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2 T hermodynamic Engine Cycles 


In this chapter, the thermodynamic characteristics of basic engine cycles are ex­
plained. For each concept, the thermal efficiency is derived from thermodynamic 
equations. An introduction into Thermodynamics can be found in Appendix A.l. 

2.1 Ideal Combustion Engines 

Commonly used combustion engines in cars are four-stroke engines. They have 
two intermittent cycles: the gas is compressed, combusted and expanded in the 
first cycle, and the gas is exchanged in the second cycle. In this section the second 
(or passive) cycle will not be considered to simplify the mathematical derivations. 
The processes related to the second cycle will be discussed in Chapter 3. 

Two different types of combustion engines have to be distinguished: 

l. 	Spark-ignited Engine: Combustion caused by an electric spark-ignition. 

2. 	 Diesel Engine: Combustion caused by self inflammation due to compres­
sional heat. 

In most sections, p represents the in-cylinder pressure, V the cylinder volume, '13 
the in-cylinder temperature, S the entropy, q the thermal energy of the gas, U 

it's internal energy and h it's enthalpy. 

2.1.1 Spark-ignited (S1) Engine 

The first SI engine was presented by Nikolaus Otto in 1862. The combustion 
process can be modelled as an isochoric process where the gas volume is con­
sidered to be constant. The pV-diagram in Figure 2.1 illustrates that the gas 
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Figure 2.1 pV-diagram (left) and 19S-d iagram (right) of the 5I engine process 

volume do~s not change between s tep 2 and step 3. The ratio of maximum to 
minimu lll volume is given by: 

(2.1 ) 

This ratio E is called the compression ratio of the engine. The di fferent steps 
for a comple te cycle in the pV-diagram and in the 19S-diagram can.be seen in 
Figure 2.1. Mathematically they can be described as followed: 

1 ---> 2 : Isentrop ic compression , dq = 0: 

dQ du + dw = 0 

QI ,2 o 
dw -du = - m Cv d19 

2 

Wl,2 - j mCl) (/19 = - mcl)(192 - 19 d 
I 

The work WI ,2 is used to comp ress the gas and therefore, it is negative. 

2 ---> 3 : Isochoric input of thermal energy, dV = 0: 

dw p dV = 0 
3

j pdV = 0 

2 

dq du = mCl) dfJ 
3 

Q2,3 mCl)j dfJ = mcv C8 3 - "I9 2 ) 

2 

T he iucreased thermal energy q2,3 is caused by combustion of the gas. 
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3 ---. 4 : Isentropic expansion, dq = 0: 

Q3,4 = 0 

dow -du = -m Cv d1'J 

'W3 ,4 -

4Jmcv d1'J = -mCV (1'J 4 - 1'J 3 ) 

3 

This state change describes the power stroke of the engine where 'W3,4 is 
the output of kinetic energy from the gas, which is positive (1'J 4 < 1'J 3 ). 

4 ---. 1 : Isochoric heat loss, d\l := 0: 

dow p dV = 0 
IJpdV = 0 

4 

dQ du + dw = m Cv d1'J 

mcv J
I 

d1'J:= mcv (1'J 1 - '8 4 ) 

<1 

The loss of thermal energy Q<1 ,l is due to the gas exchange: The burnt hot 
gas is pumped into the exhaust and the combustion ch,nnber is fi lled with 
a cold mixture of unburnt fuel vapour and air (Q4 ,1 is negn l ive because of 
1'J 1 < 1'J 4 ). 

The thermal efficiency of the engine is equivalent to the rat io of all the ki netic 
energies to the input of thermal energy Q2,3 at the combustion of a complete 
cycle: 

'W l,2 + W2 ,3 + W3,4 + W4,1 
T)th 

Q2,3 

m cv ( -1'J 2 + 1'J I - 1'J 4 + 1'J 3 ) 

m cv (1'J 3 - 1'J 2) 

1'J 4 -1'J j
1 - -,---.,--­

1'J 3 - '8 2 

. 1'J I ()4 j{) 1 - 11- - -,----'__-­
1'J 2 'lJ 311'J2 - 1 

The relationship for isentropic changes 1 ---. 2 and 3 ---. 4 can be used to simplify 
the equation: 

1 (2.2)
E",-I 

This yields: 

1 
r1h-1- - ­ (2.3)·,t - c,,- l 
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Figure 2.2 pV-diagram for Diesel En:,,;illt: 

Please note that the thermal efficiency 'fIth does not depend on the absolute 
temperature values. It l!l a inly depends on the compression ratio t. Example; 
For a compression ratio of t = 11 and an adiabatic coefficient of K, = 1.4 the 
theoretical thermal efficiency 'fIth is: 

17th = 0.617 

2.1.2 Diesel Engine 

Rudolf Diesel developped this engine from 1893 to 1897. In a diesel engine, 
the combustion takes place in an isobaric state change during the downward 
movement of the pistoll . At the beginning of this process the combustion is 
contro lled by the injection of fuel to maintain a constant pressure at the expansion 
from 2 to 3. The isobaric state change is indicated between steps 2 and 3 in the 
pV-diagram in Figure 2.2. The more fuel is injected, the longer the distance 
between steps 2 and 3 and the larger the volume ratio: 

(2.4) 

This ra tio is called injection ratio or load. The injection ratio p has an impact 
on the thermodynamic efficiency which is derived after explaining the different 
parts of the cycle: 

1 - ) 2 : Isentropic compression, dq = 0: 

dq du + dw = 0 

Ql,2 0 
dw -du = -m Cv dfJ 

Wl,2 -mc'V(192-191) 
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3 Engine Management Systems 


3.1 Basic Engine Operation 

3 .1.1 Effective Work 

Four-stroke engines are clwntcterised by two alternate cycles: III the first cycle, 
equ ivalent to the first and second strokes, the gas is compressed, combusted and 
expanded. In the second cycle , equivalent to the third and fourth strokes, the gas 
is transferred to the exhaust pip e and the cy linder is fill ed wi th fresh air from the 
intake manifold. Figure 3.1 shows the two cycles. The crankshaft is turned 360 0 

per cycle. 81 and diesel engines are controlled differently: In di esel engines, fuel 
is directly injected into t,he combustion chamber. T he amount of injected fuel 
per stroke is then proportional to engine torque. The amount of ai r is almost 
constant at a given speed. In SI engines, the amount of fu el as we ll as air is 
controlled. When the fu el is injected into the intake manifo ld , a homogeneous 
air-fuel mixture is sucked into the cylinders. The mechanical work generated in 
the combustion cycle can be obtained by an integration in the pV-diagram. The 
mechanical work can be normal ised by dividing by the displacement volume Vd: 

(3.1) 

where: 

Vd = CYL· (VI 
CYL 

- V2 ) is the displacement volume of a ll cylinders 
is the number of cy linders 
is the (normalised) indicated specific work. 
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Figure 3.1 pV-diagram of four-stroke com bustion engine 

The value of Wi can be determined by measuring the in-cylinder pressure during 
a cycle. An indicated speci fic work of 1 J/cm 3 is equivalent to a mean pressure of 
j5 = 10 bar (= lOu F a). Dealing with a four-stroke engine, the measurement has 
to last for two cycles. The transfer of the combus tion torque to the engine torque 
available at the crankshaft can be calculated from the following motion equations. 

The piston stroke from Top Dead Cent.er (TDC) is 

s(exes) = 1(1 - cos(3) + r(l - cosexes) 

From Figure 3.2 we get 

I sin (3 r sin exes 

cos f3 V1- ~: sin2exes (3.2) 

which yields lhe piston stroke as 

s(exes) = T (1 -cosexes + ~ (1 -V1- ~.: sin
2 

exes) ) (3.3) 

At Top Dead Center , we have exes = 0, s(exes) = 0, and at Bottom Dead Center 

3.1. BASIC ENGINE ( 
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FigL 
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Figure 3.2 Piston and crankshaft motion 

etes = Jr, s{exes) = 2r respectively. The derivatives of the piston stroke are 

ds . r sin exe s cos exe s )
r smetes + - . ----;:====== 

detes ( I / r 2 . 2V I -	 F sm etes 

and 

2f (cos2 etes - sin o:es) + r; Si1l4 O:es J = r cooexes + 	 J . (3."1) 
( 	 (VI - f; sin

2 
exes) 

These derivatives over crankshaft angle can be related to t.he derivatives over 
time as follows: 

ds ds dexes ds .- = -- . - - = -- . exes 
dt detes dt detes 

2 detcs ds d2etesd S d (dS detes ) d ( ds ) ._- + -_ . _ ­S 
dt2 	 dt 2= dt dexes ' ~ = dt dexes dt dexes 

d2s' 2 ds .. 
-- . exes + -- .etes 	 (3.5)
dexbs dexes 

The indicated specific work can be written as 

I f~ 	 dS j (CI'es)V L...- (pj(exes) - Po) Ap dex detes 
d j=l 	 es 

(3.6):d f Tcomb(etes)detes 

The combustion torque a t the crankshaft is thus defined as 

(3.7) 
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Wi 
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The average combusLion torque is ghl ,r 

TCO'mb 4~ f Tcomb(Cles)daes 

Pi 
(3.9) 3.1.2 Air-Fuel Ratries 
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where n = ri es / ('27r) is the engine speed. In reality, the effective work We per 
volume is much low()l' than the indicated work Wi (see Figuf8 3.3). The effec tive 
thermodynamic efl iciency 'r7e is at constant fuel flow 

Similarly, the ratio of mel 
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Pe is the effect ive power in W 
We is the effectiv8 sp8cific work per cycle in Jlm3 

m J is the mass of fuel measured per cylinder in kg 
mJ is the fuel flow in k91s 
H J is the specific energy of the fuel released in the combustion JI kg 
Vd is the total displar:emcnt volume in m 3 

(VdICY L displacement volume per cylinder) 

The indicated thermodynamic efficiency (fr iction not considered) is 

1], = 
Wi Vd 

---,-­
2mJH J CYL 

(3, 12) 

Some examples of typical values for the indicated efficiency are given in table 3,1. 

Ich lower than the thermal 

Table 3.1 Indicated specific work Wi, theoretical heat loss qhl ,lh, and realistic heat 
loss qhl,r for different engi ne types, related to fuel combustion heat, 

,hase, 


i = 1, "" CYL (3,8) 


Engine Type SI Diesel Big Diesel 

W, 33-35 % 40-43 % 45-48 % 

{fit I ,Ii? 23-28 % 22-25 % 12-14 % 

(fhl, ,' 37-41t % 35-40 % 26-33 % 

s 

(3,9) 

.ted work Wi Vd can now 

!Pi 

n 

(3,10) 

e effective work We per 
,gure 3.3), The effective 

(3.11) 

3.1.2 Air-Fuel Ratio 

The ratio of air to fuel is very important for the combustion process of inter­
nal combustion engines, There are several effects that have an impact on the 
amount of air ma transferred to the cylinder: Throttling of the air flow by the 
throttle butterfly, aerodynamic resistance and resonances in the intFtke manifold, 
rebounding of already burned gases from the cylinder into 1,) e inlet pipes and 
other effects, The amo unt of air which would theoretically fit in to a displacement 
volume Vd under the normalised pressure Po = 1.013 bar and the normalised air 
density Po = 1.29 kglm3 is expressed by ma,t" = Po Vd , The ratio of real to 
theoretical value is equivalent to the relative air supply: 

\ - ~ Aa - (3,13) 
ma,tlt 

Similarly, the ratio of measured fuel mass m f to theoretical fuel mass m J,th is 
equivalent to the relative fuel supply: 

\ _ mJ
AJ --- (3, 14) 

mJ,t1t 
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Figure 3.9 In-cy linder pressure p over cran kshaft angle acs. 

The gas is compressed by the piston in an approximately isentropic process. 
Wi th ignition at 0:i, the pressure rises only after time lag Td. The maximum pres­
sure varies from cycle to cycle. The inflammation lag Td depends on temperature, 
pressure, air-fuel ratio and self inflammation time as described in the previous 
section. It also depends on the type of fuel being used. Figure 3.10 shows some 
inflammation lags for different fuels over temperature. Oil companies adapt their 
fuel to weather condi tions (summer, winter). 

Turbulence cuusted by the upward moving piston has no impact on the time 
lag Td. For a correct iglJit ion angle , this lag must be conside red . The time lag is 
convoluted to an :tngle lag , increasing proportional to engine speed. Contrary to 
that , the engille speed has almo.-i, no impact on the position of energy conversion 
as turbulences increase the transport velocity with higher engine speeds. 

The energy conversio n caused by combustion is shown in Figure 3.11 for 
different air-fuel ratios A. In these curves, the isentropic pressure curves are 
suppressed. The differential output of thermal energy per angle dE/d0:cS (its 
gradient) is normalised to the total thermal energy Eo. The shape of the relative 
energy convers ion is therefore a lmost cons tant. 

If the a ir-fue l ratio is increased e.g. to A = 1.2 as shown in Figure 3.11, the 
ignition lag Td will rise. At a constant ignition angle 0:i1 the energy conversion 
is then retarded. Therefore, the ignition angle must be adva nced to 0:i2, to 
compensate for the increased delay. The energy conversion returns to its previous 
position. It should be mentioned that a high a ir-fuel ratio A increases the variance 
of the time lag Td 

The ignition angle 0:, depends on A which can be seen in Figure 3.12. The 
angle is computed by averaging the energy conversion over 0.1 %, 1 %, 10 %, 50 %, 

Td, [ms] 

103 
• 

102 ­ ~ 
101 

600 650 

Figure 3.10 InAammat 

dE/Eo 
dacs 

Figure 3.11 Normalised energ) 
ratios A. 
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Figure 3.10 Inflammat ion lag Td over temperature for different fuels . 
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Figure 3.12 Angle Oe s of energy conversion over air-fuel ratio'\ during ignition (left) 
and com bust ion (r ight.) process. 

90 % points. The angles for 0:£1% and higher are almost independent of the air­
fuel ratio A. In-cy linder pressure measurements can be used to control the ignition 
angle in a closed loop to maintain a constant position of energy conversion as 
shown in Figure 3 13. The angle of maximum pressure gradient max(dp/do:cs) 
may be used as a control variable. The controller time constant must be relatively 
large because of the high delay time variances between consecutive cycles. Thus 
closed loop ignition control may be too slow for the dynamic response of the 
engine. 

The ignition angle is determined to find a compromise between fuel consump­
tion , emissions or knocki ng. An equiva lent procedure can be found for the fuel 
injection angle a t Diesel engines. 

3.2 Fuel C ontrol 

3.2.1 Emissions of Internal Combustion Engines 

Mixture formation can be achieved by manifold or by in-cylinder inject ion. With 
sufficient time the mixture is distributed homogeneously in the cylinder with an 
air-fuel ratio in the range of 0.9 < A < 1.3. For very lean mixtures A > l.3, a rich 
stratified charge must be concentrated in a portion of the combustion chamber. 

The combustion process is started by an electric spark at SI engines and by 
self-inflammation at Diesel engines. The inflammation is delayed as described in 
the previous section. 

• 	 Homogeneous mixture, stochiometric air-fuel ratio: The flame has a char­
acteristic blue color . Almost no soot (carbon particulates) is produced. 

• 	 Strati fied cllLLrge , lean air-fuel ratio: The flame has a characteristic yellow 
co lor. Soot is prod uced. 
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Figure 3.13 Closed-loop control of ignition angle (Xi to maintain a constant position 
of energy conversion. 

• Inflammation starts combustion from one location. 

The inflammation process depends on pressure p, temperat.urPI9 , air-fuel ratio A 
and activation energy E of the fuel. For A < 1 the exha ll ~ t. gases are generated 
according to the concentration ratio 

k = nco' nH2 0 (3.20)
nC0 2 • nH2 

This ratio is temperature dependant. A typical value for {) = 1850 0 f{ is k = 3.6. 
The pollutant emissions like CO, HC, NO x depend strongly on the air-fuel 

ratio which is shown in Figure 3.14 

A < 1: Increased emission of hydrocarbon HC and carbon monoxide CO. 

A = 1: 8tochiometric combustion. Very low emissions after three way catalytic 
converter. 

A ~ l.1: Highest nitrogen oxide NO x emissions due to highest combustion peak 
temperatures. 

A > l.1: Decreasing nitrogen oxide NO x concentration and lower combustion 
temperatures. Increasing hydrocarbon HC emissions at eventual misfires . 

A > l.5: Lean operation. For very low emissions, a NO x reducing catalytic con­
verter is required. 

The concentration of oxygen O2 in the exhaust gas can be used to determine the 
air-fuel ratio A for A :::: 1 using a lambda-sensor. 
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Figure 3.14 Raw e lflis~ion s of CO, HC, NO x and O2 over air- fuel rati o A for 81 
engines. 

3.2.2 Fuel Measurement 

The air-fuel rat io A is an important variable for fuel control which is based on 
different control concepts: 

rich 	mixture A < 1: Maximum power per displacement volume because of in­
creased relat ive fuel supply Af. It was used at high engine loads until 1970. 
Nowadays it is only used for cold engines during the warm-up phase. High 
emission ra tes. 

stochiometric mixture A = 1: Acceptable power output. This ratio is required 
for proper upenll ion of three-way catalytic converters. At high engine 
loads, a good compromise between power output and exhaust emissions 
is achieved . 

moderately lean mixture 1 < A < 1.5: Good efficiency because of increased 
air supply Aa , but high emissions of NO x . This method was used at part 
loads untl' 1. 980. 

lean 	mixture A> 1.5: High efficiency because of high Aa· NOx emissions are 
still high, so dw,t catalytic converters for NO x reduction are required. This 
method is used in lean-burn engines at part loads and in Diesel engines. 
Maxiruurll e ligi ne power cannot be reached. 

The reference torque desired by the driver controls either the relative air supply 
Aa via the throttle angle at at SI engines or the relative fuel supply Af at Diesel 
engines. The amount of fuel being mixed with the air is regulated by the fuel 
control system to obtain a predefined air-fuel ratio A. There are two different 
injection systems: 

3.2. 	 FUEL CONTROL 
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the inlet pipe and fuel flow 

(3.64) 
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(3.65) 
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Figure 3 .20 Compensation of fuel film dynamics at a tes t engine 

angles increase the emission of NO x ' NO x can be reduced by delaying the 
ignition at the expense of a higher fuel consumption 2 The following parameters 
are used to control the ignition angle: 

• Intake manifold pressure Pm 

• Mass air flow rha 

• Engine speed n 

• Throttle angle Ctt 

• Air-fuel ratio ,A 

20ver all, the determination of the right ignition angle is Ii compromise between different 
objectives. 
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Figure 3.21 Ignition angle map 

ignition angle is selected to mmlmlse emiSSions, the fuel consumption will be 
higher. A compromise must consider fuel consumption and emission levels at 
all engine operating points. Emission levels can be very high at some particular 
operating points. There, the optimisation must focus on the emissions. Other 
operating points show acceptable emission rates. At these points the optimisation 
must focus on fuel consumption. 

Fuel consumption and emission levels are mCiL'iured in special road driving 
cycles like the ECE-test or FTP-test. These tests specify the vehicle velocity 
over time. Translating vehicle to engine speeds, a test cycle is equivalent to a 
sequence of different engine operating points over time. Every operating point is 
defined by several control parameters including engine speed and load. 

The fuel consumption can be described by the volume V of combusted fuel 
over time. The minimisation criterium is the integral over the test cycle. 

T 

V = .I V(t) dt --; min (3.66) 

o 

The total fuel consumption V for a test cycle time T can also be obtained by a 
discrete summation over the engine operating points. 

N 

V = L Iii (O:i , Ad ti --; min (3.67) 
i=l 

An analysis of the test cycle shows that most operating points are visited several 
times. The individual time periods where the engine stays in the same operating 
point i can be summarised into a total time period ti. The fuel consumption 
over time Iii can then be minimised independently for each operating point. 
The resulting values of 0:, and Ai are stored into look-up tables O:i(tmj, n) and 
Ai(tinj , n) for every operating point. 

I 
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n = 2400 rpm 
T = 45Nm 
,A = 1.13 

500 30 7.5 

450 20 	 5 

400 10 	 2.5 

350 0 	 0 

Figure 3.22 Fuel consumption and emission levels over ignition angle ai. 

When optimising fuel consumption, the maximum allowable emission levels 
are treated as optimisation constraints. The maximum emission rates are fixed 
by laws which specify the maximum integral masses of the different pollutants 
generated during a test cycle. 

N 

HC 	 LHC(O'",A,) t ; ~ lic (3.68) 
i= ! 

N 

CO 	 L C'O(O'" ,A , ) ti ~CO (3.69) 
i=1 
N 

NO", L NOx(O'i, ,A i ) ti ~ NO", (3.70) 
i=1 

The emission levels per time HC, c'o, NO can be influenced by the values of 
O'i and ,Ai at each operating point i. The emission limits are only given for the 
integral mass over the whole test cycle. It is therefore not obvious which 0'; 

and ,Ai values must be adopted at each operating point i. Such an optimisation 
problem with constraints can be solved by using the Lagrange multiplication 
method 14]. The differences between actually achieved and acceptable emission 
levels are weighted by Lagrange factors L. Equation 3.67 and equations 3.68 to 
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