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Chapter 1Elements of Group Theory
1.1 The onept of groupThe idea of groups is one that has evolved from some very intuitive oneptswe have aquired in our attempts of understanding Nature. One of these isthe onept of mathematial struture. A set of elements an have a variety ofdegrees of struture. The set of the letters of the alphabet has some struturein it. They are ordered as A < B < C::: < Z. Although this order is�titious, sine it is a onvention, it endows the set with a struture thatis very useful. Indeed, the relation between the letters an be extended towords suh that a telephone diretory an be written in an \ordered way".The set of natural numbers possesses a higher mathematial struture. Inaddition of being \naturally" ordered we an perform operations on it. Wean do binary operations like adding or multiplying two elements and alsounary operations like taking the square root of an element (in this ase theresult is not always in the set). The existene of an operation endows the setwith a mathematial struture. In the ase when this operation loses withinthe set, i.e. the omposition of two elements is again an element of the set, theendowed struture has very nie properties. Let us onsider some examples.Example 1.1 The set of integer numbers (positive and negative) is losed un-der the operations of addition, subtration and multipliation, but is not losedunder, division. The set of natural numbers, on the other hand is not losedunder subtration and division but does lose under addition and multiplia-tion.Example 1.2 Consider the set of all human beings living and dead and de�nea binary operation as follows: for any two persons take the latest ommon5



6 CHAPTER 1. ELEMENTS OF GROUP THEORYforefather. For the ase of two brothers this would be their father; for twoousins their ommon grandfather; for a mother and his son, the mother'sfather, et. This set is losed or not under suh operation depending, of ourse,on how we understand everything has started.Example 1.3 Take a retangular box and imagine three mutually orthogonalaxis, x, y and z, passing through the enter of the box and eah of them beingorthogonal to two sides of the box. Consider the set of three rotations:x � a half turn about the x-axisy � a half turn about the y-axisz � a half turn about the z-axisand let the operation on this set be the omposition of rotations. So if weperform y and then x we get z, z then y we get x, and x then z we get y.However if we perform x then y and then z we get that the box gets bak toits original position. Therefore the set is not losed. If we add to the set theoperation (identity) I \leaves the box as it is", then we get a losed set ofrotations.For a set to be onsidered a group it has to have, in addition of a binaryoperation and losure, some other speial strutures. We now start disussingthem by giving the formal de�nition of a group.De�nition 1.1 An abstrat group G is a set of elements furnished with aomposition law (or produt) de�ned for every pair of elements of G and thatsatis�es:a) If g1 and g2 are elements of G, then the produt g1g2 is also an elementof G. (losure property)b) The omposition law is assoiative, that is (g1g2)g3 = g1(g2g3) for everyg1; g2 and g3 2 G.) There exists an unique element e in G , alled identity element suh thateg = ge = g for every g 2 G.d) For every element g of G, there exists an unique inverse element, denotedg�1 , suh that g�1g = gg�1 = e.There are some redundanies in these de�nition, and the axioms ) and d)ould, in fat, be replaed by the weaker ones:0) There exists an element e in G, alled left identity suh that eg = g forevery g 2 G.



1.1. THE CONCEPT OF GROUP 7d0) For every element g of G, there exists a left inverse, denoted g�1 , suhthat g�1g = e.These weaker axioms 0) and d0) together with the assoiativity propertyimply ) and d). The proof is as follows:Let g2 be a left inverse of g1, i.e. (g2g1 = e), and g3 be a left inverse of g2,i.e. (g3g2 = e). Then we have, sine e is a left identity, thate = eeg2g1 = (g2g1)e sine g2g1 = eg3(g2g1) = g3((g2g1)e) multiplying both sides by g3(g3g2)g1 = (g3g2)g1e using assoiativityeg1 = eg1e sine g3g2 = eg1 = g1e using the fat e is a left identity:Therefore e is also a right identity. We now want to show that a left inverse isalso a right inverse. Sine we know that e is both a left and right identity wehave: eg2 = g2e(g2g1)g2 = g2e sine g2 is a left inverse of g1g3((g2g1)g2) = g3(g2e) multiplying by g3 where g3g2 = e(g3g2)(g1g2) = (g3g2)e using assoiativity:e(g1g2) = ee sine g3g2 = e:g1g2 = e sine e is identity:Therefore g2 is also a right inverse of g1 . Let us show the uniqueness of theidentity and the inverses.Any right and left identity is unique independently of the fat of the produtbeing assoiative or not. Suppose there exist two identities e and e0 suh thatge = eg = e0g = ge0 = g for any g 2 G. Then for g = e we have ee0 = e andfor g = e0 we have ee0 = e0 . Therefore e = e0 and the identity is unique.Suppose that g has two right inverses g1 and g2 suh that gg1 = gg2 = eand suppose g3 is a left inverse of g, i.e. g3g = e . Then g3(gg1) = g3(gg2) andusing assoiativity we get (g3g)g1 = (g3g)g2 and so eg1 = eg2 and then g1 = g2. Therefore the right inverse is unique. A similar argument an be used toshow the uniqueness of the left inverse. Now if g3 and g1 are respetively theleft and right inverses of g, we have g3g = e = gg1 and then using assoiativitywe get (g3g)g1 = eg1 = g1 = g3(gg1) = g3e = g3. So the left and right inversesare the the same.We are very used to the fat that the inverse of the produt of two elements(of a group, for instane) is the produt of their inverses in the reversed order,i.e., the inverse of g1g2 is g�12 g�11 . However this result is true for produts (oromposition laws) whih are assoiative. It may not be true for non assoiative



8 CHAPTER 1. ELEMENTS OF GROUP THEORYproduts.Example 1.4 The subtration of real numbers is not an assoiative operation,sine (x�y)�z 6= x�(y�z) , for x; y and z being real numbers. This operationpossesses a right unity element, namely zero, but does not possess left unitysine, x�0 = x but 0�x 6= x . The left and right inverses of x are equal and arex itself, sine x�x = 0 . Now the inverse of (x�y) is not (y�1�x�1) = (y�x). Sine (x�y)� (y�x) = 2(x�y) 6= 0 . This is an ilustration of the fat thatfor a non assoiative operation, the inverse of x� y is not neessarily y�1 �x�1. The de�nition of abstrat group given above is not the only possible one.There is an alternative de�nition that does not require inverse and identity.We ould de�ne a group as follows:De�nition 1.2 (alternative) Take the de�nition of group given above andreplae axioms ) and d) by: \For any given elements g1; g2 2 G there exists aunique g satisfying g1g = g2 and also a unique g0 satisfying g0g1 = g2 ".This de�nition is equivalent to the previous one sine it implies that, givenany two elements g1 and g2 there must exist unique elements eL1 and eL2 in Gsuh that eL1 g1 = g1 and eL2 g2 = g2 . But it also implies that there exists aunique g suh that g1g = g2. Therefore, using assoiativity, we get(eL1 g1)g = g1g = g2 = eL1 (g1g) = eL1 g2 (1.1)From the uniquiness of eL2 we onlude that eL1 = eL2 .Thus this alternativede�nition implies the existene of a unique left identity element eL. On theother hand it also implies that for every g 2 G there exist an unique g�1L suhthat g�1L g = eL . Consequently axioms ') and d') follows from the alternativeaxiom above.Example 1.5 The set of real numbers is a group under addition but it is notunder multipliation, division, and subtration. The last two operations arenot assoiative and the element zero has no inverse under multipliation. Thenatural numbers under addition are not a group sine there are no inverseelements.Example 1.6 The set of all nonsingular n � n matries is a group undermatrix produt. The set of p � q matries is a group under matrix addition.



1.1. THE CONCEPT OF GROUP 9Example 1.7 The set of rotations of a box disussed in example 1.3 is a groupunder omposition of rotations when the identity operation I is added to theset. In fat the set of all rotations of a body in 3 dimensions (or in any numberof dimensions) is a group under the omposition of rotations. This is alledthe rotation group and is denoted SO(3).Example 1.8 The set of all human beings living and dead with the operationde�ned in example 1.2 is not a group. There are no unity and inverse elementsand the operation is not assoiativeExample 1.9 Consider the permutations of n elements whih we shall repre-sent graphially. In the ase of three elements, for instane, the graph shownin �gure 1.1 means the element 1 replaes 3, 2 replaes 1 and 3 replaes 2. Wean ompose permutations as shown in �g. 1.2. The set of all permutationsof n elements forms a group under the omposition of permutations. This isalled the symmetri group of degree n, and it is generally denoted by Sn .The number of elements of this group is n!, sine this is the number of distintpermutations of n elements.
������������2 3 11 2 3

Figure 1.1: A permutation of three objets
����AAAA���
��������� = ��������

Figure 1.2: A omposition of permutations



10 CHAPTER 1. ELEMENTS OF GROUP THEORYExample 1.10 The N th roots of the unity form a group under multipliation.These roots are exp(i2�m=N) with m=0,1,2..., N-1. The identity elements is1(m = 0) and the inverse of exp(i2�m=N) is exp(i2�(N�m)=N) . This groupis alled the yli group of order N and is denoted by ZN .We say two elements, g1 and g2 , of a group ommute with eah other if theirprodut is independent of the order, i.e., if g1g2 = g2g1 .If all elements of agiven group ommute with one another then we say that this group is abelian.The real numbers under addition or multipliation (without zero) form anabelian group. The yli groups Zn (see example 1.10 ) are abelian for anyn. The symmetri group Sn (see example 1.9 ) is not abelian for n > 2, but itis abelian for n = 2 .Let us onsider some groups of order two, i.e., with two elements. The elements0 and 1 form a group under addition modulo 2. We have0 + 0 = 0; 0 + 1 = 1; 1 + 0 = 1; 1 + 1 = 0 (1.2)The elements 1 and �1 also form a group, but under multipliation. We have1:1 = �1:(�1) = 1; 1:(�1) = (�1):1 = �1 (1.3)The symmetri group of degree 2, S2 , (see example 1.9 ) has two elements asshown in �g. 1.3.
����AAAAe = a =

Figure 1.3: The elements of S2They satisfy e:e = e; e:a = a:e = a; a:a = e (1.4)These three examples of groups are in fat di�erent realizations of the sameabstrat group. If we make the identi�ations as shown in �g. 1.4 we see thatthe struture of these groups are the same. We say that these groups areisomorphi.



1.1. THE CONCEPT OF GROUP 11
1 � -1 �0 � 1 �

����AAAAFigure 1.4: IsomorphismDe�nition 1.3 Two groups G and G0 are isomorphi if their elements anbe put into one-to-one orrespondene whih is preserved under the omposi-tion laws of the groups. The mapping between these two groups is alled anisomorphism.If g1, g2 and g3 are elements of a group G satisfying g1g2 = g3 and if G isisomorphi to another group G0 , then the orresponding elements g01; g02 andg03 in G0 have to satisfy g01g02 = g03.There is the possibility of a group G being mapped into another group G0but not in a one-to-one manner, i.e. two or more elements ofG are mapped intojust one element of G0. If suh mapping respets the produt law of the groupswe say they are homomorphi. The mapping is then alled a homomorphismbetween G and G0.Example 1.11 Consider the yli groups Z6 with elements e, a, a2, ... a5and a6 = e, and Z2 with elements e0 and b (b2 = e0). The mapping � : Z6 ! Z2de�ned by �(e) = �(a2) = �(a4) = e0�(a) = �(a3) = �(a5) = b (1.5)is a homomorphism between Z6 and Z2.Analogously one an de�ne mappings of a given group G into itself, i.e.,for eah element g 2 G one assoiates another element g0. The one-to-onemappings whih respet the produt law of G are alled automorphisms of G.In other words, an automorphism of G is an isomorphism of G onto itself.



12 CHAPTER 1. ELEMENTS OF GROUP THEORYDe�nition 1.4 A mapping � : G! G is said to be an automorphism of G ifit respets the produt law in G, i.e., if gg0 = g00 then �(g)�(g0) = �(g00).Example 1.12 Consider again the yli group Z6 and the mapping � : Z6 !Z6 de�ned by �(e) = e �(a) = a5 �(a2) = a4�(a3) = a3 �(a4) = a2 �(a5) = a (1.6)This is an automorphism of Z6.In fat the above example is just a partiular ase of the automorphism of anyabelian group where a given element is mapped into its inverse.Notie that if � and �0 are two automorphisms of a group G, then theomposition of both ��0 is also an automorphism of G. Suh ompositionis an assoiative operation. In addition, sine automorphisms are one-to-onemappings, they are invertible. Therefore, if one onsiders the set of all auto-morphisms of a group G together with the identity mapping of G into G, onegets a group whih is alled the automorphism group of G.Any element of G gives rise to an automorphism. Indeed, de�ne the map-ping ��g : G! G ��g (g) � �g g �g�1 g; �g 2 G and �g �xed (1.7)Then ��g (gg0) = �g gg0 �g�1= �g g�g�1�gg0 �g�1= ��g (g)��g (g0) (1.8)and so it onstitutes an automorphism of G. That is alled an inner auto-morphism. The automorphism group that they generate is isomorphi to G,sine ��g1 (��g2 (g)) = �g1�g2 g �g�12 �g�11 = ��g1�g2 (g) (1.9)All automorphisms whih are not of suh type are alled outer automorphisms.



1.2. SUBGROUPS 131.2 SubgroupsA subset H of a group G whih satis�es the group postulates under the sameomposition law used for G, is said to be a subgroup of G. The identity elementand the whole group G itself are subgroups of G. They are alled impropersubgroups. All other subgroups of a group G are alled proper subgroups. If His a subgroup of G, and K a subgroup of H then K is a subgroup of G.In order to �nd if a subset H of a group G is a subgroup we have to hek onlytwo of the four group postulates. We have to hek if the produt of any twoelements of H is in H (losure) and if the inverse of eah element of H is inH. The assoiativity property is guaranteed sine the omposition law is thesame as the one used for G. As G has an identity element it follows from thelosure and inverse element properties of H that this identity element is alsoin H.Example 1.13 The real numbers form a group under addition.The integernumbers are a subset of the real numbers and also form a group under theaddition. Therefore the integers are a subgroup of the reals under addition.However the reals without zero also form a group under multipliation, but theintegers (with or without zero) do not. Consequently the integers are not asubgroup of the reals under multipliation.Example 1.14 Take G to be the group of all integers under addition, H1 tobe all even integers under addition, H2 all multiples of 22 = 4 under addition,H3 all multiples of 23 = 8 under addition and son on. Then we haveG : :::� 2; �1; 0; 1; 2:::H1 : :::� 4; �2; 0; 2; 4:::H2 : :::� 8; �4; 0; 4; 8:::H3 : :::� 16; �8; 0; 8; 16:::Hn : :::� 2:2n; �2n; 0; 2n; 2:2n:::We see that eah group is a subgroup of all groups above it, i.e.G � H1 � H2::: � Hn::: (1.10)Moreover there is a one to one orrespondene between any two groups of thislist suh that the omposition law is preserved. Therefore all these groups areisomorphi to one another G � H1 � H2::: � Hn::: (1.11)This shows that a group an be isomorphi to one of its proper subgroups. Thesame an not happen for �nite groups.



14 CHAPTER 1. ELEMENTS OF GROUP THEORYe = ......1 2 3 n-1 n1 2 3 n-1 n a = ......1 2 3 n-1 n!!!!!!AAAA AAAA AAAA AAAA !!n 1 2 n-2 n-1
a2 = ......1 2 3 n-1 n���������� �� ����n-1 n 1 n-3 n-2 an�1= ......1 2 3 n-1 n������������ ����aaaaaaaa2 3 4 n 1Figure 1.5: The yli permutations of n objetsExample 1.15 The yli group Zn , de�ned in example 1.10 , is a subgroup ofthe symmetri group Sn, de�ned in example 1.9 . In order to see this, onsiderthe elements of Sn orresponding to yli permutations given in �gure1.5.These elements form a subgroup of Sn whih has the same struture as thegroup formed by the nth roots of unity under ordinary multipliation of omplexnumbers, i.e., Zn.This example is a partiular ase of a general theorem in the theory of �nitegroups, whih we now state without proof. For the proof, see [HAM 62, hap1℄ or [BUD 72, hap 9℄.Theorem 1.1 (Cayley) Every group G of order n is isomorphi to a sub-group of the symmetri group Sn.De�nition 1.5 The order of a �nite group is the number of elements it has.Another important theorem about �nite groups is the following.Theorem 1.2 (Lagrange) The order of a subgroup of a �nite group is adivisor of the order of the group.Corollary 1.1 If the order of a �nite group is a prime number then it has noproper subgroups.



1.2. SUBGROUPS 15The proof involves the onept of osets and it is given in setion1.4. A�nite group of prime order is neessarily a yli group and an be generatedfrom any of its elements other than the identity element.We say an element g of a group G is onjugate to an element g0 2 G if thereexists �g 2 G suh that g = �gg0�g�1 (1.12)This onept of onjugate elements establishes an equivalene relation on thegroup. Indeed, g is onjugate to itself (just take �g = e), and if g is onjugate tog0, so is g0 onjugate to g (sine g0 = �g�1g�g). In addition, if g is onjugate to g0and g0 to g00, i.e. g0 = ~gg00~g�1, then g is onjugate to g00, sine g = �g~gg00~g�1�g�1.One an use suh equivalene relation to divide the group G into lasses.De�nition 1.6 The set of elements of a group G whih are onjugate to eahother onstitute a onjugay lass of G.Obviously di�erent onjugay lasses have no ommon elements. The indentityelement e onstitute a onjugay lass by itself in any group. Indeed, if g0 isonjugate to the identity e, e = gg0g�1, then g0 = e.Given a subgroup H of a group G we an form the set of elements g�1Hgwhere g is any �xed element ofG andH stands for any element of the subgroupH. This set is also a subgroup of G and is said to be a onjugate subgroup ofH in G. In fat the onjugate subgroups of H are all isomorphi to H, sine ifh1; h2 2 H and h1h2 = h3 we have that h01 = g�1h1g and h02 = g�1h2g satisfyh01h02 = g�1h1gg�1h2g = g�1h1h2g = g�1h3g = h03 (1.13)Notie that the images of two di�erent elements of H, under onjugation byg 2 G, an not be the same. Beause if they were the same we would haveg�1h1g = g�1h2g ! g(g�1h1g)g�1 = h2 ! h1 = h2 (1.14)and that is a ontradition.By hoosing various elements g 2 G we an form di�erent onjugate subgroupsof H in G. However it may happen that for all g 2 G we haveg�1Hg = H (1.15)This means that all onjugate subgroups of H in G are not only isomorphito H but are idential to H. In this ase we say that the subgroup H is aninvariant subgroup of G. This implies that, given an element h1 2 H we an�nd, for any element g 2 G, an element h2 2 H suh thatg�1h1g = h2 ! h1g = gh2 (1.16)



16 CHAPTER 1. ELEMENTS OF GROUP THEORYWe an write this as gH = Hg (1.17)and say that the invariant subgroup H, taken as an entity, ommutes with allelements of G. The identity element and the group G itself are trivial examplesof invariant subgroups of G. Any subgroup of an abelian group is an invariantsubgroup.De�nition 1.7 We say a group G is simple if its only invariant subgroupsare the identity element and the group G itself. In other words, G is simple ifit has no invariant proper subgroups. We say G is semisimple if none of itsinvariant subgroups is abelian.Example 1.16 Consider the group of the non-singular real n � n matries,whih is generally denoted by GL(n). The matries of this group with unit de-terminant form a subgroup sine if detM = detN = 1 we have det(M:N) = 1and detM�1 = detM = 1. This subgroup of GL(n) is denoted by SL(n). Ifg 2 GL(n) and M 2 SL(n) we have that g�1Mg 2 SL(n) sine det(g�1Mg) =detM = 1 . Therefore SL(n) is an invariant subgroup of GL(n) and onse-quently the latter is not simple.De�nition 1.8 Given an element g of a group G we an form the set of allelements of G whih ommute with g, i.e., all x 2 G suh that xg = gx. Thisset is alled the entralizer of g and it is a subgroup of G.In order to see it is a subgroup of G, take two elements x1 and x2 of theentralizer of g, i.e., x1g = gx1 and x2g = gx2. Then it follows that (x1x2)g =x1(x2g) = x1(gx2) = g(x1x2). Therefore x1x2 is also in the entralizer. On theother hand,we have thatx�11 (x1g)x�11 = x�11 (gx1)x�11 ! gx�11 = x�11 g: (1.18)So the inverse of an element of the entralizer is also in the entralizer. There-fore the entralizer of an element g 2 G is a subgroup of G. Notie thatalthough all elements of the entralizer ommute with a given element g theydo not have to ommute among themselves and therefore it is not neessarilyan abelian subgroup of G.De�nition 1.9 The enter of a group G is the set of all elements of G whihommute with all elements of G.



1.3. DIRECT PRODUCTS 17We ould say that the enter of G is the intersetion of the entralizers of allelements of G. The enter of a group G is a subgroup of G and it is abelian ,sine by de�nition its elements have to ommute with one another. In addition,it is an (abelian) invariant subgroup.Example 1.17 The set of all unitary n� n matries with unity determinantform a group, alled SU(n), under matrix multipliaton. That is beause ifU1 and U2 are unitary (U y1 = U�11 and U y2 = U�12 ) then U3 � U1U2 is alsounitary. In addition the inverse of U is just U y and the identity is the unityn � n matrix. The enter of this group has n elements given by the matriese2�im=n1ln�n with m = 0; 1; 2:::(n� 1). They ertainly ommute with all n� nmatries. They belong to SU(n) beause they are unitary and have determinantone.1.3 Diret ProdutsWe say a group G is the diret produt of its subgroups H1; H2:::Hn , denotedby G = H1 
H2 
H3:::
Hn , if1. the elements of di�erent subgroups ommute2. Every element g 2 G an be expressed in one and only one way asg = h1h2:::hn (1.19)where hi is an element of the subgroup Hi , i = 1; 2; :::; n .From these requirements it follows that the subgroupsHi have only the identitye in ommon. Beause if f 6= e is a ommon element toH2 andH5 say, then theelement g = h1fh3h4f�1h6:::hn ould be also written as g = h1f�1h3h4fh6:::hn. Every subgroup Hi is an invariant subgroup of G, beause if h0i 2 Hi theng�1h0ig = (h1h2:::hn)�1h0i(h1h2:::hn) = h�1i h0ihi 2 Hi (1.20)Example 1.18 Consider the yli group Z6 with elements e, a, a2, a3, a4and a5 (and a6 = e ). It an be written as the diret produt of its subgroupsH1 = fe; a2; a4g and and H2 = fe; a3g sinee = ee; a = a4a3; a2 = a2e; a3 = ea3; a4 = a4e; a5 = a2a3 (1.21)Therefore we write Z6 = H1 
H2 (or Z6 = Z3 
 Z2 ).



18 CHAPTER 1. ELEMENTS OF GROUP THEORYGiven two groups G and G0 we an onstrut another group by taking thediret produt of G and G0 as follows: the elements of G00 = G
G0 are formedby the pairs (g; g0) where g 2 G and g0 2 G0. The omposition law for G00 isde�ned by (g1; g01)(g2; g02) = (g1g2; g01g02) (1.22)where g1g2, (g01g02) is the produt of g1 by g2, (g01 by g02) aording to theomposition law of G (G0). If e and e0 are respetively the identity elements ofG and G0, then the sets G
1 = f(g; e0) j g 2 Gg and 1
G0 = f(e; g0) j g0 2 G0gare subgroups of G00 = G 
 G0 and are isomorphi respetively to G and G0.Obviously G
 1 and 1
G0 are invariant subgroups of G00 = G
G0 .1.4 CosetsGiven a group G and a subgroup H of G we an divide the group G intodisjoint sets suh that any two elements of a given set di�er by an element ofH multiplied from the right. That is, we onstrut the setsgH � f all elements gh of G suh that h is any element of H and g is a �xedelement of GgIf g = e the set eH is the subgroup H itself. All elements in a set gH are dif-ferent, beause if gh1 = gh2 then h1 = h2 . Therefore the numbers of elementsof a given set gH is the same as the number of elements of the subgroup H.Also an element of a set gH is not ontained by any other set g0H with g0 6= g. Beause if gh1 = g0h2 then g = g0h2h�11 and therefore g would be ontainedin g0H and onsequently gH � g0H1. Thus we have split the group G intodisjoint sets, eah with the same number of elements, and a given elementg 2 G belongs to one and only one of these sets.Proof of Lagrange's theorem(setion 1.2).From the onsiderations above we see that for a �nite group G of order m witha proper subgroup H of order n, we an writem = kn (1.23)where k is the number of disjoint sets gH.21Notie that two sets gH and g0H may oinide for g0 6= g. However, in that ase g andg0 di�er by an element of H , i.e. g0 = gh.



1.4. COSETS 19The set of elements gH are alled left osets of H in G. They are ertainlynot subgroups of G sine they do not ontain the identity element, exept forthe set eH = H.Analogously we ould have split G into sets Hg whih are formed by ele-ments of G whih di�er by an element of H multiplied from the left. The sameresults would be true for these sets. They are alled right osets of H in G.The set of left osets ofH inG is denoted by G=H and is alled the left osetspae. An element of G=H is a set of elements of G, namely gH. Analogouslythe set of right osets of H in G is denoted by H nG and it is alled the rightoset spae.If the subgroup H of G is an invariant subgroup then the left and rightosets are the same sine g�1Hg = H implies gH = Hg . In addition, theoset spae G=H, for the ase in whih H is invariant, has the struture of agroup and it is alled the fator group or the quoient group. In order to showthis we onsider the produt of two elements of two di�erent osets. We getgh1g0h2 = gg0g0�1h1g0h2 = gg0h3h2 (1.24)where we have used the fat that H is invariant, and therefore there existsh3 2 H suh that g0�1h1g0 = h3 . Thus we have obtained an element of athird oset, namely gg0H. If we had taken any other elements of the osetsgH and g0H, their produt would produe an element of the same oset gg0H.Consequently we an introdue, in a well de�ned way, the produt of elementsof the oset spae G=H, namelygHg0H � gg0H (1.25)The invariant subgroup H plays the role of the identity element sine(gH)H = H(gH) = gH (1.26)The inverse element is g�1H sineg�1HgH = g�1gH = H = gHg�1H (1.27)The assoiativity is guaranteed by the assoiativity of the omposition law ofthe group G. Therefore the oset spae G=H � H nG is a group in the asewhere H is an invariant subgroup. Notie that suh group is not neessarily asubgroup of G or H.Example 1.19 The real numbers without the zero, R�0 , form a group undermultipliation. The positive real numbers, R+, lose under multipliation and



20 CHAPTER 1. ELEMENTS OF GROUP THEORYthe inverse of a positive real number x is also positive (1=x) . Therefore R+is a subgroup of R � 0 . In addition we have that the onjugation of a real xby another real y is equal to x , (y�1xy = x) . Therefore R+ is an invariantsubgroup of R � 0 . The oset spae (R � 0)=R+ has two elements, namelyR+ and R� (the negative real numbers). This oset spae is a group and itis isomorphi to the yli group of order 2, Z2 (see example 1.10), sine itselements satisfy R+:R+ � R+ , R+:R� � R�, R�:R� � R+.Example 1.20 Any subgroup of an abelian group is an invariant subgroup.Example 1.21 Consider the yli group Z6 with elements e, a, a2, ... a5and a6 = e and the subgroup Z2 with elements e and a3. Then the osets aregiven by 0 = fe; a3g ; 1 = fa; a4g ; 2 = fa2; a5g (1.28)Sine Z2 is an invariant subgroup of Z6 the oset spae Z6=Z2 is a group.Following the de�nition of the produt law on the oset given above one easilysees it is isomorphi to Z3 sine0:0 = 0 ; 0:1 = 1 ; 0:2 = 21:1 = 2 ; 1:2 = 0 ; 2:2 = 1 (1.29)If we now take the subgroup Z3 of Z6 with elements e, a2 and a4 we get theosets d0 = fe; a2; a4g ; d1 = fa; a3; a5g (1.30)Again the oset spae Z6=Z3 is a group and it is isomorphi to Z2 sined0:d0 = d0 ; d0:d1 = d1 ; d1:d1 = d0 (1.31)



1.5. REPRESENTATIONS 211.5 RepresentationsThe onept of abstrat groups we have been disussing plays an importantrole in Physis. However, its importane only appears when some quantitiesin the physial theory realize, in a onentre way, the struture of the abstratgroup. Here omes the onept of representation of an abstrat group.Suppose we have a set of operators D1 , D2::: ating on a vetor spae VDi j vi =j v0i ; j vi; j v0i 2 V (1.32)We an de�ne the produt of these operators by the omposition of their ation,i.e., an operator D3 is the produt of two other operators D1 and D2 ifD1(D2 j vi) = D1 j v0i = D3 j vi (1.33)for all j vi 2 V . We then write D1:D2 = D3: (1.34)Suppose that these operators form a group under this produt law. We all itan operator group or group of transformations.If we an assoiate to eah element g of an abstrat group G an operator,whih we shall denote by D(g), suh that the group struture of G is preserved,i.e., if for g; g0 2 G we have D(g)D(g0) = D(gg0) (1.35)then we say that suh set of operators is a representation of the abstrat groupG in the representation spae V . In fat, the mapping between the operatorgroupD and the abstrat groupG is a homomorphism. In addition to eq.(1.35)one also has that D(g�1) = D�1(g)D(e) = 1 (1.36)where 1 stands for the unit operator in D.De�nition 1.10 The dimension of the representation is the dimension of therepresentation spae.Notie that we an assoiate the same operator to two or more elements ofG, but we an not do the onverse. In the ase where there is a one-to-oneorrespondene between the elements of the abstrat group and the set ofoperators, i.e., to one operator D there is only one element g assoiated, wesay that we have a faithful representation .



22 CHAPTER 1. ELEMENTS OF GROUP THEORYExample 1.22 The unit matrix of any order is a trivial representation of anygroup. Indeed, if we assoiate all elements of a given group to the operator 1we have that the relation 1:1 = 1 reprodues the omposition law of the groupg:g0 = g00. This is an example of an extremely non faithful representation.When the operators D are linear operators, i.e.,D(j vi+ j v0i) = D j vi+D j v0iD(a j vi) = aD j vi (1.37)with j vi; j v0i 2 V and a being a -number, we say they form a linear repre-sentation of G.Given a basis j vii (i = 1; 2:::n) of the vetor spae V (of dimension n)we an onstrut the matrix representatives of the operators D of a givenrepresentation. The ation of an operator D on an element j vii of the basisprodues an element of the vetor spae whih an be written as a linearombination of the basis D j vii =j vjiDji (1.38)The oeÆients Dji of this expansion onstitute the matrix representatives ofthe operator D. Indeed, we haveD0(D j vii) = D0 j vjiDji =j vkiD0kjDji =j vki(D0D)ki (1.39)So, we an now assoiate to the matrix Dij, the element of the abstrat groupthat is assoiated to the operator D. We have then what is alled a matrixrepresentation of the abstrat group. Notie that the matries in eah represen-tation have to be non singular beause of the existene of the inverse element.In addition the unit element e is always represented by the unit matrix, i.e.,Dij(e) = Æij.Example 1.23 In example 1.9 we have de�ned the group Sn . We an on-strut a representation for this group in terms of n � n matries as follows:take a vetor spae Vn and let j vii, i = 1; 2; :::n, be a basis of Vn. One ande�ne n! operators that ating on the basis permute them, reproduing the n!permutations of n elements. Using (1.38) one then obtains the matries. Forinstane, in the ase of S3, onsider the matriesD(a0) = 0B� 1 0 00 1 00 0 1 1CA ; D(a1) = 0B� 0 1 01 0 00 0 1 1CA ;



1.5. REPRESENTATIONS 23D(a2) = 0B� 1 0 00 0 10 1 0 1CA ; D(a3) = 0B� 0 0 10 1 01 0 0 1CA ;D(a4) = 0B� 0 1 00 0 11 0 0 1CA ; D(a5) = 0B� 0 0 11 0 00 1 0 1CA (1.40)where am, m = 0; 1; 2; 3; 4; 5, are the 6 elements of S3. One an hek that theation D(am) j vii =j vjiDji(am) (1.41)gives the 6 permutations of the three basis vetors j vii, i = 1; 2; 3, of V3.In addition the produt of these matries reprodues the omposition law ofpermutations in S3.By onsidering V3 as the spae of olumn vetors 3 � 1 , and taking theanonial basisj v1i = 0B� 100 1CA ; j v2i = 0B� 010 1CA ; j v3i = 0B� 001 1CA (1.42)one an hek that the matries given above play the role of the operatorspermuting the basis too Dij(am) j vkij =j vliiDlk(am) (1.43)In a non faithful representation of a group G, the set of elements whih aremapped on the unit operator onstitute an invariant subgroup of G. Indeed,if the representatives of the elements h and h0 of G are the unit operator, i.e.,D(h) = D(h0) = 1, then D(hh0) = D(h)D(h0) = 1. In addition one has thatD(h�1) = 1 sine D(h)D(h�1) = D(e) = 1 = 1D(h�1). So, suh subset of Gis indeed a subgroup. To see it is invariant one uses eq.1.36 to getD(g�1hg) = D(g)�1D(h)D(g) = D�1(g)1D(g) = 1 (1.44)Denoting by H this invariant subgroup, we see that all elements in a givenoset gH of the oset spae G=H are mapped on the same matrix D(g) sineD(gh) = D(g)D(h) = D(g)1 = D(g) ; h 2 H (1.45)Therefore the representation D of G onstitute a faithful representation of thefator group G=H.



24 CHAPTER 1. ELEMENTS OF GROUP THEORYTwo representations D and D0 of an abstrat group G are said to be equiv-alent representations if there exists an operator C suh thatD0(g) = CD(g)C�1 (1.46)with C being the same for every g 2 G. Suh thing happens, for instane,when one hanges the basis of the representationj v0ii =j vji�ji (1.47)Then D(g) j v0ii � j v0jiD0ji(g)= j vkiDkl(g)�li= j vni�nj��1jkDkl(g)�li= j v0ji��1jkDkl(g)�li (1.48)Therefore the new matrix representatives areD0ji(g) = ��1jkDkl(g)�li (1.49)So, the matrix representatives hange as in (1.46) with C = ��1. Althoughthe struture of the representation does not hange the matries look di�erent.As we have said before the operators of a given representation at on therepresentation spae V as a group of transformations. In the ase where asubspae of V is left invariant by all transformations, we say the representationis reduible . This implies that if a matrix representation is reduible then thereexists a basis where the matries an be written in the formD(g) =  A C0 B ! (1.50)where A, B and C are respetively m �m, n � n and m � n matries. Thedimension of the representation is m+ n. The subspae V1 of V generated bythe �rst m elements of the basis is left invariant, sine A C0 B ! v10 ! =  Av10 ! (1.51)i.e., V1 does not mix with the rest of V . The subspae V2 of V generated bythe last n elements of the basis is not invariant sine A C0 B ! 0v2 ! =  Cv2Bv2 ! (1.52)



1.5. REPRESENTATIONS 25When both subspaes V1 and V2 are invariant we say the representation isompletely reduible. In this ase the matries take the formD(g) =  A 00 B ! (1.53)Lemma 1.1 (Shur) Any matrix whih ommutes with all matries of a gi-ven irreduible representation of a group G must be a multiple of the unitmatrix.Proof Let A be a matrix that ommutes will all matries D(g) of a givenirreduible representation of G, i.e.AD(g) = D(g)A (1.54)for any g 2 G. Consider the eigenvalue equationA j vi = � j vi (1.55)where j vi is some vetor in the representation spae V . Notie that, if v is aneigenvetor with eigenvalue �, then D(g) j vi has also eigenvalue � sineAD(g) j vi = D(g)A j vi = �D(g) j vi: (1.56)Therefore the subspae of V generated by all eigenvetors of A with eigenvalue� is an invariant subspae of V . But if the representation is irreduible thatmeans this subspae is the zero vetor or is the entire V . In the �rst ase weget that A = 0, and in the seond we get that A has only one eigenvalue andtherefore A = �1. 2Corollary 1.2 Every irreduible representation of an abelian group is one di-mensional.Proof Sine the group is abelian any matrix has to ommute with all othermatries of the representation. Aording to Shur's lemma they have to beproportional to the identity matrix. So, any vetor of the representation spaeV generates an invariant subspae. Therefore V has to be unidimensional ifthe representation is irreduible. 2De�nition 1.11 A representation D is said to be unitary if the matries Dijof the operators are unitary, i.e. Dy = D�1.An important result in the theory of �nite groups is the following theorem



26 CHAPTER 1. ELEMENTS OF GROUP THEORYTheorem 1.3 Any representation of a �nite group is equivalent to a unitaryrepresentationProof Let G be a �nite group of order N , and D be a representation of G ofdimension d. We introdue a hermitian matrix H (Hy = H) byH � 1N Xg2GDy(g)D(g) (1.57)For any g0 2 G Dy(g0)HD(g0) = 1N Xg2GDy(gg0)D(gg0) = H (1.58)by rede�ning the sum (remember that if g1g0 = g2g0 then g1 = g2). SineH is hermitian it an be diagonalized by a unitary matrix, i.e. H 0 � U yHUis diagonal. For any non zero olunm vetor v (with omplex entries), thequantity vyHv = Xg2G j D(g)v j2 (1.59)is real and positive. But, introduing v0 � U yvvyHv = v0yH 0v0= dXi=1H 0ii j v0i j2 (1.60)where v0i are the omponents of v0. Sine v0i are arbitrary we onlude that eahentry H 0ii of H 0 is real and positive. We then de�ne a diagonal real matrix hwith entries hii = qH 0ii, i.e. H 0 = hh. ThereforeH = UH 0U y = UhhU y � SS (1.61)where we have de�ned S = UhU y. Notie that S is hermitian, sine h is realand diagonal.De�ning the representation of G given by the matriesD0(g) � SD(g)S�1 (1.62)we then get from eq. (1.58)�S�1D0(g)S�y (SS) �S�1D0(g)S� = SS (1.63)



1.5. REPRESENTATIONS 27and so D0y(g)D0(g) = 1l (1.64)Therefore the representation D(g) is equivalent to the unitary representationD0(g).This result, as we will disuss later, is also true for ompat Lie groups.2De�nition 1.12 Given two representations D and D0 of a given group G, onean onstrut what is alled the tensor produt representation of D and D0.Denoting by j vii, i = 1; 2; : : :dimD, and j v0li, l = 1; 2; : : :dimD0, the basis ofD and D0 respetively, one onstruts the basis of D 
D0 asj wili =j vii
 j v0li (1.65)The operators representing the group elements at asD
 (g) j wili = D (g)
D0 (g) j wili = D (g) j vii 
D0 (g) j v0li (1.66)The dimension of the representation D 
D0 is the produt of the dimensionsof D and D0, i.e. dimD 
D0 = dimD dimD0.The matries representing a given group element in two equivalent represen-tations may look quite di�erent one from the other. That means the matriesontain a lot of redundant information. Muh of the relevant properties of arepresentation an be enoded in the harater.De�nition 1.13 In a given representation D of a group G we de�ne the har-ater �D(g) of a group element g 2 G as the trae of the matrix representingit, i.e. �D(g) � Tr(D(g)) = dimDXi=1 Dii(g) (1.67)Obviously, the haraters of a given group element in two equivalent represen-tations are the same, sine from (1.46)Tr(D0(g)) = Tr(CD(g)C�1) = Tr(D(g))! �D(g) = �D0(g) (1.68)Analogously, the elements of a given onjugay lass have the same harater.Indeed, from de�nition 1.6, if two elements g0 and g00 are onjugate, g0 =gg00g�1, then in any representationD one has Tr(D(g0)) = Tr(D(g00)). Nothingprevents however, the elements of two di�erent onjugay lass of having thesame harater in some partiular representation. In fat, this happens in therepresentation disussed in example 1.22.



28 CHAPTER 1. ELEMENTS OF GROUP THEORYWe have seen that the identity element e of a group G is always representedby the unity matrix. Therefore the harater of e gives the dimension of therepresentation �D(e) = dim D (1.69)We now state, without proof, some theorems onerning haraters. Forthe proofs see, for instane, [COR 84℄.Theorem 1.4 Let D and D0 be two irreduible representations of a �nitegroup G and �D and �D0 the orresponding haraters. Then1N(G) Xg2G(�D(g))��D0(g) = ÆDD0 (1.70)where N(G) is the order of G, ÆDD0 = 1 if D and D0 are equivalent represen-tations and ÆDD0 = 0 otherwise.Theorem 1.5 A su�ient onditions for two representations of a �nite groupG to be equivalent is the equality of their harater systems.Theorem 1.6 The number of times nD that an irreduible representation Dappears in a given reduible representation D0 of a �nite group G is given bynD = 1N(G) Xg2G�D0(g)(�D(g))� (1.71)where �D and �D0 are the haraters of D and D0 respetively, and N(G) isthe order of G.Theorem 1.7 A neessary and su�ient ondition for a representation D ofa �nite group G to be irreduible is1N(G) Xg2G j �D(g) j2= 1 (1.72)where �D are the haraters of D and N(G) the order of G.All these four theorems are also true for ompat Lie groups (see de�nitionin hapter 2) with the replaement of the sum 1N(G) Pg2G by the invariantintegration RGDg on the group manifold.Charaters are also used to prove theorems about the number of inequiva-lent irreduible representations of a �nite group.



1.5. REPRESENTATIONS 29Theorem 1.8 The sum of the squares of the dimensions of the inequivalentirreduible representations of a �nite group G is equal to the order of G.Theorem 1.9 The number of inequivalent irreduible representations of a �-nite group G is equal to the number of onjugay lasses of G.For the proofs see [COR 84℄.De�nition 1.14 If all the matries of a representation are real the represen-tation is said to be real.Notie that if D is a matrix representation of a group G, then the matriesD�(g), g 2 G, also onstitute a representation of G of the same dimension asD, sine D(g)D(g0) = D(gg0)! D�(g)D�(g0) = D�(gg0) (1.73)If D is equivalent to a real representation DR, then D is equivalent to D�. Thereason is that there exists a matrix C suh thatDR(g) = CD(g)C�1 (1.74)and so DR(g) = C�D�(g)(C�)�1 (1.75)Therefore D�(g) = (C�1C�)�1D(g)C�1C� (1.76)andD is equivalent toD�. However the onverse is not always true, i.e. , ifD isequivalent to D� it does not means D is equivalent to a real representation. Sowe lassify the representations into three lasses regarding the relation betweenD and D�.De�nition 1.15 1. If D is equivalent to a real representation it is saidpotentially real.2. If D is equivalent to D� but not equivalent to a real representation it issaid pseudo real.3. If D is not equivalent to D� then it is said essentially omplex.Notie that if D is potentially real or pseudo real then its haraters are real.



30 CHAPTER 1. ELEMENTS OF GROUP THEORYExample 1.24 The rotation group on the plane, denoted SO(2), an be rep-resented by the matriesR(�) =  os � sin �� sin � os � ! (1.77)suh that R(�) xy ! =  x os � + y sin ��x sin � + y os � ! (1.78)One an easily hek that R(�)R(') = R(� + '). This group is abelian andaording to orollary 1.2 suh representation is reduible. Indeed, one getsMR(�)M�1 =  e�i� 00 ei� ! (1.79)where M =  1 ii 1 ! (1.80)The vetors of the representation spae are then transformed asM  xy ! =  x + iyix + y ! (1.81)The haraters of these equivalent representations are�(�) = 2 os � (1.82)Example 1.25 In example 1.23 we have disussed a 3-dimensional matrixrepresentation of S3. From the de�nition 1.13 one an easily evaluate theharaters in suh representation�D(a0) = 3�D(a1) = �D(a2) = �D(a3) = 1�D(a4) = �D(a5) = 0 (1.83)Therefore 16 5Xi=0 j �D(ai) j2= 2 (1.84)



1.5. REPRESENTATIONS 31From theorem 1.7 one sees that suh 3-dimensional representation is not irre-duible. Indeed, the one dimensional subspae generated by the vetorj w3i = 1p3 0B� 111 1CA (1.85)is an invariant subspae. The basis of the orthogonal omplement of suhsubspae an be taken asj w1i = 1p2 0B� 1�10 1CA ; j w2i = 1p6 0B� 11�2 1CA (1.86)Suh a basis is related to the anonial basis de�ned in (1.42) byj wii =j vji�ji (1.87)where i; j = 1; 2; 3 and � = 0BB� 1p2 1p6 1p3�1p2 1p6 1p30 �2p6 1p3 1CCA (1.88)Aording to (1.49) the matrix representatives of the elements of S3 hange asD0(am) = ��1D(am)� (1.89)where m = 0; 1; 2; 3; 4; 5 and ��1 = �>. One an easily hek thatD0(am) =  D00(am) 00 1 ! (1.90)where D00(am) is a 2-dimensional representation of S3 given byD00(a0) =  1 00 1 ! ; D00(a1) =  �1 00 1 ! ;D00(a2) =  12 p32p32 �12 ! ; D00(a3) =  12 �p32�p32 �12 ! ;D00(a4) =  �12 p32�p32 �12 ! ; D00(a5) =  �12 �p32p32 �12 ! (1.91)



32 CHAPTER 1. ELEMENTS OF GROUP THEORYThe haraters in the representation D00 are given by�D00(a0) = 2�D00(a1) = �D00(a2) = �D00(a3) = 0�D00(a4) = �D00(a5) = �1 (1.92)Therefore 16 5Xi=0 j �D00(ai) j2= 1 (1.93)Aording to theorem 1.7 the representation D00 is irreduible. Consequentelythe 3-dimensional representation D de�ned in (1.40) is ompletely reduible.It deomposes into the irreduible 2-dimensional representation D00 and the1-dimensional representation given by 1.



Chapter 2Lie Groups and Lie Algebras
2.1 Lie groupsSo far we have been looking at groups as set of elements satisfying ertainpostulates. However we an take a more geometrial point of view and lookat the elements of a group as being points of a spae. The groups Sn and Zn ,disussed in examples 1.9 and 1.10, have a �nite number of elements and there-fore their orresponding spaes are disrete spaes. Groups like these ones arealled �nite disrete groups. The group formed by the integer numbers underaddition is also disrete but has an in�nite number of elements. It onstitutesa one dimensional regular lattie. These type of groups are alled in�nite dis-rete groups. The interesting geometrial properties of groups appear whentheir elements orrespond to the points of a ontinuous spae. We have thenwhat is alled a ontinuous group. The real numbers under addition onstitutea ontinuous group sine its elements an be seen as the points of an in�niteline. The group of rotations on a two dimensional plane is also a ontinuousgroup. Its elements an be parametrized by an angle varying from O to 2� andtherefore they de�ne a spae whih is a irle. In this sense the real numbersunder addition onstitute a non ompat group and the rotations on the planea ompat group.Given a group G we an parametrize its elements by a set of parameters x1, x2, ... xn . If the group is ontinuous these parameters are ontinuous andan be taken to be real parameters. The elements of the group an then bedenoted as g = g(x1; x2:::xn). A set of ontinuous parameters x1, x2, ... xn issaid to be essential if one an not �nd a set of ontinuous parameters y1, y2,... ym , with m < n, whih suÆes to label the elements of the group. When33



34 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASwe take the produt of two elements of a groupg(x)g(x0) = g(x00) (2.1)the parameters of the resulting element is a funtion of the parameters of theother two elements. x00 = F (x; x0) (2.2)Analogously the parameters of the inverse element of a given g 2 G is afuntion of the parameters of g and vie-versa. Ifg(x)g(x0) = e = g(x0)g(x) (2.3)then x0 = f(x) (2.4)If the elements of a group G form a topologial spae and if the funtionsF (x; x0) and f(x) are ontinuous funtions of its arguments then we say thatG is a topologial group. Notie that in a topologial group we have to havesome ompatibility between the algebrai and the topologial strutures.When the elements of a group G onstitute a manifold and when the fun-tions F (x; x0) and f(x), disussed above, possess derivatives of all orders withrespet to its arguments, i.e., are analyti funtions, we say the group G is aLie group . This de�nition an be given in a formal way.De�nition 2.1 A Lie group is an analyti manifold whih is also a groupsuh that the analyti struture is ompatible with the group struture, i.e. theoperation G�G! G is an analyti mapping.For more details about the geometrial onepts involved here see [HEL 78,CBW 82, ALD 86, FLA 63℄.Example 2.1 The real numbers under addition onstitute a Lie group. In-deed, we an use a real variable x to parametrize the group elements. Thereforefor two elements with parameters x and x0 the funtion in (2.2) is given byx00 = F (x; x0) = x + x0 (2.5)The funtion given in (2.4) is justf(x) = �x (2.6)These two funtions are obviously analyti funtions of the parameters.



2.2. LIE ALGEBRAS 35Example 2.2 The group of rotations on the plane, disussed in example 1.24,is a Lie group. In fat the groups of rotations on IRn , denoted by SO(n), areLie groups. These are the groups of orthogonal n�n real matries O with unitdeterminant (O>O = 1l, detO = 1)Example 2.3 The groups GL(n) and SL(n) disussed in example 1.16 areLie groups, as well as the group SU(n) disussed in example 1.17Example 2.4 The groups Sn and Zn disussed in examples 1.9 and 1.10 arenot Lie groups.2.2 Lie AlgebrasThe fat that Lie groups are di�erentiable manifolds has very important on-sequenes. Manifolds are loally Eulidean spaes. Using the di�erentiablestruture we an approximate the neighbourhood of any point of a Lie groupG by an Eulidean spae whih is the tangent spae to the Lie group at thatpartiular point. This approximation is some sort of loal linearization of theLie group and it is the approah we are going to use in our study of the alge-brai struture of Lie groups. Obviously this approah does not tell us muhabout the global properties of the Lie groups.Let us begin by making some omments about tangent planes and tangentvetors. A onvenient way of desribing tangent vetors is through linearoperators ating on funtions. Consider a di�erentiable urve on a manifoldM and let the oordinates xi , i = 1; 2; :::dimM , of its points be parametrizedby a ontinuous variable t varying, let us say, from �1 to 1. Let f be anydi�erentiable funtion de�ned on a neighbourhood of the point p of the urveorresponding to t = 0. The vetor Vp tangent to the urve at the point p isde�ned by Vp(f) = dxi(t)dt jt=0 �f�xi (2.7)Sine the funtion f is arbitrary the tangent vetor is independent of it. Thevetor Vp is a tangent vetor to M at the point p.The tangent vetors at p to all di�erentiable urves passing through p formthe tangent spae TpM of the manifold M at the point p. This spae is avetor spae sine the sum of tangent vetors is again a tangent vetor and themulipliation of a tangent vetor by a salar (real or omplex number) is alsoa tangent vetor.



36 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASGiven a set of loal oordinates xi , i = 1; 2; :::dimM in a neighbourhoodof a point p of M we have that the operators ��xi are linearly independent andonstitute a basis for the tangent spae TpM . Then, any tangent vetor Vp onTpM an be written as a linear ombination of this basisVp = V ip ��xi (2.8)Now suppose that we vary the point p along a di�erentiable urve. As wedo that we obtain vetors tangent to the urve at eah of its points. Thesetangent vetors are ontinuously and di�erentiably related. If we hoose atangent vetor on TpM for eah point p of the manifold M suh that this setof vetors are di�erentiably related in the manner desribed above we obtainwhat is alled a vetor �eld . Given a set of loal oordinates on M we anwrite a vetor �eld V , in that oordinate neighbourhood, in terms of the basis��xi , and its omponents V i are di�erentiable funtions of these oordinates.V = V i(x) ��xi (2.9)Given two vetor �elds V and W in a oordinate neighbourhood we anevaluate their omposite ation on a funtion f . We haveW (V f) =W j �V i�xj �f�xi +W jV i �2f�xj�xi (2.10)Due to the seond term on the r.h.s of (2.10) the operator WV is not a vetor�eld and therefore the ordinary omposition of vetor �elds is not a vetor�eld. However if we take the ommutator of the linear operators V and W weget [V;W ℄ =  V i�W j�xi �W i�V j�xi ! ��xj (2.11)and this is again a vetor �eld. So, the set of vetor �elds lose under theoperation of ommutation and they form what is alled a Lie algebra.De�nition 2.2 A Lie algebra G is a vetor spae over a �eld k with a bilinearomposition law (x; y) ! [x; y℄[x; ay + bz℄ = a[x; y℄ + b[x; z℄ (2.12)with x, y, z 2 L and a, b 2 k, and suh that



2.2. LIE ALGEBRAS 371. [x; x℄ = 02. [x; [y; z℄℄ + [z; [x; y℄℄ + [y; [z; x℄℄ = 0; (Jaobi identity)Notie that (2.12) implies that [x; y℄ = �[y; x℄, sine[x+ y; x+ y℄ = 0= [x; y℄ + [y; x℄ (2.13)De�nition 2.3 A �eld is a set k together with two operations(a; b)! a+ b (2.14)and (a; b)! ab (2.15)alled respetively addition and multipliation suh that1. k is an abelian group under addition2. k without the identity element of addition is an abelian group under mul-tipliation3. multipliation is distributive with respet to addition, i.e.a (b+ ) = ab + a(a+ b)  = a + bThe real and omplex numbers are �elds.



38 CHAPTER 2. LIE GROUPS AND LIE ALGEBRAS2.3 The Lie algebra of a Lie groupWe have seen that vetor �elds on a manifold form a Lie algebra. We nowwant to show that the Lie algebra of some speial vetor �elds on a Lie groupis related to its group struture.If we take a �xed element g of a Lie group G and multiply it from the leftby every element of G, we obtain a transformation of G onto G whih is alledleft translation on G by g. In a similar way we an de�ne right translationson G. Under a left translation by g, an element g0, whih is parametrized bythe oordinates x0i (i = 1; 2; ::: dim G), is mapped into the element g00 = gg0,and the parameters x00i of g00 are analyti funtions of x0i . This mapping ofG onto G indues a mapping between the tangent spaes of G as follows: letV be a vetor �eld on G whih orresponds to the tangent vetors Vg0 and Vg00on the tangent spaes to G at g0 and g00 respetively. Let f be an arbitraryfuntion of the parameters x00i of g00. We de�ne a tangent vetor Wg00 on Tg00G(the tangent plane to G at g00) byWg00f � Vg0(f Æ x00) = V ig0 ��x0i f(x00) = V ig0 �x00j�x0i �f�x00j (2.16)This de�nes a mapping between the tangent spaes of G sine, given Vg0 inTg0G, we have assoiated a tangent vetor Wg00 in Tg00G. The vetor Wg00 doesnot have neessarily to oinide with the value of the vetor �eld V at Tg00G,namely Vg00 . However, when that happens we say that the vetor �eld V is aleft invariant vetor �eld on G, sine that transformation was indued by lefttranslations on G.The ommutator of two left invariant vetor �elds, V and �V , is again a leftinvariant vetor �eld. To hek this onsider the ommutator of this vetor�elds at group element g0. Aording to (2.11)~Vg0 � [Vg0 ; �Vg0 ℄ = 0�V ig0 � �V jg0�x0i � �V ig0 �V jg0�x0i 1A ��x0j (2.17)Sine V and �V are left invariant, at the group element g00 = gg0 we have,aording to (2.16), that~Vg00 � [Vg00 ; �Vg00 ℄= 0�V ig00 � �V jg00�x00i � �V ig00 �V jg00�x00i 1A ��x00j



2.3. THE LIE ALGEBRA OF A LIE GROUP 39=  V kg0 �x00i�x0k ��x00i  �V lg0 �x00j�x0l !� �V kg0 �x00i�x0k ��x00i  V lg0 �x00j�x0l !! ��x00j= 0�V ig0 � �V jg0�x0i � �V ig0 �V jg0�x0i 1A �x00k�x0j ��x0k= ~V jg0 �x00k�x0j ��x0k (2.18)So, ~V is also left invariant. Therefore the set of left invariant vetor �elds forma Lie algebra. They onstitute in fat a Lie subalgebra of the Lie algebra ofall vetor �elds on G.De�nition 2.4 A vetor subspae H of a Lie algebra G is said to be a Liesubalgebraindexsubalgebra ! de�nition of G if it loses under the Lie braket,i.e. [H ; H℄ � H (2.19)and if H itself is a Lie algebra.One should notie that a left invariant vetor �eld is ompletely determinedby its value at any partiular point of G. In partiular it is determined by itsvalue at the group identity e . An important onsequene of this is that theLie algebra of the left invariant vetor �elds at any point of G is ompletelydetermined by the Lie algebra of these �elds at the identity element of G.De�nition 2.5 The Lie algebra of the left invariant vetor �elds on a Liegroup is the Lie algebra of this Lie group.Notie that the Lie algebra of a Lie group G is a subalgebra of the Lie algebraof all vetor �elds on G. The Lie algebra of right invariant vetor �elds isisomorphi to the Lie algebra of left invariant vetor �elds. Therefore thede�nition above ould also be given in terms of right invariant vetor �elds.For any Lie group G it is always possible to �nd a number of linearlyindependent left-invariant vetor �elds whih is equal to the dimension of G.These vetor �elds, whih we shall denote by Ta (a = 1; 2; :::dim G), onstitutea basis of the tangent plane to G at any partiular point, and they satisfy[Ta ; Tb℄ = if abT (2.20)If we move from one point of G to another, this relation remains unhanged,and therefore the quantities f ab are point independent. For this reason theyare alled the struture onstants of the Lie algebra of G. Later we will see that



40 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASthese onstants ontain all the information about the Lie algebra of G. Sinethe relation above is point independent we are going to �x the tangent planeto G at the identity element, TeG, as the vetor spae of the Lie algebra of G.We ould have de�ned right invariant vetor �elds in a similar way. Their Liealgebra is isomorphi to the Lie algebra of the left-invariant �elds.A one parameter subgroup of a Lie group G is a di�erentiable urve, i.e., adi�erentiable mapping from the real numbers onto G, t! g(t) suh thatg(t)g(s) = g(t+ s)g(0) = e (2.21)If we take a �xed element g0 of G, we obtain that the mapping t! g0g(t) is adi�erentiable urve on G. However this urve is not a one parameter subgroup,sine g0g(t)g0g(s) 6= g0g(t + s). If we let g0 to vary over G we obtain a familyof urves whih ompletely overs G. There are several urves of this familypassing through at a given point of G. However, one an show (see [AUM 77℄)that all urves of the family passing through a point have the same tangentvetor at that point. Therefore the family of urves g0g(t) an be used to de�nea vetor �eld on G. One an also show that this is a left-invariant vetor �eld.Consequently to eah one parameter subgroup of G we have assoiated a leftinvariant vetor �eld.If T is the tangent vetor at the identity element to a di�erentiable urveg(t) whih is a one parameter subgroup, then it is possible to show thatg(t) = exp(tT ) (2.22)This means that the straight line on the tangent plane to G at the identityelement, TeG, is mapped onto the one parameter subgroup of G, g(t). This isalled the exponential mapping of the Lie algebra of G (TeG) onto G. In fat,it is possible to prove that in general, the exponential mapping is an analytimapping of TeG onto G and that it maps a neighbourhood of the zero elementof TeG in a one to one manner onto a neighbourhood of the identity elementof G. In several ases this mapping an be extended globally on G.For more details about the exponential mapping and other geometrialonepts involved here see [HEL 78, ALD 86, CBW 82, AUM 77℄.



2.4. BASIC NOTIONS ON LIE ALGEBRAS 412.4 Basi notions on Lie algebrasIn the last setion we have seen that the Lie algebra, G ,of a Lie group Gpossesses a basis Ta , a = 1; 2; ::: dim G (= dim G, satisfying[Ta ; Tb℄ = if abT (2.23)where the quantities f ab are alled the struture onstants of the algebra. Wehave introdued the imaginary unity i on the r.h.s of (2.23) beause if thegenerators Ta are hermitian, T ya = Ta , then the struture onstants are real.Notie that f ab = f ba . From the de�nition of Lie algebra given in setion 2.2we have that the generators Ta satisfy the Jaobi identity[Ta; [Tb; T℄℄ + [T; [Ta; Tb℄℄ + [Tb; [T; Ta℄℄ = 0 (2.24)and onsequently the struture onstants have to satisfyf eadf db + f edf dab + f ebdf da = 0 (2.25)with sum over repeated indies. We have also seen that the elements g of Glose to the identity element an be written, using the exponential mapping,as g = exp (i�aTa) (2.26)where �a are the parameters of the Lie group. Under ertain irunstanes thisrelation is also true for elements quite away from the identity element (whihorresponds to �a = 0).If we onjugate elements of the Lie algebra by elements of the Lie groupwe obtain elements of the Lie algebra again. Indeed, if L and T are elementsof the algebra one getsexp (L)T exp (�L) = T + [L; T ℄ + 12! [L; [L; T ℄℄ + 13! [L; [L; [L; T ℄℄℄ + ::: (2.27)In order to prove that relation onsider que quantityf (�) � exp (�L)T exp (��L) (2.28)then f 0 = exp (�L) [L ; T ℄ exp (��L)f 00 = exp (�L) [L ; [L ; T ℄ ℄ exp (��L): : : = : : :f (n) = exp (�L) [L ; : : : [L ; [L ; T ℄ ℄ ℄ exp (��L) (2.29)



42 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASThen using Taylor expansion around � = 0 one getsf (�) = 1Xn=0 �nn! adnLT (2.30)where we have denoted adLT � [L ; T ℄. Taking � = 1 one gets (2.27).The r.h.s. of (2.27) is and element of the algebra, and therefore the onju-gation gTg�1 de�nes a transformation on the algebra. In addition if g00 = g0gwe see that the omposition of the transformations assoiated to g0 and g givethe transformation assoiated to g00. Consequently, aording to the oneptsdisussed in setion 1.5, these transformations de�ne a representation of thegroup G on a representation spae whih is the Lie algebra of G. Suh repre-sentation is alled the adjoint representation of the Lie group G . The matriesd(g) representing the elements g 2 G in this representation are given bygTag�1 = Tbdba(g) (2.31)One an easily hek that the n � n matries dba(g) , n = dim G, form arepresentation of G, sine if we take the element g1g2 we getg1g2Ta(g1g2)�1 = Tbdba(g1g2)= g1(g2Tag�12 )g�11= g1Tg�11 da(g2)= Tbdb(g1)da(g2) (2.32)Sine the generators Ta are linearly independent we haved(g1g2) = d(g1)d(g2) (2.33)From the de�ntion (2.31) we see that the dimension of the adjoint representa-tion d(g) of G is equal to the dimension of G. It is a real representation in thesense that the entries of the matries d(g) are real.Notie that the onjugation de�nes a mapping of the Lie algebra G intoitself whih respets the ommutation relations. De�ning � : G ! G�(T ) � gTg�1 (2.34)for a �xed g 2 G and any T 2 G, one has[�(T ); �(T 0)℄ = [gTg�1; gT 0g�1℄= g[T; T 0℄g�1= �([T; T 0℄) (2.35)Suh mapping is alled an automorphism of the Lie algebra.



2.4. BASIC NOTIONS ON LIE ALGEBRAS 43De�nition 2.6 A mapping � of a Lie algebra G into itself is an automorphismif it preserves the Lie braket of the algebra, i.e.[�(T ); �(T 0)℄ = �([T; T 0℄) (2.36)for any T; T 0 2 G.The mapping (2.34) in partiular, is alled an inner automorphism. All otherautomorphism whih are not onjugations are alled outer automorphism.If g is an element of G in�nitesimally lose to the identity, its parametersin (2.26) are very small and we an writeg = 1 + i"aTa (2.37)with "a in�nitesimally small. From (2.31) we have(1 + i"aTa)Tb(1� i"T) = Tdb(1 + i"aTa)= T(Æb + i"adb(Ta))= Tb + i"a[Ta; Tb℄= Tb � "af abT (2.38)Sine the in�nitesimal parameters are arbitrary we getdb(Ta) = if ab (2.39)Therefore in the adjoint representation the matries representing the genera-tors are given by the struture onstants of the algebra. This de�nes a matrixrepresentation of the Lie algebra. In fat, whenever one has a matrix repre-sentation of a Lie group one gets, through the exponential mapping, a matrixrepresentation of the orresponding Lie algebra.The onept of representation of a Lie algebra is basially the same as theone we disussed in setion 1.5 for the ase of groups. The representationtheory of Lie algebras will be disussed in more details later, but here we givethe formal de�nition.De�nition 2.7 If one an assoiate to every element T of a Lie algebra G an� n matrix D(t) suh that1. D(T + T 0) = D(T ) +D(T 0)2. D(aT ) = aD(T )



44 CHAPTER 2. LIE GROUPS AND LIE ALGEBRAS3. D([T; T 0℄) = [D(T ); D(T 0)℄for T; T 0 2 G and a being a -number. Then we say that the matries D de�nea n-dimensional matrix representation of G.Notie that given an element T of a Lie algebra G, one an de�ne a trans-formation in G as T : G ! G 0 = [T ; G ℄ (2.40)Using the Jaobi identity one an easily verify that the ommutator of the om-position of two of suh transformations reprodues the Lie braket operationon G, i.e. [T ; [T 0 ; G ℄ ℄� [T 0 ; [T ; G ℄ ℄ = [ [T ; T 0 ℄ ; G ℄ (2.41)Therefore suh transformations de�ne a representation of G on G, whih isalled the adjoint representation of G. Obviously, it has the same dimensionas G. Introduing the oee�ients dba(T ) as[T ; Ta ℄ � Tbdba(T ) (2.42)where Ta's onstitute a basis for G, one then gets (2.41)[T ; [T 0 ; Ta ℄ ℄� [T 0 ; [T ; Ta ℄ ℄ = T db(T )dba(T 0)� T db(T 0)dba(T )= [ [T ; T 0 ℄ ; Ta ℄= T da([T ; T 0 ℄) (2.43)and so [ d(T ) ; d(T 0) ℄ = d([T ; T 0 ℄) (2.44)Therefore, the matries de�ned in (2.42) onstitute a matrix representation ofG, whih is the adjoint representation G. Using (2.23) and (2.42) one gets thatdb(Ta) is indeed equal to if ab, as obtained in (2.39).Notie that if G has an invariant subalgebra H, i.e. [G ; H ℄ � H, then from(2.41) one observes that the vetor spae of H de�nes a representation of G,whih is in fat an invariant subspae of the adjoint representation. Therefore,for non-simple Lie algebras, the adjoint representation is not irreduible.In a given �nite dimensional representation D of a Lie algebra we de�nethe quantity �D(T; T 0) � Tr (D(T )D(T 0)) (2.45)whih is symmetri and bilinear1. �D(T; T 0) = �D(T 0; T )



2.4. BASIC NOTIONS ON LIE ALGEBRAS 452. �D(T; xT 0 + yT 00) = x�D(T; T 0) + y�D(T; T 00)It satis�es �D([T; T 0℄; T 00) + �D(T; [T 00; T 0℄ = 0 (2.46)sine using the yli property of the traeTr([D(T ); D(T 0)℄D(T 00)) = Tr(D(T )[D(T 0); D(T 00)℄) (2.47)Eq. (2.46) is an invariane property of �D(T; T 0). Indeed from (2.45) we seethat �D(T; T 0) = �D(gTg�1; gT 0g�1) (2.48)and taking g to be of the form (2.37) we obtain (2.46) as the �rst order ap-proximation in " of (2.48). So �D is a symmetri rank two tensor invariantunder the adjoint representation.The quantity �D(T; T 0) is alled an invariant bilinear trae form for the Liealgebra G. In the adjoint representation it is alled the Killing form. From(2.39) and (2.45) we have that the Killing form is given by�ab � �(Ta; Tb) � Tr(d(Ta)d(Tb)) = �f daf bd (2.49)De�nition 2.8 A Lie algebra is said to be abelian if all its elements ommutewith one another.In this ase all the struture onstants vanish and onsequently the Killingform is zero. However there might exist some representation D of an abelianalgebra for whih the bilinear form (2.45) is not zero.De�nition 2.9 A subalgebra H of G is said to be a invariant subalgebra (orideal) if [H;G℄ � H (2.50)From (2.27) we see the Lie algebra of an invariant subgroup of a group G isan invariant subalgebra of the Lie algebra of G.De�nition 2.10 We say a Lie algebra G is simple if it has no invariant subal-gebras, exept zero and itself, and it is semisimple if it has no invariant abeliansubalgebras.Theorem 2.1 (Cartan) A Lie algebra G is semisimple if and only if itsKilling form is non degenerated, i.e.det j Tr(d(Ta)d(Tb)) j6= 0: (2.51)



46 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASor in other words, there is no T 2 G suh thatTr(d(T )d(T 0)) = 0 (2.52)for every T 0 2 G.For the proof see hap. III of [JAC 79℄ or se. 6 of appendix E of [COR 84℄.De�nition 2.11 We say a semisimple Lie algebra is ompat if its Killingform is positive de�nite.The Lie algebra of a ompat semisimple Lie group is a ompat semisimpleLie algebra. By hoosing a suitable basis Ta we an put the Killing form of aompat semisimple Lie algebra in the form .�ab = Æab (2.53)Let us de�ne the quantity fab � f dab�d (2.54)From (2.49) we havefab = f dabTr(d(Td)d(T)) = �iT r(d([Ta; Tb℄T)) (2.55)Using the yli property of the trae one sees that fab is antisymmetri withrespet to all its three indies. Notie that, in general, fab is not a strutureonstant.For a ompat semisimple Lie algebra we have from (2.53) that f ab = fab, and therefore the ommutation relations (2.23) an be written as[Ta; Tb℄ = ifabT (2.56)Therefore the struture onstants of a ompat semisimple Lie algebra an beput in a ompletely antisymmetri form.2.5 su(2) and sl(2): Lie algebra prototypesAs we have seen the group SU(2) is de�ned as the group of 2 � 2 omplexunitary matries with unity determinant. If an element of suh group is writtenas g = exp iT , then the matrix T has to be hemitian and traeless. Therefore



2.5. SU(2) AND SL(2): LIE ALGEBRA PROTOTYPES 47the basis of the algebra su(2) of this group an be taken to be (half of) thePauli matries (Ti � 12�i)T1 = 12  0 11 0 ! ; T2 = 12  0 �ii 0 ! ; T3 = 12  1 00 �1 ! (2.57)They satisfy the following ommutation relations[Ti ; Tj℄ = i�ijkTk (2.58)The matries (2.57) de�ne what is alled the spinor (2-dimensional) represen-tation of the algebra su(2).From (2.39) we obtain the adjoint representation (3-dimensional) of su(2)dij(Tk) = i�kji = i�ikj (2.59)and so d(T1) = i0B� 0 0 00 0 �10 1 0 1CA ; d(T2) = i0B� 0 0 10 0 0�1 0 0 1CA ;d(T3) = i0B� 0 �1 01 0 00 0 0 1CA (2.60)One an easily hek that they satisfy (2.58).As we have seen the group of rotations in three dimensions SO(3) is de�nedas the group of 3�3 real orthogonal matries. Its elements lose to the identityan be written as g = exp iT , and therefore the Lie algebra so(3) of this groupis given by 3�3 pure imaginary, antisymmetri and traeless matries. But thematries (2.60) onstitute a basis for suh algebra. Thefore the Lie algebrassu(2) and so(3) are isomorphi, although the Lie groups SU(2) and SO(3) arejust homomorphi (in fat SO(3) � SU(2)=Z2).The Killing form of this algebra, aording to (2.49), is given by�ij = Tr(d(TiTj)) = 2Æij (2.61)So, it is non degenerate. This is in agreement with theorem 2.1, sine thisalgebra is simple. Aording to the de�nition 2.11 this is a ompat algebra.The trae form (2.45) in the spinor representation is given by�sij = Tr(D(TiTj)) = 12Æij (2.62)



48 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASSo, it is proportional to the Killing form, �s = 14�. This is a partiular exampleof a general theorem we will prove later: the trae form in any representationof a simple Lie algebra is proportional to the Killing form.Notie that the matries in these representations disussed above are her-mitian and therefore the matries representing the elements of the group areunitary (g = exp iT ). In fat this is a result whih onstitute a generalizationof theorem 1.3 to the ase of ompat Lie groups: any �nite dimensional rep-resentation of a ompat Lie group is equivalent to a unitary representation.Sine the generators are hermitian we an always hoose one of them to bediagonal. Traditionally one takes T3 to be diagonal and de�nes (in the spinorrep. T3 is already diagonal) T� = T1 � iT2 (2.63)Notie that formally, these are not elements of the algebra su(2) sine we havetaken omplex linear ombination of the generators. These are elements of theomplex algebra denoted by A1.Using (2.58) one �nds [T3; T�℄ = �T�[T+; T�℄ = 2T3 (2.64)Therefore the generators of A1 are written as eigenvetors of T3 . The eigen-values �1 are alled the roots of su(2). We will show later that all Lie algebrasan be put in a similar form. In any representation one an hek that theoperator C = T 21 + T 22 + T 23 (2.65)ommutes with all generators of su(2). It is alled the quadrati Casimiroperator. The basis of the representation spae an always be hosen to beeigenstates of the operators T3 and C simultaneously. These states an belabelled by the spin j and the weight mT3 j j;mi = m j j;mi (2.66)The operators T� raise and lower the eigenvalue of T3 sine using (2.64)T3T� j j;mi = ([T3; T�℄ + T�T3) j j;mi= (m� 1)T� j j;mi (2.67)We are interested in �nite representations and therefore there an only existsa �nite number of eigenvalues m in a given representation. Consequently there



2.5. SU(2) AND SL(2): LIE ALGEBRA PROTOTYPES 49must exist a state whih possess the highest eigenvalue of T3 whih we denotej T+ j j; ji = 0 (2.68)The other states of the representation are obtained from j j; ji by applying T�suessively on it. Again, sine the representation is �nite there must exist apositive integer l suh that (T�)l+1 j j; ji = 0 (2.69)Using (2.63) one an write the Casimir operator (2.65) asC = T 23 + 12 (T+T� + T�T+) (2.70)So, using (2.64), (2.66) and (2.68)C j j; ji = �T 23 + 12[T+; T�℄ + T�T+� j j; ji= j (j + 1) j j; ji (2.71)Sine C ommutes with all generators of the algebra, any state of the repre-sentation is an eigenstate of C with the same eigenvalueC j j;mi = j (j + 1) j j;mi (2.72)where j j;mi = (T�)n j j; ji for m = j � n and n � l. From Shur's lemma(see lemma1.1), in a irreduible representation, the Casimir operator has to beproportional to the unity matrix and soC = j(j + 1)1l (2.73)Using (2.70) one an write T+T� = C � T 23 + T3 (2.74)Therefore applying T+ on both sides of (2.69)T+T�(T�)l j j; ji = 0= �j(j + 1)� (j � l)2 + (j � l)� j j; ji (2.75)Sine, by assumption the state (T�)l j j; ji does exist, one must havej(j + 1)� (j � l)2 + (j � l) = (2j � l)(l + 1) = 0 (2.76)Sine l is a positive integer, the only possible solution is l = 2j. Therefore weonlude that



50 CHAPTER 2. LIE GROUPS AND LIE ALGEBRAS1. The lowest eigenvalue of T3 is �j2. The eigenvalues of T3 an only be integers or half integers and in a givenrepresentation they vary from j to �j in integral steps.The group SL(2), as de�ned in example 1.16, is the group of 2�2 real ma-tries with unity determinant. If one writes the elements lose to the identityas g = expL (without the i fator), then L is a real traeless 2� 2 matrix. Sothe basis of the algebra sl(2) an be taken asL1 = 12  0 11 0 ! ; L2 = 12  0 1�1 0 ! ; L3 = 12  1 00 �1 ! (2.77)This de�nes a 2-dimensional representation of sl(2) whih di�er from the spinorrepresentation of su(2), given in (2.57), by a fator i in L2. One an hek thethey satisfy [L1; L2℄ = �L3; [L1; L3℄ = �L2; [L2; L3℄ = �L1 (2.78)From these ommutation relations one an obtain the adjoint representationof sl(2), using (2.39)d(L1) = 0B� 0 0 00 0 �10 �1 0 1CA ; d(L2) = 0B� 0 0 �10 0 01 0 0 1CA ;d(L3) = 0B� 0 1 01 0 00 0 0 1CA (2.79)Aording to (2.49), the Killing form of sl(2) is given by�ij = Tr(d(LiLj)) = 20B� 1 0 00 �1 00 0 1 1CA (2.80)sl(2) is a simple algebra and we see that its Killing form is indeed non-degenerate (see theorem 2.1). From de�nition 2.11 we onlude sl(2) is anon-ompat Lie algebra.The trae form (2.45) in the 2-dimensional representation (2.77) of sl(2) is�2�dimij = Tr(LiLj) = 12 0B� 1 0 00 �1 00 0 1 1CA (2.81)



2.5. SU(2) AND SL(2): LIE ALGEBRA PROTOTYPES 51Similarly to the ase of su(2), this trae form is proportional to the Killingform, �2�dim = 14�.The operators L� � L1 � L2 (2.82)aording to (2.78), satisfy ommutation relations idential to (2.64)[L3; L�℄ = �L�; [L+; L�℄ = 2L3 (2.83)The quadrati Casimir operator of sl(2) isC = L21 � L22 + L23 = L23 + 12 (L+L� + L�L+) (2.84)The analysis we did for su(2), from eqs. (2.66) to (2.76), applies also to sl(2)and the onlusions are the same, i.e. , in a �nite dimensional representation ofsl(2) with highest eigenvalue j of L3 the lowest eigenvalue is �j. In additionthe eigenvalues of L3 an only be integers or half integers varying from jto �j in integral steps. The striking di�erene however, is that the �niterepresentations of sl(2) (where these results hold) are not unitary. On theontrary, the �nite dimensional representations of su(2) are all equivalent tounitary representations. Indeed, the exponentiation of the matries (2.57) and(2.60) (with the i fator) provide unitary matries while the exponentiation of(2.77) and (2.79) do not. All unitary representations of sl(2) are neessarilyin�nite dimensional. In fat this is true for any non ompat Lie algebra.The strutures disussed in this setion for the ases of su(2) and sl(2) arein fat the basi strutures underlying all simple Lie algebras. The rest of thisourse will be dediated to this study.



52 CHAPTER 2. LIE GROUPS AND LIE ALGEBRAS2.6 The struture of semisimple Lie algebrasWe now start the study of the features whih are ommon to all semisimpleLie algebras. These features are in fat a generalization of the properties ofthe algebra of angular momentum disussed in setion 2.5. We will be mainlyinterested in ompat semisimple algebras although several results also applyto the ase of non-ompat Lie algebras.Theorem 2.2 Given a subalgebra H of a ompat semisimple Lie algebra Gwe an write G = H + P (2.85)where [H;P℄ � P (2.86)where P is the orthogonal omplement of H in G w.r.t. a trae form in a givenrepresentation, i.e. Tr(PH) = 0 (2.87)Proof P does not ontain any element of H and ontains all elements of Gwhih are not in H. Using the yli property of the traeTr(H[H;P℄) = Tr([H;H℄P) = Tr(HP) = 0 (2.88)Therefore [H;P℄ � P: (2.89)2 This theorem does not apply to non ompat algebras beause the traeform does not provide an Eulidean type metri, i.e. there an exist null vetorswhih are orthogonal to themselves. As an example onsider sl(2).Example 2.5 Consider the subalgebra H of sl(2) generated by (L1 +L2) (seesetion 2.5). Its omplement P is generated by (L1 � L2) and L3. Howeverthis is not an orthogonal omplement sine, using (2.80)Tr((L1 + L2)(L1 � L2)) = 4 (2.90)In addition (L1 � L2) are null vetors, sineTr(L1 + L2)2 = Tr(L1 � L2)2 = 0 (2.91)



2.6. THE STRUCTURE OF SEMISIMPLE LIE ALGEBRAS 53Using (2.78) one an hek (2.86) is not satis�ed. Indeed[L1 + L2; L1 � L2℄ = 2L3[L1 + L2; L3℄ = �(L1 + L2) (2.92)So [H;P℄ � H + P (2.93)Notie P is a subalgebra too[L3; L1 � L2℄ = �(L1 � L2) (2.94)Theorem 2.3 A ompat semisimple Lie algebra is a diret sum of simplealgebras that ommute among themselves.Proof If G is not simple then it has an invariant subalgebra H suh that[H;G℄ � H (2.95)But from theorem 2.2 we have that[H;P℄ � P (2.96)and therefore, sine P \H = 0, we must have[H;P℄ = 0 (2.97)But P, in this ase, is a subalgebra sineTr([P;P℄H) = Tr(P[P;H℄) = 0 (2.98)and from theorem 2.2 again [P;P℄ � P (2.99)If P and H are not simple we repeat the proess. 2Theorem 2.4 For a simple Lie algebra the invariant bilinear trae form de-�ned in eq. (2.45) is the same in all representations up to an overall onstant.Consequentely they are all proportional to the Killing form.



54 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASProof Using the de�nition (2.31) of the adjoint representation and the invari-ane property (2.48) of �D(T; T 0) we have�D(Ta; Tb) = Tr(D(gTag�1gTbg�1))= Tr(D(Tda(g)Tdddb(g)))= (d>) a(g)�D(T; Td)ddb(g)= (d>�Dd)ab (2.100)Therefore �D is an invariant tensor under the adjoint representation. This istrue for any representation D, in partiular the adjoint itself. So, the Killingform de�ned in (2.49) also satis�es (2.100). From theorem 2.1 we have thatfor a semisimple Lie algebra, det� 6= 0 and therefore � has an inverse. Thenmultiplying both sides of (2.100) by ��1 and using the fat that ��1 = (d>�d)�1we get ��1�D = (d>�d)�1(d>�Dd) = d�1��1�Dd (2.101)and so d(g)��1�D = ��1�Dd(g) (2.102)For a simple Lie algebra the adjoint representation is irreduible. Thereforeusing Shur's lemma (see lemma 1.1) we get��1�D = �1l! �D = �� (2.103)So, the theorem is proven. 2The onstant � is representation dependent and is alled the Dynkin indexof the representation D.We will now show that it is possible to �nd a set of ommuting generatorssuh that all other generators are written as eigenstates of them (under theommutator). These ommuting generators are the generalization of T3 insu(2) and they generate what is alled the Cartan subalgebra.De�nition 2.12 For a semisimple Lie algebra G, the Cartan subalgebra isthe maximal set of ommuting elements of G whih an be diagonalized simul-taneously.The formal de�nition of the Cartan subalgebra of a Lie algebra (semisimple ornot) is a little bit more sophistiated and involves two onepts whih we nowdisuss. The normalizer of a subalgebra K of G is de�ned by the setN(K) � fx 2 G j [x;K℄ � Kg (2.104)



2.6. THE STRUCTURE OF SEMISIMPLE LIE ALGEBRAS 55Using the Jaobi identity we have[[x; x0℄;K℄ � K (2.105)with x; x0 2 N(K). Therefore the normalizer N(K) is a subalgebra of G and Kis an invariant subalgebra of N(K). So we an say that the normalizer of K inG is the largest subalgebra of G whih ontains K as an invariant subalgebra.Consider the sequene of subspaes of GG0 = G; G1 = [G;G℄; G2 = [G;G1℄; ::: Gi = [G;Gi�1℄ (2.106)We have that G0 � G1 � G2 � ::: � Gi and eah Gi is a invariant subalgebraof G. We say G is a nilpotent algebra if Gn = 0 for some n. Nilpotent algebrasare not semisimple.Similarly we an de�ne the derived seriesG(0) = G; G(1) = [G;G℄; G(2) = [G(1);G(1)℄; ::: G(i) = [G(i�1);G(i�1)℄ (2.107)If G(n) = 0 for some n then we say G is a solvable algebra . All nilpotentalgebras are solvable, but the onverse is not true.De�nition 2.13 A Cartan subalgebra of a Lie algebra G is a nilpotent subal-gebra whih is equal to its normalizer in G.Lemma 2.1 If G is semisimple then a Cartan subalgebra of G is a maximalabelian subalgebra of G suh that its generators an be diagonalized simultane-ously.De�nition 2.14 The dimension of the Cartan subalgebra of G is the rank ofG.Notie that if H1 , H2 ... Hr are the generators of the Cartan subalgebra theng�1H1g , g�1H2g ... g�1Hrg (g 2 G) generates an abelian subalgebra of Gwith the same dimension as that one generated by Hi, i = 1; 2; :::r. This isalso a Cartan subalgebra. Therefore there are an in�nite number of Cartansubalgebras in G and they are all related by onjugation by elements of thegroup G whih algebra is G.By hoosing suitable linear ombinations one an make the basis of theCartan subalgebra to be orthonormal with respet to the Killing form of G,i.e.1 Tr(HiHj) = Æij (2.108)1As we have shown, up to an overall onstant, the trae form of a simple Lie algebrais the same in all representations. We will simplify the notation from now on, and writeTr(TT 0) instead of �D(T; T 0). We shall speify the representation where the trae is beingevaluated only when that is relevant.



56 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASwith i; j = 1; 2; ::: rank G. From the de�nition of Cartan subalgebra we seethat these generators an be diagonalized simultaneously.We now want to onstrut the generalization of the operators T� = T1+iT2of su(2), disussed in setion 2.5, for the ase of any ompat semisimple Liealgebra. They are alled step operators and their number is dim G - rank G.Aording to theorem 2.2 they onstitute the orthogonal omplement of theCartan subalgebra and thereforeTr(HiTm) = 0 (2.109)with i = 1; 2::: rank G, m = 1; 2::: (dim G - rank G). In addition, sine aompat semisimple Lie algebra is an Eulidean spae we an make the basisTm orthonormal, i.e. Tr(TmTn) = Æmn (2.110)Again from theorem 2.2 we have that the ommutator of an element of theCartan subalgebra with Tm is an element of the subspae generated by the basisTm . Then, sine the algebra is ompat we an put its struture onstants ina ompletely antisymmetri form, and write[Hi; Tm℄ = ifimnTn (2.111)or [Hi; Tm℄ = (hi)mnTn (2.112)where we have de�ned the matries(hi)mn = ifimn (2.113)of dimension (dim G - rank G) and whih are hermitian(hi)ymn = (hi)�nm = �ifinm = ifimn = (hi)mn (2.114)Therefore we an �nd a unitary transformation that diagonalizes the matrieshi without a�eting the Cartan subalgebra generators Hi .Tm ! UmnTn(hi)mn ! (UhiU y)mn (2.115)with U y = U�1. We shall denote by E� the new basis of the subspae orthog-onal to the Cartan subalgebra. The indies stand for the eigenvalues of the



2.6. THE STRUCTURE OF SEMISIMPLE LIE ALGEBRAS 57matrix hi (or of the generators Hi ). The ommutation relations (2.112) annow be written as [Hi; E�℄ = �iE� (2.116)The eigenvalues �i are the omponents of a vetor of dimension rank G andthey are alled the roots of the algebra G . The generators E� are alled stepoperators and they are omplex linear ombinations of the hermitian generatorsTm. Notie that the roots � are real sine they are the eigenvalues of thehermitian matries hi.From (2.113) we see that the matries hi are antisymmetri, and their o�diagonal elements are purely imaginary. Sohyi = hi; h�i = �hi (2.117)Therefore if v is an eigenstate of the matrix hi then sine the eigenvalue �i isreal we have hiv = �iv (2.118)and then h�i v� = �hiv� = �iv� (2.119)Consenquently if � is a root its negative (�� ) is also a root. Thus the rootsalways our in pairs.We have shown that we an deompose a ompat semisimple algebra L asG = H +X� G� (2.120)where H is generated by the ommuting generators Hi and onstitute theCartan subalgebra of G. The subspae G� is generated by the step operatorsE�. This is alled the root spae deomposition of G.In addition one an showthat for a semisimple Lie algebradim G� = 1; for any root � (2.121)and onsequently the roots are not degenerated. So, there are not two step op-erators E� and E 0� orresponding to the same root �. Therefore for a semisim-ple Lie algebra one hasdim G - rank G = P� dim G� = number of roots = even numberUsing the Jaobi identity and the ommutation relations (2.116) we have thatif � and � are roots then[Hi; [E�; E�℄℄ = �[E�; [E�; Hi℄℄� [E�; [Hi; E�℄℄= (�i + �i) [E�; E�℄ (2.122)



58 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASSine the algebra is losed under the ommutator we have that [E�; E�℄ mustbe an element of the algebra. We have then three possibilities1. � + � is a root of the algebra and then [E�; E�℄ � E�+�2. � + � is not a root and then [E�; E�℄ = 03. � + � = 0 and onsequently [E�; E�℄ must be an element of the Cartansubalgebra sine it ommutes with all Hi .Sine in a semisimple Lie algebra the roots are not degenerated (see (2.121)),we onlude from (2.122) that 2� is never a root.We then see that the knowlegde of the roots of the algebra provides allthe information about the ommutation relations and onsequently about thestruture of the algebra. From what we have learned so far, we an write theommutation relations of a semisimple Lie algebra G as[Hi; Hj℄ = 0 (2.123)[Hi; E�℄ = �iE� (2.124)[E�; E�℄ = 8><>: N��E�+� if � + � is a rootH� if � + � = 00 otherwise (2.125)where H� � 2�:H=�2, i; j = 1; 2; ::: rank G (see disussion leading to (2.129)and (2.130)). The struture onstants N�� will be determined later. The basisfHi; E�g is alled the Weyl-Cartan basis of a semisimple Lie algebra.Using the yli property of the trae (2.47) (or equivalently, the invarianeproperty (2.46)) we get that, in a given representationTr([Hi; E�℄E�) = Tr(E�[E�; Hi℄) (2.126)and so (�i + �i)Tr(E�E�) = 0 (2.127)The step operators are orthogonal unless they have equal and opposite roots.In partiular E� is orthogonal to itself. If it was orthogonal to all others, theKilling form would have vanishing determinant and the algebra would not besemisimple. Therefore for semisimple algebras if � is a root then �� must alsobe a root, and Tr(E�E��) 6= 0. The value of Tr(E�E��) is onneted to thestruture onstant of the seond relation in (2.125). We know that [E�; E��℄must be an element of the Cartan subalgebra. Therefore we write[E�; E��℄ = xiHi (2.128)



2.6. THE STRUCTURE OF SEMISIMPLE LIE ALGEBRAS 59Using (2.108) and the yli property of the trae we getTr(xiHiHj) = xj= Tr([E�; E��℄Hj)= Tr([Hj; E�℄E��)= �jTr(E�E��) (2.129)Consequently [E�; E��℄ must be proportional to �:H. Normalizing the stepoperators suh that Tr(E�E��) = 2�2 (2.130)we obtain the seond relation in (2.125).Again using the invariane property (2.46) we have thatTr([Hi; E�℄Hj) = Tr([Hj; Hi℄E�) (2.131)and so �iTr(HjE�) = 0 (2.132)Sine by assumption � is a root and therefore di�erent from zero we getTr(HiE�) = 0 (2.133)From the above results and (2.108) we see that we an normalize the Cartansubalgebra generators Hi and the step operator E� suh that the Killing formbeomes Tr(HiHj) = Æij ; i; j = 1; 2; :::rank GTr(HiE�) = 0Tr(E�E�) = 2�2 Æ�+�;0 (2.134)This is the usual normalization of the Weyl-Cartan basis.Notie that linear ombinations (E� � E��) diagonalizes the Killing form(2.134). However, by taking real linear ombinations of Hi, (E� + E��) andi(E��E��) one obtains a ompat algebra sine the eigenvalues of the Killingform are all of the same sign. On the hand, if one takes real linear ombinationsof Hi, (E� + E��) and (E� � E��) one obtains a non ompat algebra.Example 2.6 In setion 2.5 we have disussed the algebra of the group SU(2).In that ase the Cartan subalgebra is generated by T3 only. The step operatorsare T+ and T� orresponding to the roots +1 and �1 respetively . So the rankof SU(2) is one. We an represent these roots by the diagram 2.1



60 CHAPTER 2. LIE GROUPS AND LIE ALGEBRAS

-� ���Figure 2.1: The root diagram of A1 (su(2),so(3) or sl(2))



2.7. THE ALGEBRA SU(3) 612.7 The algebra su(3)In example 1.17 we de�ned the groups SU(N). We now disuss in more detailthe algebra of the group SU(3). As we have seen this is de�ned as the groupof all 3� 3 unitary matries with unity determinant. If we write an element ofthis group as g = exp (iT ) we see that T has to be hermitian in order g to beunitary. In addition using the fat that det(expA) = exp (TrA) we see thatTrT = 0 in order to detg = 1. So the Lie algebra of SU(3) is generated by3� 3 hermitian and traeless matries. Its dimension is 2:32� 32� 1 = 8. TheCartan subalgebra is generated by the diagonal matries. Sine they have to betraeless we have only two linearly independent diagonal matries. Thereforethe rank of SU(3) is two, and onsequently it has six roots. The usual basis ofthe algebra su(3) is given by the Gell-Mann matries whih are a generalizitionof the Pauli matries�1 = 0B� 0 1 01 0 00 0 0 1CA ; �2 = 0B� 0 �i 0i 0 00 0 0 1CA ;�3 = 0B� 1 0 00 �1 00 0 0 1CA ; �4 = 0B� 0 0 10 0 01 0 0 1CA ;�5 = 0B� 0 0 �i0 0 0i 0 0 1CA ; �6 = 0B� 0 0 00 0 10 1 0 1CA ;�7 = 0B� 0 0 00 0 �i0 i 0 1CA ; �8 = 1p3 0B� 1 0 00 1 00 0 �2 1CA (2.135)The trae form in suh matrix representation is given byTr(�i�j) = 2Æij (2.136)with i; j = 1; 2; :::8. The algebra su(3) is simple and therefore aording totheorem 2.4 the Killing form is proportinal to (2.136). Therefore, aording tothe de�nition 2.11 we see su(3) is a ompat algebra.The matries (2.135) satisfy the ommutation relations[�i; �j℄ = ifijk�k (2.137)where the struture onstants fijk are ompletly antisymmetri (see (2.56))and are given in table 2.1. The diagonal matries �3 and �8 are the generators



62 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASi j k fijk1 2 3 21 4 7 11 5 6 -12 4 6 12 5 7 13 4 5 13 6 7 -14 5 8 p36 7 8 p3Table 2.1: Struture onstants of su(3)of the Cartan subalgebra. One an easily hek that they satisfy the onditionsof the de�nition 2.13. We see that the remaining matries play the role of Tm in(2.112). Therefore we an onstrut the step operators as linear ombinationof them. However, like the su(2) ase, these are omplex linear ombinationand the step operators are not really generators of su(3). Doing that, andnormalizing the generators onveniently, we obtain the Weyl-Cartan basis forfor suh algebra H1 = 1p2�3 ; H2 = 1p2�8 ;E��1 = 12(�1 � i�2) ; E��2 = 12(�6 � i�7)E��3 = 12(�4 � i�5) (2.138)So they satisfy Tr(HiHj) = Æij ; Tr(E�mE��n) = Æmn (2.139)with i; j = 1; 2 and m;n = 1; 2; 3. One an hek that in suh basis theommutation relations read[H1; E��1℄ = �p2E��1 ; [H2; E��1 ℄ = 0 ;[H1; E��2℄ = �p22 E��2 ; [H2; E��2 ℄ = �s32E��2 ;[H1; E��3℄ = �p22 E��3 ; [H2; E��3 ℄ = �s32E��3 (2.140)
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Figure 2.2: The root diagram of A2 (SU(3) or SL(3))Therefore the roots of su(3) are�1 = (p2; 0) ; �2 = (�p22 ;s32) ; �3 = (p22 ;s32) (2.141)and the orresponding negative ones.Notie that all roots have the same lenght (�2 = 2) and the angle betweenany two of them is a multiple of �3 . The six roots of su(3) form a regulardiagram shown in �gure 2.2. This is alled the root diagram for su(3). Theroot diagram of a Lie algebra lives in an Eulidean spae of the same dimensionas the Cartan subalgebra, i.e., the rank of the algebra. The root diagram isvery useful in understanding the struture of the algebra. For instane, from(2.125) and the diagram 2.2 one sees that[E�1 ; E�3 ℄ = [E�3 ; E�2 ℄ = [E�2 ; E��1 ℄ = 0[E��1 ; E��3 ℄ = [E��3 ; E��2 ℄ = [E��2 ; E�1 ℄ = 0 (2.142)and also [E�1 ; E��1 ℄ = p2H1[E�2 ; E��2 ℄ = �p22 H1 +s32H2[E�3 ; E��3 ℄ = p22 H1 +s32H2 (2.143)Whenever the sum of two roots is a root of the diagram we know, from (2.125),that the orresponding step operators do not ommute. One an hek that



64 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASthe non vanishing ommutators between step operators are[E�1 ; E�2 ℄ = E�3 ; [E��1 ; E��2℄ = E��3 ;[E�1 ; E��3℄ = �E��2 ; [E��1 ; E�3 ℄ = E�2 ;[E�3 ; E��2 ℄ = E�1 ; [E��3 ; E�2 ℄ = �E��1 (2.144)We have seen that the algebra su(3) is generated by real linear ombinationof the Gell-Mann matries (2.135), or equivalently of the matries Hi, i = 1; 2,(E�m+E��m) and �i(E�m�E��m), m = 1; 2; 3. These are hermitian matries.If one takes real linear ombinations of Hi, (E�m + E��m) and (E�m � E��m)instead, one obtains the algebra sl(3) whih is not ompat. This is verysimilar to the relation between su(2) and sl(2) whih we saw in setion 2.5.This generalizes in fat, to all su(N) and sl(N).2.8 The Properties of rootsWe have seen that for a semisimple Lie algebra G, if � is a root then, �� isalso a root. This means that for eah step operator E� there exists a orre-sponding step operator E�. Together with H� = 2�:H=�2 they onstitute asl(2) subalgebra of G, sine from (2.124) and (2.125) one gets[H�; E��℄ = �2E��[E�; E��℄ = H� (2.145)This subalgebra is isomorphi to sl(2) sine H� plays the role of 2T3 , E�and E�� play the role of T+ and T� respetively (see setion 2.5). Thereforeto eah pair of roots � and �� we an onstrut a sl(2) subalgebra. Thesesubalgebras, however, do not have to ommute among themselves.We have learned in setion 2.5 that T3 , the third omponent of the angularmomentum, has half integer eigenvalues, and onsenquently H� (� 2T3 ) musthave integer eigenvalues. From (2.124) we have[H�; E�℄ = 2�:��2 E� (2.146)Therefore if j mi is an eigenstate of H� with an integer eigenvalue m them thestate E� j mi has eigenvalue m + 2�:��2 sineH�E� j mi = (E�H� + [H�; E�℄) j mi=  m+ 2�:��2 !E� j mi (2.147)



2.8. THE PROPERTIES OF ROOTS 652�:��2 2�:��2 � �2�20 0 �2 undetermined1 1 �3 1�1 �1 2�3 11 2 �4 2�1 �2 3�4 21 3 �6 3�1 �3 5�6 3Table 2.2: The possible salar produts, angles and ratios of squared lenghtfor the rootsThis implies that 2�:��2 = integer (2.148)for any roots � and �. This result is ruial in the study of the struture ofsemisimple Lie algebras. In order to satisfy this ondition the roots must havesome very speial properties. From Shwartz inequality we get (The roots livein a Eulidean spae sine they inherit the salar produt from the Killing formof G restrited to the Cartan subalgebra by �:� � Tr(�:H�:H) = PrankGi=1 �i�i)�:� =j � jj � j os � �j � jj � j (2.149)where � is the angle between � and �. Consenquently2�:��2 2�:��2 = mn = 4(os �)2 � 4 (2.150)where m and n are integers aording to (2.148), and so0 � mn � 4 (2.151)This ondition is very restritive and from it we get that the possible valuesof salar produts, angles and ratio of squared lenghts between any two rootsare those given in table 2.2. For the ase of � being parallel or anti-parallelto � we have os � = �1 and onsequently mn = 4. In this ase the possiblevalues of m and n are1. 2�:��2 = �2 and 2�:��2 = �22. 2�:��2 = �1 and 2�:��2 = �4



66 CHAPTER 2. LIE GROUPS AND LIE ALGEBRAS3. 2�:��2 = �4 and 2�:��2 = �1In ase 1 we have that � = �, whih is trivial, or � = �� whih is a fat dis-ussed earlier, i.e., to every root � there orresponds a root �� in a semisimpleLie algebra. In ase 2 we have � = �2� whih is impossible to our in asemisimple Lie algebra. In (2.121) we have seen that dim G = 1 and thereforethere exist only one step operator orresponding to a root �. From (2.122) wesee that 2� or �2� an not be roots sine [E�; E�℄ = [E��; E��℄ = 0. The ase3 is similar to 2. Therefore in a semisimple Lie algebra the only roots whihare multiples of � are ��.Notie that there are only three possible values for the ratio of lenghtsof roots, namely 1, 2 and 3 (there are �ve if one onsiders the reiproals 12and 13). However for a given simple Lie algebra, where there are no disjoint,mutually orthogonal set of roots, there an our only two di�erent lenght ofroots. The reason is that if �, �, and  are roots of a simple Lie algebra and�2�2 = 2 and �22 = 3 then it follows that 2�2 = 23 and this is not an allowed valuefor the ratio of two roots (see table 2.2).



2.9. THE WEYL GROUP 672.9 The Weyl groupIn the setion 2.8 we have shown that to eah pair of roots � and �� of asemisimple Lie algebra we an onstrut a sl(2) (or su(2)) subalgebra generatedby the operators H� , E� and E�� (see eq. (2.145)). We now de�ne thehermitian operators: T1(�) = 12(E� + E��)T2(�) = 12i(E� � E��) (2.152)whih satisfy the ommutation relations[Hi; T1(�)℄ = i�iT2(�)[Hi; T2(�)℄ = �i�iT1(�)[T1(�); T2(�)℄ = i2H� (2.153)The operator T2(�) is the generator of rotations about the 2-axis, and a rota-tion by � is generated by the elementS� = exp(i�T2(�)) (2.154)Using (2.27) and (2.153) one an hek thatS�(x:H)S�1� = x:H + x:�T1(�) sin� + x:��2 �:H(os� � 1)= �xi � 2x:��2 �i�Hi= ��(x):H (2.155)where we have de�ned the operator ��, ating on the root spae, by��(x) � x� 2x:��2 � (2.156)This operator orresponds to a reetion w.r.t the plane perpendiular to �.Indeed, if � is the angle between x and � then x:��2 � =j x j os � �j�j . Therefore��(x) is obtained from x by subtrating a vetor parallel (or anti-parallel)to � and with lenght twie the projetion of x in the diretion of �. Thesereetions are alled Weyl reetions on the root spae.



68 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASWe now want to show that if � and � are roots of a given Lie algebra G,then ��(�) is also a root. Let us introdue the operator~E� � S�E�S�1� (2.157)where E� is a step operator of the algebra and S� is de�ned in (2.154). Fromthe fat that (see (2.124)) [x:H;E�℄ = x:�E� (2.158)we get, using (2.155) thatS�[x:H;E�℄S�1� = [S�x:HS�1� ; S�E�S�1� ℄= [��(x):H; ~E�℄ (2.159)= x:�S�E�S�1� (2.160)= x:� ~E� (2.161)and so [��(x):H; ~E�℄ = x:� ~E� (2.162)However, if we perform a reetion twie we get bak to where we started, i.e.,�2 = 1. Therefore denoting ��(x) by y we get that ��(y) = x, and then from(2.162) [y:H; ~E�℄ = ��(y):� ~E� (2.163)and so [Hi; ~E�℄ = ��(�)i ~E� (2.164)Therefore ~E�, de�ned in (2.157), is a step operator orresponding to the root��(�). Consequently if � and � are roots, ��(�) is neessarily a root (similarly��(�) ).Example 2.7 In setion 2.7 we have disussed the algebra of the group SU(3).The root diagram with the planes perpendiular to the roots is given in �gure2.3. One an sees that the root diagram is invariant under Weyl reetions.We have �1 : �1 $ ��1 �2 $ �3 ��2 $ ��3�2 : �1 $ �3 �2 $ ��2 ��1 $ ��3�3 : �1 $ ��2 �2 $ ��1 �3 $ ��3
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Figure 2.3: The planes orthogonal to the roots of A2 (SU(3) or SL(3))�1�2 : ( �1 ! �2 �2 ! ��3 �3 ! ��1��1 ! ��2 ��2 ! �3 ��3 ! �1�2�1 : ( �1 ! ��3 �2 ! �1 �3 ! ��2��1 ! �3 ��2 ! ��1 ��3 ! �2 (2.165)Notie that the omposition of Weyl reetions is not neessarily a reetionand that reetions do not ommute. In this partiular ase the operation �2�1is a rotation by an angle of 2�3 and �1�2 is its inverse. The set of a Weylreexions and the omposition of two or more of them form a group alledthe Weyl group. It leaves the root diagram of su(3) invariant. This group isisomorphi to S3 , and in fat the Weyl group of su(N) is SN , the group ofpermutations of N elements.De�nition 2.15 The Weyl group of a Lie algebra, or of its root system, isthe �nite disrete group generated by the Weyl reetions.From the onsiderations above we see that the Weyl group leaves invariantthe root system. However it does not ontain all the symmetries of the rootsystem. The inversion �$ �� is ertainly a symmetry of the root system ofany semisimple Lie algebra but, in general, it is not an element of Weyl group.In the ase of su(3) disussed in example 2.7 the inversion an not be writtenin terms of reetions. In addition, the root diagram of su(3) is invarint underrotations of �3 , and this operation is not an element of the Weyl group of su(3).



70 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASAs we have seen the onjugation by the group element S� de�ned in (2.154)maps x:H into ��(x):H and E� intoE��(�). Therefore, suh mapping imitates,in the algebra, the Weyl reetions of the roots. Aording to (2.34) this is aninner automorphism of the algebra. Consequently any transformation of theWeyl group an be elevated to an inner automorphism of the orrespondingalgebra. In fat, any symmetry of the root diagram an be used to onstrut anautomorphism of the algebra. However those symmetries whih do not belongto the Weyl group give rise to outer automorphisms. We will see later thatthe mapping Hi ! �Hi, E� ! �E�� and E�� ! �E� is an automorphismof any semisimple Lie algebra. It is a onsequene of the invariane of the rootdiagram under the inversion �$ ��. It will be an inner (outer) automorphismif the inversion is (is not) an element of the Weyl group.We an summarize all the results about roots we have obtained so far inthe form of four postulates.De�nition 2.16 A set � of vetors in a Eulidean spae is the root systemor root diagram of a semisimple Lie algebra G if1. � does not ontain zero, spans an Eulidean spae of the same dimensionas the rank of the Lie algebra G and the number of elements of � is equalto dim G - rank G.2. If � 2 � then the only multiples of � in � are ��3. If �; � 2 �, then 2�:��2 is an integer4. If �; � 2 �, then ��(�) 2 �, i.e., the Weyl group leaves � invariant.Notie that if the root diagram deomposes into two or more disjoint andmutually orthogonal subdiagrams then the orresponding Lie algebra is notsimple. Suppose the rank of the algebra is r and that the diagram deomposesinto two orthogonal subdiagrams of dimensions m and n suh that m+n = r.By taking basis vi (i = 1; 2:::m) and uk (k = 1; 2:::n) in eah subdiagram we ansplit the generators of the Cartan subalgebra into two subsets of the formHv �v:H and Hu = u:H. From (2.158) we see that the generatorsa Hv ommutewith all step operators orresponding to roots in the subdiagram generated byuk , and vie versa. In addition, sine the sum of a root of one subdiagramwith a root of the other is not a root, we onlude that the orresponding stepoperators ommute. Therefore eah subdiagram orresponds to an invariantsubalgebra of the Lie algebra whih root diagram is their union.



2.10. WEYL CHAMBERS AND SIMPLE ROOTS 71-� 6?� �Figure 2.4: The root diagram of su(2)� su(2)-� ���Weyl hamber ���Figure 2.5: The Weyl hambers of A1 (su(2),so(3) or sl(2))Example 2.8 The root diagram shown in �gure 2.4 is made of two ortoghonaldiagrams. Sine eah one is the diagram of an su(2) algebra we onlude, fromthe disussion above, that it orresponds to the algebra su(2)�su(2). Rememberthat the ratio of the squared lenght of the ortoghonal roots are undetermined inthis ase (see table 2.2).2.10 Weyl Chambers and simple rootsThe hyperplanes perpendiular to the roots, de�ned in setion 2.9 partitionthe root spae into �nitely many regions. These onneted regions (withoutthe hyperplanes) are alled Weyl Chambers . Due to the regularity of the rootsystems all the Weyl hambers have the same form and are equivalent.Example 2.9 In the ase of su(2) (or so(3) and sl(2)) there are only twoWeyl hambers, eah one orresponding to a half line. These are shown in�gure 2.5. In the ase of su(3) there are 6 Weyl hambers. They are shown in�gure 2.6.Notie that under a Weyl reetion, all points of a Weyl hamber are mappedinto the same Weyl hamber, and therefore the Weyl group takes one WeylChamber into another. In fat the Weyl group ats transitively on Weyl Cham-bers and its order is the number of Weyl Chambers. In general the number ofroots is bigger than the number of Weyl Chambers.Sine the Weyl Chambers are equivalent one to another, we will hoose oneof them and all it the Fundamental Weyl Chamber. Consider now a vetorx inside this partiular hamber. The salar produt of x with any root � isalways di�erent from zero, sine if it was zero x would be on the hyperplane



72 CHAPTER 2. LIE GROUPS AND LIE ALGEBRAS
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Figure 2.6: The Weyl hambers of A2 (SU(3) or SL(3))perpendiular to � and therefore not inside a Weyl hamber. As we move xwithin the hamber the sign of �:x does not hange, sine in order to hange�:x would have to vanish and therefore x would have to ross a hyperplane.Therefore the salar produt of a root with any vetor inside a Weyl Chamberhas a de�nite sign.De�nition 2.17 Let x be any vetor inside the Fundamental Weyl hamber.We say � is a positive root if �:x > 0 and a negative root if �:x < 0.De�nition 2.18 We say a positive root is a simple root if it an not be writtenas the sum of two positive roots.Example 2.10 In the ase of su(3), if we hoose the Fundamental Weylhamber to be the one shown in �gure 2.6, then the positive roots are �1, �2and �3. We see that �1 and �2 are simple, but �3 is not sine �3 = �1 + �2.Theorem 2.5 Let � and � be non proportional roots. Then1. if �:� > 0, �� � is a root2. if �:� < 0, � + � is a rootProof If �:� > 0 we see from table 2.2 that either 2�:��2 or 2�:��2 is equal to 1.Without loss of generality we an take 2�:��2 = 1. Therefore��(�) = � � 2�:��2 � = � � � (2.166)



2.10. WEYL CHAMBERS AND SIMPLE ROOTS 73So, from the invariane of the root system under the Weyl group, ��� is alsoa root, as well as �� �. The proof for the ase �:� < 0 is similar. 2Theorem 2.6 Let � and � be distint simple roots. Then �� � is not a rootand �:� � 0.Proof Suppose �� � �  is a root. If  is positive we write � =  + �, and ifit is negative we write � = � + (�). In both ases we get a ontradition tothe fat � and � are simple. Therefore ��� an not be a root. From theorem2.5 we onlude �:�an not be positive. 2Theorem 2.7 Let �1, �2,... �r be the set of all simple roots of a semisimpleLie algebra G. Then r = rank G and eah root � of G an be written as� = rXa=1na�a (2.167)where na are integers, and they are positive or zero if � is a positive root andnegative or zero if � is a negative root.Proof Suppose the simple roots are linear dependent. Denote by xa and�ya the positive and negative oeÆients, respetively, of a vanishing linearombination of the simple roots. Then writesXa=1 xa�a = rXb=s+1 yb�b � v (2.168)with eah �a being di�erent from eah �b. Thereforev2 =Xab xayb�a:�b � 0 (2.169)Sine v is a vetor on an Eulidean spae it follows that that the only possibilityis v2 = 0, and so v = 0. But this implies xa = yb = 0 and onsequently thesimple roots must be linear independent. Now let � be a positve root. If it isnot simple then � = � +  with � and  both positive. If � and/or  are notsimple we an write them as the sum of two positive roots. Notie that � annot appear in the expansion of � and/or  in terms of two positive roots, sineif x is a vetor of the Fundamental Weyl Chamber we have x:� = x:� + x:.Sine they are all positive roots we have x:� > x:� and x:� > a:. Therefore� or  an not be written as �+ Æ with Æ a positive root. For the same reason� and  will not appear in the expansion of any further root appearing in



74 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASthis proess. Thus, we an ontinue suh proess until � is written as a sumof simple roots, i.e. � = Pra=1 na�a with eah na being zero or a positiveinteger. Sine, for semisimple Lie algebras, the roots ome in pairs (� and��) it follows that the negative roots are written in terms of the simple rootsin the same way, with na being zero or negative integers. We then see thatthe set of simple roots span the root spae. Sine they are linear independent,they form a basis and onsequently r = rank G. 2



2.11. CARTAN MATRIX AND DYNKIN DIAGRAMS 752.11 Cartan matrix and Dynkin diagramsIn order to de�ne positive and negative roots and then simple roots we havehosen one partiular Weyl Chamber to play a speial role. This was alled theFundamental Weyl Chamber. However any Weyl Chamber an play suh rolesine they are all equivalent. As we have seen the Weyl group transforms oneWeyl Chamber into another. In fat, one an show (see pag. 51 of [HUM 72℄)that there exists one and only one element of the Weyl group whih takes oneWeyl Chamber into any other.By hanging the hoie of the fundamental Weyl Chamber one hanges theset of simple roots. This implies that the hoies of simple roots are relatedby Weyl reetions. From the �gure 2.6 we see that in the ase of SU(3)any of the pairs of roots (�1; �2), (�3;��1), (�2;��3), (��1;��2), (��3; �1),(��2; �3), ould be taken as the simple roots. The ommon features in thesepairs are the angle between the roots and the ratio of their lenghts. (in thease of SU(3) this is trivial sine all roots have the same length, but in otherases it is not).Therefore the important information about the simple roots an be enodedinto their salar produts. For this reason we introdue an r � r matrix (r =rank G) as Kab � 2�a:�b�2b (2.170)(a; b = 1; 2; ::: rank G) whih is alled the Cartan matrix of the Lie algebra. Aswe will see it ontains all the relevant information about the struture of thealgebra G. Let us see some of its properties:1. It provides the angle between any two simple roots sineKabKba = 4�a:�b�2b �a:�b�2a (2.171)with no summation on a or b, and soos � = �12qKabKba (2.172)where � is the angle between �a and �b. We take the minus sign beause,aording to theorem 2.6, the simple roots always form obtuse angles.2. The Cartan matrix gives the ratio of the lenghts of any two simple rootssine KabKba = �2a�2b (2.173)



76 CHAPTER 2. LIE GROUPS AND LIE ALGEBRAS3. Kaa = 2. The diagonal elements do not give any information.4. From the properties of the roots disussed in setion 2.8 we see thatKabKba = 4 (os �)2 = 0; 1; 2; 3 (2.174)we do not get 4 beause we are taking a 6= b. But from theorem 2.6 wehave �a:�b � 0 and so the o� diagonal elements of the Cartan matrixan take the values Kab = 0;�1;�2;�3 (2.175)with a 6= b. From the table 2.2 we see that if Kab = �2 or �3 then weneessarily have Kba = �1.5. If �a and �b are orthogonal, obviously Kab = Kba = 0. At the end ofsetion 2.9 we have shown that if the root diagram deomponses intotwo or more mutually orthogonal subdiagrams then the orrespondingalgebra is not simple. As a onsequene of that if follows that the Cartanmatrix of a Lie algebra, whih is not simple, neessarily has a blok-diagonal form.6. The Cartan matrix is symmetri only when all roots have the samelenght.Example 2.11 The algebra of SO(3) or SU(2) has only one simple root andtherefore its Cartan matrix is trivial, i.e., K = 2.Example 2.12 The algebra of SO(4) is not simple. It is isomorphi to su(2)�su(2). Its root diagram is given in �gure 2.4. The simple roots are � and �(for instane) and the ratio of their lenght is not determined. The Cartanmatrix is K =  2 00 2 ! (2.176)Example 2.13 From �gure 2.6 we see that the Cartan matrix of A2 (su(3)or sl(3)) is K =  2 �1�1 2 ! (2.177)
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Figure 2.7: The root diagram and Fundamental Weyl hamber of so(5) (orsp(2))Example 2.14 The algebra of SO(5) has dimension 10 and rank 2. So ithas 8 roots. It root diagram is shown in �gure 2.7. The Fundamental WeylChamber is the shaded region. Notie that all roots lie on the hyperplanesperpendiular to the roots. The positive roots are �1, �2, �3 and �4 as shownon the diagram. All the others are negative. The simple roots are �1 and �2,and the ratio of their squared lenghts is 2. The angle between them is 3�4 . TheCartan matrix of so(5) is K =  2 �1�2 2 ! (2.178)Example 2.15 The last simple Lie algebra of rank 2 is the exeptional algebraG2 . Its root diagram is shown in �gure 2.8. It has 12 roots and thereforedimension 14. The Fundamental Weyl Chamber is the shaded region. Thepositive roots are the ones labelled from 1 to 6 on the diagram. The simpleroots are �1 and �2. The Cartan matrix is given byK =  2 �1�3 2 ! (2.179)We have seen that the relevant information ontained in the Cartan matrixis given by its o�-diagonal elements. We have also seen that if Kab 6= 0 thenone of Kab or Kba is neessarily equal to �1. Therefore the information of theo�-diagonal elements an be given by the positive integers KabKba (no sum in
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Figure 2.8: The root diagram and Fundamental Weyl Chamber of G2a and b). These integers an be enoded in a diagram alled Dynkin diagramwhih is onstruted in the following way:1. Draw r points, eah orresponding to one of the r simple roots of thealgebra (r is the rank of the algebra).2. Join the point a to the point b by KabKba lines. Remember that thenumber of lines an be 0, 1, 2 or 3.3. If the number of lines joining the points a and b exeeds 1 put an arrowon the lines direted towards the one whose orresponding simple roothas a shorter lenght than the other.When KabKba = 2 or 3 the orresponding simple roots, �a and �b , havedi�erent lenghts. In order to see this, remember that Kab or Kba is equal to�1. Taking Kab = �1, we have Kba = �KabKba = �2 or �3. But�2a�2b = KabKba = 1KabKba (2.180)and onsenquently �2b � �2a. So the number of lines joining two points in aDynkin diagram gives the ratio of the squared lenghts of the orrespondingsimple roots.Example 2.16 The Cartan matrix of the algebra of SO(3) or SU(2) is simplyK = 2. It has only one simple root and therefore its Dynkin diagram is just a
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Algebra Dynkin Diagram 

A (su(2) or sl(2) )
1

so(4) = su(2) + su(2) 

G 2

2B    (so(5) )

2A   (su(3) or sl(3) )

Figure 2.9: The Dynkin diagrams of rank 1 and 2 algebras.point. The algebra of SU(3) on the other hand has two simple roots. From itsCartan matrix given in example 2.13 and the rules above we see that its Dynkindiagram is formed by two points linked by just one line. Using the rules aboveone an easily onstrut the Dynkin diagrams for the algebras disussed inexamples 2.11 - 2.15. They are given in �gure 2.9.The root system postulates, given in de�nition 2.16, impose severe restri-tions on the possible Dynkin diagrams. In setion 2.15 we will lassiy theadmissible diagrams, and we will see that there exists only nine types of sim-ple Lie algebras.We have said that for non simple algebras the Cartan matrix has a blokdiagonal form. This implies that the orresponding Dynkin diagram is notonnet. Therefore a Lie algebra is simple only and if only its Dynkin diagramis onneted.We say a Lie algebra is simply laed if the points of its Dynkin diagramare joined by at most one link. This means all the roots of the algebra havethe same length.



80 CHAPTER 2. LIE GROUPS AND LIE ALGEBRAS2.12 Root stringsWe have shown in theorem 2.5 that if � and � are non proportional roots then� + � is a root whenever �:� < 0, and �� � is a root whenever �:� > 0. Wean use this result further to see if � +m� or � � n� (for m;n integers) areroots. In this way we an obtain a set of roots forming a string. We then ometo the onept of the �-root string through �. Let p be the largest positiveinteger for whih �+p� is a root, and let q be largest positive integer for whih� � q� is a root. We will show that the set of vetors� + p� ; � + (p� 1)� ; ::: � + � ; � ; � � � ; ::: � � q� (2.181)are all roots. They onstitute the �-root string through �.Suppose that � + p� and � � q� are roots and that the string is broken,let us say, on the positive side. That is, there exist positive integers r and swith p > r > s suh that1. � + (r + 1)� is a root but � + r� is not a root2. � + (s+ 1)� is not a root but � + s� is a rootAording to theorem 2.5, sine � + r� is not a root then we must have�: (� + (r + 1)�) � 0 (2.182)For the same reason, sine � + (s+ 1)� is not a root we have�: (� + s�) � 0 (2.183)Therefore we get that ((r + 1)� s)�2 � 0 (2.184)and sine �2 > 0 s� r � 1 (2.185)But this is a ontradition with our assumption that r > s > 0. So this provesthat the string an not be broken on the positive side. The proof that thestring is not broken on the negative side is similar.Notie that the ation of the Weyl reetion �� on a given root is to addor subtrat a multiple of the root �. Sine all roots of the form � + n� areontained in the �-root string through �, we onlude that this root string isinvariant under ��. In fat �� reverses the �-root string. Clearly the image



2.12. ROOT STRINGS 81of � + p� under �� has to be � � q�, and vie versa, sine they are the rootsthat are most distant from the hyperplane perpendiular to �. We then have��(� � q�) = � � q�� 2�:(� � q�)�2 � = � + p� (2.186)and sine the only possible values of 2�:��2 are 0, �1, �2 and �3 we get thatq � p = 2�:��2 = 0; �1; �2; �3 (2.187)Denoting � � q� by  we see that for the �-root string through  we haveq = 0 and therefore the possible values of p are 0, 1, 2 and 3. Consequentlythe number of roots in any string an not exeed 4.For a simply laed Lie algebra the only possible values of 2�:��2 are 0 and�1. Therefore the root strings, in this ase, an have at most two roots.Notie that if � and � are distint simple roots, we neessarily have q = 0,sine � � � is never a root in this ase. So[E��; E�℄ = [E�; E��℄ = 0 (2.188)If, in addition, �:� = 0 we get from (2.187) that p = 0 and onsequently �+�is not a root either. For a semisimple Lie algebra, sine if � is a root then ��is also a root, it follows that[E�; E�℄ = [E��; E��℄ = 0 (2.189)for � and � simple roots and �:� = 0. We an read this result from the Dynkindiagram sine, if two points are not linked then the orresponding simple rootsare orthogonal.Example 2.17 For the algebra of SU(3) we see from the diagram shown in�gure 2.6 that the �1-root string through �2 ontains only two roots namely 2and 3= 2+1.Example 2.18 From the root diagram shown in �gure 2.7 we see that, forthe algebra of SO(5), the �1-root string through �2 ontains thre roots �2,�3 = �1 + �2, and �4 = �2 + 2�1.Example 2.19 The algebra G2 is the only simple Lie algebra whih an haveroot strings with four roots. From the diagram shown in �gure 2.8 we see thatthe �1-root string through �2 ontains the roots �2, �3 = �2+�1 , �5 = �2+2�1and �6 = 2�2 + 3�1.



82 CHAPTER 2. LIE GROUPS AND LIE ALGEBRAS2.13 Commutation relations from DynkindiagramsWe now explain how one an obtain from the Dynkin diagram of a Lie alge-bra, the orresponding root system and then the ommutation relations. Thefat that this is possible to be done is a demonstration of how powerful theinformation enoded in the Dynkin diagram is.We start by introduing the onept of height of a root . In theorem 2.7 wehave shown that any root an be written as a linear ombination of the simpleroots with integer oeÆients all of the same sign (see eq. (2.167)). The heightof a root is the sum of these integer oeÆients, i.e.h(�) � rankGXa=1 na (2.190)where na are given by (2.167). The only roots of height one are the simpleroots. This de�nition lassi�es the roots aording to a hierarhy. We anreonstrut the root system of a Lie algebra from its Dynkin diagram startingfrom the roots of lowest height as we now explain.Given the Dynkin diagram we an easily onstrut the Cartan matrix. Weknow that the diagonal elements are always 2. The o� diagonal elements arezero whenever the orresponding points (simple roots) of the diagram are notlinked. When they are linked we have Kab (or Kba ) equals to �1 and Kba (orKab ) equal to minus the number of links between those points.Example 2.20 The Dynkin diagram of SO(7) is given in �gure 2.10We see that the simple root 3 (aording to the rules of setion 2.11 ) has alength smaller than that of the other two. So we have K23 = �2 and K32 = �1.Sine the roots 1 and 2 have the same length we have K12 = K21 = �1. K13and K31 are zero beause there are no links between the roots 1 and 3. ThereforeK = 0B� 2 �1 0�1 2 �20 �1 2 1CA (2.191)One the Cartan matrix has been determined from the Dynkin diagram, oneobtain all the roots of the algebra from the Cartan matrix. We are interested insemisimple Lie algebras. Therefore, sine in suh ase the roots ome in pairs� and ��, we have to �nd just the positive roots. We now give an algorithmfor determining the roots of a given height n from those of height n� 1. Thesteps are



2.13. COMMUTATION RELATIONS FROM DYNKIN DIAGRAMS 83
21 3Figure 2.10: The Dynkin diagram of so(7).1. The roots of height 1 are just the simple roots.2. We have seen in (2.189) that if two simple roots are orthogonal thentheir sum is not a root. On the other hand if they are not orthogonalthen their sum is neessarily a root. From theorem 2.6 one has �:� � 0for � and � simple, and therefore from theorem 2.5 one gets their sumis a root (if they are not orthogonal). Consequently to obtain the rootsof height 2 one just look at the Dynkin diagram. The sum of pairs ofsimple roots whih orresponding points are linked, by one or more lines,are roots. These are the only roots of height 2.3. The proedure to obtain the roots of height 3 or greater is the following:suppose �(l) = PrankGa=1 na�a is a root o height l, i.e. PrankGa=1 na = l. Usingthe Cartan matrix one evaluates2�(l):�b�2b = rankGXa=1 naKab (2.192)where �b is a simple root. If this quantity is negative one gets fromtheorem 2.5 that �(l)+�b is a root of height l+1. If it is zero or positiveon uses (2.187) to write p = q � rankGXa=1 naKab (2.193)where p and q are the highest positive integers suh that �(l) + p�b and�(l)�q�b are roots. The integer q an be determined by looking at the setof roots of height smaller than l (whih have already been determined)and heking what is the root of smallest height of the form �(l) �m�b.One then �nds p from (2.193). If p does not vanish, �(l) + �b is a root.Notie that if p � 2 one also determines roots of height greater thanl + 1. By applying this proedure using all simple roots and all roots ofheight l one determines all roots of height l + 1.4. The proess �nishes when no roots of a given height l+1 is found. Thatis beause there an not exists roots of height l + 2 if there are no rootsof height l + 1.



84 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASTherefore we have shown that the root system of a Lie algebra an bedetermined from its Dynkin diagram. In some ases it is more pratial todetermine the root system using the Weyl reetions through hyperplanesperpendiular to the simple roots.The root whih has the highest height is said the highest root of the algebraand it is generally denoted  . For simple Lie algebras the highest root is unique.The integer h( ) + 1 = PrankGa=1 ma + 1, where  = PrankGa=1 ma�a, is said theCoxeter number of the algebra.Example 2.21 In example 2.20 we have determined the Cartan matrix ofSO(7) from its Dynkin diagram. We now determine its root system followingthe proedure desribed above. The dimension of SO(7) is 21 and its rank is 3.So, the number of positive roots is 9. The �rst three are the simple roots �1 ,�2 and �3 . Looking at the Dynkin diagram in �gure 2.10 we see that �1 + �2and �2+�3 are the only roots of height 2, sine �1 and �3 are orthogonal. Wehave 2(�1+�2):�a�2a = K1a+K2a whih, from (2.191), is equal to 1 for a = 1; 2 and�2 for a = 3. Therefore, from (2.193), we get that 2�1 + �2 and �1 + 2�2 arenot roots but �1 + �2 + �3 and �1 + �2 + 2�3 are roots. Analogously we have2(�2+�3):�a�2a = K2a +K3a whih is equal to �1 for a = 1, 1 for a = 2 and 0 fora = 3. Therefore the only new root we obtain is �2 + 2�3. This exhausts theroots of height 3. One an hek that the only root of height 4 is �1+�2+2�3whih we have obtained before. Now 2(�1+�2+2�3):�a�2a = K1a+K2a+2K3a whihis equal to 1, �1 and 2 for a = 1; 2; 3 respetively. Sine it is negative fora = 2 we get that �1 + 2�2 + 2�3 is a root. This is the only root of height 5,and it is in fat the highest root of SO(7). So the Coxeter number of SO(7) is6. Summarizing we have that the positive roots of SO(7) areroots of height 1 �1; �2; �3roots of height 2 (�1 + �2); (�2 + �3)roots of height 3 (�1 + �2 + �3); (�2 + 2�3)roots of height 4 (�1 + �2 + 2�3)roots of height 5 (�1 + 2�2 + 2�3)These ould also be determined starting from the simple roots and using Weylreetions.We now show how to determine the ommutation relations from the rootsystem of the algebra. We have been using the Cartan-Weyl basis introduedin (2.134). However the ommutation relations take a simpler form in the soalled Chevalley basis . In this basis the Cartan subalgebra generators are



2.13. COMMUTATION RELATIONS FROM DYNKIN DIAGRAMS 85given by Ha � 2�a:H�2a (2.194)where �a (a = 1; 2; ::: rank G) are the simple roots and �a:H = �iaH i , whereHi are the Cartan subalgebra generators in the Cartan-Weyl basis and �ia arethe omponents of the simple root �a in that basis, i.e. [Hi; E�a℄ = �iaE�a.The generators Ha are not orthonormal like the Hi . From (2.134) and (2.170)we have that Tr(HaHb) = 4�a:�b�2a�2b = 2�2aKab (2.195)The generators Ha obviously ommute among themselves[Ha; Hb℄ = 0 (2.196)The ommutation relations between Ha and step operators are given by (see(2.124)) [Ha; E�℄ = 2�:�a�2a E� = K�aE� (2.197)where we have de�ned K�a � 2�:�a�2a . Sine � an be written as in (2.167) wesee that K�a is a linear ombination with integer oeÆients, all of the samesign, of the a-olumm of the Cartan matrixK�a = 2�:�a�2a = rankGXb=1 nbKba (2.198)where � = PrankGb=1 nb�b. Notie that the fator multiplying E� on the r.h.sof (2.197) is an integer. In fat this is a property of the Chevalley basis. Allthe struture onstants of the algebra in this basis are integer numbers. Theommutation relations (2.197) are determined one one knows the root systemof the algebra.We now onsider the ommutation relations between step operators. From(2.125) [E�; E�℄ = 8><>: N��E�+� if � + � is a rootH� = maHa if � + � = 00 otherwise (2.199)where ma are integers in the expansion ��2 = PrankGa=1 ma �a�2a . The strutureonstants N��, in the Chevalley basis, are integers and an be determined



86 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASfrom the root system of the algebra and also from the Jaobi identity . Let usexplain now how to do that.Notie that from the antisymmetry of the Lie braketN�� = �N�� (2.200)for any pair of roots � and �. The struture onstants N�� are de�ned up toresaling of the step operators. If we make the transformationE� ! ��E� (2.201)keeping the Cartan subalgebra generators unhanged, then from (2.199) thestruture onstants N�� must transform asN�� ! ������+�N�� (2.202)and ����� = 1 (2.203)As we have said in setion 2.9, any symmetry of the root diagram an be ele-vated to an automorphism of the orresponding Lie algebra. In any semisimpleLie algebra the transformation � ! �� is a symmetry of the root diagramsine if � is a root so is ��. We then de�ne the transformation � : G ! G as�(Ha) = �Ha ; �(E�) = ��E�� (2.204)and �2 = 1. From the ommutation relations (2.196), (2.197) and (2.199) onesees that suh transformation is an automorphism if����� = 1N�� = ������+�N��;�� (2.205)Using the freedom to resale the step operators as in (2.202) one sees that it ispossible to satisfy (2.205) and make (2.204) an automorphism. In partiularit is possible to hoose all �� equals to �1 and thereforeN�� = �N��;�� (2.206)Consider the �-root string through � given by (2.181). Using the Jaobiidentity for the step operators E�, E�� and E�+n�, where p > n > 1 and p isthe highest integer suh that � + p� is a root, we obtain from (2.199) thatN�+n�;��N�+(n�1)�;� �N�+n�;�N�+(n+1)�;�� = 2�:(� + n�)�2 (2.207)



2.13. COMMUTATION RELATIONS FROM DYNKIN DIAGRAMS 87Notie that the seond term on the l.h.s of this equation vanishes when n = p, sine �+(p+1)� is not a root. Adding up the equations (2.207) for n takingthe values 1, 2, ... p , we obtain thatN�+�;��N�� = 2�:��2 p+ 2 (p+ (p� 1) + (p� 2) + ::: + 1)= p(q + 1) (2.208)where we have used (2.187).From the fat that the Killing form is invariant under the adjoint represen-tation (see (2.48) it follows that it is invariant under inner automorphisms, i.e.Tr(�(T )�(T 0)) = Tr(TT 0) with �(T ) = gTg�1. However one an show thatthe Killing form is invariant any automorphism (inner or outer). Using thisfat for the automorphism (2.204) (with �� = �1), the invariane property(2.46) and the normalization (2.134) one getsTr([E�; E�℄E����) = N�� 2(� + �)2= �Tr([E��; E��℄E�+�)= �Tr([E�+�; E��℄E��)= �N�+�;�� 2�2 (2.209)Consequently N�+�;�� = � �2(� + �)2N�� (2.210)Substituting this into (2.208) we getN2�� = (� + �)2�2 p(q + 1) (2.211)Therefore, up to a sign, the struture onstants N�� de�ned in (2.199) an bedetermined from the root system of the algebra.Using the Jaobi identity for the step operators E�, E� and E��n�, with nvarying from 1 to q where q is the highest integer suh that � � q� is a root,and doing similar alulations we obtain thatN2�;�� = (� � �)2�2 q(p+ 1) (2.212)



88 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASThe relation (2.211) an be put in a simpler form. From (2.187) we havethat (see setion 25.1 of [HUM 72℄)(q + 1)� p(� + �)2�2 = p+ 2�:��2 + 1� p(� + �)2�2= 2�:��2 + 1� p�2�2 � p2�:��2=  2�:��2 + 1! 1� p�2�2! (2.213)We want to show the r.h.s of this relation is zero. We distinguish two ases:1. In the ase where �2 � �2 we have j 2�:��2 j�j 2�:��2 j. From table 2.2 wesee that the possible values of 2�:��2 are �1, 0 or 1. In the �rst ase weget that the �rst fator on the r.h.s of (2.213) vanishes. On the othertwo ases we have that �:� � 0 and then (�+ �)2 is stritly larger thanboth, �2 and �2 . Sine we are assuming � + � is a root and sine, aswe have said at the end of setion 2.8, there an be no more than twodi�erent root lengths in eah omponent of a root system, we onludethat �2 = �2 . For the same reason � + 2� an not be a root sine(� + 2�)2 > (� + �)2 and therefore p = 1. But this implies that theseond fator on the r.h.s of (2.213) vanishes.2. For the ase of �2 < �2 we have that (�+�)2 = �2 or �2, sine otherwisewe would have three di�erent root lengths. This fores �:� to be stritlynegative. Therefore we have (���)2 > �2 > �2 and onsequently ��� isnot a root and so q = 0. But j 2�:��2 j<j 2�:��2 j and therefore 2�:��2 = �1; 0or 1. Sine �:� < 0 we have 2�:��2 = �1. Then from (2.187) we havep = �2�:��2 �22�:� = �2�2 . Therefore the seond fator on the r.h.s of (2.213)vanishes.Then, we have shown that q + 1 = p(� + �)2�2 (2.214)and from (2.211) N2�� = (q + 1)2 (2.215)This shows that the struture onstants N�� are integer numbers. From(2.196), (2.197) and (2.199) we see that all struture ontants in the Chevalley



2.13. COMMUTATION RELATIONS FROM DYNKIN DIAGRAMS 89basis are integers. Summarizing we have[Ha; Hb℄ = 0 (2.216)[Ha; E�℄ = 2�:�a�2a E� = K�aE� (2.217)[E�; E�℄ = 8><>: (q + 1)"(�; �)E�+� if � + � is a rootH� = 2�:H�2 = maHa if � + � = 00 otherwise (2.218)where we have denoted "(�; �) the sign of the struture onstant N��, i.e.N�� = (q+1)"(�; �). These signs, also alled oyles, are determined throughthe Jaobi identity as explained in setion 2.14. As we have said before q isthe highest positive integer suh that � � q� is a root. However when � + �is a root, whih is the ase we are interested in (2.218), it is true that q isalso the highest positive integer suh that �� q� is a root. The reason is thefollowing: in a semisimple Lie algebra the roots always appear in pairs (� and��). Therefore if � � � is a root so is � � �. In addition we have seen insetion 2.12 that the root strings are unbroken and they an have at most fourroots. Therefore, sine we are assuming that �+ � is a root, the only possibleway of not satisfying what we said before is to have, let us say, the �-rootstring through � as � � 2�, � � �, �, � + �; and the �-root string through �as �� �, �, � + � or �� �, �, � + �, � + 2�. But from (2.187) we have2�:��2 = 1 (2.219)and 2�:��2 = 0 or � 1 (2.220)whih are learly inompatible.We have said in setion 2.12 that for a simply laed Lie algebra there anbe at most two roots in a root string. Therefore if �+� is a root ��� is not,and therefore q = 0. Consequently the struture onstants N�� are always �1for a simply laed algebra.



90 CHAPTER 2. LIE GROUPS AND LIE ALGEBRAS2.14 Finding the oyles "(�; �)As we have seen the Dynkin diagram of an algebra ontains all the neessaryinformation to onstrut the ommutation relations (2.216)-( 2.218). Howeverthat information is not enough to determine the oyles "(�; �) de�ned in( 2.218). For that we need the Jaobi identity. We now explain how to usesuh identities to determine the oyles. We will show that the onsistenyonditions imposed on the oyles are suh that they an be split into anumber of sets equal to the number of positive non simple roots. The sign ofa oyle in a given set ompletly determines the signs of all other oyles ofthat set, but has no inuene in the determination of the oyles in the othersets. Therefore the oyles "(�; �) are determined by the Jaobi identities upto suh \gauge freedom" in �xing independently the signs of the oyles ofdi�erent sets.From the antisymmetry of the Lie braket the oyles have to satisfy"(�; �) = �"(�; �) (2.221)In addition, from the hoie made in (2.206) one has"(�; �) = �"(��;��) (2.222)Consider three roots �, � and  suh that their sum vanishes. The Jaobiidentity for their orresponding step operators yields, using (2.216) - (2.218)0 = [[E�; E�℄; E ℄ + [[E ; E�℄; E�℄ + [[E�; E℄; E�℄= �((q�� + 1)"(�; �)2:H2 + (q� + 1)"(; �)2�:H�2+(q� + 1)"(�; )2�:H�2 )= �(((q� + 1)"(�; )� �22 (q�� + 1)"(�; �))2�:H�2+((q� + 1)"(; �)� �22 (q�� + 1)"(�; �))2�:H�2 ) (2.223)Sine the integers q0s are non negative we get"(�; �) = "(�; ) = "(; �) (2.224)and also 12 (q�� + 1) = 1�2 (q� + 1) = 1�2 (q� + 1) (2.225)



2.14. FINDING THE COCYCLES "(�; �) 91Further relations are found by onsidering Jaobi identities for three step op-erators orresponding to roots adding up to a fourth root. Now suh identitiesyield relations involving produts of two oyles. However, in many situationsthere are only two non vanishing terms in the Jaobi identity. Consider threeroots �, � and  suh that � + �, � +  and � + � +  are roots but � + is not a root. Then the Jaobi identity for the orresponding step operatorsyields 0 = [[E�; E�℄; E℄ + [[E ; E�℄; E�℄ + [[E�; E℄; E�℄= (q�� + 1)(q�+�; + 1)"(�; �)"(�+ �; )+(q� + 1)(q�+;� + 1)"(�; )"(� + ; �) (2.226)Therefore one gets "(�; �)"(�+ �; ) = "(�; )"(�; � + ) (2.227)and (q�� + 1)(q�+�; + 1) = (q� + 1)(q�+;� + 1) (2.228)There remains to onsider the ases where the three terms in the Jaobi identityfor three step operators do not vanish. Suh thing happens when we have threeroots �, � and  suh that � + �, � + , � +  and � + � +  are roots aswell. We now lassify all ases where that happens. We shall denote long rootsby �, �, �, ... and short roots by e, f , g, ... . From the properties of rootsdisussed in setion 2.8 one gets that 2�:��2 , 2�:e�2 , 2e:fe2 = 0, �1. Let us onsiderthe possible ases:1. All three roots are long. If � + � is a root then (�+�)2�2 = 2 + 2�:��2 . Sine�+ � an not be a longer than � one gets 2�:��2 = �1. So �+ � is a longroot and if �+ � + � is also a root one gets by the same argument that2(�+�):��2 = �1. Therefore �+� and �+� an not be roots simultaneouslysine that would imply, by the same arguments, 2�:��2 = 2�:��2 = �1 whihis a ontradition with the result above.2. Two roots are long and one short. If � + e is a root then (�+e)2�2 =1+ e2�2+ 2�:e�2 . Sine �+e an not be longer than � it follows that 2�:e�2 = �1.Therefore � + e is a short root sine (� + e)2 = e2. So, if � + e + � isa root then (�+e+�)2�2 = 1 + (�+e)2�2 + 2(�+e):��2 and therefore 2(�+e):��2 = �1.Consequently �+ � and �+ e an not be roots simultaneously sine thatwould imply, by the same arguments, 2�:��2 = 2�:e�2 = �1.



92 CHAPTER 2. LIE GROUPS AND LIE ALGEBRAS3. Two roots are short and one long. Analogously if e+ f and �+ e+ f areroots one gets 2(e+f):��2 = �1 independently of e+ f being shost or long.So, it is impossible for �+ e and �+ f to be both roots sine one wouldget 2�:e�2 = 2�:f�2 = �1.4. All three roots are short. If e + f is a root then (e+f)2e2 = 2 + 2e:fe2 andthere exists three possibilities:(a) 2e:fe2 = �1 and e + f is a short root.(b) 2e:fe2 = 1 and (e+f)2e2 = 3 (an only happen in G2).() 2e:fe2 = 0 and (e+f)2e2 = 2 (an only happen in Bn, Cn and F4).In setion 2.8 we have seen that the possible ratios of squared length of theroots are 1, 2 and 3. Therefore there an not exists roots with three di�erentlengths in the same irreduible root system sine if �2�2 = 2 and 2�2 = 3 then2�2 = 32 .Consider the ase 4:b and let g be the third short root. Then if e + g is aroot we have (e+g)2(e+f)2 = 23 + 2e:g(e+f)2 = 1 or 13 . But this is impossible sine 2e:g(e+f)2would not be an integer. So the seond ase is ruled out sine we would nothave e+ f , e+ g, f + g and e + f + g all roots.Consider the ase 4:. If e + g is a root then (e+g)2(e+f)2 = 1 + 12 2e:gg2 = 1 or12 . Therefore 2e:gg2 = 0 or �1. Similarly if f + g is a root we get 2f:gg2 = 0or �1. But if e + f + g is also a root then it has to be a short root sine(e+f+g)2(e+f)2 = 32 + 2(e+f):g(e+f)2 . Consequently 2(e+f):g(e+f)2 = �1 and (e+f+g)2(e+f)2 = 12 . It thenfollows that 2e:gg2 + 2f:gg2 = 2(e+f):g(e+f)2 (e+f)2g2 = �2. Therefore in the ase 4: we anhave e+ f , e+ g, f + g and e + f + g all roots if e:f = 0, 2e:gg2 = 2f:gg2 = �1.Consider the ase 4:a. Again if e+ g is a root then (e+g)2g2 = 2+ 2e:gg2 = 1 or2. So, 2e:gg2 = 0 or �1. Similarly if f + g is a root 2f:gg2 = 0 or �1. If e+ f + g isalso a root then (e+f+g)2g2 = 2 + 2(e+f):gg2 = 1 or 2. Therefore 2(e+f):gg2 = 0 or �1.Consequently 2e:gg2 and 2f:gg2 an not be both �1. Suppose then 2e:gg2 = 0 andonsequently e + g is a long root, i.e. (e+g)2g2 = 2. Aording to the argumentsused in ase 4: we get e+ f + g is a short root and then 2f:gg2 = �1.We then onlude that the only possibility for the ourrene of three shortroots e, f and g suh that the sum of any two of them and e+f+g are all rootsis that two of them are ortoghonal, let us say e:f = 0 and 2e:gg2 = 2f:gg2 = �1.This an only happen in the algebras Cn or F4. Therefore none of the three



2.14. FINDING THE COCYCLES "(�; �) 93terms in the Jaobi identity for the orresponding step operators will vanish.We have 0 = [[Ee; Ef ℄; Eg℄ + [[Eg; Ee℄; Ef ℄ + [[Ef ; Eg℄; Ee℄= (qef + 1)(qe+f;g + 1)"(e; f)"(e+ f; g)+(qge + 1)(qg+e;f + 1)"(g; e)"(g + e; f)+(qfg + 1)(qf+g;e + 1)"(f; g)"(f + g; e) (2.229)Aording to the disussion in setion 2.12 any root string in an algebra wherethe ratio of the squared lengths of roots is 1 or 2 an have at most 3 roots.From (2.187) we see that qef = 1 and qge = qfg = qe+f;g = qg+e;f = qf+g;e = 0.Therefore"(e; f)"(e+ f; g) = "(g; e)"(f; g + e) = "(f; g)"(e; f + g) (2.230)We an then determine the oyles using the following algorithm:1. The oyles involving two negative roots, "(��;��) with � and � bothpositive, is determined from those involving two positive roots throughthe relation (2.222).2. The oyles involving one positive and one negative root, "(��; �) withboth � and � both positive, are also determined from those involvingtwo positive roots through the relations (2.224) and (2.222). Indeed, if�� + � is a positive root we write �� + � =  and if it is negative wewrite ��+� = � with  positive in both ases. Therefore from (2.224)and (2.222) it follows "(��; �) = "(�;��) = �"(; �) in the �rst ase,and "(��; �) = "(�; ) in the seond ase.3. Let � be a positive non simple root whih an be written as � = �+� = + Æ with �, �,  and Æ all positive roots. Then the oyles "(�; �)and "(; Æ) an be related to eah other by using ombinations of therelations (2.227)Using suh algorithm one an then verify that there will be one oyle tobe hosen freely, for eah positive non-simple root of the algebra. One thoseoyles are hosen, all the other are uniquely determined.



94 CHAPTER 2. LIE GROUPS AND LIE ALGEBRAS2.15 The lassi�ation of simple Lie algebrasThe simple Lie algebras are, as we have seen, the building bloks for onstrut-ing all Lie algebras and therefore the lassi�ation of those is very important.We have also seen that there exists, up to isomorphism, only one Lie algebraassoioated to a given Dynkin diagram. Sine the Dynkin diagram for a sim-ple Lie algebra is neessarily onneted, we see that the lassi�ation of thesimple algebras is equivalent to the lassi�ation of possible onneted Dynkindiagrams. We now give suh lassi�ation.We will �rstly look for the possible Dynkin diagrams ignoring the arrowson them. We then de�ne unit vetors in the diretion of the simple roots as�a = �aq�2a (2.231)Therefore eah point of the diagram will be assoiated to a unit vetor �a, andthese are all linearly independent. They satisfy2�a � �b = 2�a � �bq�2a�2b = �qKabKba (2.232)Now, from theorem 2.6 we have that �a � �b � 0, and therefore from (2.174)2�a � �b = 0;�1;�p2;�p3 (2.233)whih orrespond to minus the square root of the number of lines joiningthe points a and b. We shall all a set of unit vetors satisfying (2.233) anadmissible set.One noties that by ommiting some �a's, the remaining ones form an ad-missible set, whih diagram is obtained from the original one by ommiting theorresponding points and all lines attahed to them. So we have the obviouslemma.Lemma 2.2 Any subdiagram of an admissible diagram is an admissible dia-gram.Lemma 2.3 The number of pairs of verties in a Dynkin diagram linked byat least one line is stritly less than r, the rank of the algebra (or number ofverties).



2.15. THE CLASSIFICATION OF SIMPLE LIE ALGEBRAS 95Proof: Consider the vetor � = rXa=1 �a (2.234)Sine the vetors �a's are linearly independent we have � 6= 0 and then0 < �2 = r + 2 Xpairs �a � �b (2.235)And from (2.233) we see that if a and b are linked, then 2�a � �b � �1. In orderto keep the inequality we see that the number of linked pairs of points mustbe smaller or equal to r � 1. 2Corollary 2.1 There are no loops in a Dynkin diagram.Proof: If a diagram has a loop we see from lemma 2.2 that the loop itselfwould be an admissible diagram. But that would violate lemma 2.3 sine thenumber o linked pairs of verties is equal to the number of verties. 2Lemma 2.4 The number of lines attahed to a given vertie an not exeedthree.Proof: Let � be a unit vetor orresponding to a vertex and let �1, �2,. . . �k be the set of unit vetors whih orrespond to the verties linked to it.Sine the diagram has no loops we must have�a � �b = 0 a; b = 1; 2; 3; : : : k (2.236)So we an write � = kXa=1 (� � �a) �a + (� � �0) �0 (2.237)where �0 is a unit vetor in a subspae perpendiular to the set �1, �2, . . . �k.Then �2 = 1 = kXa=1 (� � �a)2 + (� � �0)2 (2.238)But the number of lines linked to � is (see (2.232) and (2.233))4 kXa=1 (� � �a)2 = 4� 4 (� � �0)2 � 4 (2.239)



96 CHAPTER 2. LIE GROUPS AND LIE ALGEBRAS

Figure 2.11: Possible links a vertex an have.Figure 2.12: The only onneted diagram with triple link.The equality is only possible if � � �0 = 0. But that is impossible sine it means� is a linear ombination of �1, �2, . . . �k. Therefore, the number of lines linkedto � is stritly less than 4 and the lemma is proved. 2Consequently we see that the possible links a vertex an have are shown in�gure 2.11 and then it follows the orollary 2.2.Corollary 2.2 The only onneted diagram whih has a triple link is the oneshown in �gure 2.12 and it orresponds to the exeptional Lie algebra G2.Corollary 2.3 If an admissible diagram D has a subdiagram � given in �gure2.13, then the diagram D0 obtained from D by the ontration of the � is alsoan admissible diagram. By onstration we mean the redution of � to thepoint � = a+kXa=l �a (2.240)whih orresponds to a new simple root � = Pa+ka=l �a. Therefore, the simpleroots of D0 are � together with the simple roots of D whih do not orrespondto �a, �a+1, . . . �a+k.Proof: We have to show that D0 is an admissible diagram. The vetor �,de�ned in (2.240), together with the remaining �a's in D are linearly indepen-
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ε ε ε εi+1i i+k-1 i+kFigure 2.13: Diagram �.dent. � has unit length sine �2 = k + 2 Xpairs �a � �b (2.241)But sine 2�a � �b = �1, for a amd b being nearest neighbours, we have�2 = k + (k � 1) (�1) = 1 (2.242)Any � belonging to D � � an be linked at most to one of the points of �.Otherwise we would have a loop. Therefore, either� � � = � � �a for a given �a in � (2.243)or � � � = 0 (2.244)But sine � and �a belong to an admissible diagram we have that they satisfy(2.233). Therefore, � and � also satisfy (2.233) and onsequently D0 is anadmissible diagram.Corollary 2.4 Any admissible diagram an not have subdiagrams of the formshown in �gure 2.14.The reason is that by lemma 2.3 we would obtain that the diagrams shownin �gure 2.15 are subdiagrams of admissible diagrams. From lemmas 2.2 and2.4 we see that this is impossible.So, from the results obtained so far we see that an admissible diagram hasto have one of the forms shown in �gure 2.16.Consider the diagram B) of �gure 2.16, and de�ne the vetors� = pXa=1 a�a ; � = qXa=1 a�a (2.245)
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I

II

IIIFigure 2.14: Non-admissible subdiagrams.

Figure 2.15:
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100 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASTherefore �2 = pXa=1 a2 + 2 Xpairs ab �a � �b= pXa=1 a2 � p�1Xa=1 a (a+ 1)= p2 � p�1Xa=1 a = p2 � p (p� 1) =2= p (p+ 1) =2 (2.246)where we have used the fat that 2�a � �b = �1 for a and b being nearestneighbours and 2�a � �b = 0 otherwise. In a similar way we obtain that�2 = q (q + 1) =2 (2.247)Sine the points p andq are linked by a double line we have2�p � �q = �p2 (2.248)and so � � � = pq �p � �q = �pq=p2 (2.249)Using Shwartz inequality (� � �)2 � �2�2 (2.250)we have from (2.246), (2.247) and (2.249) thatp2q2 < p (p+ 1) q (q + 1) =2 (2.251)Sine the equality an not hold beause � and � are linearly independent, eq.(2.251) an be written as (p� 1) (q � 1) < 2 (2.252)There are three possibilities for p; q � 1, namely1. p = q = 22. p = 1 and q any positive integer3. q = 1 and p any positive integer



2.15. THE CLASSIFICATION OF SIMPLE LIE ALGEBRAS 101Figure 2.17:Figure 2.18:In the �rst ase we have the diagram 2.17 whih orresponds to the exep-tional Lie algebra of rank 4 denoted F4. In the other two ases we obtain thediagram of �gure 2.18 whih orresponds to the lassial Lie algebras so(2r+1)or Sp(r) depending on the diretion of the arrow.Consider now the diagram D) of �gure 2.16 and de�ne the vetors� = p�1Xa=1 a�a � = q�1Xa=1 a�a = s�1Xa=1 a�a (2.253)Doing similar alulations to those leading to (2.246) we obtain�2 = p(p� 1)=2 �2 = q(q � 1) �2 = s(s� 1) (2.254)The vetors �, �, � and  (see diagram D) in �gure 2.16) are linearly indepen-dent. Sine  2 = 1 we have from (2.254)os2 (�;  ) = (� �  )2�2 2 = (p� 1) (�p�1 �  )2�2= (1� 1=p)2 (2.255)where we have used that 2�p�1 �  = �1.Analogously we have os2 (�;  ) = (1� 1=q)2 (2.256)and os2 (�;  ) = (1� 1=s)2 (2.257)We an write  as = ( � �) �j � j2 + ( � �) �j � j2 + ( � �) �j � j2 + ( � �0) �0 (2.258)
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Figure 2.19:where �0 is a unit vetor in the subspae perpendiular to �, � and �. Then 2 = 1 = ( � �)2�2 + ( � �)2�2 + ( � �)2�2 + ( � �0)2 (2.259)Notie that ( � �) has to be di�erent from zero, sine �, �, � and  are linarlyindependent, we get the inequalityos2 (�;  ) + os2 (�;  ) + os2 (�;  ) < 1 (2.260)and so from (2.255-2.255) 1p + 1q + 1s > 1 (2.261)Whithou any loss of generality we an assume p � q � s. Then the possibilitiesare1. (p; q; s) = (p; 2; 2) with p any positive integer. The diagram we obtain isgiven in �gure 2.19 whih orresponds to the lassial Lie algebra so(2r).2. (p; q; s) = (p; 3; 2) with p taking the values 3, 4 or 5. The diagramswe obtain orrespond to the exeptional Lie algebras E6, E7 and E8respetively, given in �gure 2.20.This ends the searh for onneted admissible diagrams. We have only toonsider the arrows on the diagrams with double and triple links. When thatis done we obtain all possible onneted Dynkin diagrams orresponding tothe simple Lie algebras. We list in �gure 2.21 the diagrams we have obtainedgiving the name of the orresponding algebra in both, the physiist's andmathematiian's notations.
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Figure 2.21: The Dynkin diagrams of the simple Lie algebras.



Chapter 3Representation theoryof Lie algebras
3.1 IntrodutionIn this hapter we shall develop further the onepts introdued in setion 1.5for group representations. The onept of a representation of a Lie algebrais analogous to that of a group. A set of operators D1, D2, : : : ating ona vetor spae V is a representation of a Lie algebra in the representationspae V if we an de�ne an operation between any two of these operators suhthat it reprodues the ommutation relations of the Lie algebra. We will beinterested mainly on matrix representations and the operation will be the usualommutator of matries. In addition we shall onsider the representations ofompat Lie algebras and Lie groups only, sine the representation theory ofnon ompat Lie groups is beyond the sope of these leture notes.Some results on the representation theory of �nite groups an be extendedto the ase of ompat Lie groups. In some sense this this is true beause thevolume of the group spae is �nite for the ase of ompat Lie groups, andtherefore the integration over the group elements onverge. We state withoutproof two important results on the representation theory of ompat Lie groupswhih are also true for �nite groups:Theorem 3.1 A �nite dimensional representation of a ompat Lie group isequivalent to a unitary one.Theorem 3.2 A unitary representation an be deomposed into unitary irre-duible representations. 105



106 CHAPTER 3. REPRESENTATION THEORY OF LIE ALGEBRASWe then see that the irreduible representations (irreps.) onstitute thebuilding bloks for onstruting �nite dimensional representations of ompatLie groups. The aim of this hapter is to show how to lassify and onstrutthe irreduible representations of ompat Lie groups and Lie algebras.3.2 The notion of weightsWe have de�ned in setion 2.6 (see de�nition 2.12) the Cartan subalgebra of asemisimple Lie algebra as the maximal abelian subalgebra wih an be diago-nalized simultaneously. Therefore we an take the basis of the representationspae V as the eigenstates of the Cartan subalgebra generators. Then we haveHi j �i = �i j �i i = 1; 2; 3:::r(rank) (3.1)The eigenvalues of the Cartan subalgebra generators onstitute r-omponentvetors and they are alled weights. Like the roots, the weights live in a r-dimensional Eulidean spae. There an be more than one base state assoiatedto a single weight. So the base states an be degenerated.In setion 2.8 we have seen that the operator H� = 2� �H=�2, has integereigenvalues. Therefore from (3.1) we haveH� j �i = 2� � ��2 j �i (3.2)and onsenquently we have that2� � ��2 is an integer for any root � (3.3)Any vetor � satisfying this ondition is a weight, and in fat this is theonly ondition a weight has to satisfy. From (2.148) we see that any root is aweight but the onverse is not true. Notie that 2����2 does not have to be aninteger and therefore the table 2.2 does not apply to the weights.A weight is alled dominant if it lies in the Fundamental Weyl Chamber oron its borders. Obviously a dominant weight has a non negative salar produtwith any positive root. It is possible to �nd among the dominant weights, rweights �a, a = 1; 2:::r, satisfying2�a � �b�2b = Æab for any simple root �b (3.4)



3.2. THE NOTION OF WEIGHTS 107In orther words we an �nd r dominant weights whih are orthogonal to allsimple roots exept one. These weights are alled fundamental weights. Theyplay an important role in representation theory as we will see below.Consider now a simple root �a and any weight �. From (3.3) we have that2� � �a�2a = ma = integer (3.5)Using (3.4) we have 2�a�2a �  �� rXa=1ma�a! = 0 (3.6)Sine the simple roots onstitute a basis of an r-dimensional Eulidean spaewe onlude that � = rXa=1ma�a (3.7)Therefore any weight an be written as a linear ombination of the funda-mental weights with integer oeÆients. We now want to show that any vetorformed by an integer linear ombination of the fundamental weights is also aweight, i.e., it satis�es the ondition (3.3). In order to do that we introduethe onept of o-root , whih is a root devided by its squared lenght�v � ��2 (3.8)Sine (�v)2 = 1�2 (3.9)and 2�v � �v(�v)2 = 2� � ��2 (3.10)one sees that the o-roots satisfy all the properties of roots and onsequentlyare also roots. However the o-roots of a given algebra G are the roots ofanother algebra Gv , alled the dual algebra to G. The simply laed algebras,su(N) (AN1), so(2N) (DN ), E6 , E7 and E8, together with the exeptionalalgebras G2 and F4 are self-dual algebras, in the sense that G = Gv . Howeverso(2N+1) (BN ) is the dual algebra to sp(N) (CN) and vie versa. The Cartanmatrix of the dual algebra Gv is the transpose of the Cartan matrix of G sine(Kab)v = 2�va � �vb(�vb)2 = 2�a � �b�2a = Kba (3.11)



108 CHAPTER 3. REPRESENTATION THEORY OF LIE ALGEBRASwhere we have used the fat that the simple o-roots are given by�va = �a�2a (3.12)Any o-root an be written as a linear ombination of the simple o-roots withinteger oeÆients all of the same sign. To show that we observe from theorem2.7 that �v = ��2 = rXa=1na�2a�2�va (3.13)and from (3.4) we get na = 2�a � ��2a (3.14)Therefore �v = rXa=1 2�a � ��2 �va � rXa=1ma�va (3.15)sine from (3.3) we have that 2�a���2 is an integer. In additon these integers areall of the same sign sine all �a's lie on the Fundamental Weyl Chamber or onits border.Let � be a vetor de�ned by � = rXa=1 ka�a (3.16)where �a are the fundamental weights and ka are arbitrary integers. Using(3.15) and (3.4) we get2� � ��2 = 2�v � � =Xa;b makb2�b � �a�2a =Xa maka (3.17)Therefore � is a weight. So we have shown that any integer linear ombinationof the fundamental weights is a weigtht and that all weights are of this form.Consequently the weights onstitute a lattie � alled the weight lattie. Thisquantized spetra of weights is a onsequene of the fat that H� has integereigenvalues and is an important feature of representation theory of ompatLie algebras.As we have said any root is a weight and onsequently belong to �. We analso form a lattie by taking all vetors whih are integer linear ombinationsof the simple roots. This lattie is alled the root lattie and is denoted by �r .All points in �r are weights and therefore �r is a sublattie of �. The weight



3.2. THE NOTION OF WEIGHTS 109lattie forms an abelian group under the addition of vetors. The root lattie isan invariant subgroup and onsequently the oset spae �=�r has the strutureof a group (see setion 1.4). One an show that �=�r orresponds to the enterof the overing group orresponding to the algebra whih weight lattie is �.We will show that all the weights of a given irreduible representation of aompat Lie algebra lie in the same oset.Before giving some examples we would like to disuss the relation betweenthe simple roots and the fundamental weights, whih onstitute two basis forthe root (or weight) spae. Sine any root is a weight we have that the simpleroots an be written as integer linear ombination of the fundamental weights.Using (3.4) one gets that the integer oeÆients are the entries of the Cartanmatrix, i.e. �a =Xb Kab�b (3.18)and then �a =Xb K�1ab �b (3.19)So the fundamental weights are not, in general, written as integer linear om-bination of the simple roots.Example 3.1 SU(2) has only one simple root and onsequently only one fun-damental weight. Choosing a normalization suh that � = 1, we have that2� � ��2 = 1 and so � = 12 (3.20)Therefore the weight lattie of SU(2) is formed by the integers and half integernumbers and the root lattie only by the integers. Then�=�r = ZZ2 (3.21)whih is the enter of SU(2).Example 3.2 SU(3) has two fundamental weights sine it has rank two. Theyan be onstruted solving (3.4) or equivalently (3.19). The Cartan matrix ofSU(3) and its inverse are given by (see example 2.13)K =  2 �1�1 2 ! K�1 = 13  2 11 2 ! (3.22)So, from (3.19), we get that fundamental weights are�1 = 13 (2�1 + �2) �2 = 13 (�1 + 2�2) (3.23)
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Figure 3.1: The fundamental weights of A2 (SU(3) or SL(3))In example 2.10 we have seen that the simple roots of SU(3) are given by�1 = (1; 0) and �2 = ��1=2;p3=2�. Therefore�1 =  12 ; p36 ! �2 =  0; p33 ! (3.24)The vetors representing the fundamental weights are given in �gure 3.1.The root lattie, �r , generated by the simple roots �1 and �2, orrespondsto the points on the intersetion of lines shown in the �gure 3.2. The weightlattie, generated by the fundamental weights �1 and �2 , are all points of �rplus the entroid of the triangles, shown by irles and plus signs on the �gure3.2.The points of the weight lattie an be obtained from the origin, �1 and �2by adding to them all points of the root lattie. Therefore the oset spae �=�rhas three points whih an be represented by 0, �1 and �2. Sine �1 + �2 =�1 + �2 and 3�1 = 2�1 + �2 lie in the same oset as 0, we see that �=�r hasthe struture of the yli group ZZ3 whih is the enter of SU(3).3.3 The highest weight stateIn a irreduible representation one an obtain all states of the representationby starting with a given state and applying sequenes of step operators on it.If that was not possible the representation would have an invariant subspaeand therefore would not be irreduible.
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Figure 3.2: The weight lattie of SU(3).



112 CHAPTER 3. REPRESENTATION THEORY OF LIE ALGEBRASConsider a state with weight � satisfying (3.1). The state de�ned byj �0i � E� j �i (3.25)satis�es Hi j �0i = HiE� j �i= (E�Hi + [Hi ; E� ℄) j �i= (�i + �i)E� j �i (3.26)and therefore it has weight �+ �. Therefore the stateE�1E�2 : : : E�n j �i (3.27)has weight �+ �1 + : : :+ �n.For this reason the weights in an irreduible representation di�er by a sumof roots, and onsequently they all lie in the same oset in �=�r. Sine thatis the enter of the overing group we see that the weights of an irreduiblerepresentation is assoiated to only one element of the enter.In a �nite dimensional representation, the number of weights is �nite, sinethis is at most the number of base states (remember the weights an be degen-erated). Therefore, by applying sequenes of step operators orresponding topositive roots on a given state we will eventually get zero. So, an irreduible�nite dimensional representation possesses a state suh thatE� j �i = 0 for any � > 0 (3.28)This state is alled the highest weight state of the representation, and � is thehighest weight. It is possible to show that there is only one highest weightin an irrep. and only one highest weight state assoiated to it. That is, thehighest weight is unique and non degenerate.All other states of the representation are obtained from the highest weightstate by the appliation of a sequene of step operators orresponding to neg-ative roots. The state de�ned byj �i � E��1E��2 : : : E��n j �i (3.29)aording to (3.26) has weight �� �1� �2 : : :� �n. All the basis states are ofthe form (3.29). If one applies a positive step operator on the state (3.29) theresulting state of the representation an be written as a linear ombination of



3.3. THE HIGHEST WEIGHT STATE 113states of the form (3.29). To see this, let � be a a positive root and � any ofthe negative roots appearing in (3.29). Then we haveE� j �i = (E��1E� + [E� ; E��1 ℄)E��2 : : : E��n j �i (3.30)In the ases where ���1 is a negative root or it is not a root or even ���1 = 0,we obtain that the seond term on the r.h.s. of (3.30) is a state of the form of(3.29). In the ase � � �1 is a positive root we ontiunue the proess until allpositive step operators at diretly on the highest state j �i, and onsequentlyannihilate it. Therefore the state (3.30) is a linear ombination of the states(3.29).The weight lattie � is invariant by the Weyl group. If � is a weight, andtherefore satis�es (3.3), it follows that �� (�) also satis�es (3.3) for any root�, and so is a weight. To show this we use the fat that �� (x) � �� (y) = x � yand �2� = 1. Then (denoting  = �� (�))2� � �� (�)�2 = 2� � �� (�)�� (�)2 = 2 � �2 = integer (3.31)However we an show that the set of weights of a given representation, whihis a �nite subset of �, is invariant by the Weyl group. The state de�ned byj ��i � S� j �i (3.32)where j �i is a state of the representation and S� is de�ned in (2.154), is alsoa state of the representation sine it is obtained from j �i by the ation of anoperator of the representation. Using (2.155) we getx �H j ��i = S�S�1� x �HS� j �i= S��� (x) �H j �i= �� (x) � � j ��i= �� (�) � x j ��i (3.33)Sine the vetor x is arbitrary we obtain that the state j ��i has, weight �� (�)Hi j ��i = HiS� j �i = �� (�)i S� j �i = �� (�)i j ��i (3.34)Therefore if � is a weight of the representation so is �� (�) for any root �.One an easily hek that the root lattie �r is also invariant by the Weylreetions.



114 CHAPTER 3. REPRESENTATION THEORY OF LIE ALGEBRASA onsequene of the above result is that the highest weight � of an irrep.is a dominant weight. By taking its Weyl reetion�� (�) = �� 2� � ��2 � (3.35)one obtains that 2� � � has to be non negative if � is a positive root, sine�� (�) is also a weight of the representation and onsequenlty an not exeed� by a multiple of a positive root. Therefore� � � � 0 for any positive root � (3.36)and the highest weight � is a dominant weight.The highest weight � an be used to label the representation. This is oneof the onsequenes of the following theorem whih we state without proof.Theorem 3.3 There exists a unique irreduible representation of a ompatLie algebra (up to equivalene) with highest weight state j �i for eah � of theweight lattie in the Fundamental Weyl Chamber or on its border.The importane of this theorem is that it provides some sort of lassi�a-tion of all irreps. of a ompat Lie algebra. All other reduible representationsare onstruted from these ones. The irreps. an be labelled by their high-est weight � as D� or D(n1;n2;:::nr) where the na's are non-negative integersappearing in the expansion of � in terms of the fundamental weights �a, i.e.� = Pra=1 na�a, and na = 2���a�2a .An irrep. is alled a fundamental representation when its highest weight isa fundamental weight. Therefore the number of fundamental representationsof a semisimple ompat Lie algebra is equal to its rank.The highest weight of the adjoint representation is the highest positive root(see setion 2.13). It follows that the weights of the adjoint representation areall roots of the algebra together with zero whih is a weight r-fold degenerated(r= rank).We say a weight � is a minimal weight if it satis�es2� � ��2 = 0 or �1 for any root � (3.37)The representation for whih the highest weight is minimal is said to be aminimal representation. These representations play an important role in granduni�ed theories (GUT) in the sense that the onstituent fermions prefer, ingeneral, to form multiplets in suh minimal representations.



3.3. THE HIGHEST WEIGHT STATE 115Example 3.3 In the example 3.1 we have seen that the only fundamentalweight of SU(2) is � = 12 . Therefore the dominant weights of SU(2) arethe positive integers and half integers. Eah one of these dominant weightsorresponds to an irreduible representation of SU(2). Then we have that� = 0 orresponds to the salar representation, � = 12 the spinorial rep. whihis the fundamental rep. of SU(2) (dim = 2), � = 1 is the vetorial rep. whihis the adjoint of SU(2) (dim = 3) and so on.Example 3.4 In the ase of SU(3) we have two fundamental representationswith highest weights �1, and �2 (see example 3.2. They are respetively thetriplet and antitriplet representations of SU(3). The rep. with highest weight�1+�2 = �3 is the adjoint. All representations with highest weight of the formwith � = n1�1 + n2�2, with n1 and n2 non negative integers are irreduiblerepresentations of SU(3).



116 CHAPTER 3. REPRESENTATION THEORY OF LIE ALGEBRAS3.4 Weight strings and multipliitiesIf we apply the step operator E� or E��, for a �xed root �, suessively on astate of weight � of a �nite dimensional representation, we will eventually getzero. That means that there exist positive integer numbers p and q suh thatE� j �+ p�i and E�� j �� q�i (3.38)p and q are the greatest positive integers for whih �+p� and ��q� are weightsof the representation. One an show that all vetors of the form �+ n� withn integer and �q < n < p , are weights of the representation. Therefore theweights form unbroken strings, alled weight strings , of the form�+ p� ;�+ (p� 1)� ; : : : �+ � ;� ;�� � ; : : : �� q� (3.39)We have shown in the last setion that the set of weights of a representation isinvariant under the Weyl group. The e�et of the ation of the Weyl reetion�� on a weight is to add or subtrat a multiple of the root �, sine �� (�) =�� 2����2 �, and from (3.3) we have that 2����2 is an integer. Therefore the weightstring (3.39) is invariant by the Weyl reetion ��. In fat, �� reverses thestring (3.39) and onsenquently we have that�� (�+ p�) = �� q� = �� 2� � ��2 �� p� (3.40)and so 2� � ��2 = q � p (3.41)This result is similar to (2.187) whih was obtained for root strings. However,notie that the possible values of q � p , in this ase, are not restrit to thevalues given in (2.187) (q� p an, in priniple, have any integer value). In thease where � is the highest weight of the representation we have that p is zero if� is a positive root, and q is zero if � is negative. The relation (3.41) providesa pratial way of �nding the weights of the representation. In some ases it iseasier to �nd some weights of a given representation by taking suessive Weylreetions of the highest weight. However, this method does not provide, ingeneral, all the weights of the representation.One the weights are known one has to alulate their multipliities. Thereexists a formula, due to Kostant, whih expresses the multipliities diretly asa sum over the elements of the Weyl group. However, it is not easy to usethis formula in pratie. There exists a reursive formula, alled Freudenthal's



3.4. WEIGHT STRINGS AND MULTIPLICITIES 117formula , whih is muh easier to use. Aording to it the multipliity m (�)of a weight � in an irreduible representation of highest weight � is givenreursively as (see setions 22.3 and 24.2 of [HUM 72℄)�(�+ Æ)2 � (�+ Æ)2�m (�) = 2X�>0 p(�)Xn=1� � (�+ n�)m (�+ n�) (3.42)where Æ � 12 X�>0� (3.43)The �rst summation on the l.h.s. is over the positive roots and the seond oneover all positive integers n suh that �+ n� is a weight of the representation,and we have denoted by p (�) the highest value of n. By starting withm (�) = 1one an use (3.43) to alulate the multipliities of the weights from the higherones to the lower ones.If the states j �i1 and j �i2 have the same weight, i.e., � is degenerated,then the weight �� (�) is also degenerate and has the same multipliity as �.Using (3.32) we obtain that the statesj �� (�)i1 = S� j �i1 and j �� (�)i2 = S� j �i2 (3.44)have weight �� (�) and their linear independene follows from the linear inde-pendene of j �i1 and j �i2. Indeed,0 = x1 j �� (�)i1 + x2 j �� (�)i2 = S� (x1 j �i1 + x2 j �i2) (3.45)So, if j �i1 and j �i2 are linearly independent one gets that one must havex1 = x2 = 0 and so, j �� (�)i1 and j �� (�)i2 are also linearly independent.Therefore all the weights of a representation whih are onjugate under theWeyl group have the same multipliity. This fat an be used to make theFreudenthal's formula more eÆient in the alulation of the multipliities.Example 3.5 Using the results of example 2.14 we have that the Cartan ma-trix of so(5) ond its inverse areK =  2 �1�2 2 ! K�1 = 12  2 12 2 ! (3.46)Then, using (3.19), we get that the fundamental weights of so(5) are�1 = 12 (2�1 + �2) �2 = �1 + �2 (3.47)
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Figure 3.3: The weights of the spinor representation of so(5).where �1 and �2 are the simple roots of so(5). Let us onsider the fundamen-tal representation with highest weight �1. The salar produts of �1 with thepositive roots of so(5) are2�1 � �1�21 = 1 2�1 � �2�22 = 02�1 � (�1 + �2)(�1 + �2)2 = 1 2�1 � (2�1 + �2)(2�1 + �2)2 = 1 (3.48)Therefore using (3.41) (with p = 0 sine �1 is the highest weight) we get that�1 ; (�1 � �1) ; (�1 � �1 � �2) ; (�1 � 2�1 � �2) (3.49)are weights of the representation. By taking Weyl reetions of these weightsor using (3.41) further one an hek that these are the only weights of thefundamental rep. with highest weight �1.Sine all weights are onjugate under the Weyl group they all have the samemultipliity as �1 , whih is one. Therefore they are not degenerate and therepresentation has dimension 4. This is the spinor representation of so(5).One an hek that the weights of the fundamental representation of so(5) withhighest weight �2 are�2 ; �2 � �2 = �1 ; �2 � �1 � �2 = 0 ; (3.50)�2 � 2�1 � �2 = ��1 ; �2 � 2�1 � 2�2 = � (�1 + �2)



3.5. THE WEIGHT Æ 119Again these weights are not degenerate and the representation has dimension5. This is the vetor representation of so(5).Example 3.6 Consider the irrep. of su(3) with highest weight � = �3 =�1 + �2 , i.e., the highest positive root. Using (3.41) and performing Weylreetions one an hek that the weights of suh rep. are all roots plus thezero weight. Sine the roots are onjugated to �3 = � under the Weyl group weonlude that they are non degenerated weights. The multipliity of the zeroweight an be alulated from the Freundenthal's formula. From (3.43) we havethat, in this ase, Æ = �3 and so from (3.42) we get�4�23 � �23�m (0) = 2 �m (�1)�21 +m (�2)�22 +m (�3)�23� (3.51)Sine m (�1) = m (�2) = m (�3) = 1 and �21 = �22 = �23 we obtain thatm (0) = 2. So there are two states with zero weight and onsequently therepresentation has dimension 8. This is the adjoint of su(3).3.5 The weight ÆA vetor whih plays an important role in the representation theory of Liealgebras is the vetor Æ de�ned in (3.43). It is half of the sum of all positiveroots. In same ases Æ is a root, but in general that is not so. However Æ isalways a dominant weight of the algebra. In other to show that we need someresults whih we now prove.Let �a be a simple root and let � be a positive root non proportional to�a. If we write � = Prb=1 nb�b we have that nb 6= 0 for some b 6= a. Now,the oeÆient of �b in ��a (�) is still nb, and onsequently ��a (�) has at leastone positive oeÆient. So, ��a (�) is a positive root, and it is di�erent from�a, sine �a is the image of ��a under ��a. Therefore we have proved thefollowing lemma.Lemma 3.1 If �a is a simple root, then ��a permutes the positive roots otherthan �a.From this lemma it follows that��a (Æ) = Æ � �a (3.52)and onsequently 2Æ � �a�2a = 1 for any simple root �a (3.53)



120 CHAPTER 3. REPRESENTATION THEORY OF LIE ALGEBRASFrom the de�nition (3.43) it follows that Æ is a vetor on the root (or weight)spae and therefore an be written in terms of the simple roots or the funda-mental weights. Writing Æ = rXb=1 xb�b (3.54)we get from (3.4) and (3.53) that2Æ � �a�2a = 1 = rXb=1 xb2�b � �a�2a = xa (3.55)So we have shown that Æ = rXb=1�b (3.56)and onsequently Æ is a dominant weight.



3.6. CASIMIR OPERATORS 1213.6 Casimir operatorsLet �s1s2:::sn be a tensor invariant under the adjoint representation of a Liegroup G. By that we mean�s1s2:::sn = ds1s01 (g) ds2s02 (g) : : : dsns0n (g) �s01s02:::s0n (3.57)for any g 2 G, and where dsjs0j (g) is the matrix representing g in the adjointrepresentation, i.e. gTsg�1 = Ts0ds0s (g) (see (2.31)).Consider now a representation D of G and onstrut the operatorC(D)n � �s1s2:::sn D (Ts1)D (Ts2) : : :D (Tsn) (3.58)Notie that suh operator an only be de�ned on a given representation sineit involves the produt of operators and not Lie brakets of the generators.We then haveD (g)C(D)n = �s1s2:::sn D �gTs1g�1�D �gTs2g�1� : : : D �gTsng�1�D (g)= ds01s1 (g) : : : ds0nsn (g) �s1:::snD �Ts01� : : :D �Ts0n�D (g)= �s01:::s0nD �Ts01� : : :D �Ts0n�D (g)= C(D)n D (g) (3.59)So, we have shown that C(D)n ommutes with any matrix of the representationhC(D)n ; D (g) i = 0 (3.60)We are interested in operators that an not be redued to lower orders.That implies that the tensor �s1s2:::sn has to be totally symmetri. Indeed,suppose that �s1s2:::sn has an antisymmetri part in the indies sj and sj+1.Then we writeD �Tsj�D �Tsj+1� = 12fD �Tsj� ; D �Tsj+1�g+ 12 hD �Tsj� ; D �Tsj+1� i= 12fD �Tsj� ; D �Tsj+1�g+ f tsjsj+1D (Tt) (3.61)and so, C(D)n will have terms involving the produt of (n�1) operators. There-fore, by totally symmetrizing the tensor �s1s2:::sn we get operators C(D)n whihare monomials of order n in D (Ts)'s. Suh operators are alled Casimir opera-tors, and n is alled their order. They play an important role in representation



122 CHAPTER 3. REPRESENTATION THEORY OF LIE ALGEBRASAr SU(r + 1) 2, 3, 4, : : : r + 1Br SO(2r + 1) 2, 4, 6, : : : 2rCr Sp(r) 2, 4, 6 : : : 2rDr SO(2r) 2, 4, 6 : : : 2r � 2, rE6 2, 5, 6, 8, 9, 12E7 2, 6, 8, 10, 12, 14, 18E8 2, 8, 12, 14, 18, 20, 24, 30F4 2, 6, 8, 12G2 2, 6Table 3.1: The orders of the Casimir operators for the simple Lie Groupstheory. From Shur's lemma 1.1 it follows that in an irreduible representationthe Casimir operators have to be proportional to the identity.One way of onstruting tensors whih are invariant under the adjointrepresentation, is by onsidering traes of produts of generators in a givenrepresentation D0, sineTr (D0 (Ts1Ts2 : : : Tsn)) = Tr �D0 �gTs1g�1gTs2g�1 : : : gTsng�1�� (3.62)Then taking �s1s2:::sn � 1n! XpermutationsTr (D0 (Ts1Ts2 : : : Tsn)) (3.63)we get Casimir operators. However, one �nds that after the symetrization pro-edure very few tensors of the form above survive. It follows that a semisimpleLie algebra of rank r possesses r invariant Casimir operators funtionally in-dependent. Their orders, for the simple Lie algebras, are given in table 3.1.3.6.1 The Quadrati Casimir operatorNotie from table 3.1 that all simple Lie groups have a quadrati Casimiroperator. That is beause all suh groups have an invariant symmetri tensorof order two whih is the Killing form (see setion 2.4)�st = Tr (d (Ts) d (Tt)) (3.64)and C(D)2 � �stD (Ts)D (Tt) (3.65)



3.7. CHARACTERS 123where �st is the inverse of �st.Using the normalization (2.134) of the Killing form, we have that theCasimir operator in the Cartan-Weyl basis is given byC(D)2 = rXi=1D (Hi)D (Hi)+X�>0 �22 (D (E�)D (E��) +D (E��)D (E�)) (3.66)Sine the Casimir operator ommutes with all generators, we have from theShur's lemma 1.1 that in an irreduible representation it must be propor-tional to the unit matrix. Denoting by � the highest weight of the irreduiblerepresentation D we haveC(D)2 j �i =  rXi=1 �2i + X�>0 �22 [D (E�) ; D (E��) ℄! j �i=  �2 + X�>0 �22 H2�! j �i=  �2 + X�>0� � �! j �i (3.67)where we have used (3.28) and (2.125). So, if D, with highest weight �, isirreduible, we an write using (3.43) thatC(D)2 = � � (�+ 2Æ) 1l = �(�+ Æ)2 � Æ2� 1l (3.68)where 1l is the unit matrix in the representation D under onsideration.Example 3.7 In the ase of SU(2) the quadrati operator is J2 , i.e., thesquare of the angular momentum. Indeed, from example 3.1 we have that� = 1, and then Æ = 1=2 and therefore C(D)2 = � (�+ 1). Sine � is a positiveinteger or half integer we see that these are really the eigenvalues of J2.3.7 CharatersIn de�nition 1.13 we de�ned the harater of an element g of a group G in agiven �nite dimensional representation of G, with highest weight �, as beingthe trae of the matrix that represents that element, i.e.�� (g) � Tr (D (g)) (3.69)Obviously equivalent representations (see setion 1.5) have the same hara-ters. Analogously, two onjugate elements, g1 = g3g2g�13 , have the same har-ater in all representations. Therefore the onjugay lasses an be labelledby the haraters.



124 CHAPTER 3. REPRESENTATION THEORY OF LIE ALGEBRASExample 3.8 Using (2.27) and the ommutation relations (2.58) for the al-gebra of so(3) (or su(2)) one gets thatei�2 T2 T3 e�i�2 T2 = T1 (3.70)and onsequently ei�2 T2 ei�T3 e�i�2 T2 = ei�T1 (3.71)An analogous result is obtained if we interhange the roles of the generators T1, T2 and T3. Therefore the rotations by a given angle �, no matter the axis, areonjugate. The onjugay lasses of SO(3) are de�ned by the angle of rotation,and the haraters in a representation of spin j are given by�j (�) = �j �ei�T3� = jXm=�j eim� (3.72)where m are the eigenvalues of T3 (see setion 2.5). We have a geometriprogression and therefore�j (�) = ei(j+ 12)� � e�i(j+ 12)�ei�=2 � e�i�=2 (3.73)Notie that rotations by � and �� have the same harater.The relation (3.71) an be generalized for any ompat Lie group. Anyelement of a ompat group is onjugate to an element of the abelian subgroupwhih is the exponentiation of the Cartan subalgebra, i.e.g = g0ei��Hg0�1 (3.74)Therefore the onjugay lasses, and onsequently the haraters, an be la-belled by r parameters or "angles" (r = rank).However, the elements of the abelian group parametrized by � and �� (�)have the same harater, sine from (2.155) we haveS�ei��HS�1� = ei��(�)�H (3.75)Thus the parameter � and its Weyl reetions parametrize the same onjugaylass.The generalization of (3.73) to any ompat group was done by H. Weyl in1935. In a representation with highest weight the elements of the onjugaylass labelled by have a harater given by�� (�) = P�2W (sign�) ei�(�+Æ)��eiÆ��Q�>0 (1� e�i���) (3.76)



3.7. CHARACTERS 125where the summation is over the elements � of the Weyl group W , and wheresign is 1 (�1) if the element � of the Weyl group is formed by an even (odd)number of reetions. Æ is the same as the one de�ned in (3.43). This relationis alled the Weyl harater formula.The harater an also be alulated one one knows the multipliities ofthe weights of the representation. From (3.69) and (3.74) we have that�� (�) = TrD� �ei��H� =X� m (�) ei��� (3.77)where the summation is over the weights of the representation and m (�) aretheir multipliities. These an be obtained from Freudenthal's formula (3.42).In the salar representation the elements of the group are represented bythe unity and the highest weight is zero. So setting � = 0 in (3.76) we obtainwhat is alled the Weyl denominator formulaX�2W (sign�) ei�(Æ)�� = eiÆ�� Y�>0 �1� e�i���� (3.78)In general, suh formula provides a nontrivial relation between a produt anda sum. Substituting (3.78)in (3.76) we an write the Weyl harater formulaas the ratio of two sums:�� (�) = P�2W (sign�) ei�(�+Æ)��P�2W (sign�) ei�(Æ)�� (3.79)The dimension of the representation an be obtained from the Weyl har-ater formula (3.76) notiing thatdimD� = Tr (1l) = �� (0) (3.80)we then obtain the so alled Weyl dimensionality formuladimD� = Q�>0 (�+ Æ) � �Q�>0 Æ � � (3.81)Example 3.9 In the ase of SO(3) (or SU(2)) we have that � = 1, Æ = 1=2and onsequently we have from (3.81) thatdim Dj = 2j + 1 (3.82)This result an also be obtained from (3.73) by taking the limit � ! 0 andusing L'Hospital's rule



126 CHAPTER 3. REPRESENTATION THEORY OF LIE ALGEBRAS(m1; m2) dimension(1; 0) (triplet) 3(0; 1) (anti-triplet) 3(2; 0) 6(0; 2) 6(1; 1) (adjoint) 8(3; 0) 10(0; 3) 10(2; 1) 15(1; 2) 15Table 3.2: The dimensions of the smallest irreps. of SU(3)Example 3.10 Consider an irrep. of SU(3) with highest weight �. We anwrite � = m1�1 + m2�2 where �1 and �2 are the fundamental weights andm1 and m2 are non-negative integers. From (3.56) we have that (Æ + �)2 =(m1 + 1)�1 + (m2 + 1)�2. Normalizing the roots of SU(3) as �2 = 2 we have(from (3.4)) that �a � �b = Æab (a; b = 1; 2), where �1 and �2 are the simpleroots and therefore ( �3 = �1 + �2 )(Æ + �) � �1 = m1 + 1 ; (Æ + �) � �2 = m2 + 1 ; (Æ + �) � �3 = m1m2 + 2Æ � �1 = Æ � �2 = 1 ; Æ � �3 = 2 (3.83)So, from (3.81) the dimension of the irrep. of SU(3) with highest weight � isdim D� = dim D� = 12 (m1 + 1) (m2 + 1) (m1 +m2 + 2) (3.84)In table 3.2 we give the dimensions of the smallest irreps. of SU(3).Example 3.11 Similarly let us onsider the irreps. of SO(5) (or Sp(2)) withhighest weight � = m1�1+m2�2. From example 2.14 we have that the positiveroots of SO(5) are �1, �2, �3 � �1 + �2, and �4 � 2�1 + �2, and so using(3.4) and (3.56) we get (setting �21 = 1, �22 = 2)2Æ � �1�21 = 2Æ � �2�22 = 1 ; 2Æ � �3�23 = 321 ; 2Æ � �4�24 = 22 (Æ + �) � �1�21 = m1 + 1 ; 2 (Æ + �) � �2�22 = m2 + 1 (3.85)2 (Æ + �) � �3�23 = 12 (m1 + 2m2 + 3) ; 2 (Æ + �) � �4�24 = 12 (m1 +m2 + 2)



3.7. CHARACTERS 127(m1; m2) dimension(1; 0) (spinor) 4(0; 1) (vetor) 5(2; 0) (adjoint) 10(0; 2) 14(1; 1) 16(3; 0) 20(0; 3) 30(2; 1) 35(1; 2) 40Table 3.3: The dimensions of the smallest irreps. of SO(5) (or Sp(2))Therefore from (3.81)dim D(m1;m2) = 16 (m1 + 1) (m2 + 1) (m1 +m2 + 2) (m1 + 2m2 + 3) (3.86)The smallest irreps. of SO(5) (or Sp(2)) are shown in table 3.3.We give in �gures 3.4 and 3.5 the dimensions of the fundamental represen-tations of the simple Lie algebras (extrated from [DYN 57℄).
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Figure 3.4: The dimensions of the fundamental representations ofthe lassial Lie groups.
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Figure 3.5: The dimensions of of the fundamental representationsof the exeptional Lie groups.



130 CHAPTER 3. REPRESENTATION THEORY OF LIE ALGEBRAS3.8 Constrution of matrix representationsWe have seen that �nite dimensional representations of ompat Lie groupsare equivalent to unitary ones (see theorem 3.1). In suh representations theCartan subalgebra generators and step operators an be hosen to satisfy1Hyi = Hi ; Ey� = E�� (3.87)We have hosen the basis of the representation to be formed by the eigenstatesof the Cartan subalgebra generators. Using (3.1) and (3.87) we haveh�0 j Hi j �i = �ih�0 j �i = �0ih�0 j �i (3.88)and so (�0 � �) h�0 j �i = 0 (3.89)and onsequently states with di�erent weights are orthogonal. In the ase aweight is degenerate, it is possible to �nd an orthogonal basis for the subspaegenerated by the states orresponding to that degenerate weight. We thenshall denote the base states of the representation by j �; ki where � is theorresponding weight and k is an integer number that runs from 1 to m(�),the multipliity of �. We an always normalize these states suh thath�0; k0 j �; ki = Æ�;�0 Ækk0 (3.90)If T denotes an operator of the representation of the algebra then the matrixD (T )(�0;k0) (�;k) � h�0; k0 j T j �; ki (3.91)form a matrix representation sine they reprodue the ommutation relationsof the algebra. Indeed[D (T ) ; D (T 0) ℄(�0;k0) (�;k) = X�00;k00 h�0; k0 j T j �00; k00ih�00; k00 j T 0 j �0; k0i� X�00;k00 h�0; k0 j T 0 j �00; k00ih�00; k00 j T j �0; k0i= h�0; k0 j [T ; T 0 ℄ j �0; k0i= D ([T ; T 0 ℄)(�0;k0) (�;k) (3.92)1In order to simplify the notation we will denote the operators D (Hi) and D (E�) by Hiand E� respetively.



3.8. CONSTRUCTION OF MATRIX REPRESENTATIONS 131where we have used the fat that1l =X�;k j �; kih�; k j (3.93)is the identity operator.When a step operator E� ats on a state of weight �, it either annihilatesit or produes a state of weight �+ �. Therefore, using (3.93) and (3.90) onegets E� j �; ki = X�0;k0 j �0; k0ih�0; k0 j E� j �; ki= m(�+�)Xl=1 j �+ �; lih�+ �; l j E� j �; ki (3.94)where the sum is over the states of weight � + �. Therefore, from (3.91) onehas D (E�)(�0;k0) (�;k) = h�+ �; k0 j E� j �; kiÆ�0;�+� (3.95)The matrix elements of Hi are known one we have the weights of therepresentation, sine from (3.1) and (3.90)D (Hi)(�0;k0) (�;k) = h�0; k0 j Hi j �; ki = �i Æ�0;� Æk0;k (3.96)Therefore, in order to onstrut the matrix representation of the algebrawe have to alulate the \transition amplitudes" h�+ �; l j E� j �; ki. Notiethat from (3.87) h�+ �; l j E� j �; kiy = h�; k j E�� j �+ �; li (3.97)Now, using the ommutation relation (see (2.218))[E� ; E�� ℄ = 2� �H�2 (3.98)one getsh�; k j [E� ; E�� ℄ j �; ki = h�; k j 2� �H�2 j �; ki (3.99)= 2� � ��2= h�; k j E�E�� j �; ki � h�; k j E��E� j �; ki= m(���)Xl=1 h�; k j E� j �� �; lih�� �; l j E�� j �; ki� m(�+�)Xl=1 h�; k j E�� j �+ �; lih�+ �; l j E� j �; ki



132 CHAPTER 3. REPRESENTATION THEORY OF LIE ALGEBRASand so, using (3.97)m(���)Xl=1 j h�; k j E� j �� �; li j2 �m(�+�)Xl=1 j h�+ �; l j E� j �; ki j2= 2� � ��2(3.100)where m (�+ �) and m (�� �) are the multipliities of the weights �+� and�� � respetively.The relation (3.100) an be used to alulate the modules of the transitionamplitudes reursively. By taking � to be a positive root and � the highestweight � of the representation we have that the seond term on the l.h.s. of(3.100) vanishes. Sine, in a irrep., � is not degenerate we an neglet theindex k and write m(���)Xl=1 j h� j E� j �� �; li j2= 2� � ��2 = q (3.101)where, aording to (3.41), q is the highest positive integer suh that � � q�is a weight of the representation. Taking now the seond highest weight werepeat the proess and so on.The other relations that the transition amplitudes have to satisfy omefrom the ommutation relations between step operators. If �+ � is a root wehave from (2.218)h�+ � + �; l j [E� ; E� ℄ j �; ki = (q + 1) "(�; �)h�+ � + �; l j E�+� j �; ki(3.102)Then using (3.90) and (3.94) one getsm(�+�)Xk0=1 h�+ � + �; l j E� j �+ �; k0ih�+ �; k0 j E� j �; ki� m(�+�)Xk0=1 h�+ �+ �; l j E� j �+ �; k0ih�+ �; k0 j E� j �; ki= (q + 1) "(�; �)h�+ � + �; l j E�+� j �; ki (3.103)where q is the highest positive integer suh that ��q� (or equivalently ��q�,sine we are assuming �+� is a root) is a root, and "(�; �) are signs determinedfrom the Jaobi identities (see setion 2.14)We now give some examples to ilustrate how to use (3.100) and (3.103)to onstrut matrix representations. This method is very general and onse-quently diÆult to use when the representation (or the algebra) is big. Thereare other methods whih work better in spei� ases.



3.8. CONSTRUCTION OF MATRIX REPRESENTATIONS 1333.8.1 The irreduible representations of SU(2)In setion 2.5 we have studied the representations of SU(2). We have seenthat the weights of SU(2), denoted by m, are integers or half integers, and ona given irreduible representation with highest weight j they run from �j to jin integer steps. The weights are non-degenerated and so the representationshave dimensions 2j + 1. As we did in setion 2.5 we shall denote the basis ofthe representation spae asj j;mi m = �j;�j + 1; : : : ; j � 1; j (3.104)and they are orthonormal hj;m0 j j;mi = Æm;m0 (3.105)The Chevalley basis for SU(2) satisfy the ommutation relations[H ; E� ℄ = �E� [E+ ; E� ℄ = H (3.106)where H = 2� �H=�2, with � being the only positive root of SU(2). In setion2.5 we have used the basis[T3 ; T� ℄ = �T� [T+ ; T� ℄ = 2T3 (3.107)and so we have E� � T� and H � 2T3. Sine m are eigenvalues of T3T3 j j;mi = m j j;mi (3.108)we get from (3.91) the matrix representing T3 asD(j)m0;m (T3) = hj;m0 j T3 j j;mi = mÆm;m0 (3.109)Using the relation (3.100), whih is the same as taking the expetationvalue on the state j j;mi of both sides of the seond relation in (3.107), we getj hj;m j T+ j j;m� 1i j2 � j hj;m + 1 j T+ j j;mi j2= 2m (3.110)where we have used the fat that T y+ = T� (see (3.87)). Notie that T+ j j; ji =0, sine j is the highest weight and soj hj; j j T+ j j; j � 1i j2= 2j (3.111)Clearly, suh result ould also be obtained diretly from (3.101). The othermatrix elements of T+ an then be obtained reursively from (3.110). Indeed,



134 CHAPTER 3. REPRESENTATION THEORY OF LIE ALGEBRASdenoting m �j hj;m + 1 j T+ j j;mi j2, we get j�1 = 2j, j�2 = 2j +2(j� 1),j�3 = 2j + 2(j � 1) + 2(j � 2), and som = j�m�1Xl=0 2(j � l) = (j �m)(j +m + 1) = j(j + 1)�m(m + 1)Therefore j hj;m + 1 j T+ j j;mi j2= j(j + 1)�m(m + 1) (3.112)and sine hj;m+ 1 j T+ j j;miy = hj;m j T� j j;m+ 1i (3.113)we get j hj;m� 1 j T� j j;mi j2= j(j + 1)�m(m� 1) (3.114)The phases of suh matrix elements an be hosen to vanish, sine in SU(2)we do not have a relation like (3.103) to relate them. Therefore, we getT� j j;mi = qj(j + 1)�m(m� 1) j j;m� 1i (3.115)and so, D(j)m0;m (T+) = hj;m0 j T+ j j;mi= qj(j + 1)�m(m + 1) Æm0;m+1D(j)m0;m (T�) = hj;m0 j T� j j;mi= qj(j + 1)�m(m� 1) Æm0;m�1 (3.116)3.8.2 The triplet representation of SU(3)Consider the fundamental representation of SU(3) with highest weight �1. Inexample 3.10 we have seen it has dimension 3, and in fat it is the so alledtriplet representation of SU(3). From (3.4) we have2�1 � �1�21 = 2�1 � �3�23 = 1 (3.117)where �3 = �� 1 + �2, �1 and �2 are the the simple roots of SU(3). So,from(3.41) we get that �1, (�1 � �1) and (�1 � �3) are weights of the representation.Sine the representation has dimension 3 it follows that they are the onlyweights and they are non-degenerate. Those weights are shown in �gure 3.6.
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Figure 3.6: The weights of the triplet representation of SU(3)Taking the Cartan subalgebra generators in the Chevalley basis we haveh�0 j Ha j �i = 2�a � ��2a Æ�0;� a = 1; 2 (3.118)where we have used (3.90), and where we have negleted the degeneray index.From (3.4) and the Cartan matrix of SU(3) (see example 2.13) we have2�1 � (�1 � �1)�21 = �1 2�2 � (�1 � �3)�22 = 12�1 � (�1 � �3)�21 = 0 2�2 � (�1 � �1)�22 = 1 (3.119)Denoting the states as (as a matter of ordering the rows and olumus of thematries)j 1i �j �1i ; j 2i �j �1 � �1i ; j 3i �j �1 � �3i (3.120)we obtain from (3.117), (3.118), (3.119) and that the matries representing theCartan subalgebra generators areD�1 (H1) = 0B� 1 0 00 �1 00 0 0 1CA D�1 (H2) = 0B� 0 0 00 1 00 0 �1 1CA (3.121)Using (3.101) and (3.117) we have thatj h�1 j E�1 j �1 � �1i j2=j h�1 j E�3 j �1 � �3i j2= 1 (3.122)



136 CHAPTER 3. REPRESENTATION THEORY OF LIE ALGEBRASMaking � = �1 � �1 and � = �2 in (3.100) and using the fat thath�1 � �1 + �2 j E�2 j �1 � �1i = 0 (3.123)sine �1 � �1 + �2 is not weight, we getj h�1 � �1 j E�2 j �1 � �1 � �2i j2= 1 (3.124)These are the only non vanishing \transition amplitudes". From (3.95) and(3.120) we see that the only non vanishing elements of the matries representingthe step operators areD�1 (E�1) = h�1 j E�1 j �1 � �1i � ei�D�1 (E�2) = h�1 � �1 j E�2 j �1 � �3i � ei'D�1 (E�3) = h�1 j E�3 j �1 � �3i � ei� (3.125)where, aording to (3.122) and (3.124), we have introdued the angles �, �and '. The negative step operators are obtained from these ones using (3.87).Choosing the oyle " (�1; �2) = 1 and sine �2 � �1 is not a root, wehave from (3.103) that the fases have to satisfy (set � = �1 � �3 , � = �1 and� = �2 in (3.103)) � + ' = � (3.126)There are no futher restritions on these fases.Therefore we get that the matries whih represent the step operators inthe triplet representation areD�1 (E�1) = 0B� 0 ei� 00 0 00 0 0 1CA D�1 (E��1) = 0B� 0 0 0e�i� 0 00 0 0 1CA (3.127)D�1 (E�2) = 0B� 0 0 00 0 ei'0 0 0 1CA D�1 (E��2) = 0B� 0 0 00 0 00 e�i' 0 1CAD�1 (E�3) = 0B� 0 0 ei(�+')0 0 00 0 0 1CA D�1 (E��3) = 0B� 0 0 00 0 0e�i(�+') 0 0 1CAIn general, the fases � and ' are hosen to vanish. The algebra of SU(3)is generated by taking real linear ombination of the matries Ha (a = 1; 2),(E� + E��) and (E� � E��). On the other hand the algebra of SL(3) is gener-ated by the same matries but the third one does not have the fator i. Notiethat in this way the triplet representation of the group SU(3) is unitary whilstthe triplet of SL(3) is not.
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Figure 3.7: The weights of the anti-triplet representation of SU(3)3.8.3 The anti-triplet representation of SU(3)We now onsider the other fundamental representation of SU(3) whih hashighest weight �2 . In example 3.10 we saw it also has diemnsion 3 and it isthe anti-triplet of SU(3). Using (3.4) we get that the weight are �2, �2 � �2and �2 � �3 and onsequently they are not degenerate. They are shown in�gure 3.7.We shall denote the states asj 1i �j �2i ; j 2i �j �2 � �2i ; j 3i �j �2 � �3i (3.128)Using the Cartan matrix of SU(3) (see example 2.13), (3.4) and (3.118) weget that the matries whih represent the Cartan subalgebra generators in theChevalley basis areD�2 (H1) = 0B� 0 0 00 1 00 0 �1 1CA D�2 (H2) = 0B� 1 0 00 �1 00 0 0 1CA (3.129)Using (3.101) we have thatj h�2 j E�2 j �2 � �2i j2=j h�2 j E�3 j �2 � �3i j2= 1 (3.130)and from (3.100) j h�2 � �2 j E�1 j �2 � �1 � �2i j2= 1 (3.131)



138 CHAPTER 3. REPRESENTATION THEORY OF LIE ALGEBRASUsing (3.95) we get that the only non vanishing matrix elements of the stepoperators are D�2 (E�1) = h�2 � �2 j E�1 j �2 � �3i � ei�D�2 (E�2) = h�2 j E�2 j �2 � �2i � ei'D�2 (E�3) = h�2 j E�3 j �2 � �3i � ei� (3.132)where, aording to (3.130) and (3.131), we have introdued the fases �, ' and�. From (3.87) we obtain the matries for the negative step operators. Usingthe fat that (q + 1) " (�1; �2) = 1 we get from (3.103) that these fases have tosatisfy � + ' = �+ � (3.133)Therefore the matries whih represent the step operators in the anti-tripletrepresentation areD�2 (E�1) = 0B� 0 0 00 0 ei�0 0 0 1CA D�2 (E��1) = 0B� 0 0 00 0 00 e�i� 0 1CA (3.134)D�2 (E�2) = 0B� 0 ei' 00 0 00 0 0 1CA D�2 (E��2) = 0B� 0 0 0e�i' 0 00 0 0 1CAD�2 (E�3) = �0B� 0 0 ei(�+')0 0 00 0 0 1CA D�2 (E��3) = �0B� 0 0 00 0 0e�i(�+') 0 0 1CASo, these matries are obtained from those of the triplet by making the hangeE��1 $ E��2 and E��3 $ �E��3 . From (3.121) and (3.129) we see theCartan subalgebra generators are also interhanged.3.9 Tensor produt of representationsWe have seen in de�nition 1.12 of setion 1.5 the onept of tensor produtof representations. The idea is quite simple. Consider two irreduible repre-sentations D� and D�0 of a Lie group G, with highest weights � and �0 andrepresentation spaes V � and V �0 respetively. We an onstrut a third rep-resentation by onsidering the tensor produt spae V �
�0 � V � 
 V �0. Theoperators representing the group elements in the tensor produt representationare D�
�0 (g) � D� (g)
D�0 (g) (3.135)



3.9. TENSOR PRODUCT OF REPRESENTATIONS 139and they at as D�
�0 (g)V �
�0 = D� (g)V � 
D�0 (g)V �0 (3.136)They form a representation sineD�
�0 (g1)D�
�0 (g2) = D� (g1)D� (g2)
D�0 (g1)D�0 (g2)= D� (g1g2)
D�0 (g1g2)= D�
�0 (g1g2) (3.137)The operators representing the elements T of the Lie algebra G of G aregiven by D�
�0 (T ) � D� (T )
 1l + 1l
D�0 (T ) (3.138)IndeedhD�
�0 (T1) ; D�
�0 (T2) i = hD� (T1) ; D� (T1) i
 1l+ 1l
 hD�0 (T1) ; D�0 (T1) i= D� ([T1 ; T2 ℄)
 1l + 1l
D�0 ([T1 ; T2 ℄)= D�
�0 ([T1 ; T2 ℄) (3.139)Notie that if j �; li and j �0; l0i are states of the representations V � andV �0 with weights � and �0 respetively, one getsD�
�0 (Hi) j �; li
 j �0; l0i = D� (Hi) j �; li
 j �0; l0i+ j �; li 
D�0 (Hi) j �0; l0i= (�i + �0i) j �; li
 j �0; l0i (3.140)It then follows that the weigths of the representation V �
�0 are the sumsof all weights of V � with all weights of V �0 . If � and �0 are the highest weightsof V � and V �0 respetively, then the highest weight of V �
�0 is �+ �0, and theorresponding state is j �+ �0i =j �i
 j �0i (3.141)whih is learly non-degenerate.In general, the representation V �
�0 is reduible and one an split it as thesum of irreduible representations of GV �
�0 = ��00V �00 (3.142)where V �00 are irreduible representations with highest weight �00. The deom-position (3.142) is alled the branhing of the representation V �
�0 .



140 CHAPTER 3. REPRESENTATION THEORY OF LIE ALGEBRASTaking orthonormal basis j �; li and j �0; l0i for V � and V �0 respetively,we an onstrut an orthonormal basis for V �
�0 asj �+ �0; ki = m(�)Xl=1 m(�0)Xl0=1 Ckl;l0 j �; li
 j �0; l0i (3.143)where m (�) and m (�0) are the multipliities of � and �0 in V � and V �0 re-spetively, and k = 1; 2; : : :m (�+ �0), with m (�+ �0) being the multipliityof �+ �0 in V �
�0. Clearly, m (�+ �0) = m (�)m (�0). The onstants Ckl;l0 arethe so-alled Clebsh-Gordan oeÆients.Example 3.12 Let us onsider the tensor produt of two spinorial represen-tations of SU(2). As disussed in setion 3.8.1 it is a two dimensional repre-sentation with states j 12 ; 12i and j 12 ;� 12i, and satisfyingT3 j 12 ;� 12i = �12 j 12 ;� 12i (3.144)and (see (3.115))T+ j 12 ; 12i = 0 ; T+ j 12 ;� 12i =j 12 ; 12iT� j 12 ; 12i = j 12 ;� 12i ; T� j 12 ;� 12i = 0 (3.145)One an easily onstrut the irreduible omponents by taking the highestweight state j 12 ; 12i
 j 12 ; 12i and at with the lowering operator. One getsD 12
 12 (T�) j 12 ; 12i
 j 12 ; 12i = (T� 
 1l+ 1l
 T�) j 12 ; 12i
 j 12 ; 12i= j 12 ;� 12i
 j 12 ; 12i+ j 12 ; 12i
 j 12 ;� 12iand �D 12
 12 (T�)�2 j 12 ; 12i
 j 12 ; 12i = 2 j 12 ;� 12i
 j 12 ;� 12i (3.146)and �D 12
 12 (T�)�3 j 12 ; 12i
 j 12 ; 12i = 0 (3.147)On the other hand notie thatD 12
 12 (T�) (j 12 ;� 12i
 j 12 ; 12i� j 12 ; 12i
 j 12 ;� 12i) = 0 (3.148)Therefore, one gets that the statesj 1; 1i � j 12 ; 12i
 j 12 ; 12ij 1; 0i � (j 12 ;� 12i
 j 12 ; 12i+ j 12 ; 12i
 j 12 ;� 12i) =p2j 1;�1i � j 12 ;� 12i
 j 12 ;� 12i (3.149)



3.9. TENSOR PRODUCT OF REPRESENTATIONS 141onstitute a triplet representation (spin 1) of SU(2).The state j 0; 0i � (j 12 ;� 12i
 j 12 ; 12i� j 12 ; 12i
 j 12 ;� 12i) =p2 (3.150)onstitute a salar representation (spin 0) of SU(2).The branhing of the tensor produt representation is usually denoted interms of the dimensions of the irreduible representations, and in suh ase wehave 2
 2 = 3+ 1 (3.151)Given an irreduible representation D of a group G one observes that it isalso a representation of any subgroup H of G. However, it will in general bea reduible representation of the subgroup. The deomposition of D in termsof irreduible representations of H is alled the branhing of D. In order toillustrate it let us disuss some examples.Example 3.13 The operator T3 generates a subgroup U(1) of SU(2) (see(3.107)). From the onsiderations in 3.8.1 one observes that eah state j j;mionstitutes a salar representation of suh U(1) subgroup. Therefore, eahspin j representation of SU(2) deomposes into 2j + 1 salars representationof U(1).Example 3.14 In example 3.6 we have seen that weights of the adjoint rep-resentation of SU(3) are its roots plus the null weight whih is two-fold degen-erate. So, let us denote the states asj ��1i ; j ��2i ; j ��3i ; j 0i ; j 00i (3.152)Consider the SU(2)
 U(1) subgroup of SU(3) generated bySU(2) � fE��1; 2�1 �H�21 gU(1) � f2�2 �H�22 g (3.153)One an de�ne the state j 0i asj 0i � E��1 j �1i (3.154)and onsequently the statesj �1i ; j 0i ; j ��1i (3.155)



142 CHAPTER 3. REPRESENTATION THEORY OF LIE ALGEBRASonstitute a triplet representation of the SU(2) de�ned above. In addition, thestates j �2i ; j �3i (3.156)and j ��3i ; j ��2i (3.157)onstitute two dublet representations of the same SU(2).By taking j 00i to be orthogonal to j 0i one gets that it is a singlet repre-sentation of SU(2).Clearly, eah state j �i in (3.152) onstitute a salar representation of theU(1) subgroup with eigenvalue 2�2 � �=�22. Sine, U(1) ommutes with theSU(2) it follows the states of a given irreduible representation of SU(2) haveto have the same eigenvalue fo the U(1). Therefore, we have got the followingbranhing of the adjoint of SU(3) in terms of irreps. of SU(2)
 U(1)8 = 3(0) + 2(1) + 2(�1) + 1(0) (3.158)where the numbers inside the parenteses are the U(1) eigenvalues.
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