GMG 5852 Petrologia das Rochas Metamórficas

Metamorfismo de Rochas Ultramáficas – Ultrabásicas

À noite, todas as rochas são ultramáficas...

2

3

1

GMG 5852 – Metamorfismo de R.Ultramáficas-Ultrabásicas

Principais tópicos:

- Protólitos e suas características;
- Serpentinização;
- Metassomatismo: Ath-Tlc, "black-wall";
- Metamorfismo progressivo de serpentinitos: sistemas MSH, CMSH;
- Metamorfismo de lherzolitos e komatiítos: sistemas CMASH, NCMASH;
- Metamorfismo com fase fluida mista: $H_2O + CO_2$

4

GMG 5852 – Metamorfismo de R.Ultramáficas-Ultrabásicas

- Rocha ultrabásica: SiO₂ (% em peso) < 45
- Rocha ultramáfica = ultramelanocrática (IC ≥ 90)

Principais protolitos - sempre orto-derivados:

a) peridotitos do manto: Iherzolitos, harzburgitos;

- b) peridotitos cumuláticos: dunitos, harzburgitos, websteritos, wehrlitos, orto- e clinopiroxenitos;
- c) komatiítos: lavas, rochas vulcanoclásticas, corpos intrusivos rasos (diques, sills).

(considerando apenas rochas não-alcalinas!)

GMG 5852 – Metamorfismo de R.Ultramáficas-Ultrabásicas

Composição mineralógica dos protolitos

- Ol: Olivina (Fo>>Fa geralmente, Fo₉₃₋₈₅)
- Opx: Enstatita
- Cpx: Augita, Pigeonita
- <u>+</u> Cromita (Cr-Spl), Magnetita
- <u>+</u> Plagioclásio (An > 50), Anfibólio (Mg-Hbl, pargasita), Biotita (flogopítica)

Características gerais dos protolitos

- paragêneses ígneas de altas temperaturas (700 a >1.000 °C), <u>anidras</u>
- corpos de dimensões variáveis, tabulares a lenticulares (poucos metros a centenas de metros)
- maciços, baixa porosidade, grande contraste reológico e químico com as rochas encaixantes

GMG 5852 – Metamorfismo de R.Ultramáficas-Ultrabásicas

Fatores que condicionam o metamorfismo de rochas ultramáficas-ultrabásicas

- Acesso de fluídos (H₂O, CO₂);
- Deformação (pervasiva x localizada);
- Composição do fluído (X_{CO2}, X_{H2O}, a_{SiO2}, etc);
- Volume do fluído (relação fluído:rocha);
- Alterações prévias de baixa T (serpentinização, talcificação, uralitização);

8

GMG 5852 – Metamorfismo de R.Ultramáficas-Ultrabásicas Acesso de fluído e relação fluído-

rocha - definem o sistema químico

- Fechado: nenhuma troca de componentes com o exterior;
- Parcialmente fechado: troca apenas da fase fluída (H₂O, CO₂);

 - Sistema aberto: mobilidade variada de vários componentes = metassomatismo (SiO₂, CaO, MgO, Na₂O, K₂O, Al₂O₃, etc); GMG 5852 – Metamorfismo de R.Ultramáficas-Ultrabásicas

Transformações em sistema aberto: bastante comuns em rochas ultramáficas

Grande contraste químico com as encaixantes: "capas" de rochas monominerálicas

- Serpentinização (parcialmente aberto / aberto)
- Talcificação
- Cloritização, biotitização ("black wall")
- Carbonatação
- Rochas com antofilita + talco (+ carbonatos)

10

7

20

GMG 5852 – Metamorfismo de R.Ultramáficas-Ultrabásicas

Metamorfismo progressivo

Primeiras etapas da transformação metamórfica de rochas ultramáficas: via de regra, hidratação (com ou sem carbonatação adicional) em baixo a médio grau – formação de serpentinas, talco, brucita, magnesita / dolomita, tremolita, etc.

Exemplos: rochas ultramáficas do manto litosférico e de complexos cumuláticos da crosta oceânica, em ofiolitos e peridotitos alpinos, ou komatiítos em *greenstone belts* (fácies sub-xisto verde a xisto verde).

21

GMG5852 – Metamorfismo de R.Ultramáficas-Ultrabásicas

22

Serpentinito com veios de quartzo (Liberdade, MG)

Serpentinização: pode ocorrer em sistema parcialmente fechado, com acesso apenas de fluidos aquosos, ou em sistema aberto (remoção de Na₂O, CaO, Al₂O₃)

GMG 5852 – Metamorfismo de R.Ultramáficas-Ultrabásicas

Atinge preferencialmente os minerais com relação Mg:Si mais elevada: olivina e ortopiroxênio.

Serpentinitos: rochas metaultramáficas mais abundantes na crosta – geralmente, ponto de partida para o metamorfismo progressivo.

CNC F0F2 Meteoretisme de Dillbreméfices Illbrehésisse					
GIVIG 5852 – Metamornismo de R.Ottramancas-Ottrabasicas					
Composição química dos protolitos - exemplos:					
	Peridotito mantélico	Komatiíto (MG)			
SiO ₂	44,50	49,02			
TiO ₂	0,15	0,46			
Al ₂ O ₃	2,60	5,00			
Fe ₂ O ₃	1,50	n.d.			
FeO	7,30	10,96 (Fe total)			
MnO	0,14	0,15			
MgO	41,7	26,25			
CaO	2,30	7,77			
Na ₂ O	0,25	0,35			
K ₂ O	0,02	0,03			

P = 0.2 GPa

-1.0

45

- Sistema MSH: 3 componentes. Se H₂O em excesso: 2 componentes (MS)
- Variáveis T e P (representação bi-dimensional das curvas de equilíbrio):

F = C - P + 2 (Regra de fases)

3 fases: F = 2 (campo divariante) 4 fases: F = 1 (curva univariante)

5 fases: F = 0 (ponto invariante)

GMG 5852 – Metamorfismo de R.Ultramáficas-Ultrabásicas				
Reações no sistema MSH				
	(1)	15 Ctl + Tlc ⇔ Atg (não representado no diagrama)		
	(2)	17 Ctl ⇔ Atg + Brc (não representado no diagrama)		
	(3)	Atg + 20 Brc \Leftrightarrow 34 Fo + 51 H ₂ O		
	(4)	Atg \Leftrightarrow 18 Fo + 4 Tlc + 27 H ₂ O		
	(5)	9 Tlc + 4 Fo \Leftrightarrow 5 Ath + 4 H_2O		
	(6)	2 Tlc + 2 Fo \Leftrightarrow 5 En + H ₂ O		
	(7)	2 Ath + 2 Fo \Leftrightarrow 9 En + H_2O		
	(8),(8´)	Tlc + 4 En ⇔ Ath		
	(9)	$Tlc \Leftrightarrow Ath + Qtz + H_2O$		
	(10)	Ath \Leftrightarrow Qtz + 7 En + H_2O		
	(11)	Tlc \Leftrightarrow 3 En + Qtz + H ₂ O		
	(12)	$Brc \Leftrightarrow Per + H_2O$		

0	MG 5852 – Metamorfismo de R.Ultramáficas-Ultrabásicas	
Sistema MS	SH: ponto invariante l	
5 Fases no	oonto invariante: Fo, En, Tlc, Ath, H ₂ O	
5 reações:		
(Fo)	Tlc + 1 En 🗠 Ath	

- (Fo) Tlc + 4 En ⇔ Ath
- 9 Tlc + 4 Fo \Leftrightarrow 5 Ath + 4 H₂O (En)
- (Tlc) 2 Ath + 2 Fo \Leftrightarrow 9 En + H₂O
- (Ath) 2 Tlc + 2 Fo \Leftrightarrow 5 En + H₂O
- (H_2O) Tlc + 4 En ⇔ Ath
- ATENÇÃO! Sistema degenerado colinearidade composicional entre En, Ath e Tlc - reações (Fo) e (Ath) se sobrepõem às respectivas pontas metaestáveis, em continuidade (180º)

GMG 5852 – Metamorfismo de R.Ultramáficas-Ultrabásicas Exemplo de sistema com 3 componentes projetado: MS (+H) (MgO-SiO₂, H₂O em excesso) Fo↓ ↓Ath 0 ______ Ath 0 ______ 100 MgO En↑ ↑Tlc SiO₂ Passam a ser considerados 2 componentes: MgO e SiO₂, e 4 fases: Fo, En, Ath, Tlc. Agora, teremos 4 curvas intersectando-se no ponto invariante – a curva (H₂O) desaparece (perde o sentido – porquê?)

4 componentes: representação bi-dimensional = triângulo CaO-MgO-SiO₂ (projeção a partir do vêrtice H₂O do tetraedro CMSH)

57

GMG 5852 – Metamorfismo de R.Ultramáficas-Ultrabásicas

CMASH (CaO-MgO-Al₂O₃-SiO₂-H₂O) – lherzolitos, piroxenitos e komatiítos (simplificado)

Clorita (Chl) – $(Mg, Fe, Mn, Al)_6[(Si, Al)_4O_{10}](OH)_4$

81

82

Considera-se todo o Al contido em clorita

Os minerais de MSH e CMS, e mais:

Espinélio (Spl) – MgAl₂O₄

Reações adicionais em CMASH:

(clinocloro) ou **espinélio** (a altas T), e não em solução sólida nas demais fases (anfibólios!)

(12) Chl \Leftrightarrow Fo + En + Spl + H₂O

99

GMG 5852 – Metamorfismo de R.Ultramáficas-Ultrabásicas

- Formam-se porfiroblastos de olivina e microporfiroblastos de antofilita associados preferencialmente aos domínios composicionais ocupados por clorita – por exemplo, às placas de agregados de clorita que substituem a olivina ígnea na textura *spinifex*.
- O anfibólio enriquece paulatinamente em Al, adquirindo composição de Mg-Hbl, e perde eventuais feições pseudomórficas (pseudomorfos de Cpx dendrítico-plumoso).

100

GMG 5852 - Metamorfismo de R.Ultramáficas-Ultrabásicas Reações de formação da **antofilita** e **olivina** a partir do enriquecimento em Al da Mg-clorita **Para a antofilita** (de 1a geração)

147 Mg-Clorita [(x)Al = 1,00] + 40SiO₂ \Leftrightarrow 140 Mg-Clorita [(x)Al = 1,05] + 12 Antofilita + 8H₂O

Para a olivina

21 Mg-Clorita [(x)Al = 1,00] \Leftrightarrow 20 Mg-Clorita [(x)Al = 1,05] + 6 Olivina + 2SiO₂ + 8H₂O

Olivina e antofilita combinadas

189 Mg-Clorita [(x)Al = 1,00] \Leftrightarrow 180 Mg-Clorita [(x)Al = 1,05] + 40 Olivina + 4 Antofilita + 68H₂O

103

105

Na fácies anfibolito superior, transicional para fácies granulito, Mg-clorita é consumida pela reação:

Mg-Chl \Leftrightarrow Fo + En + Spl + H₂O

Como resultado, formam-se rochas com espinélio – olivina – enstatita - Mg-hornblenda. O conteúdo em Al da Mg-clorita é o máximo possível no momento do consumo, e também quando reconstituída imediatamente após o pico metamórfico (retrometamorfismo).

GMG 5852 – Metamorfismo de R.Ultramáficas-Ultrabásicas

onde: X1 ~ X2, Y2 > Y1, e Z2, W2 < Z1, W1

GMG 5852 – Metamorfismo de R.Ultramáficas-Ultrabásicas Reações no sistema MS-CH a altas X_{co2}

En + Mgs

Ath + Mgs

500

10

123

Bibliografia

- Bucher, K.; Grapes, R. 2011 Petrogenesis of Metamorphic Rocks (8th Ed). Springer . Cap.5 p.191-224
- Evans, B.W. 1977 Metamorphism of alpine peridotite and serpentinite. Ann.Rev.Earth Planet.Sci. 5: 397-447
- Evans, B.W.; Trommsdorff, V. 1970 Regional metamorphism of ultramafic rocks in the Central Alps: parageneses in the system CaO MgO SiO₂ H₂O. Schweiz.Mineral.Petrogr.Mitt. **50** : 481-492
- Hemley, J.J.; Montoya, J.W.; Shaw, D.R.; Luce, R.W. 1977 Mineral equilibria in the MgO SiO₂ H₂O system: II Talc antigorite forsterite -anthophyllite enstatite stability relations and some geologic implications in the system. Am.J.Sci. 277 : 353-383
- Korikovsky, S.P.; Janák, M.; Lupták, B. 1998 Phase relations in olivine-orthopyroxene-chlorite-spinel-hornblende metaultramafics from the Malá Fatra Mts, Western Carpathians. Geologica Carpathica 49: 369-376
- Schmädicke, E. 2000 Phase relations in peridotitic and pyroxenitic rocks in the model systems CMASH and NCMASH. Journal of Petrology 41: 69-86 Cont.

GMG 5852 – Metamorfismo de R.Ultramáficas-Ultrabásicas

0,9

Bibliografia - cont.:

 $\begin{array}{l} (13) \ 1 \ anto + 9 \ M & = 8 \ Fo + 1 \ H_{2}O + 9 \ CO_{2} \\ (14) \ 2 \ Ta + 1 \ M & = 1 \ anto + 1 \ H_{2}O + 1 \ CO_{2} \\ (15) \ 7 \ M + 80 + 1 \ H_{2}O + 1 \ anto + 7 \ CO_{2} \\ (16) \ 1 \ anto + 1 \ M & = 4 \ En + 1 \ H_{2}O + 1 \ CO_{2} \\ (17) \ 1 \ En + 2 \ M & = 2 \ Fo + 2 \ CO_{2} \\ (18) \ 2 \ M + 2 \ M & = 2 \ M + 2 \ CO_{2} \end{array}$

0,8

→ Fração molar de X_{CO2}

Pr = 2 Kb

- Szabó, G.A.J. 1996 "Petrologia da Suite Metaultramáfica da Seqüência Vulcano-Sedimentar Morro do Ferro na Região de Sul a Oeste de Alpinópolis, MG (Domínio Norte do Complexo Campos Gerais)" - Tese de Doutoramento, IG-USP. 354 p.
- Szabó, G.A.J.; Candia, M.A.F.; Choudhuri, A. 1999 Metamorfismo progressivo de fácies anfibolito de rochas ultramáficas de Alpinópolis (MG): as variações composicionais em minerais. In: 5.Congresso de Geoquímica dos Países de Língua Portuguesa e 7. Congr.Bras. de Geoquímica - Porto Seguro, BA, 1999. Anais... Porto Seguro, SBGq: 617-619

126