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Correlation and Regression
Sybil L. Crawford, PhD

In many health-related studies, investigators wish to assess
the strength of an association between 2 measured (con-

tinuous) variables. For example, the relation between high-
sensitivity C-reactive protein (hs-CRP) and body mass index
(BMI) may be of interest. Although BMI is often treated as a
categorical variable, eg, underweight, normal, overweight,
and obese, a noncategorized version is more detailed and thus
may be more informative in terms of detecting associations.
Correlation and regression are 2 relevant (and related) widely
used approaches for determining the strength of an associa-
tion between 2 variables. Correlation provides a unitless
measure of association (usually linear), whereas regression
provides a means of predicting one variable (dependent
variable) from the other (predictor variable). This report
summarizes correlation coefficients and least-squares regres-
sion, including intercept and slope coefficients.

Correlation
Correlation provides a “unitless” measure of association
between 2 variables, ranging from �1 (indicating perfect
negative association) to 0 (no association) to �1 (perfect
positive association). Both variables are treated equally in
that neither is considered to be a predictor or an outcome.

Pearson Product-Moment Coefficient of
Correlation

The most commonly used version is the Pearson product-
moment coefficient of correlation, r. Suppose one wants to
estimate the correlation between X�BMI, denoted for the ith

subject as Xi, and Y�hs-CRP, denoted for the ith subject as
Yi. This is estimated for a sample of size n (i�1, . . . , n) using
the following formula1:

r�
SSxy

�SSxxSSyy

where

SSxy��
i

(Xi�X� )(Yi�Y� ), SSxx��
i

(Xi�X� )2,

and

SSyy��
i

(Yi�Y� ).2

Here, X� indicates the sample mean of X (�BMI), and Y� the
sample mean of Y (�hs-CRP). The numerator of r reflects
how BMI and hs-CRP co-vary, and the denominator reflects
the variability of both BMI and hs-CRP about their respective
sample means.

Alternative Correlation Coefficients
The Pearson correlation coefficient assumes that X and Y are
jointly distributed as bivariate normal, ie, X and Y each are
normally distributed, and that they are linearly related.2 When
these assumptions are not satisfied, nonparametric versions
can be used to estimate correlation. These include the
Spearman rank correlation coefficient,2 which is based on a
comparison of the ranks of X and Y rather than on the original
variables themselves. By using ranks, nonparametric ap-
proaches are robust to departures from the assumptions of the
Pearson correlation coefficient, as well as to outlying (atyp-
ical) observations that may distort the estimated Pearson
correlation coefficient. On the other hand, if the assumptions
for the Pearson correlation coefficient are met, the nonpara-
metric versions are less efficient. That is, they are less likely
to detect an association than the Pearson correlation coeffi-
cient. Thus, an alternative to nonparametric correlations is to
transform X or Y (or both) to better meet these assumptions.
See Erickson and Nosanchuk3 for a discussion of
transformations.

As an example, consider hs-CRP and BMI in Figures 1 and
2. Figure 1A suggests that there is a positive but nonlinear
association between hs-CRP and BMI, and Figures 2A and
2B indicate that neither hs-CRP nor BMI is normally distrib-
uted; thus, the assumptions for the Pearson correlation coef-
ficient are not met. Consequently, the Spearman rank corre-
lation provides a more appropriate estimate of association.
When a natural log transformation is applied to both hs-CRP
and BMI to pull in the long right tails, Figure 1B shows a
linear association between the log-transformed variables, and
Figures 2C and 2D suggest that the log transformation has
made each variable’s distribution closer to normal. The
estimated Pearson correlation of the log-transformed vari-
ables is more than one third higher than the corresponding
estimate for hs-CRP and BMI, which reflects the greater
linearity seen in the scatterplot. Note, however, that the
Spearman correlation is identical for the original and trans-
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formed variables, because the log transformation does not
change the variables’ ranks.

Regression
Regression also indicates whether 2 variables are associated.
In contrast to correlation, however, regression considers one
variable to be an outcome (dependent variable) and the other
to be a predictor variable. As an example, suppose one wants
to predict hs-CRP on the basis of BMI. hs-CRP can be
modeled as a linear function of BMI, as in Figure 1A:

Yi��0��1Xi�ei

where �0 is the intercept, �1 is the slope coefficient for
X�BMI, and ei�Yi�(�0��1Xi) denotes the residual or error,
the part of Yi that is not explained by the linear function of Xi,
�0��1 Xi. The slope coefficient �1 indicates the difference in
Y that corresponds to a 1-unit difference in X. When X is
defined in terms of clinically meaningful units, such as age in
years, it facilitates the interpretation of �1. The above ap-
proach assumes a linear association between X and Y.
Consequently, it is important to check this assumption, eg,
with a scatterplot of Y versus X, before one estimates the

intercept and slope; a transformation of X or Y (or both) may
be needed, as in the preceding hs-CRP and BMI example.

Least-Squares Estimation
As with correlation, there are different approaches to estima-
tion of a regression line. The most commonly used technique
is the method of least squares (sometimes referred to as
ordinary least squares to distinguish it from weighted least
squares, which is used when observations have different
weights from complex sampling designs), which minimizes
the sum of the squared residuals or errors (SSE). That is,
estimates �̂0 and �̂1 of �0 and �1, respectively, are chosen to
minimize

SSE��
i

[Yi�(�̂0��̂1Xi)]
2��

i

êi
2.

The resulting formulas are

�̂1�
SSxy

SSxx

and

�̂0�Y� ��̂1X� .

The intercept �0 generally is not of intrinsic interest but is
included to estimate �1 accurately. Note that if X has been
centered so that X� �0, then �̂0�Y� . The numerator for the
estimated slope coefficient is identical to the numerator of the
estimated Pearson correlation coefficient r; in particular,
when r equals 0, �̂1 also equals 0. �̂1 can be reexpressed as

r��SSyy/SSxx .

Thus, both r and �̂1 estimate the linear association between X
and Y. Unlike r, however, �̂1 is not unitless but reflects the
scales of X and Y.

Coefficient of Determination
A unitless estimate of the strength of the linear association
between Y and X is given by the coefficient of determination,
also known as R2. R2 is the proportion of variance in the
outcome Y accounted for by the linear function of the
predictor X, ie, the fitted value��̂0��̂1X, and is estimated as
(SSyy�SSE)/SSyy�1�(SSE/SSyy). SSE is the amount of vari-
ability in the outcome Y that is “left over,” ie, not explained
by the linear function of the predictor X. Note that the
estimated Pearson correlation coefficient equals the square
root of R2; R2 ranges from 0 (no linear association) to 1
(perfect linear association, whether positive or negative). A
related quantity is the residual mean square �̂2, the variance of
the residuals, or equivalently, the variability of Y about the
estimated regression line. For a regression with a single
predictor variable, this is computed as SSE/(n�2).1 For a
given data set, the smaller �̂2 is, the larger R2 is; �̂2 is not
unitless, however, but varies with the scale of the observed
data.

Checking Assumptions: Regression
Diagnostics

The above formulas for �̂0 and �̂1 can be used to estimate a
regression line regardless of the distributions of X and Y.

Figure 1. A, Scatterplot of hs-CRP vs BMI, with least-squares
linear regression line. B, Scatterplot of natural log-transformed
hs-CRP vs natural log-transformed BMI, with least-squares lin-
ear regression line.
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Assumptions required for inferences with regard to the
coefficients and estimation or prediction from the regression
line, however, include the following: (1) normally distributed
residuals with a mean of zero; (2) constant variance of the
residuals; and (3) independence of residuals from different
observations.

These assumptions should be checked before any infer-
ences are made from the estimated regression line. For
example, to assess whether residuals are normally distributed,
a statistical test (eg, the Kolmogorov-Smirnov �2 test2) can be
done to compare the estimated distribution to a normal
distribution. Related graphical checks include a histogram of
the estimated residuals and a normal probability plot, also
known as a quantile-quantile plot, of the observed residual
quantiles versus quantiles that would be expected under
a normal distribution4; the latter plot will approximate a
straight line if the assumption of normality is met. Also, a
scatterplot of the estimated residuals versus the fitted values
should have a “cloud” pattern, which indicates no increase or
decrease in the variability of the residuals as X increases (ie,
constant variance), and no curvilinear pattern that suggests a
nonlinear association of X and Y.5 In addition, influential
observations can be detected with diagnostic tools available
in most statistical software packages, such as Cook’s dis-
tance,4,6 which indicates for each observation how much the
estimated regression coefficients would change if that obser-
vation were omitted and the regression coefficients reesti-
mated; a value of at least 1 indicates a highly influential
observation. Although an influential observation often will
have a large, outlying residual, this is not guaranteed to occur,
because an extremely influential observation may “pull” the
regression line toward itself and hence have a relatively small
residual. A more detailed discussion of leverage and influ-
ence is beyond the scope of this report.

Continuing the previous hs-CRP and BMI example, the
estimated regression line for hs-CRP as a linear function of

BMI is hs-CRP��7.44�0.40�BMI, with an R2 value of
0.20. Residuals from the regression of hs-CRP on BMI, seen
in Figure 3A, are not normally distributed and exhibit a large,
positive outlier. The scatterplot of residuals versus fitted
values (Figure 4A) demonstrates increasing variability in the
residuals with larger fitted values. The Kolmogorov-Smirnov
�2 statistic is statistically significant (P�0.01), which indi-
cates a departure of the estimated residual distribution from
normality. Moreover, one observation has a Cook’s distance
�1, which indicates high influence on the estimated regres-
sion line.

The corresponding estimated line from regressing log
hs-CRP on log BMI is log hs-CRP��11.40�3.58�log BMI,
with an R2 value of 0.37. The proportion of variance ex-
plained almost doubles when the variables are transformed,
which reflects the improvement in linearity. The histogram of
the residuals from the regression of log hs-CRP on log BMI,
seen in Figure 3B, is closer to bell-shaped and has no outliers,
and there is no significant departure from normality (the
probability value for the corresponding Kolmogorov-
Smirnov �2 statistic�0.12). The scatterplot of residuals ver-
sus fitted values (Figure 4B) indicates constant variance of
the residuals across the range of fitted values. In addition,
none of the observations have a Cook’s distance of at least 1.
Note that the scales on the y axis, which indicate the scales of
the 2 sets of residuals, are not comparable because the
original data are on different scales.

As seen in this example, transforming either the outcome
or the predictor (or both) often solves one or more problems,
including nonlinear associations, outlying values, and non-
constant variance of residuals. Nonlinear associations also may
be modeled with polynomial regression, expanding the right-
hand side of the equation to include terms for X2, X3, and so on.7

Estimation and Prediction
In addition to determining magnitudes of association, the
estimated regression line can be used to estimate the average

Figure 2. A, Histogram of hs-CRP. B,
Histogram of BMI. C, Histogram of natu-
ral log-transformed hs-CRP. D, Histo-
gram of natural log-transformed BMI.
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Y at a specified value of X. In the preceding example, we can
estimate the average (mean) hs-CRP concentration at, say,
BMI�25 kg/m2. Using the estimated regression line on the
untransformed variables, this would be estimated as
�7.44�0.40�25�2.56 mg/L. In addition, we can predict the
hs-CRP concentration for an individual patient with a BMI of
25 kg/m2, also given by 2.56 mg/L. The corresponding
estimate on the log hs-CRP scale is �11.40�3.58�log
(25)�0.12.

The difference between estimation of an average and
prediction for an individual subject lies in the associated
variability. The estimated variance of an estimate of a mean
at X�x* is given by

�̂2�1

n
�

(x*�X� )2

SSxx
�

which increases with �̂ and with the distance between x* and
the observed sample mean for X.1 That is, the estimate of the
mean is less precise for larger values of the residual mean
square (variability of Y about the regression line) and as the
value of x* is farther from the center of the observed data.
The variance for a prediction at X�x* is equal to

�̂2�1�
1

n
�

(x*�X� )2

SSxx
�,

which equals the variance for an estimated mean plus �̂2.1

Thus, predicting Y for an individual at a given X value is less
precise than estimating the mean at the same X value. This
can be seen graphically in Figure 5. Estimates of both the
mean log hs-CRP and predicted log hs-CRP across the range
of log BMI values are given by the estimated regression line
(solid line). The 95% CIs for mean log hs-CRP and for
predicted log hs-CRP also are presented; the CIs for predic-
tions for an individual are much wider than those for the
mean. Both CIs are wider for extreme values of log BMI than
for log BMI values nearer the sample mean.

Figure 1A indicates that for values of BMI �18.6 kg/m2,
linear regression on the untransformed data produces nega-
tive estimates of hs-CRP (for the mean or for an individual
patient), which are invalid for this outcome. In contrast,
negative estimates of hs-CRP can be backtransformed with
exponentiation, ie, the antilog, to produce estimates on the
original scale, which are guaranteed to be above zero because
of the nature of the antilog transformation. This suggests
another possible advantage of working with transformed
variables.

Figure 3. A, Histogram of residuals from least-squares linear
regression of hs-CRP on BMI. B, Histogram of residuals from
least-squares linear regression of natural log-transformed
hs-CRP on natural log-transformed BMI.

Figure 4. A, Scatterplot of residuals from least-squares linear
regression of hs-CRP on BMI vs corresponding fitted values. B,
Scatterplot of residuals from least-squares linear regression of
natural log-transformed hs-CRP on natural log-transformed BMI
vs corresponding fitted values.
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Alternatives to Least-Squares Estimation
Ordinary least-squares regression is widely used, in part
because of its ease of computation and also because it has
desirable properties when the assumptions are met.7 Because
the regression line is estimated by minimizing the squared
residuals, however, outlying values can exert a relatively
large impact on the estimated line. With the advent of
computers, alternative methods have been developed that are
computationally more demanding but are more robust to
outliers. Some techniques reduce the influence of outliers by
replacing squared residuals with other functions of the resid-
uals or minimizing the median of the squared residuals rather
than the sum (see Rousseeuw and Leroy8). Other approaches
are nonparametric, such as Tukey’s resistant lines3 or Theil’s
method.2 It is difficult to generalize some of these approaches
to the setting with multiple predictor variables, however.

Additional Considerations and Cautions
Extrapolation
Even when an estimated regression line provides a good fit to
the observed data, it is important not to extrapolate beyond
the range of the sample, because the estimated line may not
be appropriate. For example, as seen in Figure 1A, estimates
of Y from the regression line may be invalid for extreme X
values. Alternatively, the relation between X and Y may
become nonlinear outside the range of the sample.

Study Design and Interpretation of Estimates
Estimates of correlation and R2 depend not only on the
magnitude of the underlying true association but also on the
variability of the data included in the sample (see Weisberg4).
In the preceding hs-CRP and BMI example, the estimated
Pearson correlation of log hs-CRP and log BMI in the full
sample is 0.62. If we restrict the sample to the middle 2
quartiles of log BMI, thereby artificially decreasing the SD of
log BMI from 0.23 to 0.08, the corresponding estimated
correlation is 0.31, an underestimate. Conversely, if we
include only women in the top and bottom log BMI quartiles
(which yields an SD of log BMI of 0.31), the estimated

correlation is 0.70, an overestimate. In the first instance,
because the variation in X is constrained to be too small, the
variation in Y ignoring X (ie, the horizontal spread in Figure
2 for the middle half of the data) is close to the variation in
Y accounting for X, ie, the variation about the regression line.
Consequently, the estimated proportion of explained variance
in Y is deflated. The reverse occurs in the second instance.
Thus, estimates that are not computed from a random sample
from the entire range of the variables may not reflect the true
correlation.

The range of the predictor variable also affects the standard
error of the estimated regression slope, computed as
�̂/�SSxx, which decreases as the variability in X increases;
consequently, the slope is estimated with the greatest preci-
sion if one samples X entirely at the minimum and maximum
possible values.7 Clearly, such a design is not optimal,
however, for detecting departures from assumptions, eg,
nonlinearity.

Categorical Versus Continuous Variables
When a variable is continuous, treating it as a continuous
variable typically retains more information than collapsing it
to an ordinal categorical variable.9 In some cases, however,
the latter version may be preferable. Consider the example of
alcohol consumption. In some populations, there may be a
large percentage with no consumption, which leads to a large
“spike” at the value 0; hence, there may be no straightforward
transformation that satisfies the assumptions of correlation or
linear regression. Here, it may be more useful to categorize
alcohol consumption as an ordinal variable, eg, zero con-
sumption and quartiles of nonzero consumption, and to use
ANOVA rather than linear regression. As another example,
consider years of education. A difference of 1 year often has
a different impact depending on whether the reference point
is, say, 11 years compared with 13 years. In this case, a
categorized ordinal variable may provide a better fit to the
data. Moreover, categorized variables may be more interpret-
able in clinical settings.10

Confounding
The above discussion assumes there is only a single predictor
variable of interest. The association between X and Y,
however, may be due in part to the contribution of additional
variables that are related to both X and Y, ie, confounding
variables. For example, the estimated association between
BMI and hs-CRP may be due in part to age, because both
BMI and hs-CRP are themselves positively related to age.
The methods summarized above can be expanded to include
multiple predictors, and associations between X and Y that
adjust for these confounding factors can be estimated. Re-
turning to the hs-CRP and BMI example, a partial (age-
adjusted) correlation between hs-CRP and BMI can be
computed; for the Pearson correlation, this is done by
regressing hs-CRP on age, regressing BMI on age, and
computing the Pearson correlation of the 2 sets of residuals,
ie, the component of hs-CRP that is unrelated to age and the
component of BMI that is unrelated to age. Similarly, an
age-adjusted slope for BMI can be estimated by adding age as
a predictor to the linear regression model. A regression model

Figure 5. Scatterplot of natural log-transformed hs-CRP vs nat-
ural log-transformed BMI, with least-squares linear regression
line and 95% CIs for prediction and for mean estimation.

Crawford Correlation and Regression 2087



with multiple predictors is referred to as multiple regression.
A later article in this series will address both partial correla-
tion and multiple regression.

Discussion
Correlation and regression are 2 widely used approaches for
determining the strength of association between 2 variables.
Regression also is used for predicting an outcome from a
predictor variable. Estimates are easily obtained in a variety
of statistical software packages. For both methods, it is
important to assess whether the assumptions are valid before
one draws conclusions from the estimates. If assumptions are
not satisfied, options include applying transformations to
better meet the assumptions or using nonparametric versions.
Both correlation and regression are easily generalized to the
situation with multiple predictor variables.

Disclosures
None.
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