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Stat

tical Primer for Cardio

cular Research

Multiple Linear Regression

Accounting for Multiple Simultaneous Determinants of a Continuous
Dependent Variable

Bryan K. Slinker, DVM, PhD; Stanton A. Glantz, PhD

In many cardiovascular experiments and observational stud-
ies, multiple variables are measured and then analyzed and
interpreted to provide biomedical insights. When these data
lend themselves to analyzing the association of a continuous
dependent (or response) variable to 2 or more independent (or
predictor) variables, multiple regression methods are appro-
priate. Multiple regression differs from ANOVA, in which
the predictors are represented as “factors” with multiple
discrete “levels.” In this report, we focus on multiple regres-
sion to analyze data sets in which the response variable is
continuous; other methods, such as logistic regression and
proportional hazards regression, are useful in cases in which
the response variable is discrete.!

Although many studies are designed to explore the simul-
taneous contributions of multiple predictors to an observed
response, the data are often analyzed by relating each of the
predictor variables, 1 at a time, to a single response variable
with the use of a series of simple linear regressions. However,
although 2-dimensional data plots and separate simple regres-
sions are easy to visualize and interpret, multiple regression
analysis is the preferred statistical method.'-> We want to
reach correct conclusions not only about which predictors are
important and the size of their effects but also about the
structure by which multiple predictors simultaneously relate
to the response. Often, we also want to know whether the
multiple predictors that influence a response or outcome do
so independently or whether they interact.® Finally, although
only 1 or 2 predictors may interest us, our analysis often must
adjust for other influences (ie, confounding effects).

A series of simple regressions cannot accomplish these
tasks; if we want to examine the simultaneous effects of
multiple predictors on a response, we must use a method that
treats them accordingly. Conducting a series of simple
regression analyses when multiple regression analysis is
called for may lead to erroneous conclusions about the
contribution of each of multiple predictor variables because
this approach does not account for their simultaneous contri-
butions. As a result, a predictor may be deemed important
when it is not, or, conversely, a predictor may appear
unrelated to the response when examined alone but relate

strongly when considered simultaneously with other
predictors.

From Simple Linear Regression to
Multiple Regression

Simple linear regression involves estimating the straight line
1 Y=by+b,X

where Y is the predicted value of the response variable, Y, at
a given value of the predictor variable, X. The intercept, by,
estimates the value of the response when the predictor is 0,
and the slope, b,, estimates the average change in the
response for a unit change in the predictor. The “best”
estimate for this line is the one that minimizes the sum
(denoted by the Greek letter X) of squared residuals, SS,,
between the observed values of Y and the values of Y
predicted from Equation 1 across the corresponding values of
X (thus, this is called ordinary least squares regression):

2 S = 2[Y YT

The question immediately arises whether the relationship
between X and Y is “statistically significant,” in other words,
whether knowing the value of X allows predicting Y better
than just knowing the mean value of Y or, equivalently,
whether the slope of the regression line for the underlying
population is different from 0. To test the “null hypothesis”
that this slope is 0, we compare the magnitude of the statistic
b, to the precision with which it is estimated, its standard
error, s, . A smaller standard error indicates higher certainty
in the value of the estimate. We use this information to
compute a ¢ statistic

b,
3) ="

U Y b,

G, will be large if b, is large compared with Sp,- If t, (with
n—2 degrees of freedom; n is the number of observations)
exceeds the maximum expected under the null hypothesis of
no relationship between Y and X, we conclude that the slope
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is significantly different from 0, meaning that knowing X
contributes to our ability to predict Y.

This approach generalizes directly to multiple predictor
variables. For example, the simplest multiple regression
equation relates a single continuous response variable, Y, to
2 continuous predictor variables, X; and X,:

4) ?:b0+b1X1+b2X2

where Y is the value of the response predicted to lie on the
best-fit regression plane (the multidimensional generalization
of a line). The intercept, by, is the plane’s reference position;
it defines the value of Y when both X, and X,=0. The
regression coefficient b, quantifies the sensitivity of Y to
change in X, adjusting for the effect of X, on Y. Similarly,
b, quantifies the sensitivity of Y to change in X,, adjusting for
the effect of X, on Y.

As in simple linear regression, we evaluate whether indi-
vidual predictors affect the response using ¢ tests; for each
regression coefficient b; we compute

(5) Ip,= 5,

t, will be large if the magnitude of b; is large compared with
the precision with which it is estimated, Sb,- If tbj (withn—k—1
degrees of freedom, where k is the number of predictor
variables) exceeds the maximum value expected under the
null hypothesis of no relationship between Y and X, we
conclude that X; contributes significantly to the observed
response in Y, adjusting for the effects of the other predictor
variables.

An Example: Ice Cream Consumption

Diet contributes to cardiovascular risk, and therefore we may
want to identify significant determinants of the consumption
of certain foods. For example, Figure 1 shows data from a
study of the determinants of ice cream consumption’ in which
we want to relate consumption (C, pints per person) to both
mean outdoor temperature (T, °F) and weekly family
income (I, $).

First, we separately examine the linear relationships be-
tween consumption and temperature and between consump-
tion and income using simple regressions. For the former
(Figure 1A), we estimate

(6) €=0.21 pints/person+0.0031 pints/person/°F - T

$5,=0.0005 and t, =0.0031/0.0005=6.502, which (with 30—
2=28 degrees of freedom) yields P<<0.001. Thus, we con-
clude that for each 1°F rise in outdoor temperature, ice cream
consumption increases, on the average, by 0.0031 pints per
person, consistent with our visual impression of the data.

In contrast, simple regression of C on I suggests that ice
cream consumption is not significantly associated with family
income, as shown below,

(7) €=0.32 pints/person+0.0005 pints/person/$/week - I

because s, =0.002 and t,=0.0005/0.002=0.25, yielding
P=0.8. Thus, we conclude that Equation 7 is no better
explanation of the observed ice cream consumption than no
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Figure 1. A, Scatterplot of ice cream consumption (C) vs tem-
perature (T) showing the best-fit simple regression line as
described by Equation 6 in the text. The overall fit is significant
(P<0.001), and thus we conclude that ice cream consumption
is associated with temperature. B, Scatterplot of ice cream con-
sumption (C) vs income (l) showing the best-fit simple regres-
sion line as described by Equation 7 in the text. The overall fit
is not significant (P=0.80), and thus we conclude that ice cream
consumption is not associated with income. n=30 households.

fit at all, consistent with our visual impression of the data
(Figure 1B).

On the basis of these separate analyses, we conclude that
ice cream consumption increases as outdoor temperature
increases but is not influenced by family income. Each of
these separate analyses, however, assumes that no other
important predictors of ice cream consumption are present to
confound each analysis. In most studies, this situation will not
be the case.

Now, we use multiple regression to estimate the simulta-
neous effects of T and I on C,

(8) C=b,+b;T+bl

The Table shows the results of a computer program used to fit
this equation to the data, yielding

(9) C=-0.113 pints/person+0.0035 pints/person/°F « T
+0.0035 pints/person/$/week - 1

Figure 2 represents this regression equation as a plane fit
through the data (the data points are not plotted). Comparing
the 2 separate simple regression results (Equations 6 and 7)

Table. Results of Regression Analysis

Regression Standard
Independent Variable Coefficient b Error Sp, th‘ P
Intercept -0.1132 0.1083 —1.045 0.3051
Temperature 0.0035 0.0004 7.963 <0.0005
Income 0.0035 0.0012 3.017 0.0055
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Figure 2. Three-dimensional plot of the best-fit multiple regres-
sion plane relating ice cream consumption (C) to both tempera-
ture (T) and income (l), as described by Equation 9 in the text.
One edge of the plane (in the C vs T direction) has a positive
slope, and we conclude, as we did in relation to the simple
regression analysis shown in Figure 1A, that increasing ice
cream consumption is associated with increasing temperature
(P<0.001). The other edge of the plane (in the C vs | direction)
also has a positive slope, and we conclude, in contrast to our
conclusion in relation to the simple regression analysis shown
in Figure 1B, that increasing ice cream consumption is also
associated with increasing income (P<0.01).

with that of the multiple regression (Equation 9), we see that
the estimates of by, quantifying the temperature effect, differ
only slightly (0.0031 in Equation 6 versus 0.0035 in Equation
9), whereas the estimates of b;, quantifying the income effect,
differ by an order of magnitude (0.0005 in Equation 7 versus
0.0035 in Equation 9). From the fit of Equation 9, we estimate
s,,=0.0004 pints/person/°F and s, =0.0012 pints/person/$/
week, and therefore th:7.963 (P<<0.001) and th:3.017
(P<0.01). In contrast to the conclusions we drew from
separate simple regressions, we now conclude that ice cream
consumption, C, is significantly associated with both outdoor
temperature, T, and family income, I. Ice cream consumption
increases as outdoor temperature increases (br is positive),
and, independently, after adjustment for temperature, ice
cream consumption also increases as family income increases
(by is positive).

With simultaneous consideration of both predictors, the
multiple regression analysis is more revealing because, after
adjustment for the association between T and C, it identifies
an association between I and C that was masked in the
separate simple regressions.

In summary, multiple linear regression and the associated
statistics, b;, Sp,» and tbj, allow us to judge the magnitude and
quality of the relationship between a response variable, Y,
and 2 or more predictors, X,, X,, ..., X,. Using the
individual ty, we also make inferences about the statistical
significance of each predictor, adjusting for the effects of the
other predictors. These inferences and judgments are made
under the assumption that the regression equation correctly
specifies the true relationship among these variables; that is,
Y is related linearly to the X;, and Y is related only to the
predictors, X;, X,, ..., Xy, included in the equation. We
further assume that the residuals are normally distributed and
have equal variance across the predictor data space. Interpret-
ing a multiple regression analysis thus requires careful
examination of other aspects of the character of the fit and the
relationship among variables to evaluate these assumptions.

Caveats and Considerations

Linearity

The multiple regression equation (Equation 4) estimates the
additive effects of X, and X, on the response. It further
specifies that each predictor is related linearly to the response
through its regression coefficient, b, and b, (ie, the “slopes”).
In simple linear regression, one can assess linearity by
looking at a plot of the data points. In multiple regression, one
can examine scatterplots of Y and of residuals versus the
individual predictor variables. If a nonlinearity appears, one
may be able to incorporate into the model an appropriate
linearizing transform! or use nonlinear regression.'8

Model Misspecification Bias

If the form of the regression equation is not correct (such as
when substantial nonlinearities are ignored) or important
predictor variables are left out of the equation, the estimates
of those regression coefficients that are included in the
equation will be biased. This situation occurred in our
example: Excluding temperature as a predictor of ice cream
consumption changed the estimate of the regression coeffi-
cient for the effect of family income by an order of magnitude
(b;=0.0005 in Equation 7 versus 0.0035 in Equation 9).
Similarly, if we incorrectly specify the nature of the relation-
ship between predictor variables (eg, additive versus interac-
tive effects) or between the response and a predictor (eg,
linear versus nonlinear relationships), we will bias the esti-
mated regression coefficients. The magnitude of these biases
will vary from problem to problem, and it is impossible to
know with certainty that no model misspecification biases
exist. One must guard against bias by systematically exam-
ining all data that were collected and applying sound judg-
ment based on one’s knowledge of the basic and clinical
science underpinning the study, more often than not using
multiple regression instead of simple regression.

Normality and Equal Variance

Multiple regression assumes that the residuals are normally
distributed and have equal variance across the predictor data
space. These assumptions are typically evaluated with the use
of graphical methods and related statistics to assess the
residuals.'->9 If these assumptions do not hold, the response
variable can sometimes be transformed so that the assump-
tions will hold for the transformed data,' although this
approach is subject to the caveat that interpretations are now,
strictly speaking, made with respect to transformed data.
Alternatively, robust regression methods,® bootstrap meth-
ods,'0 or the mixed-effects regression method discussed
below can be used to estimate regression parameters and their
standard errors.

Multicollinearity

Each regression coefficient attempts to quantify the indepen-
dent effect of the corresponding predictor on the response.
However, when the multiple predictor variables are correlated
with each other, which is often the case when dealing with
biological or clinical data, this will not be the case. Correla-
tion between the predictor variables reduces the precision of
the estimates of the individual regression coefficients and
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therefore “inflates” the associated standard errors, b, Another
way to think of this is that high correlation among predictor
variables means that we use redundant information to predict
the response; as a consequence, we are less certain of the
independent effect of any 1 predictor. This problem is called
multicollinearity' and should be of concern if the correlation
between a pair of predictor variables is above about 0.9;
depending on the specific data set and regression equation,
multicollinearity might be an important consideration even
with weaker correlations. Several diagnostics, including the
so-called variance inflation factor, can be used to more fully
evaluate multicollinearities, especially those arising in more
complex models.!*!! Severe multicollinearity can paradoxi-
cally yield a significant overall regression model fit in which
none of the individual regression coefficients, b;, are signif-
icant (because of the “inflation” of the sbi) and, in the extreme,
can yield nonsensical estimates of 1 or more of the b;.

Numerous ad hoc statistical approaches to dealing with
multicollinearity are available.!12.13 However, sometimes
you simply have to drop 1 or more of the “redundant”
variables from the regression equation. Alternatively, to the
extent that one can experimentally manipulate variables,
multicollinearity can sometimes be mitigated with careful
experimental design to reduce the correlation among predic-
tor variables.!:13

Influential Data Points

An observation may be “unusual” in that it has an extreme
location in the data space, as judged in relation to the location
of the bulk of the other observations. These unusual obser-
vations may heavily influence the magnitude of the estimate
of 1 or more of the regression coefficients, b;. These points
are called outliers if their location is unusual in the direction
of the response variable (ie, unusually high or low values of
Y) or leverage points if their location is unusual in the
direction of a predictor variable (ie, unusually high or low
values of X;). Examining scatterplots of data will help to
identify such points. In addition, formal “regression diagnos-
tics,” such as Cook’s distance, the diagonal values of the “hat
matrix,” and Studentized residuals have been developed to
help identify unusual observations and quantify their poten-
tial influence.!45%-11 Although these diagnostic statistics can
help to identify influential observations, particularly in mul-
tiple regression analyses in which neither the observations
nor their effect can be easily visualized in the multivariate
data space, they cannot tell us what to do. In many cases,
these influential observations result from simple data entry
errors, such as transpositions, and are easily corrected. In
other cases, the influential observations reflect a problem of
model misspecification, such as ignoring nonlinearity, and
correcting the misspecification will reduce their influence.
Accordingly, one should not use regression diagnostics to
justify excluding otherwise valid observations from analysis
simply to avoid their influence. On the other hand, influential
observations can lead to erroneous results, and therefore their
presence and effect should be evaluated and understood.

Extensions of Multiple Linear Regression
Beyond simple extension of multiple regression to include
additional continuous predictor variables, numerous other
useful extensions to the basic procedure are available.

Multiple Linear Regression 1735

Variable Selection

Several procedures, known collectively as variable selection
methods, have been developed to select a “best” multiple
regression model that includes a subset of predictor variables
drawn from a larger pool of candidate predictors.!3*!4 Most
of these techniques are based on incremental changes in SS,
(Equation 2) as predictor variables are (1) added sequentially
to a model, starting from nothing (forward selection); (2)
subtracted sequentially from a model, starting with all can-
didates included (backward elimination); or (3) more com-
monly, selected by stepwise regression, a strategy that pro-
ceeds as with forward selection, but each time a variable is
added a backward elimination step occurs to test whether any
variables entered previously can be removed. These tech-
niques can be useful adjuncts in a multipronged strategy to
identify an appropriate multiple linear regression model; they
allow examination of many possible regression models to
look for consistency of model identification with the use of
multiple methods. It is important, however, to avoid rote
application of these methods, particularly for large data sets
containing many possible predictor variables in which mul-
ticollinearity may be a problem. Severe multicollinearity will
play havoc with the order of selection or elimination of
variables with the use of these methods, and one must be
cautious in inferring relative importance of predictors on the
basis of their order of selection.

Interactions Among Predictor Variables

The 2-predictor multiple regression equation (Equation 4)
specifies that predictors X, and X, are additive in their
respective effects. Often, however, 2 or more predictor
variables interact (ie, synergize or compete) to determine a
response. Indeed, determining whether effects are additive or
not is often the reason for conducting a study, and one may
therefore wish to explore whether 2 predictors interact (ie, are
not simply additive) in their relation to the response. The
simplest interaction between 2 predictors is introduced into a
multiple regression equation through the product of the 2
variables.!3 For example, if we wish to express an interaction
between predictors X, and X, in Equation 4, we use

(10) Y=by+b, X, +b,X,+b:X, X,

If the regression coefficient, b;, is statistically significant,
then we have evidence that the relationship between Y and X,
depends on the value of X, (or vice versa, depending on how
we view the underlying biology).

This basic concept can be generalized to more complicated
interaction models. However, this must be done thoughtfully.
Introducing several product terms into a complex multiple
regression problem, particularly if the expanded set of pre-
dictors is then subjected to variable selection methods, can
yield misleading results. In addition, product terms will
highly correlate with each of the variables used to create the
product, artificially introducing multicollinearity.

Categorical Predictor Variables

We have shown how to relate a continuous response variable,
Y, to multiple continuous predictor variables, such as X, and
X,. Often, however, we may want to also include predictor
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variables that are categorical, such as gender, ethnicity, or
treatment group. It is possible to do so by including in the
regression equation a set of “dummy” (or “indicator”) vari-
ables that take on values of 0, 1, or —1 to represent the levels
of categorical information. The simplest example is a variable
that has only 2 categories, such as chocolate and vanilla. If
our focus, for example, is on the difference in consumption of
chocolate ice cream with reference to vanilla, we create a
dummy variable F (for flavor) defined as O if vanilla and 1 if
chocolate (this is called reference coding; the reference group
is coded with 0). To introduce this into our analysis and
determine whether ice cream consumption differs for vanilla
and chocolate flavors, we add F to the regression equation,

(11) C=b,+b;T+bI+beF

br quantifies the average difference in chocolate ice cream
consumption with reference to vanilla, after adjustment for
the effects of temperature and income; computing t,_ allows
us to judge whether this effect is statistically significant.
Alternatively, we could conduct the same analysis by defin-
ing F=1 if vanilla and —1 if chocolate, which is often called
effects coding. With this coding, bg quantifies the deviation of
the response for chocolate and vanilla from the average of
both chocolate and vanilla. For simple problems, reference (1,
0) coding is often more straightforward to interpret. For more
complicated problems, the choice of coding will depend on
many factors that are beyond the scope of this review. This
dummy variable method generalizes to cases in which the
factor of interest has more than 2 levels by creating a set of
dummy variables totaling 1 fewer than the number of levels
of the factor.!-3

Repeated Measurements Within the Same Subjects
Sometimes repeated measurements are made within individ-
ual subjects to establish a relationship between 2 or more
variables in each of multiple subjects, and then these multiple
relationships are pooled into 1 data set.'>1¢ If the regression
analysis does not account for the different subjects, both the
estimates of the regression coefficients, b;, and the estimates
of error, including the Sh,» will be biased and could be in error.

Consider, for example, the data shown in Figure 3, in
which response, Y, and predictor, X, were measured in 6
subjects. If we use simple regression to fit the pooled data
with the use of Equation 1, ignoring the subjects, we estimate
bx=+2.16 with s, =0.478. Computing t, leads to the con-
clusion that a significant positive relationship exists between
Y and X (P<<0.001; Figure 3A).

The data, however, suggest the opposite, a relationship
with a negative slope when considered within each subject. In
effect, the model is misspecified by excluding the subjects,
and bias is introduced because the relative location of each
subject’s response is ignored.

A simple (but, as we will see, usually unsatisfactory)
approach to account for variation from subject to subject is to
represent the subjects by a adding a set of dummy variables
to the regression equation.!'>'¢ For example, for these 6
subjects, we define a set of 5 dummy variables using effects
coding, S;=1 if subject i (i=1 to 5), —1 if subject 6, 0
otherwise, and write

A
75
>
0 .
0 5 10 15 20
X
B
75
. T
> : .\?\
0 : - : !
0 5 10 15 20
X

Figure 3. A, Scatterplot of values of Y and X measured in 6
subjects (each subject has a different symbol). When we use
simple regression to fit these data using Equation 1, we con-
clude that Y significantly increases as X increases (P<<0.001).
B, The same data shown in A but now fit with the use of Equa-
tion 12, which is a multiple regression equation that includes a
set of dummy variables to account for the fact that data were
collected within 6 individual subjects. When we account for the
effect of different subjects, we now correctly estimate that Y
decreases significantly (P<0.001) as X increases, within each
subject, just as our visual impression of the data suggests.

(12) ¥=by+byX+ DbsS;

Where the sum (2) is from 1 to 5.! We estimate by=—3.05
with szZO.l 18 (P<<0.001; Figure 3B). Thus, after accounting
for the different lines within each of the subjects, we now find
a negative slope (with a smaller standard error), which much
better describes the relationship within individual subjects.
Note that Equation 12 estimates by assuming that a common
slope is present across all subjects, which may or may not be
appropriate depending on the specific problem (interactions
can be introduced to allow each subject’s line to have its own
slope).

Accounting for subject variability in this way and estimat-
ing regression coefficients and standard errors by ordinary
least squares regression treats the subjects as a fixed effect,
with “fixed” meaning that these individuals are the only
“levels” of the factor (subjects) of interest, which constrains
statistical inference to only the specific subjects studied. Most
of the time, however, we want to make statistical inferences
that extrapolate to an entire population on the basis of data
collected in our sample of subjects; to do so correctly, we
must treat the subjects as a random effect (ie, as a random
sample of the population of interest). A common way to do
this is with mixed-effects regression,'”-'8 where “mixed”
refers to the inclusion of both random and fixed effects.
Although it is beyond the scope of this review to delve into
details (another article in this series will address this topic in
the context of longitudinal analysis), we reestimated this
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example using a mixed-effect regression; bxy=—3.04 with
sbx=0.1 18, which are nearly identical to those obtained above.
If we turn our attention to b,, however, we see that although
the estimates of b, are similar (66.78 versus 66.68), S, is
much larger in the mixed-model result (10.14 versus 1.23
with the use of ordinary least squares). This mixed-model
regression approach is usually necessary to correctly estimate
uncertainty when repeated observations exist within subjects.

Summary

More often than not, when one’s impulse is to conduct a
series of separate simple regressions involving the same
response variable, multiple regression should be used instead.
The flexibility of multiple regression allows elegant, insight-
ful, and often the only correct analysis. Simple nonlinearities
and interaction effects can be introduced to extend the utility
of this method well beyond that of simple regression. As with
any multivariate statistical technique, however, it is possible
to make substantial errors if the method is applied blindly
without appropriate consideration of the underlying assump-
tions, correlations among predictors, influential observations,
and thoughtful exploration of model structure.

Disclosures
None.
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