
BEOWULF:A PARALLEL WORKSTATION FOR SCIENTIFIC COMPUTATIONThomas Sterling Donald J. BeckerCenter of Excellence in Space Dataand Information SciencesCode 930.5 NASA Goddard Space Flight CenterGreenbelt, MD 20771ftron, beckerg@cesdis.gsfc.nasa.gov Daniel SavareseDepartment of Computer ScienceUniversity of MarylandCollege Park, MD 20742dfs@cs.umd.eduJohn E. DorbandNASA Goddard Space Flight Center Udaya A. Ranawake Charles V. PackerHughes STX Corp.Abstract { Network-of-Workstations technology is ap-plied to the challenge of implementing very high perfor-mance workstations for Earth and space science applica-tions. The Beowulf parallel workstation employs 16 PC-based processing modules integrated with multiple Ether-net networks. Large disk capacity and high disk to mem-ory bandwidth is achieved through the use of a hard diskand controller for each processing module supporting upto 16 way concurrent accesses. The paper presents re-sults from a series of experiments that measure the scal-ing characteristics of Beowulf in terms of communica-tion bandwidth, �le transfer rates, and processing perfor-mance. The evaluation includes a computational 
uid dy-namics code and an N-body gravitational simulation pro-gram. It is shown that the Beowulf architecture providesa new operating point in performance to cost for high per-formance workstations, especially for �le transfers underfavorable conditions.1 INTRODUCTIONNetworks Of Workstations, or NOW [4] technology, isemerging as a powerful resource capable of replacing con-ventional supercomputers for certain classes of applica-tions requiring high performance computers, and at sub-stantially lower cost. Another, less frequently consid-ered, domain is the realization of the high performanceworkstations themselves from ensembles of less power-ful microprocessors. While workstations incorporatingbetween 2 and 4 high performance microprocessors arecommercially available, the use of larger numbers (upto 16 processors) of lower cost commodity subsystemswithin a single workstation remains largely unexplored.The potential bene�ts in performance to cost are de-rived through the exploitation of commodity componentswhile the performance gains are achieved through theconcurrent application of multiple processors. The MITAlewife project [1] seeks to provide a fully cache coher-ent multiprocessor workstation through modi�cations ofthe SPARC processor. The Princeton SHRIMP project[2] employs standard low cost Intel Pentium microproces-sors in a distributed shared memory context through theaddition of a custom communication chip. While bothprojects make heavy use of available VLSI components,they require some special purpose elements, extending

development time and incurring increased cost. An alter-native approach, adopted by the Beowulf parallel work-station project, recognizes the particular requirements ofworkstation oriented computation workloads and avoidsthe use of any custom components, choosing instead toleverage the performance to cost bene�ts not only of massmarket chips but of manufactured subsystems as well.The resulting system structure yields a new operatingpoint in performance to cost of multiple-processor work-stations.2 BEOWULF ARCHITECTUREThe Beowulf parallel workstation project is driven by aset of requirements for high performance scienti�c work-stations in the Earth and space sciences community andthe opportunity of low cost computing made availablethrough the PC related mass market of commodity sub-systems. This opportunity is also facilitated by the avail-ability of the Linux operating system [7], a robust Unix-like system environment with source code that is targetedfor the x86 family of microprocessors including the IntelPentium. Rather than a single �xed system of devices,Beowulf represents a family of systems that tracks theevolution of commodity hardware as well as new ports ofLinux to additional microprocessor architectures.The Beowulf parallel workstation is a single user mul-tiple computer with direct access keyboard and monitors.Beowulf comprises:� 16 motherboards with Intel x86 processors or equiv-alent� 256 Mbytes of DRAM, 16 MByte per processor board� 16 hard disk drives and controllers, one per proces-sor board� 2 Ethernets (10baseT or 10base2) and controllers,2 per processor� 2 high resolution monitors with video controllersand 1 keyboardThe Beowulf prototype employs 100 MHz Intel DX4microprocessors and a 500 MByte disk drive per proces-sor. The resulting 8 GBytes of secondary storage avail-



able locally to Beowulf applications can substantially re-duce LAN tra�c to remote �le servers in certain impor-tant cases such as dataset browsing. The DX4 deliversgreater computational power than other members of the486 family not only from its higher clock speed, but alsofrom its 16 KByte primary cache (twice the size of other486 primary caches) [6]. Each motherboard also containsa 256 KByte secondary cache. Two Ethernets runningat peak bandwidths of 10 Mbits per second are used forinternode communications, one a twisted pair 10baseTwith hub and the other a multidrop 10Base2. FutureBeowulf systems will employ more advanced versions ofthese component types but the basic con�guration willremain the same. The Beowulf architecture has no cus-tom components and is a fully COTS (Commodity O�The Shelf) con�gured system.3 SCALING CHARACTERISTICS3.1 Internode CommunicationsCommunication between processors on Beowulf is achievedthrough standard Unix network protocols over Ethernetnetworks internal to Beowulf. Therefore the communica-tion throughput of Beowulf is limited by the peformancecharacterisitics of the Ethernet and the system softwaremanaging message passing. However, Beowulf is capableof increasing communication bandwidth by routing pack-ets over multiple Ethernets. This is made possible by aspecial device driver written by one of the authors whichwas facilitated by the free access to Linux kernel sourcecode.To evaluate the performance improvement derived frommultiple networks, we measured the network throughputunder a range of tra�c demands using one, two, and threeEthernet networks. We assigned send/receive processesto pairs of processors which would exchange a �xed-sizedtoken a particular number of times over the network. Inthis experiment, the load on the net was increased by ex-changing larger tokens and also by increasing the numberof tokens being exchanged. No processor was involved inthe exchange of more than one token, i.e. each processorinvolved in the exchange of a token was assigned only onesend/receive process. We used the BSD sockets interfaceand the User Datagram Protocol (UDP) to perform thetoken exchanges.Figure 1 shows network throughput, measured in mega-bytes per second, as a function of the number of Ether-net channels available, token size, and number of tokensexchanged. At the time of the experiment, one of Be-owulf's 16 processors was unavailable, allowing us to in-volve a maximum of only 7 pairs of processors in tokenexchanges. When performing the experiment using threechannels, su�cient Ethernet cards were available to con-�gure only 8 processors to use three channels. Hence amaximum of 4 tokens could be exchanged for that phaseof the experiment.It is evident that the small 64 byte tokens do not comeanywhere near saturating the network for any number ofchannels. The 1024 byte tokens are able to saturate the1 channel network with a throughput of about 1 MB/s,or 80% of the peak 1.25 MB/s possible on 10 Mbit/sEthernet. Throughput for the 8192 byte tokens at 4 and7 token exchanges is less than that for 1024 byte tokens

Figure 1: Beowulf Network Throughput

Figure 2: Beowulf Network Round Trip (1 channel, 16processors)because of additional network packet collisions. The min-imum and maximum sizes of an Ethernet packet are 64and 1536 bytes respectively [3]. Thus a 64 byte tokenand a 1024 byte token each require only one Ethernetpacket for transmission. However, an 8192 byte tokenmust be broken up into 6 Ethernet packets, increasingthe likelihood of collisions on a 1 channel network. Fig-ure 1 shows that multiple networks alleviate network con-tention, achieving throughputs of up to 1.7 MB/s (68%of peak) and 2.4 MB/s (64% of peak) respectively for 2and 3 channel con�gurations.System level applications like NFS are written mak-ing direct use of sockets, but most user level parallel pro-grams use some higher level interface { usually PVM [10].Figure 2 shows the overhead incurred by such high levelmessage-passing interfaces. It shows the round trip timeon one network channel across 16 processors for tokensof sizes ranging from 4 to 16384 bytes using PVM 3.3versus BSD sockets and UDP. We de�ne the round triptime as the time for a token to be sent from an initialprocessor, be received by a neighbor and be passed on toits neighbor, etc., visiting 15 intervening processors onlyonce before �nally returning to the initial processor. ThePVM overhead is rather marked; the round trip time of a256 byte token is 10 ms using sockets while the time us-



Figure 3: Beowulf File Transfers (2 channels, Total of 7local and remote �les)ing PVM is 60 ms. The PVM experiment was run usingthe PvmDataDefault option for pvm initsend() and thetiming included the overhead of packing and unpackinga message.3.2 Parallel Disk I/OTo ascertain the I/O performance of Beowulf, we mea-sured the throughput of simultaneous �le transfers acrossa mix of intraprocessor copies and interprocessor copiesfor a range of �le sizes. No processor was involved inmore than one �le transfer, i.e. each processor involvedin a �le transfer was either performing a local disk �lecopy or was participating in a remote �le transfer. There-fore there was no disk or processor contention caused bycompeting �le transfers. File copies were performed usingthe Unix read() and write() system calls. In the caseof remote transfers, BSD sockets and UDP were used totransmit a �le between processors. At the time we per-formed this experiment, only 15 of Beowulf's processorswere available to us. That meant we could only perform7 simultaneous transfers instead of 8, because remote �letransfers require the participation of 2 processors. Be-owulf was con�gured to use 2 network channels for theexperiment.The empirical results of this key experiment are pre-sented in Figure 3. The total number of �le transfers isheld constant while the ratio of local �le transfers (thoseby a single processor to its local disk) versus remote �letransfers (those between two disks and two processorsover the network) is adjusted from 0.0 (all local) wherethere are 0 remote �le copies to 1.0 (all remote) wherethere are 7 remote �le copies. The data shows two dom-inant characteristics related to �le transfer. Not surpris-ingly, �le transfer throughput exceeds 8 MBytes per sec-ond (sustained) when all copies are local. It is seen thatthis value decreases for local copy only as the �le sizeincreases due to issues related to local bu�ering policies.As the number of remote �le copies is increased to 1,overhead for the additional burden of moving over thenetwork degrades overall throughput by about 15% inthe worst case. Increasing number of remote copies be-yond 1 adds an additional source of performance degra-dation, network contention. Two networks ameliorates

the degradation at two remote copies but between twoand three remote copies, the rate of throughput degrada-tion is seen to accelerate. Ultimately where all �le copiesare remote, throughput is entirely constrained by the net-work bandwidth and is approximately equal to the max-imum network throughput measured for two networks asdiscussed in the previous subsection.4 BENCHMARK EXPERIMENTALRESULTSPerformance scalability of a multiple processor worksta-tion is best characterized through the use of completereal-world applications rather than synthetic test pro-grams. To this end, two full applications from the Earthand space sciences community were selected to bracketthe dimension of communication and load balancing de-mands.A 2-dimensional compressible 
uid dynamics code,called Prometheus [5], has been implemented on a num-ber of high performance computers including vector, sharedmemory, distributed memory, and SIMD architectures.The code solves Euler's equations for gas dynamics on alogically rectangular mesh using the Piecewise ParabolicMethod (PPM). The message passing version of this codepreviously used on the IBM SP-1 and Intel Paragon waseasily ported the the Beowulf parallel workstation andits PVM message passing environment. Parallelizationwas accomplished using a domain decomposition tech-nique for which the computational grid was divided into128x128 tiles. Communication between neighboring tilesis necessary only twice per time step. Because of thelarge number of 
oating-point operations required to up-date each grid point communication costs are relativelysmall.A tree code for performing gravitational N-body sim-ulations has been developed to reduce a classically O(n2)computation to O(n log n) and has been applied to sharedmemory [9], distributed memory, and SIMD parallel ar-chitectures [8]. The code is being used to study the struc-ture of gravitating, star forming, interstellar clouds aswell as to model the fragmentation of comet Shoemaker-Levy 9 in its close encounter with Jupiter. A range ofnumber of particles were used from 32K to 256K. It isestimated that Beowulf can support a 1 million parti-cle simulation for in-core computation and much larger ifappropriate disk accessing can be coordinated.Scaling characteristics of these two codes were evalu-ated on the Beowulf parallel workstation. The results areshown in Figure 4. The CFD code was executed on up to16 processing modules and the tree code was performedon up to 8 processing modules. The CFD applicationshowed good scaling characteristics with total degrada-tion at 16 processors approximately 16% with respect toideal. Single processor performance for this code is 4.5MFLOPS. The full Beowulf delivered a sustained per-formance of 60 MFLOPS. This compared favorably withthe Paragon of equivalent size as well as the TMC CM-5 (without vector chips). The CRI T3D performed lessthan 2.5 times better than Beowulf for the same numberof processors. An additional experiment was performedto demonstrate the impact of multiple networks versusa single network in Beowulf. The dual network showed



Figure 4: ESS Code Scalingessentially no performance advantage over the single net-work case, indicating that communication bandwidth andcontention is not an issue for this application.The scaling characteristics for the tree code is some-what poorer as should be expected. Much more commu-nication per computation is involved with communicationrequirements being relatively global. Because the datastructure is time varying, one part of the program doesload balancing periodically (once every ten time steps)through a sorting strategy. Unfortunately, this problemhas not been run on more than 8 processors. Perfor-mance degradation at 8 processors was observed to be19% with respect to the ideal. Single processor perfor-mance was 1.9 MFLOPS with a total of 12.4 MFLOPSusing 8 processing modules. The overall impact of mul-tiple networks versus a single network was found to beonly a few percent. But when the dynamic load balanc-ing portion of the algorithm was tested, it was found tobe network bandwidth constrained. Two networks pro-vided a 50% improvement in performance for the sortalgorithm versus a single network run.5 DISCUSSION AND CONCLUSIONSThe Beowulf research project has been initiated to ex-plore the opportunity of exploiting Network-of-Workstationconcepts to provide high performance single user work-station performance at exceptional cost. The operatingpoint targeted by the Beowulf approach is intended forscienti�c applications and users requiring repeated use oflarge data sets and large applications with easily delin-eated coarse grained parallelism.Interprocessor communication proved to be the mostinteresting aspect of the Beowulf operation. Enhance-ments to the Linux kernel enabling multiple communi-cations channels to be employed simultaneously showedexcellent scaling factors. This new functionality alonewill impact how Linux based PC's will be used in the fu-ture. But it was equally clear that the network, even inits dual con�guration, is inadequate under certain loads.There was at least one instance where full applicationbehavior was perturbed by network capacity. More im-portantly, parallel �le transfers were seen to be limitedby the network. It is clear from these results that higher

bandwidth networks are required. Fortunately, 100 MbpsEthernet-like networks are now coming on the commod-ity market. The Beowulf project is beginning evaluationof this new technology and it is anticipated that dual100baseTX or 100VG type networks will be incorporatedin the new Beowulf demonstration unit being assembledin 1995.Future work will focus primarily on advanced softwaretechnology that will make better use of the parallel com-puting resources. These include load balancing, parallel�le distribution, global synchronization, parallel debug-ging and optimization, and distributed shared memoryenvironments. But the lesson of this initial work is thata relatively simple capability as that o�ered by the Be-owulf prototype can be of immediate value to real usersin the arena of scienti�c computationREFERENCES[1] A. Agarwal, D. Chaiken, K. Johnson, et al. \The MITAlewife Machine: A Large-Scale Distributed-MemoryMultiprocessor," M. Dubois and S.S. Thakkar,editors, Scalable Shared Memory Multiprocessors,Kluwer Academic Publishers, 1992, pp. 239-261.[2] M. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. Felten,and J. Sandberg, \Virtual Memory Mapped NetworkInterface for the SHRIMP Multicomputer," Proceed-ings of the Twenty-First International Symposium onComputer Architecture (ISCA), Chicago, April 1994,pp. 142-153.[3] D. Boggs, J. Mogul, and C. Kent, \Measured Ca-pacity of an Ethernet: Myths and Reality," WRLResearch Report 88/4, Western Research Laboratory,September 1988.[4] K. Castagnera, D. Cheng, R. Fatoohi, et al. \Clus-tered Workstations and their Potential Role as HighSpeed Compute Processors," NAS ComputationalServices Technical Report RNS-94-003, NAS SystemsDivision, NASA Ames Research Center, April 1994.[5] B. Fryxell and R. Taam, \Numerical Simulationsof Non-Axisymmetric Accretion Flow," AstrophysicalJournal, 335, 1988, pp. 862-880.[6] Intel Corporation, \DX4 Processor Data Book," 1993.[7] Linux Documentation Project,Accessible on the Internet at World Wide Web URLhttp://sunsite.unc.edu/mdw/linux.html.[8] K. Olson and J. Dorband, \An Implementation of aTree Code on a SIMD Parallel Computer," Astrophys-ical Journal Supplement Series, September 1994.[9] T. Sterling, D. Savarese, P. Merkey, J. Gardner, \AnInitial Evaluation of the Convex SPP-1000 for Earthand Space Science Applications," Proceedings of theFirst International Symposium on High PerformanceComputing Architecture, January 1995.[10] V. Sunderam, \PVM: A Framework for Parallel Dis-tributed Computing," Concurrency: Practice and Ex-perience, December 1990, pp. 315-339.


