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Localization of an mRNA species to a particular subcellular region can complement trans-
lational control mechanisms to produce a restricted spatial distribution of the protein it
encodes. mRNA localization has been studied most in asymmetric cells such as budding
yeast, early embryos, and neurons, but the process is likely to be more widespread. This
article reviews the current state of knowledge about the mechanisms of mRNA localization
and its functions in early embryonic development, focusing on Drosophila where the rele-
vant knowledge is most advanced. Links between mRNA localization and translational
control mechanisms also are examined.

Cell polarization requires proteins to be asym-
metrically localized, which can be achieved

by localizing specific mRNAs to particular re-
gions of the cytoplasm so that their translation
occurs only there mRNA localization is often
inefficient, thus it is usually coupled to transla-
tional control mechanisms that repress transla-
tion of unlocalized mRNAwhile allowing trans-
lation of the localized mRNA to proceed.
Genome-wide analysis of mRNA localization
in early Drosophila embryos showed that the
majority of mRNAs are asymmetrically distrib-
uted (Lécuyer et al. 2007; Tomancak et al. 2007).

The Drosophila oocyte is a valuable model
system to study mRNA localization and trans-
lational control. In organisms such as Droso-
phila in which zygotic transcription does not
commence until many nuclear or cellular divi-
sions have occurred, translational control of
maternally encoded mRNAs necessarily has a
widespread role in regulating gene expression

so that the initial stages of development can pro-
ceed. Drosophila oocytes develop within multi-
cellular entities called egg chambers (King
1970). Each egg chamber contains a syncytium
of 16 germ line cells (called cystocytes), which
are connected by cytoplasmic bridges (ring ca-
nals). Only one cystocyte adopts an oocyte fate
and completes meiosis while its siblings develop
into polyploid nurse cells. The nurse cells are
highly active in transcription and translation,
and mRNAs and proteins expressed in those
cells are transferred to the oocyte through the
ring canals to the oocyte, whereas the oocyte
nucleus is largely quiescent. Toward the end of
oogenesis, the nurse cells expel their cytoplasm
into the oocyte and afterward undergo apopto-
sis. The germ line cyst is surrounded by a single
layer of follicle cells (the follicular epithelium),
which not only secrete the eggshell but also play
pivotal roles in signaling pathways that help es-
tablish oocyte polarity.
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FOUR mRNAs ESSENTIAL FOR EMBRYONIC
PATTERN SPECIFICATION ARE LOCALIZED
TO THREE CYTOPLASMIC REGIONS OF THE
DROSOPHILA OOCYTE: ANTERIOR,
POSTERIOR, AND ANTERODORSAL

The future embryonic body axes are specified
during oogenesis, and mRNA localization and
translational control are crucial for this (Ba-
stock and St Johnston 2008; Kugler and Lasko
2009; Becalska and Gavis 2009). Four localized
mRNAs, oskar (osk), nanos (nos), bicoid (bcd),
and gurken (grk), are the key players in embry-
onic axis specification (Fig. 1), and for this rea-
son their regulation has been especially well
studied. The anterior–posterior axis is elaborat-
ed through localization of bcd mRNA to the
anterior of the oocyte, and localization of osk

and nos mRNAs to the posterior of the oocyte.
In late-stage oocytes, bcd and nos are transla-
tionally repressed. This repression is relieved
after fertilization, and the corresponding pro-
teins are produced in opposing gradients that
initiates a cascade of zygotic gene expression
that directs anterior–posterior patterning. As
will be discussed in more detail below, forma-
tion of the anterior-to-posterior Bcd gradient is
primarily achieved through localization of its
mRNA at the anterior pole, whereas formation
of the posterior-to-anterior Nos gradient is
achieved through translational repression of its
mRNA by Bcd, and enrichment of its mRNA at
the posterior where it is translationally active.

osk mRNA begins to be translated during
mid-oogenesis to nucleate the formation of
the pole plasm, a specialized cytoplasm at the
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Figure 1. Localization of patterning mRNAs in Drosophila oogenesis. (A) In early oogenesis, several mRNAs,
including grk, nos, osk, and bcd, are transported from the nurse cells through cytoplasmic bridges called ring
canals into the oocyte. This involves minus-end directed transport along microtubules (blue arrows) mediated
by the dynein motor complex. Abbreviations: nc, nurse cells, fc, follicle cells, oo, oocyte. (B) In mid-oogenesis,
osk mRNA localizes to the posterior of the oocyte, grk mRNA localizes to the anterodorsal corner in close
association with the oocyte nucleus, and bcd mRNA localizes to the anterior pole. (C) In late oogenesis,
centrifugal cytoplasmic streaming (delineated by arrows) coupled with posterior anchoring brings about a
further posterior enrichment of osk mRNA as well as posterior enrichment of nos mRNA. The distribution of
bcd mRNA at the anterior pole is further refined.
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posterior of the oocyte that contains large RNP
complexes called polar granules that include
posterior and germ cell determinants such as
Nos, and which is therefore required in the em-
bryo for posterior patterning and primordial
germ cell specification. Like nos, osk mRNA lo-
calizes to the posterior pole where it is active,
and is translationally silenced elsewhere. Grk, an
epidermal growth factor receptor (EGFR) li-
gand, is crucial for the establishment of both
the anterior–posterior and dorsal–ventral axes
during oogenesis (González-Reyes et al. 1995;
Roth et al. 1995). Grk is secreted from the oo-
cyte to locally activate EGFR in adjacent follicle
cells, and restricting its deployment enables it to
specify spatial information. During early oo-
genesis, EGFR activation by Grk assigns poste-
rior fate to a subpopulation of follicle cells that
is essential for polarizing the oocyte and estab-
lishing anterior–posterior polarity. Later, Grk
produced from localized mRNA at the antero-
dorsal corner of the oocyte specifies the dorsal–
ventral axis by inducing dorsal fate in the follicle
cells immediately adjacent.

CIS-ACTING ELEMENTS THATARE ESSENTIAL
FOR mRNA LOCALIZATION USUALLY
INCLUDE STEM-LOOP STRUCTURES

Transport of many mRNAs, including grk, bcd,
and osk, from the nurse cells to the oocyte oc-
curs prior to overall cytoplasmic transfer, and
proceeds via minus end-directed transport on
the microtubule cytoskeleton that is driven by
the dynein motor complex (Clark et al. 2007).
Two proteins, Egalitarian (Egl) and Bicaudal-D
(Bic-D), working in concert are directly respon-
sible for linking mRNAs to dynein and to
microtubules (Fig. 2) (Navarro et al. 2004;
Dienstbier et al. 2009). Although associating
with the localization element of the mRNA to
be transported, the amino-terminal region of
Egl directly binds to the carboxyl-terminal do-
main (CTD) of Bic-D (Dienstbier et al. 2009),
which in turn interacts with dynein through
dynactin (Hoogenraad et al. 2003). Egl also in-
teracts with dynein light chain. A structural
study using NMR spectroscopy indicates that
a stem-loop with two double-stranded RNA
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Figure 2. Model for linking mRNAs to the microtubule cytoskeleton for minus-end directed transport. Egal-
itarian (Egl) interacts directly with localization signals on mRNAs, with the carboxy-terminal end of Bicaudal-D
(Bic-D), and with dynein light chain (Dlc). Bic-D interacts directly with dynactin, which in turn binds to dynein
through its intermediate chain (Dic). Dynein heavy chain (Dhc) interacts with microtubules (green arrow) and
catalyzes movement toward the minus-end. Although both in vivo and in vitro evidence exists to support this
model for some instances of dynein-directed minus-end transport, and Egl and Bic-D are required for accu-
mulation of grk, nos, osk, and bcd mRNAs into the oocyte, it has not yet been directly shown that this mechanism
governs this particular localization event.
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helices in an unusual A0-form conformation
(Arnott et al. 1972) is a crucial recognition
site for this complex (Bullock et al. 2010).

ANTERIOR TARGETING, ANCHORING, AND
TRANSLATIONAL REGULATION OF bcd

Localization of bcd mRNA proceeds through
several steps (St Johnston et al. 1989). The initial
phase of bcd localization to the anterior cortex
of the oocyte requires Exuperantia (Exu) pro-
tein (Berleth et al. 1988; Cha et al. 2001; Mische
et al. 2007). Exu-containing ribonucleoprotein
particles (RNPs) display dynamic movements
that are very similar to those displayed by in-
jected fluorescent bcd mRNA, and GFP-Exu is
recruited to injected bcd mRNA (Theurkauf and
Hazelrigg 1998; Wilhelm et al. 2000). Exu is phos-
phorylated by the Par-1 kinase, and this post-
translational modification of Exu is important
for anterior Exu and bcd mRNA localization
(Riechmann and Ephrussi 2004).

Genetic evidence has implicated several ad-
ditional proteins as involved in anchoring of bcd
at the anterior cortex, including Staufen (Stau),
an RNA binding protein, Swallow (Swa), the g-
tubulin ring complex components gTub37C,
dGrip75 and dGrip128, and the microtubule-
associated protein Mini Spindles (Msps) (Fer-
randon et al. 1994; Schnorrer et al. 2002; Moon
and Hazelrigg 2004; Vogt et al. 2006; Weil et al.
2006). However, the roles of some of the mole-
cules may be indirect. Super-resolution micros-
copy has shown that Swa, which was once
thought to link bcd mRNA containing RNPs
to the dynein motor complex, actually does
not precisely colocalize in the same particles as
bcd (Weil et al. 2010). Rather, Swa appears to
regulate the actin cytoskeleton, which in turn
could be essential for anchoring bcd mRNA.
Unlike Swa, Stau is found in the same particles
as bcd and appears to be directly involved in
recruiting it to the dynein motor (Weil et al.
2010). bcd mRNA anchoring also requires the
ESCRT-II complex. The three conserved ESCRT
complexes (ESCRT-I, -II, and -III) collaborate
to mediate endosomal sorting; only ESCRT-II is
required for anterior bcd mRNA localization,
however, suggesting that a different mechanism

is involved (Irion and St Johnston 2007). One
subunit of ESCRT-II, VPS36, binds directly to
sequences in the bcd 30UTR and localizes to the
anterior of the oocyte in a bcd mRNA-depen-
dent but stau-independent manner, indicating
that ESCRT-II acts upstream of Stau in the bcd
localization pathway. A recent genetic screen has
identified short stop, which encodes a spectro-
plakin protein that binds both actin and micro-
tubules, and Su(Mir)2, whose identity is un-
known, as encoding other potential factors
involved in bcd anchoring (Chang et al. 2011).

FORMATION OF THE ANTERIOR–
POSTERIOR BICOID PROTEIN GRADIENT
FROM THE LOCALIZED bcd mRNA

As mentioned above, in the early Drosophila
embryo, an anterior-to-posterior gradient of
Bcd protein is established from its anteriorly
localized mRNA. Bcd is a transcription factor,
acting as a graded morphogen that influences
developmental decisions in a concentration-de-
pendent manner (Driever and Nüsslein-Vol-
hard 1988). As nuclei migrate during syncytial
divisions into different regions of the embryo,
they activate expression of various sets of pat-
terning genes based on the concentration of Bcd
they encounter, and thus on their position along
the anterior–posterior axis.

Despite indications that this classic model
of Bcd function is insufficient to explain results
observed when the Bcd gradient is physically
perturbed, flattened, or abolished (Lucchetta
et al. 2008; Löhr et al. 2009; Ochoa-Espinosa
et al. 2009), it remains clear that Bcd is an im-
portant morphogen and the characteristics of
its graded distribution need to be carefully con-
trolled. Substantial attention has therefore been
given in recent years as to how exactly the Bcd
gradient is generated, taking into account the
physical properties of the embryonic cytoplasm
and the diffusion characteristics of bcd mRNA
and Bcd protein. Initial attempts at modeling the
Bcd gradient considered the mRNA as a point
source and postulated that protein diffusion
was the dominant means in which the gradient
was produced (Houchmandzadeh et al. 2002;
Gregor et al. 2007a,b), along with a constant
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amount of degradation. This model, however,
does not fully agree with measured diffusion
constants that predict a shorter length scale for
the Bcd gradient than observed (Gregor et al.
2007b). Subsequently, it was realized that for-
mation of the bcd mRNA gradient that presages
the protein gradient is critical for establishing
the latter (Spirov et al. 2009). Quantitative mea-
surement of bcd mRNA and Bcd-GFP protein in
real time indicates that the mRNA distribution
is more tightly restricted to the anterior than the
protein, implying that protein movement from
the graded mRNA distribution makes an essen-
tial contribution to producing the protein gra-
dient (Little et al. 2011). The recent discovery
that Fates-shifted, a ubiquitin ligase substrate
specificity receptor that targets Bcd for degrada-
tion, is required for formation of a normal Bcd
gradient and for correct anterior–posterior pat-
terning, makes it evident that regulation of Bcd
protein stability is an important aspect of how
the gradient is produced (Liu and Ma 2011).

Translational control appears not to be in-
volved in establishing the Bcd gradient, but it is
involved in temporal regulation because local-
ized bcd mRNA is apparent from mid-oogenesis
when Bcd protein is not detectable. Mutations
in pumilio ( pum), which encodes an RNA bind-
ing protein, or deletion of a consensus Pum
binding site in the bcd 30 UTR leads to increased
Bcd expression during embryogenesis (Gam-
beri et al. 2002), but it is unknown whether
this mechanism mediates translational repres-
sion during oogenesis.

TARGETING osk AND nos mRNAs
TO THE POSTERIOR POLE PLASM

Both osk and nos are enriched at the posterior
pole of the oocyte in a region termed the pole
plasm, and their translation within the oocyte
and syncytial embryo is restricted to that region.

osk Localization Is Microtubule-Dependent
but Anchoring Requires F-Actin

As discussed earlier for bcd, initial loading of osk
into the oocyte also proceeds through microtu-
bule-dependent motor driven transport, and

like bcd, osk is initially transported via a mi-
nus-end directed dynein-mediated process. Be-
ginning in mid-oogenesis, osk begins to accu-
mulate in the posterior of the oocyte, and this
localization is an essential first step for pole
plasm assembly.

Localization of osk mRNA to the pole plasm
requires cis-acting elements in its 30 UTR and
nuclear imprinting of unspliced osk with exon
junction complex components (Mago Nashi,
Y14, eIF4AIII) and Hrp48 (Hachet and Eph-
russi 2004; Huynh et al. 2004; Palacios et al. 2004;
Yano et al. 2004). Although splicing of the first
intron of osk pre-mRNA is essential for its lo-
calization, reporter mRNAs lacking introns but
containing osk 30 UTR elements can localize via
RNA:RNA dimerization with imprinted endog-
enous osk, even if that endogenous osk cannot
be translated (Jambor et al. 2011). osk localiza-
tion also requires a specific association with
Stau, a RNA binding protein that interacts with
certain stem-loop structures in the 30 UTR
(Micklem et al. 2000). Posterior localization of
osk is microtubule dependent, but unlike the
earlier phase, it is driven by the plus-end direct-
ed motor kinesin. Real-time analysis of the
movements of individual osk-containing parti-
cles shows they are not highly directed, and that
posterior enrichment is accomplished through
a collection of random walks that is slightly bi-
ased toward the posterior, reflecting a similar
weak enrichment of microtubule plus-ends at
the oocyte posterior (Zimyanin et al. 2008).

A later stage of osk localization takes advan-
tage of rapid movements of the oocyte cyto-
plasm that occur in later oogenesis and involves
anchoring of the mRNA in the posterior pole
plasm (Sinsimer et al. 2011). Anchoring osk-
containing mRNPs at the posterior requires
specifically the longer of two Osk protein iso-
forms, the endocytic pathway, and rearrange-
ments of the F-actin cytoskeleton (Vanzo et al.
2007; Tanaka et al. 2011). Actomyosin-based
transport is implicated in short-range move-
ments that sharpen the polarization of osk
mRNA distribution at the posterior pole (Krauss
et al. 2009). Osk itself induces the formation of
long F-actin projections from the posterior cor-
tex into the pole plasm, corroborating the link
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between osk anchoring and the actin cytoskele-
ton (Babu et al. 2004).

Posterior Accumulation of nos Is Inefficient
and Proceeds as a Consequence of
Cytoplasmic Streaming

nos mRNA also specifically accumulates in the
posterior pole plasm, but its localization is in-
efficient, with only an approximate 4% enrich-
ment in the posterior half of early embryos
(Bergsten and Gavis 1999). Translational repres-
sion is therefore the primary mechanism for
excluding Nos outside the posterior. In fact,
localization of nos mRNA is dispensable for
somatic patterning, although it is required for
germ cell development (Gavis et al. 2008). nos
mRNA moves throughout the oocyte during a
period of rapid cytoplasmic streaming that com-
mences in mid-oogenesis, and gradually accu-
mulates in the pole plasm through an anchoring
mechanism (Forrest and Gavis 2003; Weil et al.
2006). Rumpelstiltskin (Rump), an hnRNP M
homolog, binds to one of several 30 UTR ele-
ments involved in nos mRNA localization and
acts directly in its localization (Jain and Gavis
2008). Recently, mutations in aubergine (aub)
were shown to affect nos localization, and Aub
protein can be copurified with the nos 30 UTR
and with Rump (Becalska et al. 2011). Although
Aub has been implicated in silencing of retro-
transposons in the germline, its function in nos
localization appears unrelated to this, as muta-
tions in other genes involved in retrotransposon
silencing do not have a similar effect on nos.

grk mRNA LOCALIZATION IS A
MICROTUBULE-DEPENDENT PROCESS

grk mRNA, though mostly transcribed in the
nurse cells, accumulates in the oocyte and co-
localizes with the oocyte nucleus throughout
much of oogenesis. In early oogenesis the oo-
cyte nucleus is located at the posterior, and grk
mRNA accumulates there. Later, when the oo-
cyte nucleus moves to an anterodorsal position,
grk mRNA forms a crescent between the apical
surface of the nucleus and the neighboring re-
gion of the cortex. Transcription of grk from the

oocyte nucleus is not essential for this, because a
similar distribution is observed in mosaic egg
chambers in which the oocyte nucleus is homo-
zygous for an RNA-null grk allele (Caceres and
Nilson 2005). Further, grk transcription from
the oocyte nucleus is not required for pattern-
ing, as dorsal follicle cell fates and the dorsal-
ventral embryonic axis are specified in these
mosaics.

Initial transport of grk mRNA from the
nurse cells to the oocyte uses the dynein and
Bic-D/Egl dependent pathway described above
for bcd and osk. grk first accumulates along the
anterior cortex, then it is transported laterally
toward the oocyte nucleus (MacDougall et al.
2003; Jaramillo et al. 2008). This second phase
of grk transport also depends on dynein and the
microtubule cytoskeleton, and the oocyte nu-
cleus appears to nucleate a distinct population
of microtubules, which are thought to mediate
lateral displacement (MacDougall et al. 2003;
Januschke et al. 2006; Delanoue et al. 2007).
There is some controversy about the nature of
the cis-acting elements that are essential for grk
localization. Studies of injected fluorescently-
tagged grk mRNA implicated an element within
the protein-coding region, termed the grk local-
ization signal (GLS) as essential for both oocyte
targeting and anterodorsal localization (Van De
Bor et al. 2005). However, an analysis of locali-
zation of RNA produced from a series of mod-
ified grk transgenes indicates that the GLS is not
sufficient for anterodorsal accumulation and
that another element must be involved (Lan
et al. 2010).

grk mRNA Anchoring also Requires
Microtubules and Dynein

Microtubules and Dhc are required not only for
grk mRNA transport but also for grk anchoring
(Delanoue et al. 2007). How dynein switches
from a dynamic to a static mode is not fully
understood, but it clearly involves the activity
of squid (sqd), which encodes an hnRNP, and
perhaps K10, as mutations in either of those two
genes abrogate stable grk accumulation at the
anterodorsal corner (Jaramillo et al. 2008; Lan
et al. 2010).
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PROTECTION FROM MATERNAL
DEGRADATION CAN RESULT IN GERM CELL
ACCUMULATION OF SPECIFIC mRNAs

Another mechanism that can lead to asymmet-
ric distribution of mRNAs in the early embryo
involves protection from RNA degradation. This
was first established as a mechanism for enrich-
ment of Hsp83 mRNA in the primordial germ
cells (Bashirullah et al. 1999). Many maternally-
expressed mRNAs are degraded at the maternal-
to-zygotic transition, through the mediation of
Smaug (Smg), a sequence-specific RNA binding
protein that recruits the CCR4 deadenylase
complex whose translation is drastically up-reg-
ulated on egg activation (Semotok et al. 2005;
Tadros et al. 2007). Smg is also required for
zygotic expression of the miR-309 cluster mi-
croRNAs, that mediate destabilization of a
large set of maternal mRNAs (Bushati et al.
2008; Benoit et al. 2009). Degradation of unlo-
calized nos mRNA by Smg also involves recruit-
ment of two transposon-encoded piwi-associ-
ated RNAs (piRNAs) that are complementary
to sequences in the nos 30 UTR (Rouget et al.
2010). Pumilio, another RNA-binding protein
that can recruit the CCR4 deadenylase complex,
has also been implicated in maternal transcript
destabilization (Gerber et al. 2006 and see be-
low). As primordial germ cells remain tran-
scriptionally silent throughout early embryo-
genesis, maternal mRNAs whose degradation
involves the action of zygotically transcribed
molecules such as the miR-309 cluster may be
preferentially stabilized in those cells (Walser
and Lipshitz 2011).

TRANSLATIONAL CONTROL
OF osk IS ELABORATE

osk mRNA is translated into two different iso-
forms, called Long Osk and Short Osk, that are
expressed from different initiation codons in
the osk mRNA (Markussen et al. 1995). Short
Osk is sufficient to induce the accumulation
of all other pole plasm components and to res-
cue the functions of osk in posterior patterning
and germ cell specification, whereas Long Osk
induces F-actin projections that are required for

anchoring its mRNA at the posterior pole (Van-
zo et al. 2007; Tanaka and Nakamura 2008).

In early oogenesis osk translation is re-
pressed by RNA interference (RNAi), as muta-
tions in several genes (including armitage,
aubergine, cutoff, maelstrom, spindle-E, zucchini,
and squash) involved in piRNA processes cause
precocious osk translation in early oocytes
(Findley et al. 2003; Cook et al. 2004; Tomari
et al. 2004; Chen et al. 2007; Lim and Kai 2007;
Pane et al. 2007). However, the axis patterning
defects also observed in these mutants appear
not to result directly from osk overexpression,
but rather from defects in microtubule organi-
zation resulting from inappropriate activation
of DNA damage signaling (Klattenhoff et al.
2007). As osk-containing mRNPs begin to local-
ize to the oocyte posterior, translation is blocked
through a different mechanism, operating at the
level of ribosome recruitment, by Cup, an eIF4E-
binding protein that can interfere with the
eIF4E-eIF4Ginteraction (Nakamuraetal.2004).
Cup is recruited to osk by Bruno (Bru), an RNA
binding protein with three RNA recognition
motifs (RRMs). Through all three RRMs, Bru
interacts directly with specific sequences (Bru-
response elements, or BREs) in the osk 30 UTR,
and represses its translation (Snee et al. 2008).
Surprisingly, however, recent evidence indicates
that, although Cup indeed induces translational
repression, this does not require its eIF4E-bind-
ing activity and thus does not involve com-
petition for eIF4G (Igreja and Izaurralde 2011;
Jeske et al. 2011). Rather, Cup recruits the CCR4
deadenylase complex to its target mRNAs and
reduces osk poly(A) tail length. Cup-associated
mRNAs are not subsequently degraded, how-
ever, as they are protected by an amino-terminal
regulatory domain of Cup through a mecha-
nism that prevents decapping and requires one
of its two eIF4E binding motifs.

Bru also represses translation in another
manner, by packaging osk mRNA into heavy
particles that render it inaccessible to the trans-
lational machinery (Chekulaeva et al. 2006).
Further insight into the nature of silencing com-
plexes came from a study of polypyrimidine
tract binding protein (PTB), which is required
for translational repression of osk during early
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oogenesis (Besse et al. 2009). PTB binds with
high affinity and cooperativity to the osk 30

UTR, at several pyrimidine-rich sites, and cata-
lyzes oligomerization of multiple osk mRNA
molecules through bridging interactions.

Although mutation of BREs generally re-
sults in precocious osk translation, when endog-
enous osk mRNA is totally absent, translation
from an osk transgene that lacks the distal pair of
BREs but is otherwise complete (osk C2) is re-
duced. This was surprising as the opposite result
would be expected from removing the BREs
which were believed to be strictly repressor ele-
ments. In a genetic background in which osk
mRNA with an intact 30 UTR but an early stop
codon is also expressed, osk C2 is translated at a
higher level. This implies that the distal pair of
BREs is bifunctional, operating in different con-
texts as a repressor or an activator element. Fur-
ther, these results indicate that the presence of
osk mRNA with an intact 30 UTR in osk mRNPs
can facilitate activation of osk C2 translation in
trans, illustrating that mRNA molecules in the
same RNP are coordinately regulated (Reveal
et al. 2010).

Hrp48, an abundant RNA-binding protein
that interacts with elements in both the 50 and 30

UTRs of osk, is essential for osk localization and
also contributes to its translational regulation
(Huynh et al. 2004; Yano et al. 2004; Norvell
et al. 2005). Live imaging of osk in hrp48 mutant
ovaries implicate hrp48 in assembling osk into
cytoplasmic particles (Mhlanga et al. 2009) and
for its subsequent association with Staufen, a
translational activatorof osk (Kim-Ha et al. 1995;
Micklem et al. 2000; Braat et al. 2004; Mhlanga
et al. 2009). Glorund, an hnRNP F/H family
member, also associates with Hrp48 and may
be another component of these particles (Kalifa
et al. 2009). Another RNA binding protein, Bi-
caudal-C (Bic-C), has been implicated geneti-
cally as a negative regulator of osk translation
(Saffman et al. 1998). Bic-C directly recruits the
CCR4 deadenylase complex to target mRNAs
through an association with its NOT3/5 sub-
unit (Chicoine et al. 2007). These targets could
potentially include osk.

Later in oogenesis, osk repression is alleviat-
ed, and translation activated, for the small pro-

portion of osk RNA that is localized to the pole
plasm. A key activator of osk translation is Orb,
the Drosophila homolog of Xenopus cyto-
plasmic polyadenylation element binding pro-
tein (CPEB). Orb directly associates with two
poly(A) polymerases, PAP and Wispy (Wisp).
PAP is required during mid-oogenesis to pro-
mote Osk expression, whereas Wisp functions
only during late oogenesis and in the early em-
bryo (Benoit et al. 2009). An RNA binding pro-
tein that promotes CCR4-mediated deadenyla-
tion, Bicaudal-C, interacts with Orb, PAP, and
Wisp, and possibly inhibits their association
with target mRNAs (Castagnetti and Ephrussi
2003; Chicoine et al. 2007; Cui et al. 2008; Be-
noit et al. 2009).

nos TRANSLATION IS ALSO HIGHLY
REGULATED

Nos protein is restricted to the posterior germ
plasm by RNA localization and by translational
repression of nos mRNA outside that region. nos
regulation is mediated by a 90 nt region of the 30

UTR, termed the translational control element
(TCE) (Crucs et al. 2000; Forrest et al. 2004).
The TCE forms a complex secondary structure,
and mutations that disrupt any portion of this
structure prevent the binding of repressors of
nos and render the entire element inactive (For-
rest et al. 2004). Different parts of the TCE
interact with different trans-acting factors at
different developmental stages to ensure trans-
lational repression of unlocalized nos mRNA.
During late oogenesis, repression is mediated
by Glorund (Glo), an hnRNP F/H ortholog
that binds to the stem of stem-loop III of the
TCE (Kalifa et al. 2006). Another part of the
TCE, the loop of stem-loop II, contains a Smaug
Recognition Element (SRE), the binding site for
Smg, which represses nos in early embryogenesis
outside the pole plasm. Smg interacts with Cup,
an eIF4E-binding protein that was discussed
above in the context of osk regulation. The
Cup-Smg interaction is required for Smg-medi-
ated repression of SRE-containing mRNAs in
embryo extracts (Nelson et al. 2004). Smg also
interacts directly with the POP2 subunit of the
CCR4 deadenylase complex, recruiting it to a
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large set of maternal mRNAs in the early em-
bryo, including nos, and targeting them for
decay (Semotok et al. 2005; Zaessinger et al.
2006; Tadros et al. 2007). Thus, nos mRNA is
repressed in two distinct ways by Smg: by cap-
dependent translational repression and by de-
adenylation of the silenced transcript (Fig. 3).
Osk relieves Smg/CCR4-dependent deadenyla-
tion of nos, thus enabling its translation in the
pole plasm (Zaessinger et al. 2006). Consistent
with this, both the 50 cap structure and the pres-
ence of a poly(A) tail are required for TCE-
mediated repression of a reporter construct
in cell-free extracts prepared from ovaries, al-
though the poly(A) tail does not affect repression
in similar extracts prepared from early embryos
(Andrews et al. 2011). Mutational analysis sug-

gests that Glo is required for both the cap-depen-
dent and poly(A)-dependent types of repression,
although the mechanisms for its function remain
unclear.

Translational regulation of ten other mRNAs
that localize to the pole plasm at a similar devel-
opmental stage as nos was compared with the
regulation of nos itself (Rangan et al. 2009). In
all cases, the 30 UTRs were sufficient to drive
posterior localization and temporally restricted
patterns of translation of the mRNAs. Often
translational activation correlated with an in-
crease in poly(A) tail length, but surprisingly
for at least two of the mRNAs ( pgc and gcl),
reduction of orb activity had little effect on
translation. Consistent with other results, this
may indicate that it is more critical to regulate

A Bbcd

Bcd

cad

Cad

Bcd/4EHP

Smg/Cup/CCR4

Nos

noshb

Hb

C D

Nos, Pum, Brat/4EHP

Figure 3. Mechanisms of establishing protein gradients in the early embryo prior to the onset of zygotic
transcription. (A) Maternally expressed bcd mRNA (top panel) is localized in a steep gradient at the anterior
pole. Bcd protein (lower panel) is translated from that localized mRNA and diffuses toward the posterior. (B)
Maternally-expressed cad mRNA (top panel) is uniformly distributed. Translation of cad mRNA is, however,
repressed by Bcd-mediated recruitment of 4EHP, resulting in a posterior-to-anterior gradient of Cad protein
(lower panel) that is a mirror image of the Bcd gradient. (C) Maternally expressed hb mRNA (top panel) is
uniformly distributed. Translation of hb mRNA is repressed by a complex of Nos, Pum, and Brat, that recruits
4EHP and probably other negative regulators to restrict Hb protein (lower panel) to the anterior half of the
embryo. (D) Maternally expressed nos mRNA (top panel) is enriched at the posterior pole but present elsewhere.
Translation of nos outside the posterior is repressed by Smg, which can recruit the repressor protein Cup and also
the CCR4 deadenylase complex. Unlocalized nos is also targeted by piRNAs (not shown). Nos protein (lower
panel) is translated from posteriorly-localized nos that is protected from degradation and repression.
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deadenylation rather than polyadenylation in
regulating translation.

4EHP, AN ALTERNATE CAP-BINDING
PROTEIN, REPRESSES TRANSLATION OF
CAUDAL AND HUNCHBACK mRNAs

Caudal (Cad), a transcription factor, is a master
regulator of posterior patterning in many in-
sects (Olesnicky et al. 2006). In Drosophila
maternally expressed Cad forms a posterior-
to-anterior gradient in the early embryo, and
although its function is somewhat redundant
with other regulatory factors it is nevertheless
involved in activating posterior-specific zygotic
genes (Schulz and Tautz 1995). In a role differ-
ent from its function as a transcription factor,
Bcd represses translation of cad mRNA, thus
producing a gradient of Cad protein that is the
mirror image of the Bcd gradient (Fig. 3) (Dub-
nau and Struhl 1996, Rivera-Pomar et al. 1996).
Bcd binds to the 30 UTR and recruits 4E homol-
ogy protein (4EHP), an eIF4E-related cap bind-
ing protein that cannot bind eIF4G (Hernández
et al. 2005), and thus cannot nucleate assembly
of an active cap-binding complex (Cho et al.
2005). Females homozygous for a 4EHP allele
produceembryoswithanteriordefects, likethose
produced by bcd mutants, that fail to repress
cad translation in the anterior. These pheno-
types could be rescued by 4EHP transgenic con-
structs, but not by constructs producing mutant
forms of 4EHP that were abrogated for binding
to the structure or to Bcd. Similarly, transgeni-
cally produced forms of Bcd that were abrogat-
ed for 4EHP binding could not repress cad
translation. These results showed that a com-
plex of 4EHP and Bcd, interacting with the cap
structure and the 30 UTR, respectively, circular-
izes cad mRNA and renders it translationally
inactive.

4EHP was later shown to be involved in re-
pression of hb mRNA in the posterior of the
embryo (Fig. 3) (Cho et al. 2006), which had
long been known to involve formation of a com-
plex including Nos, Pum, Brain Tumor (Brat, an
NHL-domain containing protein), and an ele-
ment in the hb 30 UTR called the Nanos-re-
sponse element (NRE) (Sonoda and Wharton

2001). In the case of hb, 4EHP is recruited to the
50 cap structure through an interaction with the
NHL domain of Brat. As the binding sites for
4EHP on Bcd and Brat are not similar in se-
quence, and the latter does not resemble an
eIF4E binding motif, it is possible that the in-
teraction between 4EHP and Brat is indirect.

The translational repressor Pum is involved
in many cellular and developmental processes in
Drosophila other than embryonic patterning,
including restriction of Cyclin B expression to
the germline (Kadyrova et al. 2007), regulation
of sodium current in motoneurons (Muraro
et al. 2008), regulation of presynaptic morphol-
ogy (Menon et al. 2004), regulation of dendrite
morphogenesis in peripheral neurons (Ye et al.
2004), and maintenance of germline stem cell
self-renewal (Gilboa and Lehmann 2004; Wang
and Lin 2004; Szakmary et al. 2005; Li et al.
2009; Kim et al. 2010). Pum binds to a consen-
sus sequence UGUANAUA (Gerber et al. 2006)
and frequently operates in a complex with Nos.
Often, Pum repression is independent of the cap
structure and 4EHP, involving instead CCR4-
mediated deadenylation of its target mRNAs
(Wreden et al. 1997; Gamberi et al. 2002; Gold-
strohm et al. 2006). A recent study provides ev-
idence that Nos is not always required for Pum
activity, and that regions outside the Pum C-
terminal domain that binds Nos and Brat pos-
sess substantial translational repressor activity
(Weidmann and Goldstrohm 2012).

VASA (VAS) IS A TRANSLATIONAL
ACTIVATOR OF SPECIFIC GERM-LINE
mRNAs

Activators of translation of specific mRNAs have
not been identified as frequently as repressors,
and less is known about their function. One
translational activator that is involved in Droso-
phila embryonic development is Vas, a DEAD-
box type RNA helicase. Complete loss of Vas
blocks oogenesis and results in female sterility,
whereas females homozygous for weaker vas al-
leles produce embryos that lack a germ line and
posterior somatic segments. Vas binds to eIF5B,
a translation factor that functions in ribosomal
subunit joining, and mutations in vas and eIF5B
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genetically interact (Carrera et al. 2000). Severe
vas mutations strongly reduce Grk accumulation
in the oocyte (Styhler et al. 1998; Tomancak et al.
1998). A mutant form of Vas (VasD617) was
generated whose ability to bind eIF5B was re-
duced 10-fold in yeast two-hybrid assays (John-
stone and Lasko 2004). Oocytes that express only
VasD617 fail to accumulate normal levels of Grk,
suggesting that Vas activates grk translation
through an interaction with eIF5B. Vas has also
been shown to bind specifically to a U-rich motif
present in the 30 UTR of another mRNA, mei-
P26, and to positively regulate its translation in
germ cells through that interaction (Liu et al.
2009). Again, the VasD617 mutation abrogates
the effect.

Like many of the RNA binding proteins dis-
cussed in this review, Vas appears to have more
than one function. It is a component of nuage,
organelles that are involved in piRNA-mediated
transposon silencing, and it has recently been
implicated in regulating mitotic chromosome
condensation in the Drosophila germline (Pek
and Kai 2011). Dependent on the activities of
aub and spn-E, two piRNA pathway genes, Vas
accumulates in perichromosomal foci during
mitosis, and facilitates the recruitment of Bar-
ren, which in turn is required for correct chro-
mosome condensation and segregation. This
function of Vas appears to be independent of
translation, as the VasD617 mutant form oper-
ates normally in this regard.

FUTURE DIRECTIONS

In this field, some simple models have given way
to more complicated ones over the past several
years, and this trend will likely continue, be-
cause more extensive analysis has in many cases
revealed novel unexpected activities for proteins
and regulatory elements that were thought to be
fully understood. Cup, the BREs, and perhaps
Pum are just some examples of this. On first
glance it seems perhaps illogical that many mol-
ecules involved in mRNA localization and trans-
lational control cannot be assigned a unitary
function. What must be remembered, however,
is that mRNAs and the proteins that regulate
them are contained within a heterogeneous

and highly dynamic set of RNPs, and that a given
mRNA or protein might be a component of
many different species of RNP at different de-
velopmental times or in different cellular or spa-
tial positions. If we consider that the RNPs, not
individual molecules, are the real functional
units in translational regulation, manipulation
of a single gene that encodes a single RNP
component might actually disrupt many differ-
ent species of RNP, and thus lead to multiple
effects. Advances in quantitative imaging and
proteomics (see, for instance, Slobodin and
Gerst 2011) will likely make it possible to more
fully characterize the panoply of RNPs that are
involved in mRNA localization and transla-
tional control in Drosophila oocytes in upcom-
ing years, which will be a critical step forward
in developing a deeper understanding of these
processes.
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