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Abstract

BACKGROUND—Metagenomic next-generation sequencing (NGS) of cerebrospinal fluid (CSF)
has the potential to identify a broad range of pathogens in a single test.

METHODS—In a 1-year, multicenter, prospective study, we investigated the usefulness of
metagenomic NGS of CSF for the diagnosis of infectious meningitis and encephalitis in
hospitalized patients. All positive tests for pathogens on metagenomic NGS were confirmed by
orthogonal laboratory testing. Physician feedback was elicited by teleconferences with a clinical
microbial sequencing board and by surveys. Clinical effect was evaluated by retrospective chart
review.

RESULTS—We enrolled 204 pediatric and adult patients at eight hospitals. Patients were
severely ill: 48.5% had been admitted to the intensive care unit, and the 30-day mortality among
all study patients was 11.3%. A total of 58 infections of the nervous system were diagnosed in 57
patients (27.9%). Among these 58 infections, metagenomic NGS identified 13 (22%) that were not
identified by clinical testing at the source hospital. Among the remaining 45 infections (78%),
metagenomic NGS made concurrent diagnoses in 19. Of the 26 infections not identified by
metagenomic NGS, 11 were diagnosed by serologic testing only, 7 were diagnosed from tissue
samples other than CSF, and 8 were negative on metagenomic NGS owing to low titers of
pathogens in CSF. A total of 8 of 13 diagnoses made solely by metagenomic NGS had a likely
clinical effect, with 7 of 13 guiding treatment.

CONCLUSIONS—Routine microbiologic testing is often insufficient to detect all neuroinvasive
pathogens. In this study, metagenomic NGS of CSF obtained from patients with meningitis or
encephalitis improved diagnosis of neurologic infections and provided actionable information in
some cases. (Funded by the National Institutes of Health and others; PDAID ClinicalTrials.gov
number, .)
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The existing paradigm for diagnosing infections relies on the physician formulating a
differential diagnosis on the basis of a patient’s history, clinical presentation, and imaging
findings, followed by serial laboratory testing. This traditional approach is particularly
challenging for neuroinflammatory diseases given overlapping clinical manifestations of
infectious and noninfectious causes, a lack of diagnostic tests for rare pathogens, and the
limited availability and volume of central nervous system (CNS) samples owing to the
requirement for invasive procedures, such as lumbar puncture or brain biopsy. Thus, a cause
for acute meningoencephalitis cases is not identified in approximately 50% of patients.1—3
Failure to obtain a timely diagnosis in patients with CNS disease contributes to poor patient
outcomes, increased patient and family anxiety, and a high cost burden to the health care
system.?

Metagenomic next-generation sequencing (NGS) is a promising approach for the diagnosis
of infectious disease because a comprehensive spectrum of potential causes — viral,
bacterial, fungal, and parasitic — can be identified by a single assay.>:6 However, published
reports describing the usefulness of metagenomic NGS in patients with meningitis or
encephalitis are limited to individual patients or small, retrospective case series.” The
question remains whether the diagnostic performance and yield of clinical metagenomic
NGS testing for neurologic infections justifies its wider adoption by the medical community.

We performed a 1-year, prospective, multicenter study involving hospitalized patients
presenting with idiopathic meningitis, encephalitis, or myelitis (the Precision Diagnosis of
Acute Infectious Diseases [PDAID] study). We recently described the analytic sensitivity
and specificity of the metagenomic NGS assay of CSF for identification of pathogens in
patients with neurologic infection confirmed by routine diagnostic testing, including culture
and polymerase-chainreaction (PCR) assay.89 This study was designed to evaluate the real-
life clinical performance and effect of the metagenomic NGS assay in comparison with
conventional microbiologic testing in patient-care scenarios in which the test is likely to be
used. As such, results of metagenomic NGS were reported in the electronic medical record
(EMR) and used for contemporaneous patient-care decisions by treating physicians.

Study Design

This study was a 1-year, multicenter, prospective case series in which patients were enrolled
on the basis of a particular exposure (i.e., idiopathic meningitis with or without encephalitis,
myelitis, or both) and then followed over time to assess for the occurrence of the outcome
(i.e., results of metagenomic NGS of CSF). Prospective enrollees were identified by means
of physician referral, computerized provider-order entry, patient chart review, or screening of
daily EMR reports (see the Supplementary Appendix, available with the full text of this
article at NEJM.org). Given the constraints on funding and clinicaltesting capacity, sample-
size estimates (300 patients) were based on convenience without formal statistical
considerations. The target condition was idiopathic meningitis, encephalitis, or myelitis in
patients who had not received a diagnosis at the time of enrollment (Table S1 in the
Supplementary Appendix). The index test was a metagenomic NGS assay of CSF, and the
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reference standard was a composite of conventional testing and orthogonal confirmatory
testing of positive tests for pathogens on metagenomic NGS only.

Because standard reference results for diagnosis of meningitis and encephalitis were not
available (owing to the varying extent of diagnostic testing done at each hospital, a lack of
detailed performance characteristics for each test performed locally, and a lack of
comprehensive reference testing for meningitis and encephalitis), obtaining unbiased
estimates of sensitivity and specificity was not possible. Thus, the comparative performance
measures of metagenomic NGS relative to conventional testing are reported as positive
percent agreement and negative percent agreement with the composite reference standard
(see the Supplementary Appendix, including Fig. S1), in accordance with statistical
guidance from the Food and Drug Administration.10

Metagenomic NGS of CSF

CSF samples were batched for weekly processing in the Clinical Laboratory Improvement
Amendments—certified clinical microbiology laboratory at the University of California, San
Francisco (UCSF), with the use of a protocol for the validated metagenomic NGS assay, as
described previously.8® RNA and DNA libraries that were generated from CSF samples
obtained from patients were each sequenced to a depth of 5 million to 10 million single-end,
140-base-pair reads on an Illumina HiSeq instrument in rapidrun mode. Automated
computational analysis of metagenomic NGS data was performed with the use of a modified
clinical version of the Sequence-based Ultra-Rapid Pathogen Identification (SURPI)
pipelinel; the modified SURPI+ pipeline incorporated taxonomic classification for species-
specific identification and a graphical user interface (see the Supplementary Appendix).
Detection of pathogens according to type was reported on the basis of preestablished
threshold criteria.8

After review by the laboratory director, results were immediately reported in the patient
EMR, with follow-up by discussion with the treating physicians through real-time
teleconferencing at a meeting of the clinical microbial sequencing board (see the
Supplementary Appendix). Physician feedback was elicited during these meetings regarding
the effect of metagenomic NGS results on clinical reasoning, management of patient care, or
both. Standardized physician surveys that were conducted before and after reporting of
metagenomic NGS results were also used to elicit feedback (see the study protocol, available
at NEJM.org).

Chart Review

The study enrollment target was 300 patients over the 1-year study period. All patients who
were enrolled in the study provided written informed consent. Final clinical diagnoses for
the patients who completed the study were adjudicated by retrospective, in-depth chart
review independently performed by a board-certified neurologist (the first author) and
infectious-diseases physician and microbiologist (the last author).

Orthogonal confirmation of discrepant results was performed with the use of a validated
clinical assay (preferred) or PCR testing in a research laboratory. The result of the
orthogonal confirmatory test was considered to be accurate and used to resolve the
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discrepancy. Confirmation was done to minimize incorporation bias by the inclusion of
unverified results of the index text (i.e., metagenomic NGS) into the definition of an
infectious diagnosis.1? Incidental findings and laboratory-reported contaminants were also
recorded. Any discrepancies in assignment of diagnoses were resolved by direct
communication with treating physicians or by mutual consensus.

Patient Characteristics

Between June 1, 2016, and July 1, 2017, a total of 482 patients were screened and referred
across eight participating sites for review and prospective enrollment in this study (Fig. 1A).
A total of 285 patients met the enrollment criteria (Table S1 in the Supplementary
Appendix), 214 were enrolled, and 204 completed the study. The average age of the 204
patients (55.9% were male) was 39.6 years; 46 patients (22.5%) were 18 years of age or
younger (Table 1). The cohort primarily included patients with isolated meningitis (70
patients [34.3%]) or encephalitis (130 patients [63.7%]), with only 2.0% presenting with
myelitis (4 patients). A total of 86.3% of the patients (176 patients) presented with an acute
condition, whereas the remaining 13.7% (28 patients) presented with an acute exacerbation
of a chronic condition. Most of the patients (193 patients [94.6%]) were enrolled from
California hospitals (Fig. 1B), and 40.7% (83 patients) were immune-compromised (Table
1). Study patients had a mean length of stay of 27.9 days (median, 17; range, 1 to 246) and
were severely ill: 48.5% (99 patients) were admitted to the intensive care unit (ICU).
Critically ill patients who were enrolled at the University of California, Los Angeles, and
UCSF (69 of the 146 patients [47.3%] who were enrolled at these two sites) spent an average
of 17.8 days in the ICU. The overall 30-day mortality (both in the hospital and out of the
hospital) was 11.3% (23 patients).

CSF Analysis by Metagenomic NGS Testing

CSF samples from all 204 patients were analyzed by means of metagenomic NGS and the
automated SURPI+ computational pipeline, as described previously (Fig. 1C).11 The mean
laboratory turnaround time from initiation of CSF sample processing by nucleic acid
extraction to completion of SURPI+ analysis was 90 hours.

Performance of Metagenomic NGS Relative to Conventional Testing

An etiologic diagnosis was identified in 50.5% of the study patients (Fig. 2A), with
infectious (27.9%) and autoimmune (8.3%) as the most common diagnostic categories. A
composite reference standard that combined results from orthogonally confirmed
metagenomic NGS with conventional testing was used to evaluate the comparative
performance of metagenomic NGS (see the Supplementary Appendix). Of 58 infections in
57 patients, 19 (33%) were diagnosed by both conventional testing and metagenomic NGS,
26 (45%) by conventional testing only, and 13 (22%) by metagenomic NGS only (Table 2;
also see the Case Vignettes in the Supplementary Appendix).

In total, metagenomic NGS identified 32 infections, as compared with 27 infections with
conventional direct-detection testing alone (defined as culture, PCR, or antigen testing of
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CSF without including serologic testing or testing of samples other than CSF) (Fig. S1 in the
Supplementary Appendix). High host DNA background, which can decrease the sensitivity
of metagenomic NGS testing, was typically seen at CSF cell counts of more than 200 cells
per cubic milliliter (Fig. 2B).

Infections that were diagnosed solely by metagenomic NGS included St. Louis encephalitis
virus (SLEV),1® hepatitis E virus,16:17 and Streptococcus agalactiae; these pathogens had not
been considered by the treating clinicians for the patients. Metagenomic NGS also identified
pathogens for which there was some degree of clinical suspicion, although conventional
testing had returned negative (neisseria, Nocardia farcinica Candida tropicalis, Enterobacter
aerogenes [now renamed Klebsiella acrogenes], S. mitis, and Enterococcus faecalis). Other
orthogonally confirmed metagenomic NGS findings included microbes that were of unclear
significance (longitudinal detection of MW polyomavirus in an immune-compromised
child18), were directly related to noninfectious clinical syndromes (Epstein—Barr virus
[EBV] detection in a patient with EBV-positive primary hepatic lymphoma and associated
encephalitis), or were not specifically tested for but would probably have been positive by
conventional testing (two cases of enteroviral meningitis).

In 26 patients, metagenomic NGS testing of CSF was negative even though conventional
microbiologic testing across all tissue types revealed an infectious cause (Table S2 in the
Supplementary Appendix). These clinical false negative cases by metagenomic NGS fell
into three categories: cases diagnosed by serologic testing alone (11 infections), for which
conventional direct-detection tests from CSF (e.g., culture, PCR, and antigen-based testing)
were also negative; cases diagnosed from samples other than CSF (7 infections), such as
brain biopsy; and cases negative by metagenomic NGS owing to low titers of pathogens in
CSF (8 infections), as evidenced by conventional microbiologic tests that were borderline
positive or had discordant results. The last category included infections from
Mycobacterium bovis, M. tuberculosis, Cryptococ cus neoformans, Propionibacterium
acnes, fusobacterium, Staphylococcus aureus, cytomegalovirus, and herpes simplex virus

type 2.

It is notable that reads mapping to all 6 missed bacterial and fungal pathogens were detected,
but their abundance did not meet preestablished reporting thresholds (see the Supplementary
Appendix).? Metagenomic NGS also detected 19 viral infections adjudicated as incidental to
the neurologic illness after chart review (Table S3 in the Supplementary Appendix). In 3
cases, results of metagenomic NGS were found to be false positives after discrepancy testing
(pantoea, S. aureus, and S. agalactiae) and were attributed to sample contamination from the
environment or normal human flora.

Clinical Microbial Sequencing Board

A clinical microbial sequencing board was established to hold weekly teleconferences for
review of metagenomic NGS in clinical context and to communicate results of
supplementary metagenomic NGS analyses, including species and strain typing, reporting of
potential pathogens detected below preestablished thresholds, analysis of longitudinally
collected samples in clinical context, and characterization of drug resistance (Figs. 2C and
3). During discussions of the clinical microbial sequencing board, clinicians expressed that
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the results of metagenomic NGS were useful for providing reassurance to the patient,
surrogate, or both (e.g., SLEV); supporting the clinical decision to stop unnecessary
empirical treatments (e.g., acyclovir for empirical coverage of herpesvirus infections);
helping to rule out coinfections (e.g., detection of EBV alone in cases of post-transplantation
lymphoproliferative disease or lymphoma with encephalitis); diagnosing infectious
syndromes (e.g., CNS escape in human immunodeficiency virus type 1 infection23); and
expediting appropriate treatment (e.g., chemotherapy for lymphoma or immunosuppressive
agents, including glucocorticoids, for acute demyelinating encephalomyelitis) in suspected
noninfectious cases, as well as for epidemiologic purposes, such as virus genotyping (e.g.,
positive enterovirus cases).

Some clinicians expressed a wish that the turnaround time for metagenomic NGS testing
could be shortened to increase the likelihood that the results would be clinically actionable.
For the case of MW polyomavirus identified by metagenomic NGS testing in an
immunocom-promised child, one of the clinicians expressed that this result complicated
clinical management, because it remained unknown whether the detected virus played a
pathogenic role in the child’s acute neurologic illness. Among the 13 cases diagnosed solely
by metagenomic NGS, treating physicians stated that the results of metagenomic NGS
favorably affected their clinical reasoning in 8 cases (62%) (Fig. 2D) (also see the
Supplementary Appendix). In 7 of these 8 cases, the results of metagenomic NGS guided
therapy (Fig. 2E) (also see the Supplementary Appendix).

Discussion

We evaluated the clinical usefulness of metagenomic NGS for diagnosing neurologic
infections in a series of patients with idiopathic acute meningitis, encephalitis, or myelitis at
the time of enrollment, in parallel with conventional microbiologic testing. Thus, we sought
to define the real-life performance of metagenomic NGS testing in a difficult-to-diagnose
patient population for whom the assay is most likely to be performed, given current issues of
cost, accessibility, and turnaround time. The highest diagnostic yield resulted from a
combination of metagenomic NGS of CSF and conventional testing, including serologic
testing and testing of sample types other than CSF. In this selected population, the
metagenomic NGS assay identified more potential pathogens than conventional direct-
detection testing of CSF (32 vs. 27). A total of 13 infections were diagnosed solely by
metagenomic NGS. It is notable that 8 of these 13 diagnoses had a clinical effect, with
physicians adjusting treatment in 7 cases. These findings show that neurologic infections
remain undiagnosed in a proportion of patients despite conventional testing and demonstrate
the potential usefulness of clinical metagenomic NGS testing in these patients.

The overall percentage of study patients with an infectious diagnosis (27.9% [57 patients]) is
lower than the percentages reported in the literature of 29 to 60%.1-3 CSF samples for
metagenomic NGS testing were obtained a median of 3 days after initial presentation to the
hospital. However, in 35.3% of the patients (72 patients), the only available CSF sample was
obtained from a second or later lumbar puncture at a median of 8 days after presentation
(e.g., CSF from an initial lumbar puncture that was performed at an outside, non-study-site
hospital was not always available). As a result, CSF samples for metagenomic NGS testing
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on these 72 patients were obtained later in the clinical course, often after patients were
exposed to empirical antibiotics or after CSF samples had undergone multiple freeze—thaw
cycles, thus potentially decreasing diagnostic yield. In addition, 42.6% of the patients who
were enrolled in the study (87 of 204) were identified by physician referral, which probably
biased enrollment toward patients with cases that were particularly challenging to diagnose.

In 8 of 13 samples that yielded a diagnosis by metagenomic NGS only, the causative
pathogen was either not considered by treating clinicians or had tested negative by
conventional testing and was therefore considered an unlikely cause. These findings
highlight a key advantage of metagenomic NGS — that it does not rely on a priori selection
of targeted pathogens but rather is able to detect many potential infectious agents in a single
assay.>6:24 Thus, the unbiased approach of metagenomic NGS may be useful for diagnostic
testing of CSF samples, because sample volume and availability are often limited. The
results of metagenomic NGS can also be valuable even when concordant with results of
conventional testing (19 of 32 infections detected by metagenomic NGS), not only providing
reassurance that the conventionally obtained diagnosis is correct but also potentially
detecting or ruling out coinfections, especially in immune-compromised patients.

Of the 26 infections missed by metagenomic NGS, 18 were diagnosed by serologic testing
alone or from sample types other than CSF. Like culture, PCR, and antigen-based testing,
metagenomic NGS is fundamentally a direct-detection method and relies on the presence of
nucleic acid from the causative pathogen in the CSF sample. Thus, the serologic diagnoses
of West Nile virus (4 infections), varicella—zoster virus (3), and neurosyphilis (2) (Table S2
in the Supplementary Appendix) are not unexpected given the poor performance of
corresponding pathogen-specific PCR assays for these organisms.226 Indeed, among 8 of
these 9 cases with remaining CSF available, all 8 samples tested negative by pathogen-
specific PCR. It is also not surprising that analysis of samples other than CSF, such as
biopsy tissue or abscess fluid, established the diagnosis for some cases in the study, given
direct sampling of the local infection site.

Modeled after the “tumor board” concept in oncology, the clinical microbial sequencing
board afforded an opportunity to discuss reported results of metagenomic NGS in a clinical
context, as well as to communicate additional information from supplementary metagenomic
NGS analyses. Although the clinical usefulness of these analyses remains to be established,
the generation and reporting of supplementary metagenomic NGS results are conceptually
similar to pathologist-interpreted genomic analyses of variants of unknown significance in
oncologic testing,2” which provide useful information to guide physicians beyond
straightforward reporting of a binary test result (i.e., variant “detected” or “not detected”).
However, clinical interpretation of supplementary metagenomic NGS results may be
challenging given the lack of a reference standard in many instances.

Preestablished clinical thresholds for reporting a positive test for pathogens on metagenomic
NGS were intentionally conservative in order to minimize false positive detections.8 In six
of eight cases missed by metagenomic NGS owing to low pathogen titers, species-specific
reads from the causative pathogen could still be identified. This raises the question of
whether it would be appropriate to establish more liberal reporting thresholds for high-
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priority pathogens than for organisms such as environmental bacteria that are of unclear
clinical significance. Alternatively, low-abundance metagenomic NGS detection of high-
priority pathogens, such as M. tuberculosis or astrovirus MLB2 (see the Supplementary
Appendix), could be discussed in settings such as the clinical microbial sequencing board,
thereby prompting additional diagnostic testing that targets the specific pathogen.

Although metagenomic NGS testing was still useful in identifying a potential causative
organism in CSF samples with a high host background (i.e., samples in which the
normalized read counts corresponding to the internal spiked DNA or RNA control did not
meet preestablished thresholds), our findings suggest that a negative test in this context
should be interpreted with caution owing to the higher risk of false negative results.
However, metagenomic NGS that is performed in combination with conventional testing
may potentially be useful for ruling out an active infection in patients with suspected
autoimmune encephalitis, who typically present with only mild-to-moderate lymphocytic
pleocytosis (<100 cells per cubic millimeter)2® and thus low host background in CSF.
Treating clinicians are often reluctant to initiate immunosuppressive therapies for
autoimmune disease without a reasonably high degree of confidence that an occult infection
has not been missed.

Our data show that clinical metagenomic NGS of CSF represents a potential step forward in
the diagnosis of meningoencephalitis. This diagnostic approach may guide earlier and more
targeted treatments for neuroinvasive infections, identify emerging infections and disease
phenotypes, and accelerate the workup and treatment for noninfectious causes. The preferred
timing and patient population for clinical metagenomic NGS testing remain to be defined
through further research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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A Screening, Enrollment, and Follow-up B Study Sites

482 Patients were assessed
for eligibility
213 Were identified by chart review
165 Were identified by physician
referral
58 Were identified by automated
EMR report
46 Were identified by provider-
order entry

197 Did not meet criteria
for enrollment

285 Met criteria for enrollment

71 Were not enrolled in study
34 Had inadequate CSF
volume (<0.5 ml)

19 Declined to participate
18 Were discharged from
hospital or could not

be contacted

214 Were enrolled in study

l

204 Completed the study
10 Withdrew or were withdrawn
6 Did not provide written consent
or could not be contacted
3 Were withdrawn by surrogate
1 Withdrew

C Protocol for Metagenomic NGS Assay

Clinical Laboratory Sequencing SURPI+ Computational Analysis
. Isolate Construct Generate Filter for Subtract
Receive DNA and . hizh-auali human Detect Report results
sample B an meapenomic sequence Igh-quatity background pathogens in EMR
RNA NGS library data sequences
sequences

Figure 1. Overview of the Study.
Panel A shows the flow of patients through the study. Panel B shows 8 participating sites.

The size of the circle is proportional to the number of patients enrolled at a given site. Panel
C shows the protocol for the metagenomic next-generation sequencing (NGS) assay. After
samples of cerebrospinal fluid (CSF) are received in the clinical laboratory, nucleic acid
(DNA and RNA) is isolated, followed by construction of a metagenomic NGS library and
sequencing. The metagenomic NGS data are analyzed with the use of an automated
computational pipeline (Sequence-based Ultra-Rapid Pathogen Identification [SURPI+]),
with results reported in the electronic medical record (EMR) after review by the laboratory
director. CHCO denotes Children’s Hospital Colorado; CHLA Children’s Hospital Los
Angeles; CNMC Children’s National Medical Center; SICRH St. Jude Children’s Research
Hospital; UCD University of California, Davis; UCLA University of California, Los
Angeles; UCSF University of California, San Francisco; and ZSFGH Zuckerberg San
Francisco General Hospital.
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A Established Diagnoses in the Study Patients B

Metagenomic
NGS only (N=13)

N=204 Both (N=19)

Conventional
testing (N=26)

W 57 (27.9%) Infectious M 3 (1.5%) Toxic metabolic
W 17 (8.3%) Autoimmune [l 1 (0.5%) Vascular

7 (3.4%) Neoplastic 15 (7.4%) Other

3 (1.5%) Postinfectious [l 101 (49.5%) Unknown

High DNA or RNA Background and CSF Cell Count
—#— DNA background —@— RNA background
100 100

& 804 80

° 2
g 60-1 60 g
&D a.
S 40+ Lo 5
@ S
£ z
20 204 -

* / “

RS SV S S S S
v S S S
< & & @
~ V

CSF Cell Count (cells/mm?3)

C Suppl y Metag ic NGS Analyses (15 cases discussed D
during CMSB meetings)

<
<

5, Viral genotyping (SLEV, HEV, enteroviruses [3 cases])

1, Analysis of antibiotic-resistance genes (Enterobacter aerogenes)
W 2, Prediction of resistance to antiviral drugs (HIV-1)

3, Detection and tracking of new or rare infectious agents (MW polyoma-
virus, Angiostrongylus cantonensis [2 cases))

M 2, Detection of pathogen reads below reporting threshold (Mycobacter-
ium tuberculosis complex, astrovirus MLB1)

2, Accurate species identification (Nocardia farcinica, Streptococcus mitis)

Clinician Feedback (13 cases di:

4
v

W 7 (54%) Will affect management and treatment

d by ic NGS only)

4 8

1 (8%) Provided reassurance that coinfection is not present
(EBV-associated lymphoma)

W 1 (8%) Increased confidence in clinical decisions (neisseria)

2 (15%) Viral genotyping useful for epidemiologic purposes
(enterovirus)

M 1 (8%) Unclear clinical significance (MW polyomavirus)
1 (8%) Provided reassurance to patient or surrogate (SLEV)

E Clinical Effect (13 cases diagnosed by metagenomic NGS only)

4
v

—N. farcinica — long-term treatment with oral moxifloxacin and
minocycline

(—Candida tropicalis — treatment with high-dose fluconazole and liposomal
amphotericin B (started empirically for elevated 1,3-B-D-glucan level)

—HEV — successful treatment with IV ribavirin after patient was
readmitted with liver failure and consideration of liver transplantation

I 7 (54%) Enabled appropriate and targeted

1 (8%) Helped to rule out coinfections; enabled patient to proceed with
chemotherapy (EBV-associated lymphoma)

W 1 (8%) Supported clinical decisions to narrow coverage (neisseria)

2 (15%) Had no effect, because patient already discharged from
hospital (enterovirus)

W 1 (8%) Had no effect, because clinical significance unclear (MW polyomavirus)
1 (8%) Provided reassurance to patient or surrogate (SLEV)

E. genes — narrowing of antibiotic therapy to IV cefepime
and oral trimethoprim-sulfamethoxazole

(—Enterococcus faecalis — narrowing of antibiotic therapy to IV vancomycin;
discontinuation of meropenem

[—S. mitis — narrowing of antibiotic therapy to IV cefepime; continuation
of antibiotics for 4 wk to treat CNS infection

LS. agalactiae — treatment with an additional 4 wk of therapy with IV
ceftriaxone and vancomycin

Figure 2 (facing page). Results of M etagenomic NGS Testing and Clinical Effect.
Panel A shows the proportion and categories of established diagnoses in the study patients.

A diagnosis was made in 103 of 204 patients (50.5%) after routine clinical workup and

metagenomic NGS testing of CSF. A total of 58

infections (pink circles) were identified in

57 patients (27.9%). Conventional testing included culture, polymerase-chain-reaction

(PCR), serologic (antibody), and antigen testing

of CSF and other body fluids or tissues.

Diagnoses in the “Other” category included resolving treated infection, idiopathic
intracranial hypertension, posterior reverse encephalopathy syndrome, postneurosurgical
(chemical) meningitis, and hemophagocytic lymphohistiocytosis. In Panel B, a plot shows

the number and percentage of patients with high

DNA or RNA background at designated

intervals of CSF cell counts. The proportion of samples with high background (defined as
samples in which the normalized read counts corresponding to the internal spiked DNA or
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RNA control did not meet preestablished thresholds) increases with increasing cell count.
Panel C shows supplementary metagenomic NGS analyses discussed during meetings of the
clinical microbial sequencing board (CMSB). Panel D shows clinician feedback for cases
diagnosed solely by metagenomic NGS. Panel E shows the clinical effect of cases diagnosed
solely by metagenomic NGS. The specific effect of metagenomic NGS results on the
initiation, discontinuation, or length of antibiotic or antiviral treatment is described. EBV
denotes Epstein—Barr virus, HEV hepatitis E virus, HIV-1 human immunodeficiency virus
type 1, IV intravenous, and SLEV St. Louis encephalitis virus.
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Figure 3 (facing page). Supplementary M etagenomic NGS Analyses.
Supplementary analyses of the metagenomic NGS data were performed and results

discussed during weekly teleconferences with the clinical microbial sequencing board. The
asterisk denotes the column on the interactive SURPI+ heat map corresponding to the
patient’s CSF sample, and pop-up windows highlight the cell corresponding to the given
species hit (see Supplementary Appendix for additional details). For Panels A and B, the
green tracing corresponds to the coverage at a given nucleotide position (y axis, left), and the
purple tracing corresponds to the pairwise identity (y axis, right) after automated mapping
by SURPI+ of metagenomic NGS reads to the most closely matched viral reference genome
in the National Center for Biotechnology Information (NCBI) nucleotide (nt) database.
Panel A shows prediction of resistance to antiviral drugs. Mapping HIV-1 reads from a
patient CSF sample to the most closely matched genome in the reference database shows
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that the complete viral genome can be assembled (middle), thus enabling prediction of
antiviral drug resistance (right). Predicted z scores were obtained with the use of Web-based
geno2pheno software.1® The z scores corresponding to a subset of commonly prescribed
antiretroviral drugs (black) are shown relative to reference z-score ranges for susceptible
(green), intermediate (yellow), or resistant (orange) phenotypes. 3TC denotes lamivuding,
ABC abacavir, ATZ/r ritonavir-boosted atazanavir, DRV/r ritonavir-boosted darunavir, EFV
efavirenz, LPV/r ritonavir-boosted lopinavir, NNRTI nonnucleoside reverse-transcriptase
inhibitor, NRTI nucleoside reverse-transcriptase inhibitor, NVP nevirapine, Pl protease
inhibitor, TDF tenofovir, and ZDV zidovudine. Panel B shows viral genotyping. The viral
genome in an enterovirus B—positive case was assembled from metagenomic NGS reads,
and the specific viral strain was identified as coxsackievirus B5 by SURPI+ (right). Panel C
shows longitudinal tracking of viral infection. MW polyomavirus, originally identified in
stool from children with diarrhea,'8 was detected in an immunocompromised child
presenting with acute meningoencephalitis. The finding was thought to be of unclear clinical
significance, although no other infectious cause was identified. Zero and 12 reads to MW
polyomavirus were detected in two CSF samples obtained 3 months later, during a second
hospitalization for documented varicella—zoster virus (VZV) uveitis. Panel D shows accurate
species identification. Assembly of the full-length 16S rRNA gene from metagenomic NGS
reads enabled phylogenetic analysis and assignment of the species as Streptococcus mitis. A
phylogenetic tree was obtained by aligning 25 representative S. mitis and 25 representative
Streptococcus pneumoniae strains (with Streptococcus pyogenes as an outgroup) with the
patient’s 16S rRNA sequence with the use of MAFFTZ0 at default settings, followed by tree
construction with the use of PhyML.21 Panel E shows analysis of antibiotic-resistance genes.
Such genes were identified by alignment of Enterobacter acrogenes (now renamed
Kilebsiella aerogenes) metagenomic NGS reads to the comprehensive antibiotic-resistance
database.?2 Panel F shows the detection of pathogen reads below the reporting threshold,
with heat maps corresponding to two pathogens (Mycobacterium bovis and astrovirus
MLB?2) that were not reported as positive by metagenomic NGS because the number and
distribution of reads did not meet preestablished thresholds.® In Panels E and F, AmpC
denotes class C p-lactamase, and wgs the NCBI whole-genome shotgun database.
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