
1 Basis for plane wave solutions of Dirac equation

Consider the Dirac equation
(�µ pµ �mc) = 0 (1.1)

with
pµ = i h̄ @µ (1.2)

and

�0 =

 
I 0
0 �I

!

�i =

 
0 �i

��i 0

!

(1.3)

and

I =

 
1 0
0 1

!

�1 =

 
0 1
1 0

!

�2 =

 
0 �i
i 0

!

�3 =

 
1 0
0 �1

!

(1.4)

We have four linear independent plane wave solutions given by

 u
r = ur (~p) e

�i p·x/h̄  v
r = vr (~p) e

i p·x/h̄ r = 1, 2 (1.5)

where the spinors satisfy the algebraic equations

(�µ pµ �mc) ur (~p) = 0 (�µ pµ +mc) vr (~p) = 0 (1.6)

and where
c p0 = E =

q
~p2 c2 +m2 c4 (1.7)

A suitable basis for the spinors is

u1 (~p) = N1

0

BBBBB@

p3+|~p|
p1+ip2
1

c|~p|(p3+|~p|)
(p1+ip2)(E+mc2)

c|~p|
E+mc2

1

CCCCCA
u2 (~p) = N2

0

BBBBB@

p3�|~p|
p1+ip2
1

c|~p|(|~p|�p3)
(p1+ip2)(E+mc2)

� c|~p|
E+mc2

1

CCCCCA
(1.8)

v1 (~p) = N1

0

BBBBB@

c|~p|(p3+|~p|)
(p1+ip2)(E+mc2)

c|~p|
E+mc2
p3+|~p|
p1+ip2
1

1

CCCCCA
v2 (~p) = N2

0

BBBBB@

c|~p|(|~p|�p3)
(p1+ip2)(E+mc2)

� c|~p|
E+mc2
p3�|~p|
p1+ip2
1

1

CCCCCA
(1.9)

with

N1 =
1

2

vuut
 

1� p3
| ~p |

! ✓
1 +

E

mc2

◆
N2 =

1

2

vuut
 

1 +
p3
| ~p |

! ✓
1 +

E

mc2

◆
(1.10)

They satisfy

u†
r (~p) us (~p) = v†r (~p) vs (~p) =

E

mc2
�r,s (1.11)
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1and
u†
r (~p) vs (�~p) = 0 (1.12)

In addition, they are eigenstates of the helicity

~⌃ · ~p
| ~p | u1 (~p) = u1 (~p)

~⌃ · ~p
| ~p | v1 (~p) = �v1 (~p) (1.13)

and
~⌃ · ~p
| ~p | u2 (~p) = �u2 (~p)

~⌃ · ~p
| ~p | v2 (~p) = v2 (~p) (1.14)

with

~⌃ =

 
~� 0
0 ~�

!

(1.15)

and so

~� · ~p =

 
p3 p1 � i p2

p1 + i p2 �p3

!

(1.16)

So, we can write

~⌃ · ~p
| ~p | ur (~p) = (�1)r+1 ur (~p)

~⌃ · ~p
| ~p | vr (~p) = (�1)r vr (~p) (1.17)
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So, we can write

~⌃ · ~p
| ~p | ur (~p) = (�1)r+1 ur (~p)

~⌃ · ~p
| ~p | vr (~p) = (�1)r vr (~p) (1.17)

One can also check that

2X

r=1

ūr (~p)↵ ur (~p)� =
1

2mc
[�µ pµ +mc 1l]↵� (1.18)

and
2X

r=1

v̄r (~p)↵ vr (~p)� =
1

2mc
[�µ pµ �mc 1l]↵� (1.19)

2 Helicity and Chirality

1

We have seen the concept of helicity: if the spin of a particle is in the direction of its
motion the helicity is right-handed or positive, and if it is contrary to the direction of motion
is left-handed or negative. However, the helicity is not a Lorentz invariant quantity. Indeed,
if the particle has mass and so is traveling with a velocity smaller than that of light then an
observer can overtake the particle and will see its velocity in the opposite direction but not
its spin. So, the value of helicity depends on the reference frame. On the other hand, if the

1See section II.1 of A. Zee, Quantum Field Theory in a Nutshell, and chapter 2 of Itzykson and Zuber,
Quantum Field Theory.

2

particle is massless it is bound to travel with the speed of light and no observer can overtake
it. So, its helicity is independent of the reference frame.

In order to discuss chirality let us introduce the matrix

�5 = �5 = i �0 �1 �2 �3 (2.1)

Using the basis (1.3) one gets

�5 =

 
0 I
I 0

!

(2.2)

An important property of such a matrix is that it commutes with the generators of the
Lorentz group in the spinor representation. Indeed, a Dirac spinor transforms as

 ! S  S�1 �µ S = ⇤µ
⌫ �⌫ (2.3)

where ⇤ is the matrix of Lorentz transformation in the vector representation

x0µ = ⇤µ
⌫ x

⌫ (2.4)

We have that

S = e�
i
4 "µ⌫ �µ⌫

�µ⌫ =
i

2
[ �µ , �⌫ ] (2.5)

Since, �5 anti-commutes with all �-matrices, i.e.
n
�5 , �µ

o
= 0 (2.6)

It follows that h
�5 , �µ⌫

i
= 0 !

h
�5 , S

i
= 0 (2.7)

None of the four �µ matrices have such a property. In addition, one has that

⇣
�5
⌘2

= 1l (2.8)

Therefore, the eigenvalues of �5 are ±1, and such eigenvalues are Lorentz invariant. Such
eigenvalues are the chirality of a spin 1/2 particle. Contrary to helicity they do not depend
upon the reference frame. Given a Dirac spinor  , one can split it into eigenvectors of the
chirality using projectors, i.e.

 R =
1

2

⇣
1 + �5

⌘
  L =

1

2

⇣
1� �5

⌘
(2.9)

and
�5  R = + R �5  L = � L (2.10)

Due to (2.7) such eigenvectors transform independently under Lorentz. From (2.3) one has

 R ! S  R  L ! S  L (2.11)

The spinors  R and  L are called Weyl spinors.
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In the case of massless spinors chirality and helicity coincide. Indeed, the Dirac equation
for a massless spinor is

�µ pµ  = 0 (2.12)

Multiplying such an equation by �5 �0 = �i �1 �2 �3, gives
⇣
�5 p0 + i �2 �3 p1 � i �1 �3 p2 + i �1 �2 p3

⌘
 = 0 (2.13)

or
~⌃ · ~p = �5 p0  (2.14)

with ~⌃ given in (1.15). Since m = 0 we have E = p0 c =| ~p | c, and so

~⌃ · ~p
| ~p |  = �5  (2.15)

and so the eigenvalues of the helicity operator
~⌃·~p
|~p| and the eigenvalues of the chirality operator

�5 are indeed the same when m = 0.
Note that if a Dirac spinor  satisfies (2.12) so does �5  , since �5 anti-commutes with

�µ. Therefore, the Weyl spinors satisfy the massless Dirac equations

�µ pµ  R = 0 �µ pµ  L = 0 (2.16)

For the case m 6= 0 the equations get coupled. Indeed, if  satisfies the massive Dirac
equation

(�µ pµ �mc) = 0 (2.17)

then
�µ pµ  L = mc R �µ pµ  R = mc L (2.18)

The Dirac Lagrangian becomes

L =  ̄ (i h̄ �µ @µ �mc)  =  ̄L i h̄ �
µ @µ L +  ̄R i h̄ �µ @µ R �mc

⇣
 ̄L  R +  ̄R  L

⌘
(2.19)

Note that the Dirac Lagrangian is invariant under the (global) phase transformation

 ! ei ✓   R ! ei ✓  R  L ! ei ✓  L (2.20)

and the corresponding Noether conserved current is

Jµ =  ̄ �µ  (2.21)

For the case m = 0 the Dirac Lagrangian is also invariant under

 ! ei ✓ �
5
  R ! ei ✓  R  L ! e�i ✓  L (2.22)

and the corresponding Noether conserved current is

Jµ
5 =  ̄ �µ �5  (2.23)
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3 Parity

The spatial parity transformation is

xµ ! x0µ =
⇣
x0 , �~x

⌘
(3.1)

Then multiplying (2.17) by �0 one gets

�0 (i h̄ �µ @µ �mc) =
⇣
i h̄ �µ @0µ �mc

⌘
�0  = 0 (3.2)

So, �0  satisfies the transformed equation and so

 0 (x0) = �0  (x) (3.3)

Note that

 ̄0 (x0)  0 (x0) =  ̄ (x)  (x)

 ̄0 (x0) �5  0 (x0) = � ̄ (x) �5  (x) (3.4)

Since both are Lorentz scalars we say that  ̄ (x)  (x) is a scalar and  ̄ (x) �5  (x) is a
pseudoscalar.

4 Coupling to the electromagnetic field

The coupling to the electromagnetic field is made by the so-called minimal coupling which
is an infinitesimal version of Weyl’s gauge principle. One replaces the ordinary derivative by
the covariant derivative

@µ ! Dµ ⌘ @µ � i eAµ (4.1)

where Aµ is the four potential of Maxwell theory. The Dirac Lagrangian and Dirac equation
become

L =  ̄ (i h̄ �µ Dµ �mc)  (i h̄ �µ Dµ �mc)  = 0 (4.2)

Now, the global phase transformation (2.20) can be made local

 ! ei ✓(x)  Aµ ! Aµ +
1

e
@µ✓ (4.3)

So, the covariant derivative of the field transforms the same way as the field

Dµ ! ei ✓(x) Dµ (4.4)
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5 Charge Conjugation

The Dirac equation (4.2) coupled to the electromagnetic field is

(i h̄ �µ (@µ � i eAµ)�mc)  = 0 (5.1)

Taking the complex conjugate we get

(�i h̄ �µ⇤ (@µ + i eAµ)�mc)  ⇤ = 0 (5.2)

But
{�µ , �⌫} = 2 gµ⌫ 1l ! {��µ⇤ , ��⌫⇤} = 2 gµ⌫ (5.3)

and so there must exist a matrix C such that

��µ⇤ = C�1 �µ C (5.4)

Denoting
 c ⌘ C  ⇤ (5.5)

the equation (5.2) becomes

(i h̄ �µ (@µ + i eAµ)�mc)  c = 0 (5.6)

So,  c satisfies the Dirac equation with a charge of opposite sign to that satisfied by  . So,
 c should be associated to the anti-particle associated to  . For the basis (1.3) we have
that �2 is the only pure imaginary �-matrix, since the other are real. Therefore, C should
commute with �2. In fact, C = �2, and C�1 = ��2, and so

 c = �2  ⇤ (5.7)

Note that

 c
R = �2  ⇤

R = �2
1

2

⇣
1 + �5

⌘
 ⇤ =

1

2

⇣
1� �5

⌘
 c (5.8)

and

 c
L =

1

2

⇣
1 + �5

⌘
 c (5.9)

So, the charge conjugate of a left handed field is right handed and vice-versa.
From (2.5) and (5.4) we have that

�µ⌫⇤ = � i

2
[ �µ⇤ , �⌫⇤ ] = �C�1 �µ⌫ C (5.10)

Therefore, from (2.5)

 0 = S  !  0
c = C e

i
4 "µ⌫ �µ⌫⇤

 ⇤ = S  c (5.11)

So,  c transform under the Lorentz group in the same way as  .
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6 The Majorana equation

Since  c transforms as a spinor, Majorana noted that the following equation

i h̄ �µ @µ = mc c (6.1)

is also invariant under the Lorentz group. That is the Majorana equation. Note that by
complex conjugating (6.1) and multiplying by C one gets

i h̄ �µ @µ c = mc (6.2)

In addition, acting with i h̄ �⌫ @⌫ on (6.1) and using (6.2) one gets

@2 +
m2 c2

h̄2  = 0 (6.3)

and so m2 is indeed a mass, and it is the Majorana mass. The Majorana equation can be
obtained from the Majorana Lagrangian

L =  ̄ i h̄ �µ @µ � 1

2
m

⇣
 T C  +  ̄C  ̄T

⌘
(6.4)

Note that since  and  c carry opposite charges, the Majorana equation can only be applied
to electrically neutral particles. Indeed, the Majorana equation is not invariant under the
phase transformation

 ! ei ✓   ! e�i ✓  c (6.5)

and so the electric charge would not be conserved.
Note that multiplying (6.1) by 1

2 (1 + �5) and using (5.8) and (5.9) we get that

i h̄ �µ @µ L = mc c
L (6.6)

and similarly multiplying (6.1) by 1
2 (1 + �5) we get

i h̄ �µ @µ R = mc c
R (6.7)

So, contrary to the Dirac equation (see (2.18)), the Majorana equation preserves chirality,
and so it is tailor made for the neutrino.

The spinors satisfying
 =  c (6.8)

are called Majorana spinors.
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