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A B S T R A C T

Human T-cell lymphotropic virus type 2 (HTLV-2) infection has been shown to be endemic among intravenous
drug users in parts of North America, Europe and Southeast Asia and in a number of Amerindian populations.
Despite a 65% genetic similarity and common host humoral response, the human T-cell lymphotropic viruses type
1 (HTLV-1) and 2 display different mechanisms of host interaction and capacity for disease development. While
HTLV-1 pathogenicity is well documented, HTLV-2 etiology in human disease is not clearly established. From an
evolutionary point of view, its introduction and integration into the germ cell chromosomes of host species could
be considered as the final stage of parasitism and evasion from host immunity. The extraordinary abundance of
endogenous viral sequences in all vertebrate species genomes, including the hominid family, provides evidence of
this invasion. Some of these gene sequences still retain viral characteristics and the ability to replicate and hence
are potentially able to elicit responses from the innate and adaptive host immunity, which could result in
beneficial or pathogenic effects. Taken together, this data may indicate that HTLV-2 is more likely to progress
towards endogenization as has happened to the human endogenous retroviruses millions of years ago. Thus, this
intimate association (HTLV-2/human genome) may provide protection from the immune system with better
adaptation and low pathogenicity.
Introduction

Human T-cell lymphotropic viruses, encompassing the human T-cell
lymphotropic virus type 1 and 2 (HTLV-1 and HTLV-2), which make up,
with the Simian T-cell lymphotropic virus (STLV), the primate T cell-
lymphotropic viruses (PTLV), are members of the delta-retrovirus
genus.1 Primate retrovirus cross-species jumps have occurred for hun-
dreds or thousands of years.2 Continuous interspecies transmission be-
tween a non-human and human primate species with overlapping
natural habitats is probably the origin of seven HTLV-1 subtypes (A to G)
a few thousand years ago.3,4 Fig. 1 describes a retrovirus phylogenetic
inference extracted from the Gypsy Database (GyDB)5 which shows
evolutionary evidence of several viral transmission events between
primates, and even between distant species, that have occurred in the
past.
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Phylogenetic divergence between HTLV-1 and HTLV-2 has occurred
more than one million years ago but they still share about 65% of nucleic
acid sequences.6,7 Therefore, despite a significant similarity they have
distinct pathogenic properties. HTLV-1 was the first human retrovirus
discovered and has mainly been associated with two illnesses,
HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP)
and adult T-cell leukemia/lymphoma (ATL).8–11 On the contrary, HTLV-2
is described as an asymptomatic or minimally infectious agent12 with just
isolated clinical cases reported.13

HTLV-1 and HTLV-2 have distinct oncogenic properties.14,15 They
primarily integrate their genomes into T cells, leading them to immor-
talization.16 HTLV-1 preferentially infects CD4þ T cells while HTLV-2
CD8þ T cells, even though both viruses are detectable in these two
populations.17 Unlike HTLV-1, which is able to induce an aggressive
malignant proliferation of activated CD4þ T cells, such as in ATL,18
or; ZIP code: 05403-907, Brazil.
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Fig. 1. Evolutionary evidence of transmission events between primates and distant species in the past.
Note: Phylogenetic inference extracted from Gypsy Database (GyDB).
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HTLV-2 promotes an oligoclonal proliferation of non-malignant CD8þ T
cells.14

Estimates of the global number of HTLV-1 and HTLV-2 infected in-
dividuals range from 10 to 20 million.19 Some countries in Africa, the
Caribbean basin, South America and Japan are considered to be areas of
higher endemicity.19 HTLV-2 infection has been shown to be endemic
among intravenous drug users in parts of North America, Europe and
Southeast Asia20,21 and in a number of Amerindian populations.22–25

Some indigenous communities, such as the Kayapo, who inhabit the
Amazonian basin, have a 47% prevalence of infection.24 Their ancestors
most probably came to the Americas through the land bridge, the Bering
strait, connecting Asia to the Americas, up to some twelve thousand years
ago.26 Given the high prevalence of infection in Japan, it is interesting to
speculate whether the virus had come to the Americas from Asia with
those ancient immigrants. Despite the high HTLV-2 incidence, clinically
symptomatic patients are not in large numbers.
2

Benign or low pathogenic HTLV-2 infection may be related to viral
latency provided by accessory proteins.14 While, HTLV-1 accessory pro-
teins are an important driving force for infectivity, cell proliferation and
transformation, the pathogenic impact of HTLV-2 accessory proteins is
attenuated.14 Despite Tax-1 and Tax-2 homology, differences in activity
may be responsible for the outcome of the infection.27 Tax-1, unlike
Tax-2, causes DNA damage, activates the non-canonical NF-κB pathway
and deregulates autophagy.14,27–29 HTLV-1 HBZ and HTLV-2 APH-2 viral
proteins play a similar role, but with subtle differences resulting in low
HTLV-2 pathogenicity. Unlike APH-2, HBZ is a more stable protein and
can repress IRF-1, a component of innate immunity, and enhance
TGF-beta signaling and subsequent Foxp3 expression, thereby inducing a
CD4þ regulatory T cell phenotype.30

Additionally, we note that HTLV-2 infection induces a decrease in
beta-chemokine production31 and seems to be more adapted to the
human host which may provide an enhanced type of immune responses
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during HIV-1 co-infection as compared to HIV-1 infection alone with
delayed progression to AIDS.32,33 Furthermore, HTLV-2 as mediated by
Tax2 expression can down-regulate CCR5 expression on lymphocytes,
thereby modulating HIV-1 infection and replication.34

As well as the HIV-1/HTLV-2 co-infection relationship, some endog-
enous retroviruses (ERVs) play a critical role in protecting the host
against infection from related pathogenic and exogenous retroviruses.35

For example, an endogenous version of the Jaagsiekte sheep retrovirus
(enJSRV) interferes with the replication of exogenous JSRV, acting like a
restriction host mechanism.36 Furthermore, enJSRV-26, a specific pro-
virus which was integrated in the host genome recently, exerts an
antagonistic effect on exogenous beta-retroviruses in sheep.36 Surpris-
ingly, enJSRV-26 endogenization occurred around 200 years ago after
sheep domestication.35,36

In the human host, HIV-1 infectivity and core assembly are altered
due to the interference of Gag formation by HERV-K Gag particles.37 HIV
elite controllers present HERV-K Gag specific cellular and humoral re-
sponses that promote an immunoprotective effect.38,39 Biological pro-
cesses that can be favorable to the host are an important requirement for
retroviral endogenization. Thus, some ERV proteins play a role in host
defenses against retroviral infection. In summary, the protective ability of
endogenous retroviruses against infection by related pathogenic retro-
viruses seems to be an important driving force that positively selected
and fixed endogenous retroviruses.35

When considering that a “candidate” for viral endogenization should
have some degree of adaptation such as a low pathogenic course in
exogenous retrovíruses, HTLV-2 could be in this process. HTLV-2 has
been infecting human beings since the Prehistoric Period and a minority
of individuals have presented with an illness. There is obviously an
advantage for a virus to have the ability to escape immune selection.
However, the HTLV-2 envelope protein becomes non-functional with
only a limited number of mutations, which is in contrast to the HIV-1
envelope.40 The mutation rate is lower in HTLV-2 than in HIV-1,
conferred by accurate reverse transcription.41 Moreover, HTLV-2 uses
the host DNA polymerase during clonal expansion of infected cells as a
replication strategy, which decreases mutation rates and contributes to
viral genomic stability.42 Compared to endogenous retroviruses, exoge-
nous retroviruses such as HIV-1 and HTLV HTLV-2 have a higher repli-
cation rate, embedded into the host genome. A decreasing trend in
retroviral replication rate is observed in more recently emerging retro-
viruses when compared to older ones43 (see Table 1). Mutation rates are
also much lower among ERVs than exogenous retroviruses, since the
Table 1
Characteristics of human retroviruses and human diploid cells.

Variable HIV-1 HTLV-1 HTLV-
2

HERV Human
diploid
cells

Mutation rate 10-4 10-5 10-6 10-6 10-7

Viral load (no
treatment)

High Low Very
low

Absence Absence

CD4þ T cells loss Yes No No No ____
CD8þ T cells
increase

Yes Yes? Yes? No data ______

IL-2 production decreased Increased Very
high?

No data _____

Estimated time
in human
genome
(years)

~ 102 106 107 108 109

Apoptosis rate High Low Low Very
low

Very low

Morbidity (no
treatment)

High Intermediate None None 0

HERV: human endogenous retroviruses; HIV-1 human immunodeficiency virus
type 1.
HTLV-1: Human T-cell lymphotropic virus type 1; HTLV-2: Human T-lympho-
tropic virus type II; IL-2: interleukin-2-.
Note: HTLV-3 and HTLV-4 were not included for lack of data.
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former are subject to the lower evolutionary rates of the host genome,3 in
contrast to exogenous retroviruses where the reverse transcription step is
not subject to editing or error correction.44

Viral endogenization has resulted in a massive insertion of endoge-
nous viral elements from diverse origins and ages which are distributed
in the human genome and other vertebrates.48,49 Retrovirus endogeni-
zation seems to be occurring after continuous retroviral invasion and
integration in the germ cell genome.35,50 The HTLV-2 integration locus in
T cells is variable, with no specific chromosomal integration site or
pattern identified within transformants.51

The integration process in the host germ cell genome is also required
for the endogenization process. Despite the fact that the HTLV-2 genome
has not been found integrated into the germinal cells,45,46 we can spec-
ulate about the possibility of its integration into the germ cell chromo-
somes. A good example among human retroviruses is HIV-1 which
appears to integrate in the male cell genome. HIV-1 DNA was detected in
sperm after chromatin decondensation, suggesting a viral presence in the
sperm nucleus or integration into its genome.45 In addition, HIV-1 par-
ticles in sperm cells from AIDS patients can be transferred to normal
oocytes.46 Despite the absence of a CD4þ T cell membrane receptor in
sperm cells, HIV-1 can use a galactosylceramide-like compound as an
alternative receptor.46,47 Therefore, due to the molecular plasticity of
retrovíruses, it is not surprising that HTLV-2 was able to find a receptor to
infect germ cells.

From an evolutionary point of view, the exogenous genome integra-
tion into the germ cell chromosome of host species could be considered as
the final stage of parasitism and evasion from host immunity. The
extraordinary abundance of endogenous viral sequences in the genome
(more than 8%) of all vertebrate species, including the hominid family, is
evidence for this invasion.52 As expected, evolutionary competition be-
tween endogenous and exogenous retroviruses is a continuous balancing
process, the potentially pathogenic effects of endogenous viral elements
to the host being compensated by its beneficial effects.52

Taken together, this data may indicate that HTLV-2, regardless of
subtypes, is on its way towards potential endogenization, as shown by the
example of an exogenous Koala retrovírus, known for its role in the eti-
ology of neoplasia, that has endogenize in some koala populations.53 This
process may have happened to HERVs millions of years ago.44 However,
pathogenicity is related to cell specificity and not cytotoxicity. A good
example is the rabies virus which is hardly cytotoxic but leads to cell
death. In contrast, enteroviruses are highly cytotoxic with a rapid turnover
but allow patients to recover. One may suggest that if a virus infects the
germline, its original pathogenicity may be relevant providing infected
people have enough time to reproduce, which would be the case for
HTLV-2.54 Thus, this intimate association (HTLV-2/human genome) pro-
vides potential protection from the immune system and some adaptive
properties from retrovíruses such as HTLV-2. This hypothesis suggests that
HTLV-2 represents a possible example of ongoing in vivo endogenization.
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