between F0 and F1. Fujisaki & Kawashima
(1968) have also suggested that F3 and the upper formants
might serve a similar role in distinguishing vowels with similar
formant ratios.

The purpose of the present study was to compare several
different normalization schemes on the basis of the two
criteria proposed by Disner: (a) maximization of vowel-
category separability, and (b) minimization of within-vowel-
category differences among talkers. To simplify this discus-
sion, we will refer to the first of these criteria as “category
separability” and the second as “within-category variability.”
Comparing different normalization schemes is difficult on the
basis of existing literature for several reasons, including (a)
not all investigators have made use of the same database of
spectral measurements, (b) a variety of techniques have
been used to measure category separability, and (c) within-
category variability has either not been evaluated, or the
methods that have been used to measure variance minimi-
zation have varied considerably from one study to the next.
For example, direct comparisons between the Miller and
Syrdal models is not possible based on existing literature
because (a) the databases used for testing the two models
are quite different, (b) the linear discriminant analysis tech-
nique used by Syrdal (1985; Syrdal & Gopal, 1986) is quite
different from the method used by Miller (1989), which relies
on hand-drawn boundaries, and (c) no direct comparisons
have been made of the within-category variance minimiza-
tion properties of the two algorithms. The present study was
designed to address these problems by evaluating a variety
of normalization schemes using the same database, the
same pattern-classification technique, and the same method
of measuring within-category variability.

Method

The statistical technique that was used for classification
was the maximum likelihood distance measure (Johnson &
Wichern, 1982). This method is a quadratic version of the
linear discriminant analysis technique used by Syrdal (1985)
and Syrdal & Gopal (1986). Both methods invoive the com-
putation of a variance-normalized distance measure between
the feature vector for a given token and the center (or
centroid) of each of the training categories. For example, the
feature vector might consist of values of F1-F3 for a particular
token, and the training categories would consist of statistics
(the average feature vector and the covariance matrix) for
each of 10 vowel categories. Distances are computed to the
centroids of each training category, and the token is assigned
to the category that resulted in the shortest distance. Overall
classification accuracy is determined simply by calculating
the percentage of tokens that were assigned by the classifier
to the category that was intended by the talker. The distance
measure itself is nothing more than an extension of a z score
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into multivariate space. A z score, of course, is the difference
between an individual score and the mean, divided by the
standard deviation. The same logic is used in the distance
measure that forms the basis of discriminant analysis, except
that (a) the difference between an individual score and the
mean is replaced by the difference between a feature vector
for an individual token and the average feature vector for the
category, and (b) the standard deviation is replaced by the
covariance matrix.

The difference between the linear and quadratic versions
of this technique is that linear discriminant analysis uses a
single covariance matrix that is pooled across all training
categories, whereas the quadratic method uses a separate
covariance matrix for each training category. On a practical
level, the quadratic method offers two potential advantages
over the linear method: (a) since separate covariance matri-
ces are used for each training category, the quadratic
method is able to account for any differences that might exist
from one category to the next in the size or orientation of the
category, and (b) since the formula is quadratic, the decision
surfaces are curved rather than linear.

The database used for the classification studies consisted
of the 1,520 spectral measures from Peterson & Barney
(1952) using the data archive described by Watrous (1991).
This database consists of FO and F1-F3 measurements from
two repetitions of 10 vowels in /hVd/ context recorded from
33 men, 28 women, and 15 children. The FO and formant
measurements were sampled .at times that were judged by
Peterson and Barney to be the most steady.

Results

Category Separability

Table 1 shows classification results for several combina-
tions of parameters. Results are shown for linear frequencies
in Hz and for several nonlinear transforms, including (a) log
frequencies, (b) a bark-scale transform using the formula
from Syrdal & Gopal (1986), (c) a mel-scale transform using
the technical approximation from Fant (1973), and (d) a
Koenig-scale transform (Koenig, 1949). As can be seen in
Figure 1, the bark, mel, and Koenig transforms are quite
similar to one another. The bark scale is approximately linear
below about 500 Hz and approximately logarithmic above
500 Hz, the mel scale is approximately linear below about
1000 Hz and approximately logarithmic above 1000 Hz, and
the Koenig scale is exactly linear below 1000 Hz and exactly

TABLE 1. Overall classification accuracy using various combi-
nations of parameters.

Transform
Parameter Set LINEAR LOG BARK MEL KOENIG
F1, F2 74.9 752 76.1 755 76.1
F1, F2, F3 83.6 836 83.6 835 83.6
FO, F1, F2 85.9 840 850 858 85.0
FoO, F1,F2, F3 86.6 86.1 B86.6 866 86.6

F1-FO, F2-F1, F3-F2 85.5 86:2 86.8 85.2 86.8
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FIGURE 1. Comparison of log, bark, mel, and Koenig scales.

logarithmic above 1000 Hz. Entries under the column labeled
“LOG" used the log of Miller's sensory reference instead of
the log of the fundamental frequency for parameter sets
including FO. The numbers in Table 1 are overall classifica-
tion accuracies for each parameter set. Results here and
throughout the paper are based on the “jackknife” method in
which individual tokens are removed from the training statis-
tics before the distance measures are calculated (Johnson &
Wichern, 1982).

One point that emerges quite clearly from Table 1 is that
error rates are relatively high when classification is based on
F1 and F2 alone. This was true for linear frequency and for alt
of the nonlinear auditory transforms. Although the results are
not shown in Table 1, we also tested several parameter sets
that used F2' in place of F2, using the technical approxima-
tion from Carlson, Fant, and Granstrom, 1975. F2' is a
weighted combination of F2 and higher formants. The F2' or
“effective second formant” concept is based on the sugges-
tion of Delattre, Liberman, Cooper, and Gerstman (1952) that
the auditory system averages formants that are relatively
close in frequency. Although there is good psychophysical
evidence in support the F2’' concept (e.g., Carlson et al.,
1975; Chistovich & Lublinskaya, 1979; Chistovich, Sheikin, &
Lublinskaya, 1979), our results did not show any improve-
ment in category separability when F2' was substituted in
place of F2.

It can also be seen in Table 1 that the addition of either FO
or F3 to the two lowest formants results in a substantial
improvement in performance. These findings would seem to
be consistent with the suggestions of Miller (1989) and
Fujisaki & Kawashima (1968) regarding the normalizing role
of these spectral features. However, the confusion matrices,
presented in the Appendix, show an across-the-board im-
provement in classification performance rather than improve-
ments related exclusively or primarily to vowel pairs with
similar formant ratios, such as /a/-/o/ and fu/-/u/.

The last row of entries in Table 1 is for parameter sets that
make use of spectral distances rather than absolute frequen-
cies. The second column of log spectral distances is the
Miller model and the third column of bark spectral differences



is the model proposed by Syrdal. The main point to be made
about these results is that there was no advantage for any of
the nonlinear transforms over a linear frequency scale, and
no advantage for spectral distances over absolute frequen-
cies. These findings are in conflict with Syrdal & Gopal's
(1986) linear discriminant classification results, which
showed significantly better classification accuracy for bark
spectral differences as compared to absolute linear frequen-
cies. Since Syrdal & Gopal also used the Peterson & Barney
(1952) database, the discrepancy between the two sets of
results is due to the use of a quadratic classification tech-
nique in the present study.

The 86.8% classification accuracy for the Miller model is
substantially iower than the 93.0% accuracy reported by
Miller (1989). Both the database of spectral measurements
and the classification method used by Miller differed from the
present study, so it is difficult to determine what combination
of these two factors accounts for the discrepancy between
the two findings.

Collapsed across all parameter sets, classification accu-
racy was somewhat lower for the child talkers (78.9%) than
the men (83.3%) or women (86.5%). A oneway ANOVA for
talker group was significant [F (2, 87) = 9.7, p < 0.01].
Neuman-Keuls post hoc tests showed that the children
differed from both groups of adult talkers. This finding might
be due either to an increase in formant frequency measure-
ment error for tokens produced by child talkers, or possibly to
a larger number of production errors by the children. Since
Peterson & Barney did not report listening test results sepa-
rately for men, women, and child talkers, it is not clear
whether tokens produced by the children were less identifi-
able than those produced by the adults. We are not aware of
any large-scale study that has compared the identifiability of
vowels naturally produced by men, women, and children,

Within-Category Varlability

The results presented thus far address the category-
separability criterion but not the within-category variability
criterion. Recall that the method used by Syrdal (1985) to
evaluate within-category variability involved the use of a
linear discriminant classifier that was trained to recognize
talker group rather that vowel category, on the assumption
that an optimal classifier should perform close to chance in
differentiating vowels spoken by men, women, and children.

Figure 2 shows talker-group classification resuits for vari-
ous combinations of parameters using a quadratic classifier.
The results indicate that (a) considerably more talker-group
information is preserved by absolute frequencies (trans-
formed or untransformed FO-F3) than spectral-distance rep-
resentations, and (b) more talker-group information is pre-
served by linear spectral distances than spectral distances
represented on some kind of nonlinear auditory scale. Both
findings are consistent with Syrdal’s (1985) linear discrimi-
nant analysis results. Differences among the nonlinear trans-
forms are slight. Overall talker-group classification accuracy
is somewhat better in the present study than in Syrdal, which
can be attributed to the use of the quadratic classifier.
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FIGURE 2. Overall accuracy of a quadratic discriminant classi-
fier in identifying talker group (men vs. women vs. children).
The classifier was trained on talker-group categories collapsed
across all 10 vowels.

It should be noted that the talker-group classification
results presented in Figure 2, following the method used by
Syrdal, are based on training categories in which all 10
vowels were combined. In other words, the pattern classifier
attempted to recognize whether each token was spoken by a
man, a woman, or a child based solely on group statistics
collapsed across all vowels. An alternate approach to this
problem would involve separate talker-group training catego-
ries for each vowel. In our view, this method gets closer to the
within-category variability issue since classification perfor-
mance under these conditions gives an indication of the
degree to which tokens differ as a function of talker group
when each talker is producing the same vowel.

Figure 3 shows talker-group classification results based on
separate man, woman, and child training categories for each
vowel. Each of 10 separate classification tests consisted of
66 tokens produced by men, 56 tokens produced by women,
and 30 tokens produced by children. The classification rates
that are shown in the figure are averages across the 10 vowel
categories. As with the previous set of talker-group classifi-
cation results, these findings indicate that more talker-group
information is preserved by the representations that use
absolute frequencies than those using spectral differences.
Talker-group differences are also larger for linear spectral
differences than spectral differences based on the nonlinear
transforms. It can also be seen that talker-group classifica-
tion accuracy is considerably higher for this method than the
previous method in which vowel categories were collapsed.
Talker-group classification accuracy for the nonlinear spec-
tral difference parameter sets averaged 13.2% higher for the
method based on separate vowel training categories than the
pooled method. This suggests that a good deal more talker
information is preserved by these representations than would
be indicated by the results in Figure 2, and by results
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FIGURE 3. Overall accuracy of a quadratic discriminant classi-
fler in identifying talker group (men vs. women vs. children).
The classifier was tralned on separate talker-group categories
for each vowel. Results shown in the figure are averages across
the 10 vowels.

reported previously by Syrdal (1985). In our view, the results
based on separate training categories for each vowel better
reflect the degree of talker-dependent information that is
preserved by the normalization schemes. It should be noted,
however, that these conclusions are based on the assump-
tion that tokens of a particular vowel produced by men,
women, and children are phonetically equivalent. Although
specific evidence was not cited, Syrdal (1985) suggested that
there may be “... linguistically relevant dialectical differ-
ences between the speech of men, women, and children” (p.
130). Whether these dialect differences are sufficient to
account for the 64—74% talker-group classification rates seen
in the present study for the nonlinear spectral difference
parameters sets remains an open question.

Discussion

The primary difference between the present findings and
those reported previously by Syrdal (1985; Syrdal & Gopal,
1986) is that we found no advantage in category separability
for any of the nonlinear auditory transforms over linear
frequency, and no advantage in category separability for
spectral differences as compared to absolute frequencies. It
is quite clear that these nonlinear transforms make much
better sense than linear frequency in terms of what is known
about the physiology and psychophysics of the auditory
system. However, that fact by itself does not mean that these
transforms will necessarily solve problems related to vowel
separability. We also found very similar performance across
the four nonlinear auditory transforms that were tested. This
is perhaps not surprising given the considerable similarity of
these transforms. However, several other procedures are
available for evaluating these transforms. A recent study by
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Nearey (1992) using a variety of generalized linear modeling
techniques found relatively small but consistent advantages
for the log scale.

Despite the failure to find advantages in category separa-
bility for nonlinear auditory transforms or spectral differences,
there were clear advantages for these representations in the
reduction of within-category variability because of differences
in talker group. Although we found that a good deal more
tatker-group information is preserved by these representa-
tions than was suggested by Syrdal's (1985) findings, it is
clear that both auditory transforms and spectral difference
representations reduce differences between the same vowel
spoken by men, women, and children. Other advantages for
these kinds of representations have been noted. For exam-
ple, Syrdal (1985; Syrdal & Gopal, 1986) showed that high
vowels can be separated from mid and low vowels with a
high degree of accuracy based on a simple three-bark B1-BO
criterion (see also Traunmuller, 1981), and that front vowels
can be separated from back vowels based on a three-bark
B3-B2 criterion. These kinds of regularities, which agree well
with certain aspects of spectral integration in vowel percep-
tion (e.g., Chistovich & Lublinskaya, 1979; Chistovich, et al.,
1979), cannot be derived in any simple way from absolute
linear frequency representations.

Although results such as those reported here and in
previous pattern recognition studies are clearly relevant to
vowel perception, there are crucial aspects of this problem
that cannot be addressed with this family of techniques. As
Nearey (1992) noted, these “data analytic” methods can only
measure the degree of correspondence between intended
vowels and a particular set of features. As such, these
methods can suggest logically possible perceptual strate-
gies, but other information is required to determine whether
listeners actually adopt a proposed strategy. It is worth noting
that the 13-14% error rates shown by the best of the
parameter sets tested in this study are considerably higher
than the 5.6% error rate shown by Peterson & Barney's
(1952) listeners. There are several plausible explanations for
this discrepancy in error rates. One possibility that has
received only sporadic attention is that phonetically relevant
information is lost when vowel spectra are reduced to for-
mant representations, as has been suggested by Bladon
(1982; Bladon & Lindblom, 1981; see also Zahorian &
Jagharghi, 1986, 1987). It also seems clear that at least part
of this discrepancy is due to the fact that listeners in the
original study had access to durational information and the
pattern of spectral change throughout the course of the
utterance. A significant body of evidence has accumulated
suggesting that these dynamic properties play an important
role in vowel perception (e.g., Bennett, 1968; DiBenedetto,
1989a; 1989b; Hillenbrand & Gayvert, 1993; Jenkins,
Strange, & Edman, 1983; Nearey, 1989; Nearey & Assman,
1986; Stevens, 1959; Tiffany, 1953). Despite this evidence,
the specific relations between vowel identification and dy-
namic cues are not well understood. A significant challenge
for future research will be to reach a clearer understanding of
the mechanisms that are involved in mapping dynamic
spectral cues onto perceived vowel quality.
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Appendix

Sample confusion matrices for parameter sets involving bark-
transformed frequencies are shown in Tables A-1 (B1, B2), A-2
(B1-B3), and A-3 (B0-B2). The general pattern of confusions shown
in these tables is quite similar to that seen with the other transforms

and with linear frequency in Hz. Note the across-the-board im-
provement in classification accuracy with the addition of either the
fundamental frequency or the third formant to the two lowest
formants.

TABLE A-1. Confusion matrix for discriminant analysis using B1 and B2. The row labels indicate
the vowel that was intended by the talker and the column labels Indicate the vowe! that was

classified by the discriminant analysis algorithm.

) h lef f=f I3/ Ial laf o/ ul o/

i) 142 10 0 0 0 0 0 0 0 0
) 11 126 12 0 3 0 0 0 o 0
el 0 21 103 3 25 0 0 0 0 0
f=/ 0 0 14 120 11 7 0 0 0 0
3/ 0 3 15 7 98 0 0 0 25 4
I 0 0 0 8 3 121 8 9 3 0
laf 0 0 0 0 0 15 120 17 0 0
ol 0 0 0 0 0 6 17 121 7 1
tuf 0 0 0 0 27 10 1 3 90 21
fu/ 0 0 0 0 12 3 0 1 21 115

TABLE A-2. Confusion matrix for discriminant analysis using B1, B2, and B3. The row labels
indicate the vowel that was Intended by the talker and the column labels indicate the vowel that
was classified by the discriminant analysis algorithm.

fil i/ fel I=] I3/ In faf fof fol fuf

i 144 8 0 0 0 0 0 0 0 0

i 11 126 15 0 0 0 0 0 0 0

/e 0 21 118 5 8 0 0 0 0 0
=/ 0 0 16 129 4 1 0 0 2 0
I3 0 2 15 4 129 0 0 0 1 1
Ial 0 0 0 4 0 129 10 8 1 v}
faf 0 0 0 0 0 12 127 13 0 0
ol 0 0 0 0 0 3 17 123 6 3
ful 0 0 0 0 1 6 0 4 120 21
hu/ 0 0 0 0 0 0 0 1 26 125

TABLE A-3. Confusion matrix for discriminant analysis using B0, B1, and B2. The row labels
indicate the vowel that was intended by the talker and the column labels indicate the vowel that
was classified by the discriminant analysis algorithm.

hif hl lel [zl I3/ Al la/ bl ful o/

fil 144 7 1 0 0 0 0 0 0 0
n 11 127 14 0 0 0 0 0 0 0
I/ 0 20 124 7 1 0 o 0 0 0
=/ 0 0 14 132 3 3 0 0 o 0
[/ 0 2 6 1 135 2 0 0 6 0
I 0 0 0 2 4 130 12 4 0 0
faf 0 0 0 2 0 12 130 7 1 0
! 0 ] 0 0 0 2 16 124 6 4
ful 0 0 0 0 10 5 0 4 115 18
haf 0 0 0 0 4 1 0 2 14 131




