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Understanding how geography, oceanography, and climate have
ultimately shaped marine biodiversity requires aligning the distri-
butions of genetic diversity across multiple taxa. Here, we examine
phylogeographic partitions in the sea against a backdrop of bio-
geographic provinces defined by taxonomy, endemism, and species
composition. The taxonomic identities used to define biogeographic
provinces are routinely accompanied by diagnostic genetic differences
between sister species, indicating interspecific concordance between
biogeography and phylogeography. In cases where individual species
are distributed across two or more biogeographic provinces, shifts in
genotype frequencies often align with biogeographic boundaries,
providing intraspecific concordance between biogeography and
phylogeography. Here, we provide examples of comparative phy-
logeography from (i) tropical seas that host the highest marine
biodiversity, (ii) temperate seas with high productivity but volatile
coastlines, (iii) migratory marine fauna, and (iv) plankton that are
the most abundant eukaryotes on earth. Tropical and temperate
zones both show impacts of glacial cycles, the former primarily
through changing sea levels, and the latter through coastal habitat
disruption. The general concordance between biogeography and
phylogeography indicates that the population-level genetic diver-
gences observed between provinces are a starting point for mac-
roevolutionary divergences between species. However, isolation
between provinces does not account for all marine biodiversity;
the remainder arises through alternative pathways, such as eco-
logical speciation and parapatric (semiisolated) divergences within
provinces and biodiversity hotspots.
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Phylogeography has roots in biogeography, wherein geographic
provinces are identified by concordant shifts in species com-

position. If the partitions defined by taxonomy are regarded as
first-order approximations of evolutionary genetic separations,
then continuity between biogeography and phylogeography is
apparent. Marine biogeography, the study of species’ distribu-
tions and evolutionary processes in the sea, began in the mid-
19th century based on taxonomic distinctions. Dana (1) divided
the surface waters of the world into several temperature zones
based on the distributions of corals and crustaceans. Woodward
(2) identified a series of marine provinces based on the distri-
butions of mollusks. Forbes (3) made three enduring observa-
tions: (i) each biogeographic province is a center of origin for new
species, (ii) these new species tend to migrate outward from the
center of origin, and (iii) provinces, like species, must be traced back
to their historical origins to be understood. These three funda-
mental contributions appeared in the same decade in which Darwin
and Wallace (4) and Darwin (5) identified geography and natural
selection as agents of evolutionary change.
It is remarkable that five essential publications in the 1850s

(1–5) set the stage for 150 y of biogeographic research. Sub-
sequent effort was devoted to species descriptions, geographic
ranges, and relationships. Evolutionary hypotheses were formu-
lated by examining the morphology and distribution of organ-
isms. However, not until the advent of molecular technologies in

the 1970s did biogeography transition through another funda-
mental change (6).
A primary theme emerging from marine biogeography is

concordant levels of endemism in very diverse taxa. For example,
endemism in Hawai’i is 25% for red algae and fishes (7, 8) and
20% for mollusks (9). The Caribbean Province has 33% ende-
mism for fishes (10), 32% for decapod crustaceans (11), and 37%
for corals (12). In the Red Sea, endemism is 13% for fishes and
polychaetes, 8% for echinoderms, 17% for ascidians, and 5.5% for
corals (13). This concordance across diverse taxonomic groups
indicates unifying evolutionary processes.
Here, we demonstrate concordance between biogeographic prov-

inces defined by taxonomy and phylogeographic clusters identi-
fied with DNA sequences. At the level of interspecific comparisons,
this concordance is obvious; genetic partitions between sister
species are expected. However, below this level, at the inception
of speciation, it is still unclear how genetic partitions within
species (defined by allele-frequency shifts and significant F-statistics)
translate into species-level divergences (reciprocal monophyly and
morphological distinction). Concordance between taxonomy-based
biogeography and genetic-based phylogeography would indicate
a continuum from population isolation to morphological di-
vergence to evolutionary innovation. In this review, we examine
comparative phylogeography, first across biogeographic prov-
inces and second across taxonomic groups with widely divergent
life histories.
A second goal is to summarize aspects of comparative phylo-

geography that illuminate the origins of marine biodiversity. As
in terrestrial and freshwater systems, phylogeographic compari-
sons among species often reveal a diversity of outcomes, attrib-
uted to the idiosyncrasies of individual taxa (14, 15). However,
the comparative approach can reveal insights unavailable from
any one example (16), as illustrated by the terrestrial biota of
Hawai’i (17). Finally, illuminating the origins of new species at
biodiversity hotspots and centers of endemism can illustrate
conservation priorities for the ocean, the cradle of life on our
beleaguered planet.

Biogeographic Provinces
Tropical Oceans. Tropical oceans are characterized by biodiversity
hotspots, including the Caribbean and the Coral Triangle (be-
tween the Philippines, Indonesia, and New Guinea) (Fig. 1A)
and endemism hotspots, such as Hawai’i and the Red Sea on the
periphery of the Indo-Pacific. The evolutionary role of biodiversity
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hotspots versus endemism hotspots is contentious although bio-
diversity hotspots are widely recognized as evolutionary incubators
producing new species (31, 32).
The Coral Triangle has been a stable reef habitat for tens of

millions of years, and this persistence is believed to be key to
the production and export of species (33). Pervasive signals of
population structure indicate that novel species are arising by
parapatric means within the Coral Triangle, wherein partial
isolation between subregions reinforces isolation along ecologi-
cal gradients (34–37). Based on phylogenies of three reef fish
families, Cowman and Bellwood (38) estimate that 60% of Indo-
Pacific reef fauna have origins in the Coral Triangle. In contrast,
peripheral endemism hotspots were previously regarded as evo-
lutionary dead ends (39, 40), in which rare colonization events can
produce endemic species, but with no further evolutionary radi-
ations. This assumption has been challenged in recent years because
phylogeographic studies show that both Hawaiian and Red Sea
provinces can export novel biodiversity (24, 41).
The dominant feature of tropical marine biogeography is the

vast Indo-Polynesian Province (IPP), spanning almost half the
planet (Fig. 1A). Concomitant with this large province are un-
usually large range sizes, averaging 9 million km2 for reef fishes,
roughly the size of mainland China (42). Genetic surveys of reef
organisms are generally consistent with the boundaries of the
IPP, showing little genetic structure across broad areas with a

few important exceptions (e.g., Indo-Pacific Barrier) (41). Schultz
et al. (43) use bathymetry profiles to demonstrate that dispersal
across most of this range (Polynesia to Western Australia) re-
quires no deep-water traverse greater than 800 km. Undoubtedly,
this continuity of shallow habitat contributes to the cohesiveness
of the IPP.
At the center of this vast province is an intermittent barrier

around the Indo-Malay Archipelago, known as the Indo-Pacific
Barrier (Fig. 1A). In the mid-Miocene (16–8 Ma), the Australian
and Eurasian plates collided and reduced water flow between the
Pacific and Indian Oceans (44). During Pleistocene glacial cycles,
sea level dropped as much as 130 m below present levels, further
constricting connections between these ocean basins. Evidence for
interruptions of gene flow can be found in the distributions of
sister species, coupled with phylogeographic partitions (as de-
fined by reciprocal monophyly or ΦST > 0.10) in green turtles
(45), dugongs (46), and ∼80% of surveyed reef species (Fig. 2)
(30, 52). Given the cyclic nature of this barrier, phylogeographic
partitions driven by Pleistocene glacial fluctuations are expected
to be concordant in terms of geography, but not necessarily
concordant in terms of chronology.
On the eastern periphery of the enormous IPP are three isolated

provinces with high endemism in reef fishes: (i) the Hawaiian
Islands with 25% endemism (8), (ii) the Marquesas Islands
with 13.7% endemism (53), and (iii) Easter Island with 21.7%

III

II
I

N

S

EW

30

0

30

30 60 90 120 180150 150 120 90
60

60

Red Sea
Western Indian Ocean

Indo-Polynesian
Sino-Japanese Marquesas

Hawaiian Galápagos
Panamanian

30

0

30

60

60

N

S

EW

N

S

EW

30

0

30

30 60 90 120 180150 150 120 90
60

60

30 60 90 120 180150 150 120 90

N

S

EW

30

0

30

60

60

30 60 90 120 180150 150 120 90

1

N

S

EW

30

0

30

60

60

30 60 90 120 180150 150 120 90

3

2 4

5 6

87 9 10 11 12 13

A

CB

D E

Fig. 1. (A) Biogeographic provinces of the tropical
Indo-Pacific as defined by >10% endemism (18).
Coral triangle is indicated in dark blue. Primary
barriers include (site I) Red Sea Barrier, (site II) Indo-
Pacific Barrier, and (site III) East Pacific Barrier. (B–E)
Minimaps illustrating widespread species with phy-
logeographic separation (strong allele-frequency
shifts and significant F-statistics) at peripheral prov-
inces. For each panel, the peripheral region(s) of
phylogeographic distinction is highlighted in color,
and photos are of the species with genetic evidence
for that pattern as follows: (B) Hawai’i and the Red
Sea [1, Mulloidichthys flavolineatus (19); 2, Cor-
allochaetodon species complex (20); 3, Panulirus
penicillatus (21); 4, Chaetodon auriga (22)]; (C) Red
Sea only [5, Pygoplites diacanthus (23); 6, Neoniphon
sammara (24)]; (D) Hawai’i only [7, Pristipomoides
filamentosus (25); 8, Chaetodon ornatissimus (26);
9, Acanthurus nigroris (27)]; (E) Marquesas/French
Polynesia [10, Parupeneus multifasciatus (28); 11,
Acanthurus nigrofuscus (29); 12, Lutjanus fulvus (30);
13, Lutjanus kasmira (30)]. Photo credits: J. E. Randall/
FishBase (photograph 7); Tane Sinclair-Taylor (all other
fish photographs); Matthew Iacchei (photograph of
Panulirus penicillatus).
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endemism (54). Phylogeographic studies of the first two provinces
show strong concordance with biogeographic partitions (Fig. 1B).
In Hawai’i, 11 of 16 fishes surveyed are genetically distinct from
conspecifics elsewhere in the Pacific (reviewed in ref. 25). At the
Marquesas, three of five studies reveal divergences that range
from FST ≥ 0.24 at allozyme loci to reciprocal monophyly at
mtDNA (28, 30), and a RADSeq study reveals strong divergence
between a Marquesan surgeonfish and a widespread sister spe-
cies (55).
On the western side of the IPP lies the Red Sea biogeographic

province, an endemism hotspot characterized by a shallow con-
nection to the Indian Ocean and latitudinal gradients in tem-
perature, salinity, and nutrient load (13, 56). Many Red Sea
endemics have sister species in the adjacent Western Indian
Ocean (56). This interspecific pattern aligns with mtDNA par-
titions within species ranging from haplotype frequency shifts to
reciprocal monophyly in fishes and invertebrates (table 2 in ref.
56). For example, the Indo-Pacific damselfish (Dascyllus arua-
nus; 57) and yellowstripe goatfish (Mulloidichthys flavolineatus;
19) both demonstrate similar divisions in mtDNA sequences
(ΦST > 0.65) and microsatellite genotypes (FST > 0.03). In some
cases, coalescence analyses reveal that Red Sea lineages are
older than those in the Indian Ocean, indicating that the former
can export biodiversity to adjacent waters (24).
For widely distributed species, genetic divergences at periph-

eral locations may be the inception of speciation. The pronghorn
spiny lobster, Panulirus penicillatus, with a 9-mo pelagic larval
duration and a distribution across the entire tropical Indo-Pacific,
illustrates genetic diversification at both ends of its range. Iac-
chei et al. (21) found fixed differences in mtDNA of East Pacific
and Red Sea populations (ΦST = 0.74), corroborated by mor-
phological differentiation in the East Pacific (58). Speciation in
peripheral provinces is apparent in Thalassoma wrasses (59),

Anampses wrasses (60), Acanthurus surgeonfishes (55), Mulloi-
dichthys goatfishes (19), and Montastraea corals (61).
The East Pacific Barrier (EPB) limits the distribution of tropical

species (62), with few taxa able to maintain population connectivity
across the EPB, as evidenced by the lobster P. penicillatus (21), and
the coral Porites lobata (63, 64). However, some fishes (65) and the
echinoderm Echinothrix diadema (66) have low or insignificant ΦST
values across the EPB.

Atlantic and Indo-Pacific Connections. Two geological events iso-
lated the tropical Atlantic from the Indo-Pacific: (i) closure of
the Tethys Sea ∼13 Ma, brought about by the collision of Africa
and Eurasia, and (ii) the rise of the Isthmus of Panama ∼3.5 Ma
that separated the Atlantic from the East Pacific Ocean (67). For
the latter, some species diverged well before the final closure
although the timing of partitions remain controversial (68) (a
fruitful topic for genomic studies). Since the closure of the
Tethys Sea, natural dispersal between the Atlantic and Indian
Oceans has been limited to the hydrographically complex waters
around southern Africa (69). A warm-water corridor here was
curtailed ∼2.5 Ma by the advent of modern glacial cycles and
upwelling in the Benguela Current on the Atlantic side (70).
However, the Agulhas Current on the Indian Ocean side occa-
sionally forces warm-water gyres into the Atlantic (71), a po-
tential route of colonization. Phylogeographic studies confirm
sporadic dispersal along this route over the last 2.5 My, primarily
from the Indian to Atlantic Ocean (72, 73).

Summary. In conclusion: (i) Biodiversity hotspots and peripheral
centers of endemism both produce and export novel evolutionary
lineages. (ii) Phylogeographic partitions, as defined by mtDNA
monophyly or strong population structure, align well with the
biogeographic provinces defined by taxonomy. (iii) Sporadic
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Fig. 2. Evidence of isolation across the Indo-Pacific Barrier. (A) Distribution patterns of sister species pairs. Distributions shaded in purple (and indicated by
arrows) represent areas of species overlap. (B) Phylogeographic studies demonstrating divergent genetic lineages within species. Black and white in pie
diagrams indicate distribution of mtDNA phylogroups separated by at least three mutations. In all cases, there is evidence of population expansion with
overlap in the Indo Malay-Philippine biodiversity hotspot (Coral Triangle) (47). Myripristis berndti data from Craig et al. (48), Cephalopholis argus data from
Gaither et al. (49), Sphyrna lewini data from Duncan et al. (50), and Nerita albicilla data from Crandall et al. (51). COI, cytochrome oxidase subunit 1; Cyt b,
cytochrome b. Photo credit: J. E. Randall for fishes, Wikimedia commons/Harry Rose for Nerita albicilla.

7964 | www.pnas.org/cgi/doi/10.1073/pnas.1602404113 Bowen et al.

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

A
ug

us
t 1

0,
 2

02
0 

www.pnas.org/cgi/doi/10.1073/pnas.1602404113


dispersal around southern Africa is the primary avenue of col-
onization between Indo-Pacific and Atlantic oceans.

Temperate and Polar Seas. Northern seas experienced greater ex-
tremes in temperature over the Pleistocene than tropical seas,
and northern near-shore ecosystems were periodically eradicated
by glaciers encroaching onto continental shelves whereas in-
terglacial warming led to colonizations and population expan-
sions. Although phylogeographic structure generally occurs between
biogeographic provinces, sub-Arctic shelf fauna have been re-
peatedly disrupted by glacial cycles (74). Therefore, present-day
physical barriers to gene flow may not exert the same influence
on phylogeographic patterns as observed in more stable tropical
seas. The most notable barriers separating biogeographic do-
mains are the large expanses of ocean waters across the North
Pacific and North Atlantic.
North Pacific. Species in the temperate regions on both sides of the
North Pacific show a range of evolutionary divergences that
largely depend on dispersal capabilities, temperature tolerances,
and climate history. Taxa at higher latitudes tend to have dis-
tributions that span the North Pacific (versus taxa at midlatitudes).
For example, cold-tolerant cods (Gadus), herring (Clupea), and
king crabs (Lithodes, Paralithodes) occur in both the Northwest
and Northeast Pacific. Most of these trans-Pacific species show
phylogeographic breaks, centered on the Aleutian Archipelago
or eastern Bering Sea, that represent secondary contact zones
after repeated isolations (75–77). In contrast, temperate fishes,
invertebrates, and seaweeds at midlatitudes are generally limited
to one side of the North Pacific, with closely related species
on the other side. A notable exception are disjunct populations
of Pacific sardines (Sardinops) in the Northwest and Northeast
Pacific (78).
North Atlantic. This basin is smaller than the North Pacific and has
a U-shaped shoreline with Greenland, Iceland, and Faroe Is-
lands in midocean. Populations of fishes, invertebrates, and
seaweeds show a range of genetic divergences across the North
Atlantic (79–81). Conspecific populations on either side of the
North Atlantic were isolated during glacial episodes, and, in
some taxa, the Northwest Atlantic was extirpated and reestab-
lished after the Last Glacial Maximum. Some populations in the
Northwest Atlantic show closer genetic affiliations to the North
Pacific than to the Northeast Atlantic (seagrass and sea urchins)
(82). The Baltic, North Sea, and Mediterranean biogeographic
provinces are isolated to some extent from the Atlantic by nar-
row straits, which often coincide with phylogeographic transi-
tions (83, 84).
Arctic biogeographic province. The far northern ocean has served as
a pathway for dispersal between the North Atlantic and North
Pacific (85). Phylogeographic and taxonomic studies reveal sister
species in the North Atlantic and North Pacific, including several
fishes (86), invertebrates (85), and seaweeds (87). During ∼20%
of the Pleistocene, high sea levels breached the 50-m sill across
the Bering Strait (88), allowing interocean dispersal as early as
6.4 Ma and again at 3.5 Ma (89). More recent dispersal events
have led to the cooccurrence of conspecific populations in both
oceans (90).
Antarctic biogeographic province.The Antarctic is relatively old, ∼25 My,
compared with about 2.5 My for the Arctic. The result of this
ancient formulation is high endemism: 88% in fishes (91) and
42–56% in four invertebrate classes (92). The high homoge-
neity of taxa across this vast region is facilitated by the Ant-
arctic Circumpolar Current, which circles the entire continent.
Phylogeographic studies are consistent with a highly connected
Antarctic Province, showing little (or no) population struc-
ture for two decapods (93), one nemertean (94), and four ice
fishes (95).

Patterns Within Biogeographic Provinces. Within the shallow-water
provinces, species often share genetic breaks at specific geo-
logical features or geographical regions. Examples range from
the classic study by Avise (96) on the Carolina Province (South-
east United States), through more recent surveys of the benthic
fauna along the coast of New Zealand (97), the northeastern
Pacific (98), the Coral Triangle (36), southern Africa (69), and
Hawai’i (14). Endemic species confined to a single province tend
to show more population structure than widespread species at
the same geographic scale (36, 99, 100). Species that lack pelagic
development generally show strong genetic structure whereas
species with pelagic development are less predictable (101, 102).
Regardless of developmental mode, ecological niche, or evolu-
tionary relationships, species showing geographic structuring often
have concordant genetic breaks, indicating that shared history or
physical factors drive the observed pattern (96). Examination of 47
reef-associated species across the Hawaiian Archipelago reveals
that multispecies trends in genetic diversity are driven by a combi-
nation of both the dominant physical, historical and ecological
features of the seascape, and ecological–genetic feedback within
communities (103).
Species that counter these trends may be particularly informative

about the process of evolution. For example, Hawaiian limpets of
the genus Cellana have diversified within the archipelago along a
tidal gradient that indicates ecological speciation (104). Certainly,
species sharing population structure at unexpected locations within
biogeographic provinces (such as Fiji in the tropical Pacific) (21,
105), or other exceptions to those general trends, will provide
evolutionary insights.

Summary. In conclusion: (i) Species distributions are fundamen-
tally shaped by physiological tolerances to north–south tempera-
ture gradients in the North Pacific and North Atlantic. (ii) Glacial
cycles impact phylogeography by repeatedly altering species dis-
tributions, isolating populations, and creating secondary contact
zones. (iii) Shifting interactions between ocean-climate, coastal
configuration, and bottom topography produce barriers to dis-
persal between ocean basins. (iv) Some biogeographic provinces
are genetically homogenous, with little opportunity for allopatric
divergences, whereas others host heterogeneous habitats that
can promote speciation along ecological boundaries.

Taxon-Specific Patterns
Migratory ability and historical dispersal define taxa along a
continuum of evolutionary divergence. Clusters of closely related
species, each confined to a single biogeographic province, are at
one end of the continuum, and highly migratory megafuana are
at the other end. Oceanic migrants provide special challenges to
both phylogeographic studies and conservation strategies, be-
cause both must be conducted on a scale that transcends bio-
geographic provinces and political jurisdictions (106). Species in
the center of the continuum include temperate taxa inhabiting
disjunct regions, such as antitropical taxa, sister species separated
by the tropics. Comparative phylogeography of these groups pro-
vides insights into the roles of dispersal and isolation in con-
tributing to biodiversity.

Antitropical Taxa. Species with disjunct distributions on both sides
of the tropics provide fascinating subjects for phylogeographic
study. Equatorial surface waters are lethal to these cold-adapted
species, so how do they cross the tropics, and how often can this
crossing be accomplished? Sister taxa of fishes on each side of
the equator reveal divergences ranging from populations to dis-
tinct lineages, but without a clear pattern. For example, a single
species of anchovy (Engraulis) occurs in the North Atlantic,
southern Africa, and Japan, but three additional species have
more restricted ranges (107, 108). In contrast, a single species
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of sardine (Sardinops) extends from southern Africa to Australia
to Chile, California, and Japan (78).
Overall results show that the ability to traverse the tropics is

species-specific and that these events have not been limited to
particular periods of global cooling. However, one possible point
of concordance includes the eastern continental margins of the
Atlantic (for anchovies) and the Pacific (for sardines). In both
cases, colonizations across the equator have been accomplished
recently, as indicated by shared mtDNA haplotypes (Fig. 3).

Cetaceans. Patterns of gene flow vary extensively across space and
time for cetaceans, driven largely by the wide variety of life
history traits (109, 110). Most species exhibit limited gene flow
between ocean basins, even in taxa with temperate distributions;
but genetic structure within ocean basins varies substantially
across species. For Mysticetes (baleen whales), patterns of gene
flow are shaped by migratory pathways, with individuals typically
exhibiting maternally based site fidelity to tropical breeding and
temperate/Arctic feeding areas. This fidelity leads to population
genetic separations between ocean basins and among breeding
areas, with FST values of 0.05 to 0.1 for right whales (111), blue
whales (112), and humpback whales (113).
In contrast, most Odontocetes (toothed whales) do not un-

dertake large-scale migrations and often exhibit genetic structure
over relatively short geographic distances due to site fidelity,
resource specialization, and social structure. For example, strong
fidelity to narrow ranges can result in genetically divergent pop-
ulations along continuous coastlines or between adjacent islands,
as is the case for spinner dolphins (114), Hector’s dolphins (115),
and Indo-Pacific humpback dolphins (116). Some Odontocetes
have ecologically and behaviorally distinct groups (“ecotypes”),
with limited gene flow even in parapatry or sympatry (109).
Several dolphin species contain genetically divergent coastal
and pelagic ecotypes (117). Killer whales have sympatric eco-
types that differ in prey type, foraging strategy, social structure,
and movement (118).

Sea Turtles. The seven species of sea turtles show patterns of
population structure within ocean basins defined by natal hom-
ing, the habit of females (and sometimes males) to return to the
vicinity of their natal beach, after decades of growth in ocean and
coastal habitats. This behavior is the basis for defining regional

management units (119). On a global scale, occasional wander-
ing provides connections between nesting populations and ocean
basins. Cold-tolerant species, such as the leatherback turtle, pass
freely between ocean basins (120). Tropical species, such as the
green turtle and the hawksbill turtle, make rarer connections
between the Atlantic and Indo-Pacific via southern Africa (121,
122). Bowen and Karl (123) note higher genetic divergences
between ocean basins in tropical species, providing a signal that
allopatric speciation may predominate in this group.

Pelagic Fishes. A primary phylogeographic pattern for these oce-
anic migrants is low to no genetic structure within ocean basins,
and strong genetic structure between the Atlantic and Indo-Pacific.
Some pelagic species seem to cross the Benguela Barrier (southern
Africa) often enough to preclude the development of evolutionary
partitions, including albacore tuna (124, 125), wahoo (126), and the
common dolphinfish (127). However, these species are likely ex-
ceptions, with many large, vagile species demonstrating structured
populations across this barrier, including the scalloped hammer-
head shark (50), whale shark (128), and blue marlin (129). For
tunas in particular, a recurring pattern is two mtDNA lineages: one
confined to the Atlantic and an Indo-Pacific lineage that is also
found in the Atlantic (table 6 in ref. 126). This pattern indicates
extended periods of isolation, punctuated by dispersal around
southern Africa.

Plankton. In the oceanic pelagic zone, where all life stages are
planktonic, species’ ranges are both extensive and dynamic be-
cause adult distributions are not tied to a particular benthic
habitat. In turn, biogeographic provinces for the pelagic zone
are based on physical and chemical properties (biogeochemical
provinces) (130) rather than endemism or species assemblages.
Longhurst (131) identified ∼55 biogeochemical provinces (BGCPs),
nested within four biomes (Polar, Westerly Winds, Trade Winds,
Coastal), across four ocean basins (Atlantic, Pacific, Indian,
Southern). Like the species they harbor, the boundaries of the
BGCPs fluctuate on both seasonal and annual timescales in ac-
cordance with changing environmental conditions (132). Our
understanding of pelagic community composition is still nascent,
but recent studies have shown concordance between BGCPs and
community composition in taxa ranging from viruses (133) to
phytoplankton (134) to fishes (135).

Fig. 3. Sardines (genus Sardinops) and Anchovies (genus Engraulis) are antitropical species that recently surmounted the warm-water barrier between
northern and southern hemispheres, as indicated by mtDNA haplotype networks. For sardines in the East Pacific, transequatorial dispersal is facilitated by a
short and steep continental shelf and adjacent deep cold water (78). For anchovies in the East Atlantic, transequatorial dispersal is facilitated by upwelling
(cold nutrient-rich water) in low latitudes (107). Light and dark haplotypes indicate northern and southern hemisphere, respectively. Squares connected by a
dashed line indicate haplotypes shared between hemispheres. Note that, in the East Pacific sardine, the haplotype shared between northern and southern
hemisphere is internal to both networks, indicating an ancient connection. In contrast, the East Atlantic anchovy has connections across the equator that
include both interior and peripheral haplotypes in the network.
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Cosmopolitan distributions in the pelagic zone initially prompted
the conclusion of little to no population structure in the open ocean,
a position that has eroded in recent decades (136, 137). Phylo-
geographic studies reveal that many cosmopolitan taxa are
composed of multiple cryptic species (138, 139), including some
that are sympatric over part of their ranges (140). Populations of
these cosmopolitan species are subdivided in two ways concor-
dant with the BGCP framework: (i) by continental land masses
separating ocean basins, and (ii) by habitat discontinuities in the
equatorial region between subtropical gyres in the northern and
southern hemispheres (140–142). The few global-scale phylo-
geographic studies have been restricted to copepods, but evi-
dence from a diversity of other taxa sampled at ocean basin
scales indicate that lineages have diverged both in allopatry and
sympatry at much smaller geographic distances than anticipated,
with examples drawn from chaetognaths (143), euphausiids (144),
and mollusks (145).
These combined results indicate that population discontinu-

ities of pelagic species are determined not by the temporal and
spatial scales of dispersal, but by habitat characteristics enabling
species to maintain viable populations (137, 143). Habitat se-
lection, rather than physical barriers, may be a primary force
driving speciation in the pelagic zone (146). Therefore, a bio-
geographic framework based on water properties is concordant
with genetic partitions within species.

Summary. In conclusion: (i) Several temperate species show dis-
junct distributions across the tropics, indicating historical dispersals
across warm-water barriers. (ii) The deepest phylogeographic
separations for oceanic migrants indicate patterns of allopatric
isolation between ocean basins, especially for fishes. (iii) Migratory
sea turtles and cetaceans show population structure based on re-
productive site fidelity. (iv) An ecological component to speciation
is indicated by isolation along behavioral barriers in cetaceans,
and by the presence of sympatric sister species in the plankton.
(v) Planktonic biogeographic provinces are defined by water masses
that can change size and position based on oceanographic condi-
tions. (vi) Initial plankton studies indicate concordance between
biogeochemical provinces and phylogeographic partitions, particu-
larly at the equatorial break between northern and southern
subtropics.

Terrestrial vs. Marine Phylogeography
Life began in the oceans, but the field of phylogeography began
with continental biota (6, 15), and many of the insights reviewed
here have precedents in terrestrial cases. The biogeographic
settings have parallels between land and sea, particularly with
latitudinal gradients in biodiversity and concordance between

biogeographic provinces and phylogeographic partitions (15, 147).
Glacial habitat disruptions in northern seas have a strong parallel in
continental faunas (148, 149). Biodiversity hotspots in Indo-Pacific
reefs, forests of northern Australia, and Neotropical plant com-
munities are all distinguished by periods of stability, habitat het-
erogeneity, and the ability to export species (33, 150, 151). A primary
difference between marine and terrestrial phylogeography is greater
dispersal potential and fewer barriers in the oceans. Although a
squirrel in Central Park (New York) cannot deposit progeny in
Hyde Park (London), a squirrelfish is capable of dispersing on this
scale (48). This difference in evolutionary processes is clear in the
Hawaiian Archipelago, where rare terrestrial colonists have pro-
liferated into dozens and hundreds of species (17) whereas marine
colonists produce one or a few species (104). Therefore, the evo-
lutionary dramas above and below the waterline have the same in-
gredients (isolation, selection, adaptation, speciation), but markedly
different tempos and outcomes (152).

Conclusion
Marine phylogeography encompasses half-billion year separa-
tions and the largest habitat on the planet. Given this diversity,
generalizations are few, but some are especially robust. First,
phylogeography is the new incarnation of spatial biogeography
(153). The alignment of population genetic separations and
taxonomic distributions reveals that these are part of a continuum.
Evolutionary partitions that could previously be described only with
taxonomy are now evaluated with the genomic footprints of iso-
lation, selection, and speciation. Second, the model of allopatric
speciation that previously dominated evolutionary thought is an
incomplete fit to the dispersive aquatic medium. Phylogeography of
oceanic migrants indicates a strong role for allopatric speciation
whereas heterogeneous coastal habitats provide more opportunity
for sympatric/ecological divergences. Phylogeography in high lati-
tudes is defined by shifting habitats in response to glaciation. Finally,
both biodiversity hotspots and endemism hotspots are important in
producing novel evolutionary lineages and may work in synergy to
enhance biodiversity on the ocean planet.
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