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Abstract

Today, visual recognition systems are still rarely em-

ployed in robotics applications. Perhaps one of the main

reasons for this is the lack of demanding benchmarks that

mimic such scenarios. In this paper, we take advantage

of our autonomous driving platform to develop novel chal-

lenging benchmarks for the tasks of stereo, optical flow, vi-

sual odometry / SLAM and 3D object detection. Our record-

ing platform is equipped with four high resolution video

cameras, a Velodyne laser scanner and a state-of-the-art

localization system. Our benchmarks comprise 389 stereo

and optical flow image pairs, stereo visual odometry se-

quences of 39.2 km length, and more than 200k 3D ob-

ject annotations captured in cluttered scenarios (up to 15

cars and 30 pedestrians are visible per image). Results

from state-of-the-art algorithms reveal that methods rank-

ing high on established datasets such as Middlebury per-

form below average when being moved outside the labora-

tory to the real world. Our goal is to reduce this bias by

providing challenging benchmarks with novel difficulties to

the computer vision community. Our benchmarks are avail-

able online at: www.cvlibs.net/datasets/kitti

1. Introduction

Developing autonomous systems that are able to assist

humans in everyday tasks is one of the grand challenges in

modern computer science. One example are autonomous

driving systems which can help decrease fatalities caused

by traffic accidents. While a variety of novel sensors have

been used in the past few years for tasks such as recognition,

navigation and manipulation of objects, visual sensors are

rarely exploited in robotics applications: Autonomous driv-

ing systems rely mostly on GPS, laser range finders, radar

as well as very accurate maps of the environment.

In the past few years an increasing number of bench-

marks have been developed to push forward the perfor-

mance of visual recognitions systems, e.g., Caltech-101

Figure 1. Recording platform with sensors (top-left), trajectory

from our visual odometry benchmark (top-center), disparity and

optical flow map (top-right) and 3D object labels (bottom).

[17], Middlebury for stereo [41] and optical flow [2] evalu-

ation. However, most of these datasets are simplistic, e.g.,

are taken in a controlled environment. A notable exception

is the PASCAL VOC challenge [16] for detection and seg-

mentation.

In this paper, we take advantage of our autonomous driv-

ing platform to develop novel challenging benchmarks for

stereo, optical flow, visual odometry / SLAM and 3D object

detection. Our benchmarks are captured by driving around a

mid-size city, in rural areas and on highways. Our recording

platform is equipped with two high resolution stereo cam-

era systems (grayscale and color), a Velodyne HDL-64E

laser scanner that produces more than one million 3D points

per second and a state-of-the-art OXTS RT 3003 localiza-

tion system which combines GPS, GLONASS, an IMU and

RTK correction signals. The cameras, laser scanner and lo-

calization system are calibrated and synchronized, provid-

ing us with accurate ground truth. Table 1 summarizes our

benchmarks and provides a comparison to existing datasets.

Our stereo matching and optical flow estimation bench-

mark comprises 194 training and 195 test image pairs at

a resolution of 1240 × 376 pixels after rectification with

semi-dense (50%) ground truth. Compared to previous

datasets [41, 2, 30, 29], this is the first one with realis-

tic non-synthetic imagery and accurate ground truth. Dif-
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ficulties include non-lambertian surfaces (e.g., reflectance,

transparency) large displacements (e.g., high speed), a large

variety of materials (e.g., matte vs. shiny), as well as differ-

ent lighting conditions (e.g., sunny vs. cloudy).

Our 3D visual odometry / SLAM dataset consists of

22 stereo sequences, with a total length of 39.2 km. To

date, datasets falling into this category are either monocular

and short [43] or consist of low quality imagery [42, 4, 35].

They typically do not provide an evaluation metric, and as

a consequence there is no consensus on which benchmark

should be used to evaluate visual odometry / SLAM ap-

proaches. Thus often only qualitative results are presented,

with the notable exception of laser-based SLAM [28]. We

believe a fair comparison is possible in our benchmark due

to its large scale nature as well as the novel metrics we pro-

pose, which capture different sources of error by evaluating

error statistics over all sub-sequences of a given trajectory

length or driving speed.

Our 3D object benchmark focuses on computer vision

algorithms for object detection and 3D orientation estima-

tion. While existing benchmarks for those tasks do not pro-

vide accurate 3D information [17, 39, 15, 16] or lack real-

ism [33, 31, 34], our dataset provides accurate 3D bounding

boxes for object classes such as cars, vans, trucks, pedes-

trians, cyclists and trams. We obtain this information by

manually labeling objects in 3D point clouds produced by

our Velodyne system, and projecting them back into the im-

age. This results in tracklets with accurate 3D poses, which

can be used to asses the performance of algorithms for 3D

orientation estimation and 3D tracking.

In our experiments, we evaluate a representative set of

state-of-the-art systems using our benchmarks and novel

metrics. Perhaps not surprisingly, many algorithms that

do well on established datasets such as Middlebury [41, 2]

struggle on our benchmark. We conjecture that this might

be due to their assumptions which are violated in our sce-

narios, as well as overfitting to a small set of training (test)

images.

In addition to the benchmarks, we provide MAT-

LAB/C++ development kits for easy access. We also main-

tain an up-to-date online evaluation server1. We hope that

our efforts will help increase the impact that visual recogni-

tion systems have in robotics applications.

2. Challenges and Methodology

Generating large-scale and realistic evaluation bench-

marks for the aforementioned tasks poses a number of chal-

lenges, including the collection of large amounts of data in

real time, the calibration of diverse sensors working at dif-

ferent rates, the generation of ground truth minimizing the

amount of supervision required, the selection of the appro-

1www.cvlibs.net/datasets/kitti

priate sequences and frames for each benchmark as well as

the development of metrics for each task. In this section we

discuss how we tackle these challenges.

2.1. Sensors and Data Acquisition

We equipped a standard station wagon with two color

and two grayscale PointGrey Flea2 video cameras (10 Hz,

resolution: 1392× 512 pixels, opening: 90◦× 35◦), a Velo-

dyne HDL-64E 3D laser scanner (10 Hz, 64 laser beams,

range: 100 m), a GPS/IMU localization unit with RTK cor-

rection signals (open sky localization errors < 5 cm) and a

powerful computer running a real-time database [22].

We mounted all our cameras (i.e., two units, each com-

posed of a color and a grayscale camera) on top of our vehi-

cle. We placed one unit on the left side of the rack, and the

other on the right side. Our camera setup is chosen such

that we obtain a baseline of roughly 54 cm between the

same type of cameras and that the distance between color

and grayscale cameras is minimized (6 cm). We believe

this is a good setup since color images are very useful for

tasks such as segmentation and object detection, but provide

lower contrast and sensitivity compared to their grayscale

counterparts, which is of key importance in stereo matching

and optical flow estimation.

We use a Velodyne HDL-64E unit, as it is one of the few

sensors available that can provide accurate 3D information

from moving platforms. In contrast, structured-light sys-

tems such as the Microsoft Kinect do not work in outdoor

scenarios and have a very limited sensing range. To com-

pensate egomotion in the 3D laser measurements, we use

the position information from our GPS/IMU system.

2.2. Sensor Calibration

Accurate sensor calibration is key for obtaining reliable

ground truth. Our calibration pipeline proceeds as follows:

First, we calibrate the four video cameras intrinsically and

extrinsically and rectify the input images. We then find the

3D rigid motion parameters which relate the coordinate sys-

tem of the laser scanner, the localization unit and the refer-

ence camera. While our Camera-to-Camera and GPS/IMU-

to-Velodyne registration methods are fully automatic, the

Velodyne-to-Camera calibration requires the user to manu-

ally select a small number of correspondences between the

laser and the camera images. This was necessary as existing

techniques for this task are not accurate enough to compute

ground truth estimates.

Camera-to-Camera calibration. To automatically cali-

brate the intrinsic and extrinsic parameters of the cameras,

we mounted checkerboard patterns onto the walls of our

garage and detect corners in our calibration images. Based

on gradient information and discrete energy-minimization,

we assign corners to checkerboards, match them between

http://www.cvlibs.net/datasets/kitti


Stereo Matching type #images resolution ground truth uncorrelated metric

EISATS [30] synthetic 498 0.3 Mpx dense

Middlebury [41] laboratory 38 0.2 Mpx dense X X

Make3D Stereo [40] real 257 0.8 Mpx 0.5 % X X

Ladicky [29] real 70 0.1 Mpx manual X

Proposed Dataset real 389 0.5 Mpx 50 % X X

Optical Flow type #images resolution ground truth uncorrelated metric

EISATS [30] synthetic 498 0.3 Mpx dense

Middlebury [2] laboratory 24 0.2 Mpx dense X X

Proposed Dataset real 389 0.5 Mpx 50 % X X

Visual Odometry / SLAM setting #sequences length #frames resolution ground truth metric

TUM RGB-D [43] indoor 27 0.4 km 65k 0.3 Mpx X X

New College [42] outdoor 1 2.2 km 51k 0.2 Mpx

Malaga 2009 [4] outdoor 6 6.4 km 38k 0.8 Mpx X

Ford Campus [35] outdoor 2 5.1 km 7k 1.0 Mpx X

Proposed Dataset outdoor 22 39.2 km 41k 0.5 Mpx X X

Object Detection / 3D Estimation #categories avg. #labels/category occlusion labels 3D labels orientations

Caltech 101 [17] 101 40-800

MIT StreetScenes [3] 9 3,000

LabelMe [39] 3997 60

ETHZ Pedestrian [15] 1 12,000

PASCAL 2011 [16] 20 1,150 X

Daimler [8] 1 56,000 X

Caltech Pedestrian [13] 1 350,000 X

COIL-100 [33] 100 72 X 72 bins

EPFL Multi-View Car [34] 20 90 X 90 bins

Caltech 3D Objects [31] 100 144 X 144 bins

Proposed Dataset 2 80,000 X X continuous

Table 1. Comparison of current State-of-the-Art Benchmarks and Datasets.

the cameras and optimize all parameters by minimizing the

average reprojection error [19].

Velodyne-to-Camera calibration. Registering the laser

scanner with the cameras is non-trivial as correspondences

are hard to establish due to the large amount of noise in the

reflectance values. Therefore we rely on a semi-automatic

technique: First, we register both sensors using the fully au-

tomatic method of [19]. Next, we minimize the number of

disparity outliers with respect to the top performing meth-

ods in our benchmark jointly with the reprojection errors of

a few manually selected correspondences between the laser

point cloud and the images. As correspondences, we se-

lect edges which can be easily located by humans in both

domains (i.e., images and point clouds). Optimization is

carried out by drawing samples using Metropolis-Hastings

and selecting the solution with the lowest energy.

GPS/IMU-to-Velodyne calibration. Our GPS/IMU to

Velodyne registration process is fully automatic. We can-

not rely on visual correspondences, however, if motion esti-

mates from both sensors are provided, the problem becomes

identical to the well-known hand-eye calibration problem,

which has been extensively explored in the robotics com-

munity [14]. Making use of ICP, we accurately register

laser point clouds of a parking sequence, as this provides

a large variety of orientations and translations necessary to

well condition the minimization problem. Next, we ran-

domly sample 1000 pairs of poses from this sequence and

obtain the desired result using [14].

2.3. Ground Truth

Having calibrated and registered all sensors, we are

ready to generate ground truth for the individual bench-

marks shown in Fig. 1.

To obtain a high stereo and optical flow ground truth

density, we register a set of consecutive frames (5 before

and 5 after the frame of interest) using ICP. We project the

accumulated point clouds onto the image and automatically

remove points falling outside the image. We then manu-

ally remove all ambiguous image regions such as windows

and fences. Given the camera calibration, the correspond-

ing disparity maps are readily computed. Optical flow fields

are obtained by projecting the 3D points into the next frame.

For both tasks we evaluate both non-occluded pixels as well

as all pixels for which ground truth is available. Our non-

occluded evaluation excludes all surface points falling out-

side the image plane. Points occluded by objects within the

same image could not be reliably estimated in a fully auto-

matic manner due to the properties of the laser scanner. To

avoid artificial errors, we do not interpolate the ground truth

disparity maps and optical flow fields, leading to a ∼ 50%
average ground truth density.

The ground truth for visual odometry/SLAM is directly

given by the output of the GPS/IMU localization unit pro-
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Figure 2. Object Occurence and Object Geometry Statistics of our Dataset. This figure shows (from left to right and top to bottom):

The different types of objects occuring in our sequences, the power-law shaped distribution of the number of instances within an image

and the orientation histograms and object size distributions for the two most predominant categories ’cars’ and ’pedestrians’.

jected into the coordinate system of the left camera after

rectification.

To generate 3D object ground-truth we hired a set of

annotators, and asked them to assign tracklets in the form

of 3D bounding boxes to objects such as cars, vans, trucks,

trams, pedestrians and cyclists. Unlike most existing bench-

marks, we do not rely on online crowd-sourcing to perform

the labeling. Towards this goal, we create a special pur-

pose labeling tool, which displays 3D laser points as well

as the camera images to increase the quality of the anno-

tations. Following [16], we asked the annotators to addi-

tionally mark each bounding box as either visible, semi-

occluded, fully occluded or truncated. Statistics of our la-

beling effort are shown in Fig. 2.

2.4. Benchmark Selection

We collected a total of ∼ 3 TB of data from which we

select a representative subset to evaluate each task. In our

experiments we currently concentrate on grayscale images,

as they provide higher quality than their color counterparts.

For our stereo and optical flow benchmarks we select a

subset of the sequences where the environment is static. To

maximize diversity, we perform k-means (k = 400) cluster-

ing on the data using a novel representation, and chose the

elements closest to the center of each cluster for the bench-

mark. We describe each image using a 144-dimensional

image descriptor, obtained by subdividing the image into

12 × 4 rectangular blocks and computing the average dis-

parity and optical flow displacement for each block. After

removing scenes with bad illumination conditions as, e.g.,

tunnels, we obtain 194 training and 195 test image pairs for

both benchmarks.

For our visual odometry / SLAM evaluation we select

long sequences of varying speed with high-quality localiza-

tion, yielding a set of 41.000 frames captured at 10 fps and

a total driving distance of 39.2 km with frequent loop clo-

sures which are of interest in SLAM.

Our 3D object detection and orientation estimation

benchmark is chosen according to the number of non-

occluded objects in the scene, as well as the entropy of the

object orientation distribution. High entropy is desirable in

order to ensure diversity. Towards this goal we utilize a

greedy algorithm: We initialize our dataset X to the empty

set ∅ and iteratively add images using the following rule

X ← X ∪ argmax
x

[

α · noc(x) +
1

C

C
∑

c=1

Hc (X ∪ x)

]

(1)

where X is the current set, x is an image from our dataset,

noc(x) stands for the number of non-occluded objects in

image x and C denotes the number of object classes. Hc

is the entropy of class c with respect to orientation (we use

8/16 orientation bins for pedestrians/cars). We further en-

sure that images from one sequence do not appear in both

training and test set.

2.5. Evaluation Metrics

We evaluate state-of-the-art approaches utilizing a di-

verse set of metrics. Following [41, 2] we evaluate stereo



and optical flow using the average number of erroneous

pixels in terms of disparity and end-point error. In con-

trast to [41, 2], our images are not downsampled. There-

fore, we employ a disparity/end-point error threshold of

τ ∈ {2, .., 5} px for our benchmark, with τ = 3 px the

default setting which takes into consideration almost all cal-

ibration and laser measurement errors. We report errors for

both non-occluded pixels as well as all pixels where ground-

truth is available.
Evaluating visual odometry/SLAM approaches based

on the error of the trajectory end-point can be misleading,
as this measure depends strongly on the point in time where
the error has been made, e.g., rotational errors earlier in the
sequence lead to larger end-point errors. Kümmerle at al.
[28] proposed to compute the average of all relative rela-
tions at a fixed distance. Here we extend this metric in
two ways. Instead of combining rotation and translation
errors into a single measure, we treat them separately. Fur-
thermore, we evaluate errors as a function of the trajectory
length and velocity. This allows for deeper insights into
the qualities and failure modes of individual methods. For-
mally, our error metrics are defined as

Erot(F) =
1

|F|

∑

(i,j)∈F

∠ [(p̂j ⊖ p̂i)⊖ (pj ⊖ pi)] (2)

Etrans(F) =
1

|F|

∑

(i,j)∈F

‖(p̂j ⊖ p̂i)⊖ (pj ⊖ pi)‖2 (3)

where F is a set of frames (i, j), p̂ ∈ SE(3) and p ∈
SE(3) are estimated and true camera poses respectively, ⊖
denotes the inverse compositional operator [28] and ∠[·] is

the rotation angle.

Our 3D object detection and orientation estimation

benchmark is split into three parts: First, we evaluate classi-

cal 2D object detection by measuring performance using the

well established average precision (AP) metric as described

in [16]. Detections are iteratively assigned to ground truth

labels starting with the largest overlap, measured by bound-

ing box intersection over union. We require true positives

to overlap by more than 50% and count multiple detections

of the same object as false positives. We assess the perfor-

mance of jointly detecting objects and estimating their 3D

orientation using a novel measure which we called the av-

erage orientation similarity (AOS), which we define as:

AOS =
1

11

∑

r∈{0,0.1,..,1}

max
r̃:r̃≥r

s(r̃) (4)

Here, r = TP
TP+FN

is the PASCAL object detection recall,

where detected 2D bounding boxes are correct if they over-

lap by at least 50% with a ground truth bounding box. The

orientation similarity s ∈ [0, 1] at recall r is a normalized

([0..1]) variant of the cosine similarity defined as

s(r) =
1

|D(r)|

∑

i∈D(r)

1 + cos∆
(i)
θ

2
δi (5)

(a) Best: < 1% errors (b) Worst: 21% errors

Figure 3. Stereo Results for PCBP [46]. Input image (top), es-

timated disparity map (middle), disparity errors (bottom). Error

range: 0 px (black) to ≥ 5 px (white).

(a) Best: < 1% errors (b) Worst: 59% errors

Figure 4. Optical Flow Results for TGV2CENSUS [45]. Input

image (top), estimated flow field (middle), end point errors (bot-

tom). Error range: 0 px (black) to ≥ 5 px (white).

where D(r) denotes the set of all object detections at recall

rate r and ∆
(i)
θ is the difference in angle between estimated

and ground truth orientation of detection i. To penalize mul-

tiple detections which explain a single object, we set δi = 1
if detection i has been assigned to a ground truth bounding

box (overlaps by at least 50%) and δi = 0 if it has not been

assigned.

Finally, we also evaluate pure classification (16 bins for

cars) and regression (continuous orientation) performance

on the task of 3D object orientation estimation in terms of

orientation similarity.

3. Experimental Evaluation

We run a representative set of state-of-the-art algorithms

for each task. Interestingly, we found that algorithms rank-

ing high on existing benchmarks often fail when confronted

with more realistic scenarios. This section tells their story.

3.1. Stereo Matching

For stereo matching, we run global [26, 37, 46], semi-

global [23], local [5, 20, 38] and seed-growing [27, 10, 9]

methods. The parameter settings we have employed can be

found on www.cvlibs.net/datasets/kitti. Missing disparities

are filled-in for each algorithm using background interpola-

tion [23] to produce dense disparity maps which can then be

compared. As Table 2 shows, errors on our benchmark are

higher than those reported on Middlebury [41], indicating

http://www.cvlibs.net/datasets/kitti


Stereo Non-Occluded All Density

PCBP [46] 4.72 % 6.16 % 100.00 %

ITGV [37] 6.31 % 7.40 % 100.00 %

OCV-SGBM [5] 7.64 % 9.13 % 86.50 %

ELAS [20] 8.24 % 9.95 % 94.55 %

SDM [27] 10.98 % 12.19 % 63.58 %

GCSF [9] 12.06 % 13.26 % 60.77 %

GCS [10] 13.37 % 14.54 % 51.06 %

CostFilter [38] 19.96 % 21.05 % 100.00 %

OCV-BM [5] 25.39 % 26.72 % 55.84 %

GC+occ [26] 33.50 % 34.74 % 87.57 %

Optical Flow Non-Occluded All Density

TGV2CENSUS [45] 11.14 % 18.42 % 100.00 %

HS [44] 19.92 % 28.86 % 100.00 %

LDOF [7] 21.86 % 31.31 % 100.00 %

C+NL [44] 24.64 % 33.35 % 100.00 %

DB-TV-L1 [48] 30.75 % 39.13 % 100.00 %

GCSF [9] 33.23 % 41.74 % 48.27 %

HAOF [6] 35.76 % 43.36 % 100.00 %

OCV-BM [5] 63.46 % 68.16 % 100.00 %

Pyramid-LK [47] 65.74 % 70.09 % 99.90 %

Table 2. Stereo (left) and Optical Flow (right) Ranking from April 2, 2012. Numbers denote the percentage of pixels with disparity

error or optical flow end-point error (euclidean distance) larger than τ = 3px, averaged over all test images. Here, non-occluded refers

to pixels which remain inside the image after projection in both images and all denotes all pixels for which ground truth information is

available. Density refers to the number of estimated pixels. Invalid disparities and flow vectors have been interpolated for comparability.

the increased level of difficulty of our real-world dataset. In-

terestingly, methods ranking high on Middlebury, perform

particularly bad on our dataset, e.g., guided cost-volume fil-

tering [38], pixel-wise graph cuts [26]. This is mainly due

to the differences in the data sets: Since the Middlebury

benchmark is largely well textured and provides a smaller

label set, methods concentrating on accurate object bound-

ary segmentation peform well. In contrast, our data requires

more global reasoning about areas with little, ambiguous or

no texture where segmentation performance is less critical.

Purely local methods [5, 38] fail if fronto-parallel surfaces

are assumed, as this assumption is often strongly violated in

real-world scenes (e.g., road or buildings).

Fig. 3 shows the best and worst test results for the (cur-

rently) top ranked stereo method PCBP [46]. While small

errors are made in natural environments due to the large de-

gree of textureness, inner-city scenarios prove to be chal-

lenging. Here, the predominant error sources are image sat-

uration (wall on the left), disparity shadows (RV occludes

road) and non-lambertian surfaces (reflections on RV body).

3.2. Optical Flow Estimation

For optical flow we evaluate state-of-the-art variational

[24, 6, 48, 44, 7, 9, 45] and local [5, 47] methods. The re-

sults of our experiments are summarized in Table 2. We

observed that classical variational approaches [24, 44, 45]

work best on our images. However, the top performing ap-

proach TGV2CENSUS [45] still produces about 11% of

errors on average. As highlighted in Fig. 4, most errors

are made in regions which undergo large displacements be-

tween frames, e.g., close range pixels on the street. Further-

more, pyramidal implementations lack the ability to esti-

mate flow fields at higher levels of the pyramid due to miss-

ing texture. While best results are obtained at small motions

(Fig. 4 left, flow ≤ 55 px), driving at high speed (Fig. 4

right, flow ≤ 176 px) leads to large displacements, which

can not be reliably handled by any of the evaluated meth-

ods. We believe that to overcome these problems we need

more complex models that utilize prior knowledge of the
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Figure 5. Visual Odometry Evaluation. Translation and rotation

errors, averaged over all sub-sequences of a given length or speed.

world. Previously hampered by the lack of sufficient train-

ing data, such approaches will become feasible in the near

future with larger training sets as the one we provide.

3.3. Visual Odometry/SLAM

We evaluate five different approaches on our visual

odometry / SLAM dataset: VISO2-S/M [21], a real-time

stereo/monocular visual odometry library based on incre-

mental motion estimates, the approach of [1] with and with-

out Local Bundle Adjustment (LBA) [32] as well as the flow

separation approach of [25]. All algorithms are compara-

ble as none of them uses loop-closure information. All ap-

proaches use stereo with the exception of VISO2-M [21]

which employs only monocular images. Fig. 5 depicts the

rotational and translational errors as a function of the trajec-

tory length and driving speed.

In our evaluation, VISO2-S [21] comes closest to the

ground truth trajectories with an average translation error of

2.2% and an average rotation error of 0.016 deg/m. Akin to

our optical flow experiments, large motion impacts perfor-

mance, especially in terms of translation. With a recording
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Figure 6. Object Detection and Orientation Estimation Results.

Details about the metrics can be found in Sec. 2.5

rate of 10 frames per second, the vehicle moved up to 2.8
meters per frame. Additionally, large motions mainly occur

on highways which are less rich in terms of 3D structure.

Large errors at lower speeds stem from the fact that incre-

mental or sliding-window based methods slowly drift over

time, with the strongest relative impact at slow speeds. This

problem can be easily alleviated if larger timespans are op-

timized when the vehicle moves slowly or is standing still.

In our experiments, no ground truth information has been

used to train the model parameters. We expect detecting

loop closures, utilizing more enhanced bundle adjustment

techniques as well as utilizing the training data for parame-

ter fitting to further boost performance.

3.4. 3D Object Detection / Orientation Estimation

We evaluate object detection as well as joint detec-

tion and orientation estimation using average precision and

average orientation similarity as described in Sec. 2.5.

Our benchmark extracted from the full dataset comprises

12, 000 images with 40, 000 objects. We first subdivide the

training set into 16 orientation classes and use 100 non-

occluded examples per class for training the part-based ob-

ject detector of [18] using three different settings: We train

the model in an unsupervised fashion (variable), by initial-

izing the components to the 16 classes but letting the com-

ponents vary during optimization (fixed init) and by initial-

izing the components and additionally fixing the latent vari-

ables to the 16 classes (fixed).

We evaluate all non- and weakly-occluded (< 20%) ob-

jects which are neither truncated nor smaller than 40 px in

height. We do not count detecting truncated or occluded ob-

jects as false positives. For our object detection experiment,

we require a bounding box overlap of at least 50%, results

are shown in Fig. 6(a). For detection and orientation es-

timation we require the same overlap and plot the average

orientation similarity (Eq. 5) over recall for the two unsu-

pervised variants (Fig. 6(b)). Note that the precision is an

upper bound to the average orientation similarity.

Overall, we could not find any substantial difference be-

tween the part-based detector variants we investigated. All

Classification Similarity

SVM[11] 0.93

NN 0.85

Regression Similarity

GP [36] 0.92

SVM[11] 0.91

NN 0.86

Table 3. Object Orientation Errors for Cars. Performance mea-

sured in terms of orientation similarity (Eq. 5). Higher is better.

of them achieve high precision, while the recall seems to be

limited by some hard to detect objects. We plan to extend

our online evaluation to more complex scenarios such as

semi-occluded or truncated objects and other object classes

like vans, trucks, pedestrians and cyclists.

Finally, we also evaluate object orientation estimation.

We extract 100 car instances per orientation bin, using 16
orientation bins. We compute HOG features [12] on all

cropped and resized bounding boxes with 19 × 13 blocks,

8×8 pixel cells and 12 orientation bins. We evaluate multi-

ple classification and regression algorithms and report aver-

age orientation similarity (Eq. 5). Table 3 shows our results.

We found that for the classification task SVMs [11] clearly

outperform nearest neighbor classification. For the regres-

sion task, Gaussian Process regression [36] performs best.

4. Conclusion and Future Work

Throwing new light on existing methods, we hope that

the proposed benchmarks will complement others and help

to reduce overfitting to datasets with little training or test

examples and contribute to the development of algorithms

that work well in practice. As our recorded data provides

more information than compiled into the benchmarks so

far, our intention is to gradually increase their difficul-

ties. Furthermore, we also plan to include visual SLAM

with loop-closure capabilities, object tracking, segmenta-

tion, structure-from-motion and 3D scene understanding

into our evaluation framework.
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