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Using two centuries of data, a simple model of demand accurately explains the rise and fall 
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industries today. Estimates show computer use is associated with declining employment in 
manufacturing industries, but not in other sectors. 
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When an industry automates its production does its employment decline? There is 

widespread concern today that many jobs will be lost to new computer technologies. One 

recent paper concluded that new information technologies will put “a substantial share of 

employment, across a wide range of occupations, at risk in the near future” (Frey and 

Osborne 2013).  

The example of manufacturing decline provides good reason to be concerned about 

technology and job losses. In 1958, the US broadwoven textile industry employed over 300 

thousand production workers and the primary steel industry employed over 500 thousand. 

By 2011, broadwoven textiles employed only 16 thousand and steel employed only 100 

thousand production workers.1 Some of these losses can be attributed to trade, especially 

since the mid-1990s. However, overall since the 1950s, most of the decline appears to come 

from technology and changing demand (Rowthorn and Ramaswamy 1999). Of course, jobs 

lost in one industry may be replaced with new jobs in another, but many fear that 

deindustrialization has heightened economic inequality in the US or caused unemployment 

in Europe and caused political instability in both. “Premature deindustrialization” has also 

become a concern in developing nations (Rodrik 2016). 

Yet technical change does not always lead to declining employment in the affected 

industry. Figure 1 shows how textiles, steel, and automotive manufacturing all enjoyed 

strong employment growth during many decades that also experienced very rapid 

productivity growth. Despite persistent and substantial productivity growth, these industries 

have spent more decades with growing employment than with job losses. This “inverted U” 

                                                
1 These figures are for the broadwoven fabrics industry using cotton and manmade fibers, SIC 2211 and 2221, 
and the steel works, blast furnaces, and rolling mills industry, SIC 3312. 
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pattern appears to be quite general for manufacturing industries (Buera and Kaboski 2009, 

Rodrik 2016). 

 

Figure 1. Production Employment in Three Industries 
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Why is automation associated with growing employment in some industries at some 

times, while at other times and in other industries jobs are lost? What determines whether 

technical change tends to increase employment in an industry or decrease it? The answer 

would seem to be important for understanding what affects the pace of deindustrialization in 

both the developed and developing worlds and for anticipating the impact of new 

information technologies. 

This paper uses century-long time series data on the US cotton textile, steel, and 

automotive manufacturing industries to explore what determines whether technology will 

increase or decrease employment. While a substantial literature has looked at structural 

change at the level of the manufacturing sector as a whole, the data for these individual 

industries allows a tighter identification of the interaction between technology, demand, 

prices, and income.2 Using these data, a very simple model predicts the rise and fall of 

employment in these industries with reasonable accuracy: the solid line in Figure 1 shows 

that prediction. I then explore implications of this model. One implication is that computer 

automation should have a more positive effect on employment in nonmanufacturing 

industries than in manufacturing. I find support for this hypothesis using data on computer 

use across industries from 1984 through 2007. 

Structural change 

The inverted U pattern in Figure 1 is also seen in the relative share of employment in 

the whole manufacturing sector, shown in Figure 2. Logically, the rise and fall of the sector 

as a whole in this chart results from the aggregate rise and fall of separate manufacturing 

industries such as those in Figure 1. Yet explanations of this phenomenon based on broad 

                                                
2 Papers empirically analyzing the sector shifts include Dennis and Iscan (2009), Buera and Kaboski (2009), 
Kollmeyer (2009), Nickell, Redding, and Swaffield (2008), and Rowthorn and Ramaswamy (1999). 
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sector-level factors face a challenge because individual industries show rather disparate 

patterns. For example, employment in the automotive industry appears to have peaked 

nearly a century after textile employment peaked. Data on individual industries are needed to 

analyze such disparate responses. 

The literature on structural change provides two sorts of accounts for the relative 

size of the manufacturing sector, one based on differential rates of productivity growth, the 

other based on different income elasticities of demand.3 Baumol (1967) showed that the 

greater rate of technical change in manufacturing industries relative to services leads to a 

                                                
3 Acemoglu and Guerrieri (2008) also propose an explanation based on differences in capital deepening. 

Figure 2. Manufacturing Share of the Labor Force 

Sources: US Bureau of the Census 1975; BLS Current Employment Situation. Labor 
force includes agricultural laborers 
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declining share of manufacturing employment under some conditions (see also Lawrence 

and Edwards 2013, Ngai and Pissarides 2007, Matsuyama 2009). 

 But differences in productivity growth rates do not seem to explain the initial rise in 

employment. For example, during the 19th century, the share of employment in agriculture 

fell while employment in manufacturing industries such as textiles and steel soared both in 

absolute and relative terms. But labor productivity in these manufacturing industries grew 

faster than labor productivity in agricultural. Parker and Klein (1966) find that labor 

productivity in corn, oats, and wheat grew 2.4%, 2.3%, and 2.6% per annum from 1840-60 

to 1900-10. In contrast, labor productivity in cotton textiles grew 3.0% per year from 1820 

to 1900 and labor productivity in steel grew 3.0% from 1860 to 1900.4 Nevertheless, 

employment in cotton textiles and in primary iron and steel manufacturing grew rapidly then.  

The growth of manufacturing relative to agriculture surely involves some general 

equilibrium considerations, perhaps involving surplus labor in the agricultural sector (Lewis 

1954). But at the industry level, rapid labor productivity growth along with job growth must 

mean a rapid growth in the equilibrium level of demand—the amount consumed must 

increase sufficiently to offset the labor-saving effect of technology. For example, although 

labor productivity in cotton textiles increased nearly 30-fold during the nineteenth century, 

consumption of cotton cloth increased 100-fold. The inverted U thus seems to involve an 

interaction between productivity growth and demand. 

A long-standing literature sees sectoral shifts arising from differences in the income 

elasticity of demand. Clark (1940), building on earlier statistical findings by Engel (1857) and 

others, argued that necessities such as food, clothing, and housing have income elasticities 

that are less than one (see also Boppart 2014, Comin, Lashkari, and Mestieri 2015, 

                                                
4 My estimates, data described below. 
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Kongsamut, Rebelo, and Xie 2001 and Matsuyama 1992 for more general treatments of 

nonhomothetic preferences). The notion behind “Engel’s Law” is that demand for 

necessities becomes satiated as consumers can afford more, so that wealthier consumers 

spend a smaller share of their budgets on necessities. Similarly, this tendency is seen playing 

out dynamically. As nations develop and their incomes grow, the relative demand for 

agricultural and manufactured goods falls and, with labor productivity growth, relative 

employment in these sectors falls even faster.  

This explanation is also incomplete, however. While a low income elasticity of 

demand might explain late 20th century deindustrialization, it does not easily explain the 

rising demand for some of the same goods during the nineteenth century. By this account, 

cotton textiles are a necessity with an income elasticity of demand less than one. Yet during 

the 19th century, the demand for cotton cloth grew dramatically as incomes rose. That is, 

cotton cloth must have been a “luxury” good then. Nothing in the theory explains why the 

supposedly innate characteristics of preferences for cloth changed. 

It would seem that the nature of demand changed over time. Matsuyama (2002) 

introduced a model where the income elasticity of demand changes as incomes grow (see 

also Foellmi and Zweimueller 2008). In this model, consumers have hierarchical preferences 

for different products. As their incomes grow, consumer demand for existing products 

saturates and they progressively buy new products further down the hierarchy. Given 

heterogeneous incomes that grow over time, this model can explain the inverted U pattern. 

It also corresponds, in a highly stylized way, to the sequence of growth across industries seen 

in Figure 1.  

Yet there are two reasons that this model might not fit the evidence very well for 

individual industries. First, the timing of the growth of these industries seems to have much 
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more to do with particular innovations that began eras of accelerated productivity growth 

than with the progressive saturation of other markets. Cotton textile consumption soared 

following the introduction of the power loom to US textile manufacture in 1814; steel 

consumption grew following the US adoption of the Bessemer steelmaking process in 1856, 

and Henry Ford’s assembly line in 1913 initiated rapid growth in motor vehicles.  

Second, there is a general problem of looking at the income elasticity of demand as 

the main driver of structural change: the data suggest that prices were often far more 

consequential for consumers than income. From 1810 to 2011, real GDP per capita rose 30-

fold, but output per hour in cotton textiles rose over 800-fold; inflation-adjusted prices 

correspondingly fell by three orders of magnitude. Similarly, from 1860 to 2011, real GDP 

per capita rose 17 fold, but output per hour in steel production rose over 100 times and 

prices fell by a similar proportion. The literature on structural change has focused on the 

income elasticity of demand, often ignoring price changes. Yet these magnitudes suggest that 

low prices might substantially contribute to any satiation of demand. I develop a model that 

includes both income and price effects on demand, allowing both to have changing 

elasticities over time. 

The inverted U pattern in industry employment can be explained by a declining price 

elasticity of demand. If we assume that rapid productivity growth generated rapid price 

declines in competitive product markets, then these price declines would be a major source 

of demand growth. During the rising phase of employment, equilibrium demand had to 

increase proportionally faster than the fall in prices in response to productivity gains. During 

the deindustrialization phase, demand must have increased proportionally less than prices. 

Below I obtain estimates that show the price elasticity of demand falling in just this manner. 
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To understand why this may have happened, it is helpful to return to the origins of 

the notion of a demand curve. Dupuit (1844) recognized that consumers placed different 

values on goods used for different purposes. A decrease in the price of stone would benefit 

the existing users of stone, but consumers would also buy stone at the lower price for new 

uses such as replacing brick or wood in construction or for paving roads. In this way, Dupuit 

showed how the distribution of uses at different values gives rise to what we now call a 

demand curve, allowing for a calculation of consumer surplus.  

This paper proposes a parsimonious explanation for the rise and fall of industry 

employment based on a simple model where consumer preferences follow such a 

distribution function. The basic intuition is that when most consumers are priced out of the 

market (the upper tail of the distribution), demand elasticity will tend to be high for many 

common distribution functions. When, thanks to technical change, price falls (income rises) 

to the point where most consumer needs are met (the lower tail), then the price and income 

elasticities of demand will be small. The elasticity of demand thus changes as technology 

brings lower prices to the affected industries and higher income to consumers generally.  

I fit the model to actual demand data for the three industries with a lognormal 

specification that allows for changes in both the price elasticity of demand and the income 

elasticity of demand. The model estimates per capita demand accurately using only a single 

independent variable: labor productivity. I use the demand estimates to make the predictions 

of the actual rise and fall of employment in the textile, steel, and automotive industries 

shown in Figure 1.  

This simple model of labor productivity and demand thus provides an explanation 

for the inverted U seen in manufacturing employment. The model implies that the 

characteristics of demand should determine whether the new technologies tend to increase 
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or decrease employment. To test this, I compare the impact of computer technology on 

industry employment growth between manufacturing and nonmanufacturing industries. 

Inferring from the historical analysis that demand for manufactured products is less elastic 

on average than demand in other industries, the model suggests that computer technology 

should have a more positive impact on employment in nonmanufacturing industries. I find 

that from 1984 through 2007 computer technology use is associated with economically and 

statistically significant job losses in manufacturing industries but with a weak increase in 

employment in nonmanufacturing industries. This analysis supports Autor’s (2015) 

explanation of why automation has not eliminated employment. 

Model 

Simple model of the Inverted U 

Consider production and consumption of two goods—cloth and a general 

composite good—in autarky. The model will focus on the impact of technology on 

employment in the textile industry under the assumption that the output and employment in 

the textile industry are only a small part of the total economy. 

Production 

Let the output of cloth, 𝑞 = 𝐴 ∙ 𝐿, where L is textile labor and A is a measure of 

technical efficiency. Changes in A represent labor-augmenting technical change. Note that 

this is distinct from those cases where automation completely replaces human labor. Bessen 

(2016) shows that such cases are rare and that the main impact of automation consists of 

technology augmenting human labor. 

I initially assume that product and labor markets are competitive so that the price of 

cloth is 
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(1)  𝑝 = 𝑤 𝐴,  

where w is the wage. Below, I will test whether this assumption holds in the cotton and steel 

industries. 

Then, given a demand function, 𝐷(𝑝), equating demand with output implies 

 𝐷 𝑝 = 𝑞 = 𝐴 ∙ 𝐿  or 

(2) 𝐿 =  𝐷 𝑝 /𝐴. 

We seek to understand whether an increase in A, representing technical 

improvement, results in a decrease or increase in employment L. That depends on the price 

elasticity of demand, 𝜖, assuming income is constant. Taking the partial derivative of the log 

of (2) with respect to the log of A, 

𝜕 ln 𝐿
𝜕 ln𝐴 =

𝜕 ln𝐷(𝑝)
𝜕 ln𝑝

𝜕 ln𝑝
𝜕 ln𝐴 − 1 =  𝜖 − 1,        𝜖 ≡ −

𝜕 ln𝐷(𝑝)
𝜕 ln𝑝  

If the demand is elastic (𝜖 > 1), technical change will increase employment; if demand is 

inelastic (𝜖 < 1), jobs will be lost. In addition to this price effect, changing income might 

also affect demand as I develop below. 

Consumption 

Now, consider a consumer’s demand for cloth. Suppose that the consumer places 

different values on different uses of cloth. The consumer’s first set of clothing might be very 

valuable and the consumer might be willing to purchase even if the price were quite high. 

But cloth draperies might be a luxury that the consumer would not be willing to purchase 

unless the price were modest. Following Dupuit (1844) and the derivation of consumer 

surplus used in industrial organization theory, these different values can be represented by a 

distribution function. Suppose that the consumer has a number of uses for cloth that each 

give her value v, no more, no less. The total yards of cloth that these uses require can be 
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represented as f(v). That is, when the uses are ordered by increasing value, f(v) is a scaled 

density function giving the yards of cloth for value v. If we suppose that our consumer will 

purchase cloth for all uses where the value received exceeds the price of cloth, 𝑣 > 𝑝, then 

for price p, her demand is 

𝐷 𝑝 = 𝑓 𝑧 𝑑𝑧
!

!
= 1− 𝐹 𝑝 ,        𝐹(𝑝) ≡ 𝑓 𝑧 𝑑𝑧

!

!
 

where I have normalized demand so that maximum demand is 1. With this normalization, f 

is the density function and F is the cumulative distribution function. I assume that these 

functions are continuous with continuous derivatives for p>0. 

The total value she receives from these purchases is then the sum of the values of all 

uses purchased, 

𝑈 𝑝 = 𝑧 ∙ 𝑓 𝑧 𝑑𝑧
!

!
. 

This quantity measures the gross consumer surplus and can be related to the standard 

measure of net consumer surplus used in industrial organization theory (Tirole 1988, p. 8) 

after integrating by parts: 

𝑈 𝑝 = 𝑧 ∙ 𝑓 𝑧 𝑑𝑧
!

!
= 𝑧 ∙ 𝐷′ 𝑧 𝑑𝑧

!

!
= 𝑝 ∙ 𝐷 𝑝 + 𝐷 𝑧 𝑑𝑧.

!

!
 

In words, gross consumer surplus equals the consumer’s expenditure plus net consumer 

surplus. I interpret U as the utility that the consumer derives from cloth.5 

The consumer also derives utility from consumption of the general good, x, and 

from leisure time. Let the portion of time the consumer works be l so that leisure time is  
                                                

5 Note that in order to use this model of preferences to analyze demand over time, one of two assumptions 
must hold. Either there are no significant close substitutes for cloth or the prices of these close substitutes 
change relatively little. Otherwise, consumers would have to take the changing price of the potential substitute 
into account before deciding which to purchase. If there is a close substitute with a relatively static price, the 
value v can be reinterpreted as the value relative to the alternative. Below I look specifically at the role of close 
substitutes for cotton cloth, steel, and motor vehicles. 
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1 – l. Assume that the utility from these goods is additively separable from the utility of cloth 

so that total utility is 

𝑈 𝑣 + 𝐺(𝑥, 1− 𝑙) 

where G is a concave differentiable function. The consumer will select v, x, and l to 

maximize total utility subject to the budget constraint 

𝑤𝑙 ≥ 𝑥 + 𝑝𝐷 𝑣  

where the price of the composite good is taken as numeraire. The consumer’s Lagrangean 

can be written 

ℒ 𝑣, 𝑥, 𝑙 = 𝑈 𝑣 + 𝐺(𝑥, 1− 𝑙)+  𝜆 𝑤𝑙 − 𝑥 − 𝑝 ∙ 𝐷 𝑣 . 

Taking the first order conditions, and recalling that under competitive markets, 𝑝 = 𝑤 𝐴, 

we get 

𝑣 = 𝐺!
𝑝
𝑤 =

𝐺!
𝐴 ,          𝐺! ≡

𝜕 𝐺
𝜕 𝑙 . 

𝐺! represents the marginal value of leisure time and the second equality results from applying 

assumption (1). In effect, the consumer will purchase cloth for uses that are at least as 

valuable as the real cost of cloth valued relative to leisure time. Note that if 𝐺! is constant, 

the effect of prices and the effect of income are inversely related. This means that the price 

elasticity of demand will equal the income elasticity of demand. However, the marginal value 

of leisure time might very well increase or decrease with income; for example, if the labor 

supply is backward bending, greater income might decrease equilibrium 𝐺! so that leisure 

time increases. To capture that notion, I parameterize 𝐺! = 𝑤! so that 

(3)    𝑣 = 𝑤! 𝐴 = 𝑤!!!𝑝,        𝐷 𝑣 = 1− 𝐹 𝑣 . 
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Elasticities 

Using (3), the price elasticity of demand holding wages constant solves to 

𝜖 = −
𝜕 ln𝐷
𝜕 ln𝑝 =

𝜕 ln𝐷 𝑣
𝜕 ln 𝑣

𝜕 ln 𝑣
𝜕 ln𝑝 =

𝑝𝑓(𝑣)
1− 𝐹(𝑣)𝑤

!!! 

and the income (wage) elasticity of demand holding price constant is 

𝜌 =
𝜕 ln𝐷
𝜕 ln𝑤 =

𝜕 ln𝐷 𝑣
𝜕 ln 𝑣

𝜕 ln 𝑣
𝜕 ln𝑤 = 1− 𝛼 𝜖. 

These elasticities change with prices and wages or alternatively with changes in labor 

productivity, A. The changes can create an inverted-U in employment. Specifically, if the 

price elasticity of demand, 𝜖, is greater than 1 at high prices and lower than 1 at low prices, 

then employment will trace an inverted U as prices decline with productivity growth. At high 

prices relative to income, productivity improvements will create sufficient demand to offset 

job losses; at low prices relative to income, they will not. 

A preference distribution function with this property can generate a kind of industry 

life cycle as technology continually improves labor productivity over a long period of time. 

An early stage industry will have high prices and large unmet demand, so that price decreases 

result in sharp increases in demand; a mature industry will have satiated demand so further 

price drops only produce an anemic increase in demand. 

A necessary condition for this pattern is that the price elasticity of demand must 

increase with price over some significant domain, so that it is smaller than 1 at low prices but 

larger than 1 at high prices. It turns out that many distribution functions have this property. 

This can be seen from the following propositions (proofs in the Appendix): 

Proposition 1. Single-peaked density functions. If the distribution density function, f, 
has a single peak at 𝑝 = 𝑝, then !"

!"
≥ 0  ∀ 𝑝 < 𝑝. 
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Proposition 2. Common distributions. If the distribution is normal, lognormal, 
exponential, or uniform, there exists a 𝑝∗such that for 0 < 𝑝 < 𝑝∗, 𝜖 < 1, and for 
𝑝∗ < 𝑝, 𝜖 > 1.  

These propositions suggest that the model of demand derived from distributions of 

preferences might be broadly applicable. The second proposition is sufficient to create the 

inverted U curve in employment as long as price starts above 𝑝∗ and declines below it. 

Econometric specification 

Below, I estimate the demand function using a lognormal distribution. To do this 

using aggregate data, the model, which describes the demand of an individual consumer, 

needs to be recast to describe aggregate consumer behavior. The distribution function can 

be recast as an aggregate distribution across both different consumers and different uses for 

each consumer. Also, an average wage now determines the equilibrium value of 𝑣, so the 

distribution also reflects dispersion of wages across consumers.  

Specifically, I estimate per capita demand, D,  

(4) 

𝐷 = 𝛾 1−Φ
−ln𝐴 + 𝛼 ln𝑤 − 𝜇

𝜎 + 𝜀 

or 

(5) 

𝐷 = 𝛾 1−Φ
ln𝑝 𝑤 + 𝛼 ln𝑤 − 𝜇

𝜎 + 𝜀 

where Φ is the standard normal cumulative distribution function and 𝜀 is an error term that 

captures, among other things, demand shocks and changing tastes. I estimate these equations 
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using non-linear least squares (NLLS). I also estimate demand with a general polynomial 

form. 

Data 

Time series over a century in length often require combining data from different 

sources involving various adjustments. I describe the data sources and adjustments in detail 

in the Appendix. This section describes the main data series used in estimating employment 

in cotton textiles, steel, and automotive industries and in the computer technology analysis. 

Production and demand 

I use physical quantities to measure production and demand. For the textile industry, 

I measure output as yards of cotton cloth produced plus yards of cloth made of synthetic 

fibers from 1930 on. From 1958, I use the deflated output of the cotton and synthetic fiber 

broadwoven cloth industries (SIC 2211 and 2221). For the early years, I also included 

estimates of cotton cloth produced in households. For steel, I used the raw short tons of 

steel produced. For the motor vehicle industry I used the number of passenger vehicles and 

trucks produced each year. 

To estimate per capita demand or consumption, I add net imports to the estimates 

of domestic production and divide by the population. 

Note that these measures do not adjust for product quality.6 This approach avoids 

distortions that might arise from constructing quality adjusted price indices over long periods 

of time. It does mean that “true” demand and productivity are understated. However, this 

does not pose a significant problem for my analysis because I measure both without quality 

adjustments. The distribution function I estimate would, of course, be different if it were 

                                                
6 The deflators used from 1958 on in cotton are quality adjusted but the series closely matches the unadjusted 
output measure during the years when they overlap. 
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estimated with quality-adjusted data, but using unadjusted data allows for consistent 

predictions of employment. 

Employment, prices, and wages 

I count the number of industry wage earners or, from 1958 on, the number of 

production workers. For prices, I use the prices of standard commodities. For cotton 

textiles, I use the wholesale price for cotton sheeting. For steel, I use wholesale prices for 

steel rails. I do not have a similar commodity price for motor vehicles. The BLS does have a 

price index for the automotive industry, but this measure implicitly changes as the quality of 

vehicles improved. I need to use a commodity type price because my measures of output and 

consumption (cars and trucks) does not capture these quality improvements. For wages, I 

use the compensation of manufacturing production workers. This measure includes the 

value of employee benefits from 1906 on. 

Labor productivity 

I calculate labor productivity by dividing output by the number of production 

employees times the number of hours worked per year. I use industry specific estimates of 

hours if available and estimates of hours for manufacturing workers if not.  

Over the sample periods, each industry exhibited rapid labor productivity growth. 

From 1820 to 1995, labor productivity in cotton textiles grew 2.9% per year; in steel, it grew 

2.4% per year from 1860 to 1982; in motor vehicles, it grew 1.4% per year from 1910 

through 2007. Figure 3 shows labor productivity for each industry on a log scale over time. 

Each industry exhibits steady productivity growth over long periods of time. Textiles and 

especially automotive show initially higher rates of growth; steel exhibits faster growth since 

the 1970s, likely the effect of steel minimills that use recycled steel rather than blast furnace 

production of iron. 
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Figure 3. Labor Productivity over Time 

 



 19 

Computer technology 

The data on computer use come from the Current Population Survey (CPS) of the 

Bureau of Labor Statistics. In select years, a supplemental survey asked whether the 

respondent “directly used a computer at work?”7 The universe for these questions was 

employed persons of 15 years of age or older. I use these survey items as the measure of 

computer use. Because these measures are self-reported, they may undercount cases where 

information technology is embedded in hardware. I use the Census 1990 industry 

classification scheme where IPUMS crosswalks have converted industry codes to a 

consistent set of 227 industries (Ruggles 2015). I calculate the share of work hours 

performed by workers using computer technology for each industry for each sample year. 

Note that I assume that the use of computers means that industries are subject to an 

ongoing stream of productivity-enhancing technical changes as new hardware and software 

applications are installed. 

Empirical Findings 

Prices and Productivity 

In the stylized model, productivity equals wages over price, 𝐴 = 𝑤 𝑝. This is 

convenient for empirical analysis because it means the key independent variable can either by 

𝐴 or 𝑤 𝑝. In practice, the productivity measure is preferable because it is less sensitive to 

demand shocks and because I have data over a longer time span for productivity and for 

motor vehicles.  

For various reasons, 𝐴 might diverge from 𝑤 𝑝. For purposes of my empirical 

analysis, labor productivity can be used as the independent variable as long as it is 
                                                

7 I use the surveys of computer use in October of 1984, 1989, 1993, 1997, and 2003 and in September of 2001. 
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proportional to wage over price, not necessarily equal.8 Figure 4 shows that this is largely the 

case for textiles and steel. The correlation coefficients are 0.98 for textiles and 0.88 for steel 

(0.98 through 1974 only). The only major deviation appears for steel from 1974 to 1982 

when, apparently, price inflation exceeded wage inflation. 

 

                                                
8 This will be true if the labor share of output is constant or if technical change is Hicks neutral. 
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Figure 4. Is Labor Productivity Proportional to Wage / Price? 
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Demand Curves 

Before seeking to estimate the model, it is helpful to first examine the demand 

curves graphically. Figure 5 shows per capita demand (consumption) for each good against 

labor productivity, both on logarithmic scales. The solid line is simply a log version of 

equation (4) fit to the data.  

In Figure 5A and 5B, the circles represent observations where the measure of 

demand fails to capture the effect of imports of downstream products. Demand needs to 

take trade into consideration and so I have calculated demand by adding net imports to the 

amount of product produced domestically. However, for textiles and steel further 

adjustment is needed because these are intermediate goods industries. The ultimate 

consumption good is produced by another industry and that good can be imported as well. 

For example, the consumption of textiles in the form of apparel includes: 1) apparel 

produced in the US with US cloth, 2) textiles that were imported to the US and used by 

domestic apparel producers, and 3) apparel that were produced outside the US using cloth 

also produced outside the US. Even after adjusting for imports of textiles, my measure of 

consumption misses the cloth imported in apparel made abroad. 

For this reason, I can only estimate demand for those years where downstream 

imports are not too large. For textiles, I estimate demand through 1995; in 1996, imports 

comprised a third of apparel imports for the first time and have grown rapidly since. For 

steel, I estimate demand through 1982. After that, the largest steel-using industries, 

fabricated metal products and machinery excluding computers (SIC 34 and 35 excluding 

357), show a large increase in import penetration. Between 1982 and 1987, the import 

penetration (net imports over domestic production) grew 10.5%. As the Figure shows, my 

measure of per capita consumption falls dramatically around these cutoff years. I also  
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Figure 5. Per Capita Consumption 
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conducted my estimates using different cutoff years as a robustness check. Prediction of 

employment and the general inverted U pattern were not sensitive to small changes in the 

cutoff year. 

Under the assumption that labor productivity is inversely  proportional to price, the 

slope of the curve in the figure represents the price elasticity of demand. In each case, the 

price elasticity clearly decreases as labor productivity increases. As a first pass, Table 1 

formally tests whether the elasticity of demand is constant by fitting the curve with a simple 

quadratic expression of the form 

(6)  ln𝐷 = 𝛼 + 𝛽 ∙ ln𝐴 + 𝛾 ∙ ln𝐴 ! + 𝑢. 

Column 1 uses labor productivity as the base independent variable. Column 2 uses price 

over wage; the labor productivity variable has a somewhat better fit. In each case, the 

coefficient on the quadratic term is negative and highly significant, rejecting the null 

hypothesis that the price elasticity of demand is constant.  

One concern is the possible endogeneity of price and labor productivity. A demand 

shock will affect both the equilibrium price and the error term, biasing the coefficient of 

price. A similar concern might relate to labor productivity if firms bring on less productive 

resources in response to positive demand shocks. In that case, the coefficient of labor 

productivity might be biased and, possibly, the predictions could be off as well. That 

problem might be mitigated for the data here because demand shocks are likely small 

compared to the large changes in demand over historical time frames. To test for 

endogeneity, Column 3 instruments the labor productivity variables in Column 1 using year 

and year squared as instruments in a GMM regression. Year should be independent of any 

demand shocks and the largely linear growth of log productivity seen in Figure 3 means that 

year should be a good instrument. The coefficients are quite similar for textiles and steel, but 
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a bit different for auto. The table reports the probability value of a statistical test of the null 

hypothesis that all independent variables are exogenous.9 The null hypothesis that the 

independent variables are exogenous cannot be rejected at the 5% level of significance, but it 

can be rejected at the 10% level for auto and cotton.  

These tests thus raise some concern about endogeneity bias. However, my aim here 

is not unbiased coefficient estimates but accurate prediction. I compared the predictions of 

regressions of equation (6) with regressions that used year and year squared instead of the 

labor productivity variables. The predictions match fairly closely and are highly correlated. 

The correlation coefficients are 0.971 for textiles, 0.987 for steel, and 0.751 for automotive. 

The main disparity occurred in the automotive industry for 1910 when labor productivity 

was far below the 1920 value (thanks to Henry Ford). These tests provide some assurance 

that predictions from my model do not suffer substantially from the possible endogeneity of 

labor productivity. 

Model estimates 

Table 2 shows NLLS estimates of equations (4) in columns 1 and 2 and estimates of 

equation (5) for textile and steel in column 3. Columns 1 and 3 set 𝛼 = 0, excluding 

secondary income effects. All of the regressions have a good fit, although the regressions 

using labor productivity (columns 1 and 2) fit better than those using the ratio of prices to 

wages (column 3), probably because of the greater volatility of wholesale price data. Note 

that the model fits the data significantly better than estimates using a simple quadratic form 

in Table 1. None of the estimates in column 2 find a significant coefficient for 𝛼, suggesting 

                                                
9 The test is based on the difference in Sargan statistics; the specification used also shows a strong first stage 
regression; it is exactly identified. 
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that changes in the marginal value of leisure time are not important.10 The lines in Figure 5 

represent the predictions based on the column 1 regressions. 

One concern is that the model assumes no substantial interference from close 

substitute products. That means that either there are no substitutes or the productivity 

growth in substitutes is sufficiently slow that the effect of substitution can be taken as 

constant. Each industry did have substitutes, especially during the early years. However, it 

seems that these substitutes were fairly static technologically and were quickly overtaken. 

Cotton cloth competed with wool and linen. However, wool and linen were mainly 

produced within the household (Zevin 1971) and did not directly compete in most markets. 

In urban markets where they did compete, wool tended to be substantially more expensive 

per pound and its price declined only slowly compared to cotton.11 During the early years of 

the Bessemer steel process, steel rails were much more expensive than iron rails, but steel 

rails lasted much longer, making the higher price worth it for many uses. By 1883, the price 

of steel rails fell below the price of iron rails, eliminating the production of this substitute 

(Temin 1964 p. 222). And cars and trucks competed with horse drawn vehicles during the 

early years. However, here, too, production of horse drawn vehicles collapsed very quickly.12 

Since the 1970s, steel may have faced greater competition from aluminum and other 

materials for use in cars and cans (Tarr 1988 p. 177-8), perhaps contributing to the poorer fit 

of the model then. In any case, the close fit of the model overall suggests that substitution is 

not a significant problem. 

                                                
10 Of course, leisure time increases dramatically over this historical period studied. 
11 For example, in Philadelphia in 1820, wool was $0.75 per pound while cotton sheeting was $0.15 (US Bureau 
of the Census 1975). 
12 The production of carriages, buggies, and sulkies fell from 538 thousand in 1914 to 34 thousand in 1921; the 
production of farm wagons, horse-drawn trucks, and business vehicles fell from 534 thousand in 1914 to 67 
thousand in 1921 (US Bureau of the Census 1975). 
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Using these predictions, I estimate the price elasticity of demand at each end of the 

estimation sample: 

Cotton Steel Automotive 
Year Elasticity Year Elasticity Year Elasticity 
1810 2.13 1860 3.49 1910 6.77 
1995 0.02 1982 0.16 2007 0.15 

 

Demand was initially highly elastic, becoming highly inelastic. 

These predicted levels of per capita demand can also be used to estimate industry 

production employment by dividing domestic demand (total demand divided by 1 + import 

penetration) by the annual output per production worker. Measuring labor productivity as 

output per production worker-hour this is13 

𝐷𝑒𝑚𝑎𝑛𝑑 𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎 ∙ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
1+ 𝐼𝑚𝑝𝑜𝑟𝑡 𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 ∙

1
𝐿𝑎𝑏𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ∙ 𝐻𝑜𝑢𝑟𝑠 𝑤𝑜𝑟𝑘𝑒𝑑/𝑦𝑒𝑎𝑟. 

These estimate are shown as the solid lines in Figure 1. The estimates appear to be 

accurate over long periods of time. There are notable drops in employment during the Great 

Depression and excess employment in motor vehicles during World War II. Finally, 

employment drops sharply for the years when my measure of consumption fails in textiles 

(after 1995) and steel (after 1982). It appears that this simple model using a lognormal 

distribution of preferences provides a succinct explanation of the inverted U in employment 

in these industries. 

                                                
13 For 1820 and before, I also subtract the estimate of labor performed in households. 
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Implications 

Trade vs. technology in manufacturing job losses 

The model provides an estimate of the impact of technology on industry 

employment as mediated by demand. We can use this to understand how much technology 

contributed to the loss of manufacturing jobs compared to other factors including trade. 

Using predicted industry employment without the correction for imports, actual and 

predicted employment changes can be compared: 

 
Cotton & synthetic textiles Steel 

 Production workers (1000s) Production workers (1000s) 

Year Actual Predicted Tech share Actual Predicted Tech share 
1950 350 336 

 

550 514 

 1995 120 134 
    2011 16 98 

 

100 153 

 Job losses 
1950 - 2011 334 238 71% 450 361 80% 

Job losses 
1995 - 2011 104 36 35% 

    

In both textiles and steel, most of the jobs have disappeared since 1950 and most of 

the losses can be attributed to growth in labor productivity without compensating growth in 

demand. Other factors, including trade, the recession, and, perhaps changing tastes, can 

account for only 29% of the job losses in textiles and 20% in steel.  

That said, technology does not account for much of the more recent losses especially 

in textiles. Since 1995, only about one third of the job losses can be explained by growing 

labor productivity. Most of the loss in textile manufacturing jobs appears to be the result of 

the collapse of the domestic apparel industry in the face of heavy global competition. Note 

that the effect of trade on textile and steel manufacturing jobs does not appear to be mainly 
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about imports of textiles and steel—the import penetration in textiles was 8.9% in 2005 and 

in steel it was 5.2%. Instead, the main impact of trade appears to have come through its 

effect on downstream industries. 

The direction and rate of job changes 

A naïve view holds that more rapid productivity growth will be more likely to create 

job losses. The analysis in this paper suggests, to the contrary, that demand determines 

whether productivity growth eliminates or increases jobs. Moreover, if demand is elastic, 

then more rapid productivity growth will actually lead to faster employment growth, all else 

equal. While the sign of the employment effect depends on the elasticity of demand and not 

on the rate of productivity growth, the rate of change depends on both. For instance, 

although productivity grew faster in cotton textiles than in auto, employment grew faster in 

auto; the distribution of preferences for motor vehicles was much more concentrated (small 

𝜎) than the distribution for textiles. 

One might expect that computer technology would have a different effect on job 

growth across industries depending on industry demand elasticity. Assuming that the 

historical process of deindustrialization means that manufacturing industries have less elastic 

(more satiated) demand than most other industries on average, then computer technology 

should have a relatively more negative impact on employment in manufacturing industries, 

all else equal.14 

                                                
14 To the extent that information technology allows manufacturers to create new products, then the technology 
might tap into new sources of demand and thus be more elastic. There is some evidence that information 
technology is used to create new products (see for example Bartel, Ichniowski, and Shaw 2007). New product 
varieties might provide a reason that the association between IT and employment growth in manufacturing is 
only weakly negative. 
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Table 3 performs a simple test of this hypothesis. From equation (2) it follows that, 

all else equal, 

∆ ln 𝐿 = (𝜖 − 1) ∙ ∆ ln𝐴. 

I assume that labor productivity growth in industry i at time t is proportional to the share of 

workers using computers in that industry, 𝐶!". Then, estimating 

∆ ln 𝐿!" = 𝛽!"!#$!% ∙ 𝐶!" ∙ 𝐼 𝑛𝑜𝑛𝑚𝑎𝑛𝑢. + 𝛽!"#$ ∙ 𝐶!" ∙ 𝐼 𝑚𝑎𝑛𝑢. + 𝛿! + 𝜀!" 

the hypothesis can be tested as a test of 𝛽!"!#$!% > 𝛽!"#$. 

Column 1 shows that the share of the industry workforce using computers is 

positively associated with employment growth in nonmanufacturing industries, but is 

negatively and significantly associated with job loss in manufacturing. The difference in the 

coefficients is highly significant. The bottom panel of the table calculates the effect at the 

sample mean; computer use is associated with about 0.5% per annum faster employment 

growth on average in nonmanufacturing industries, but is associated with a loss of jobs of 

about 2% per year on average in manufacturing. These estimates do not take into account 

the possible impact of trade as was done above for the historical analysis. To consider the 

impact of trade, I repeated the regression after adjusting the dependent variable for the rate 

of change in the log import penetration for manufacturing industries.15 The coefficients were 

very close to the original estimates. 

Another concern is that other industry characteristics might be associated with both 

computer use and industry growth. Column 2 repeats the regression but with a full set of 

industry fixed effects. The difference between the coefficients is still highly significant, 

although both coefficients are now negative. The standard errors are also substantially larger, 

                                                
15 That is, I added ∆ ln 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑢𝑡𝑝𝑢𝑡 + 𝑖𝑚𝑝𝑜𝑟𝑡𝑠 − 𝑒𝑥𝑝𝑜𝑟𝑡𝑠 . 
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not surprising, given the short panel length. However, an F test cannot reject the null 

hypothesis that all the fixed effects are zero (P = .999). 

Computer use might also be endogenous if, say, faster growing industries tend to 

also use computers more for some reason. To check for endogeneity, I use two different 

instrumental variable estimations. The first instrument is based on the notion that labor 

markets for personnel with computer related skills will differ from state to state. Industry 

establishments in states with relatively larger availability of computer-skilled labor will tend 

to use computers more on average, independently of industry-specific factors that might also 

be associated with the dependent variable. For each industry for each year, I calculate the 

average computer use in each state (calculated excluding the target industry) and then I 

compute the weighted mean level of computer use for the industry, weighting each state by 

its relative share of industry employment.16 Column 3 uses this instrument plus year 

dummies. The coefficient for nonmanufacturing is positive, but not statistically significant; 

the coefficient for manufacturing is again negative and significant at the 5% level. The 

difference between the coefficients is also significant. However, a test of the null hypothesis 

that computer use is exogenous cannot be rejected (P = .131). 

As a further test, column 4 uses an instrument based on the notion that workers in 

sedentary occupations are more likely to use computers. The 1977 Dictionary of 

Occupational Titles identifies characteristics of occupations.17 One characteristic is labeled 

STRENGTH, which rates the physical demands of the job on a scale of 1, for sedentary 

occupations, to 5, for very heavy work. Assuming that this variable is arguably independent 

                                                
16 That is, let 𝑤!" and 𝑐!" represent the number of workers and the number of workers using computers in 
industry i and state s for a given year. Then the instrument is 𝑧! =

!!"
!!"!

∙ 𝑐!"!!! 𝑤!"!!!! . 

17 England and Kilbourne (2013) have mapped the 14,000 occupations in the DOT to Census detailed 
occupation codes, averaging them to this higher level of aggregation. 
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of industry growth, I average this variable across all of the occupations in each industry and 

use the industry average score as an instrumental variable (plus year dummies). Column 4 

shows the estimates. While the coefficients are similar to those in the previous regression, 

they are not significant, nor is the difference between them significant, nor can the null 

hypothesis that industry computer use is exogenous be rejected. 

In summary and consistent with my hypothesis, computer use is associated with 

significant job losses in manufacturing industries, but not in other industries, where 

computer use appears to be weakly associated with job growth, although this association is 

not statistically significant. These results correspond to several recent papers finding that 

information technology increases employment for some groups and does not appear to 

reduce net employment, including some causal studies. Gaggl and Wright (2014) find that 

ICT tended to raise employment in wholesale, retail, and finance industries, but had no 

statistically significant effect on other sectors, including manufacturing. Akerman, Gaarder, 

and Mogstad (2015) find that Internet technology increased employment of skilled workers 

and had no effect on unskilled. Bessen (2016) finds that computers tend to increase 

occupational employment modestly overall, with job losses in low wage occupations. Autor, 

Dorn, and Hansen (2015) find that local markets susceptible to computerization are not 

more likely to experience employment loss. 

Conclusion 

Productivity-enhancing technology will increase industry employment if product 

demand is sufficiently elastic. Technical change reduces the labor required needed to product 

a unit of output, but it also reduces prices in competitive markets. If the price elasticity of 
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demand is greater than one, the increase in demand will more than offset the labor saving 

effect of the technology.  

Understanding the responsiveness of demand is thus key to understanding whether 

major new technologies will decrease or increase employment in affected industries. This 

paper proposes that industry employment dynamics in the face of extensive productivity 

growth can be analyzed by deriving demand from a distribution of preferences. For many 

distribution functions, the elasticity of demand declines as price declines and productivity 

grows. In particular, a parsimonious model using a lognormal distribution fits the demand 

curves well for cotton textiles, steel, and motor vehicles over long periods of time. 

This model generates an industry life cycle explanation for the inverted U pattern of 

industrialization/deindustrialization seen in manufacturing employment. At high initial 

prices, industries have large unmet demand that is highly elastic. Productivity improvements 

give rise to robust job growth. Over time and with ongoing productivity gains, prices 

progressively decline until most demand is met and the price elasticity of demand is quite 

low. Then further productivity gains bring reduced employment. 

This view implies that major new technologies today should increase employment if 

they improve productivity in markets that have large unmet needs. That appears to be the 

case with computer technology. I find, consistent with the analysis, that computer 

technology use is weakly associated with employment growth in nonmanufacturing 

industries, but in manufacturing, where a couple centuries of rapid productivity growth mean 

that demand is more satiated, computer technology is associated with employment declines. 

This model challenges a popular view that faster technical change is more likely to 

eliminate jobs. Some people argue that because of Moore’s Law, the rate of change will be 

fast in new information technologies and this will cause unemployment (Ford 2015). 
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However, my model shows that if demand is elastic, faster technical change will, instead, 

create faster employment growth. Faster technical change will, however, also hasten the day 

when demand is no longer so elastic and deindustrialization sets in. This suggests that 

although new information technologies are not likely to create major job losses in the near 

future, job losses are a very real concern in the long run. On the other hand, as long as there 

are large unmet consumer needs, automation will raise demand in the relevant industries 

sufficiently to create job growth. 
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Appendix 

Propositions 

To simplify notation, let the wage remain constant at 1. Then 

𝜖 𝑝 =
𝑝 𝑓(𝑝)
1− 𝐹(𝑝) 

so that 

𝜕 𝜖 𝑝
𝜕 𝑝 =

𝑓!𝑝
1− 𝐹 +

𝑓!𝑝
1− 𝐹 ! +

𝑓
1− 𝐹 = 𝜖

𝑓′
𝑓 +

𝑓
1− 𝐹 +

1
𝑝  

Note that the second and third terms in parentheses are positive for 𝑝 > 0; the first term 

could be positive or negative. A sufficient condition for !"
!"
≥ 0 is 

(A1) 

𝑓′
𝑓 +

𝑓
1− 𝐹 ≥ 0. 

Proposition 1. For a single peaked distribution with mode 𝑝, for 𝑝 < 𝑝 , 𝑓! ≥ 0 so that 

!"
!"
≥ 0 .  

Proposition 2. For each distribution, I will show that 

𝜕𝜖
𝜕𝑝 ≥ 0,     lim

!→!
𝜖 = 0,    lim

!→!
𝜖 = ∞. 

Taken together, these conditions imply that for sufficiently high price, 𝜖 > 1, and for a 

sufficiently low price, 𝜖 < 1. 

a. Normal distribution  

𝑓 𝑝 =
1
𝜎𝜑 𝑥 ,      𝐹 𝑝 = Φ 𝑥 ,      𝜖 𝑝 =

𝑝
𝜎

𝜑 𝑥
(1−Φ 𝑥 ) ,     𝑥 ≡

𝑝 − 𝜇
𝜎  
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where 𝜑 and Φ are the standard normal density and cumulative distribution functions 

respectively. Taking the derivative of the density function, 

𝑓!

𝑓 +
𝑓

1− 𝐹 = −
𝑥
𝜎 +

𝜑 𝑥
𝜎 1−Φ 𝑥

. 

A well-known inequality for the normal Mills’ ratio (Gordon 1941) holds that for x>0,18 

(A2) 

𝑥 ≤
𝜑 𝑥

1−Φ 𝑥 . 

Applying this inequality, it is straightforward to show that (A1) holds for the normal 

distribution. This also implies that lim!→! 𝜖 = ∞. By inspection, 𝜖 0 = 0. 

b. Exponential distribution 

𝑓 𝑝 ≡ 𝜆𝑒!!",      𝐹 𝑝 ≡ 1− 𝑒!!",    𝜖 𝑝 = 𝜆𝑝,     𝜆,𝑝 > 0. 

Then 

𝑓!

𝑓 +
𝑓

1− 𝐹 = −𝜆 + 𝜆 = 0 

so (A1) holds. By inspection, 𝜖 0 = 0 and lim!→! 𝜖 = ∞. 

c. Uniform distribution 

𝑓 𝑝 ≡
1
𝑏 ,     𝐹 𝑝 ≡

𝑝
𝑏 ,      𝜖 𝑝 =

𝑝
𝑏 − 𝑝 ,     0 < 𝑝 < 𝑏 

so that 

𝑓!

𝑓 +
𝑓

1− 𝐹 =
1

𝑏 − 𝑝 > 0. 

By inspection, 𝜖 0 = 0 and lim!→! 𝜖 = ∞. 

                                                
18 I present the inverse of Gordon’s inequality. 
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d. Lognormal distribution 

𝑓 𝑝 ≡
1
𝑝𝜎𝜑 𝑥 ,      𝐹 𝑝 ≡ Φ 𝑥 ,       𝜖 𝑝 =

1
𝜎

𝜑 𝑥
1−Φ 𝑥

,    𝑥 ≡
ln𝑝 − 𝜇

𝜎  

so that 

𝜕 𝜖 𝑝
𝜕 𝑝 = 𝜖

𝑓′
𝑓 +

𝑓
1− 𝐹 +

1
𝑝 = 𝜖 −

1
𝑝 −

𝑥
𝑝𝜎 +

𝜑
𝑝𝜎(1−Φ)+

1
𝑝 . 

Cancelling terms and using Gordon’s inequality, this is positive. And taking the limit of 

Gordon’s inequality, lim!→! 𝜖 = ∞. By inspection lim!→! 𝜖 = 0. 

Historical data sources 

I obtain data on production employees for cotton and steel from Lebergott (1966, 
see also US Bureau of the Census 1975) through 1950, and from 1958 on from the NBER-
CES manufacturing database for SIC 2211 and 2221 (broadwoven fabric mills, cotton and 
manmade fibers and silk) and SIC 3312 (primary iron and steel). The former measures the 
number of wage earners while the more recent measure production employees. I find that 
these series are reasonably close for overlapping years. For 1820 in cotton, I estimate 5,600 
full time equivalent workers producing in households, using estimates of household 
production and Davis and Stettler’s (1966) estimates of output per worker. For the auto 
industry, I use the BLS Current Employment Statistics series for motor vehicle production 
workers from 1929 on. For 1910 and 1920, I obtained the number of employees in the 
motor vehicle industry from the 1% Census samples (Ruggles et al. 2015) and prorated those 
figures by the ratio of BLS production workers to Census industry employees for 1930. 

Weekly hours data for motor vehicles also come from the BLS from 1929 on. For 
earlier years and for cotton and steel before 1958, I use Whaples (2001) before 1939, linearly 
interpolating for missing year observations. From 1939 to 1958 I use the BLS Current 
Employment Statistics series for manufacturing production and nonsupervisory personnel. 
In cotton and steel, I use the NBER-CES data for production hours from 1958 on (this 
comes from the BLS industry data). 

For cotton production, I begin with Davis and Stettler’s (1966, Table 9) estimates of 
yards produced per man-year for 1820 and 1831 multiplied by the estimate of the number of 
cotton textile wage earners for those years (I assume productivity was the same in 1830 and 
1831). For 1820, I estimate that an additional 9.6 million yards were produced in households 
based on data from Tryon (1917). From 1830 on, Tryon’s estimates indicate little cotton 
cloth was produced at home. From 1840 through 1950, is use estimates of the pounds of 
cotton consumed in textile production time three yards per pound (US Bureau of the Census 
1975 and Statistical Abstracts, various years). This ratio is the historically used rule of thumb, 
but I also found that it applies reasonably well to a variety of twentieth century test statistics. 
While some cotton is lost in the production process (5% or less typically), these losses 
changed little over time. From 1930 on, I also include the weight of manmade fibers 
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consumed in textile production. From 1958 on I found that the deflated output  of SIC 2211 
and 2221 in the NBER-CES tracked the pounds of fiber consumed closely for the ten years 
when I had measures of both. I used this ratio to estimate yards of cloth produced based on 
the NBER-CES real output from 1958 on. For steel, my output measure is the short tons of 
raw steel produced (Carter 2006). From 1913 through 1950, I measure motor vehicle 
production using the NBER Macrohistory Database series on passenger car and truck 
production. I obtained a figure for 1910 production from Wikipedia.19 From 1951 on, I use 
car and truck production figures from the Ward’s Automotive Yearbook, prorated to match 
the NBER series. 

For consumption of motor vehicles, I use the Ward’s Automotive series on sales of 
passenger cars and trucks. For cotton and steel, I add net imports to domestic production. 
For cotton from 1820 through 1950, I use the net dollar imports of cotton manufactures 
divided by the price of cloth. From 1820 through 1860, I use Sandberg’s (1971) estimate of 
the price of British imports; from 1860 through 1950, I use the price of cotton sheeting (see 
below). From 1958 on, I use import penetration ratios from Feenstra (1958 though 1994) 
and Schott (1995 on). For steel, I use Temin’s (1964, p. 282) estimates for steel rail imports 
from 1860 through 1889. I use the Feenstra and Schott import penetration estimates from 
1958 on; I ignore imports between 1890 and 1957. 

For prices, I use the series on cotton sheeting from 1820 through 1974 (Carter 2006, 
Cc205); for steel I use series for the price of steel rails, splicing together separate series for 
Bessemer, open hearth, standard, and carbon steel (Carter 2006, CC244-7). 
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Tables 

Table 1. Regressions on Log Per Capita Demand 

 1  2  3  
Cotton       
Ln labor productivity 1.05 (.04)***   1.04 (.04)*** 
(Ln labor productivity)2 -0.13 (.01)***   -0.13 (.01)*** 
Ln p/w   -0.96 (.06)***   
(Ln p/w)2   -0.19 (.02)***   
Ln real GDP/capita       
Number observations 52  31  52  
Adjusted R-squared 0.981  0.954  0.981  
Exogeneity P-value     0.096  
       
Steel       
Ln labor productivity -2.89 (.29)***   -3.19 (.37)*** 
(Ln labor productivity)2 -0.65 (.05)***   -0.69 (.06)*** 
Ln p/w   1.44 (.60)**   
(Ln p/w)2   -0.25 (.06)***   
Ln real GDP/capita       
Number observations 35  34  35  
Adjusted R-squared 0.977  0.968  0.977  
Exogeneity P-value     0.134  
       
Automotive       
Ln labor productivity -3.55 (.78)***   -5.26 (1.22)*** 
(Ln labor productivity)2 -0.45 (.07)***   -0.62 (.12)*** 
Ln real GDP/capita       
Number observations 61    61  
Adjusted R-squared 0.904    0.891  
Exogeneity P-value     0.073  

Note: Robust standard errors in parentheses. ***= significant at 1%; ** = significant at 5%; * = significant at 
10%. Constant term not shown. Column 3 is an instrumental variables GMM estimation using year and year-
squared to instrument the labor productivity terms. The reported probability value is for the null hypothesis 
that these variables are exogenous. 
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Table 2. Regressions of Per Capita Demand 
 

	
1 

 
2 

 
3 

 Independent 
variable	 Labor productivity Labor productivity Price / wage 

 
A. Cotton cloth, 1820 - 1995 

𝜇 -1.74 (.10)*** -1.51 (2.35) -1.49 (.79)* 
𝜎 1.29 (.15)*** 1.36 (.69)* 2.04 (.58)** 
𝛾 132.94 (3.2)*** 133.09 (3.48)** 184.42 (49.15)** 
𝛼 

  
-0.06 (.58) 

  Observations	 52 
	

52 
 

37 
	R-squared	 0.993 

 
0.993 

 
0.990 

	 
B. Raw steel, 1860 – 1982 

𝜇 3.24 (.14)*** 2.31 (.80)*** 3.60 (.86)*** 
𝜎 0.77 (.18)*** 0.56 (.23)** 1.46 (.40)*** 
𝛾 0.68 (.05)*** 0.69 (.05)*** 1.32 (.64)** 
𝛼 

  
0.26 (.22) 

  Observations 35 
 

35 
 

116 
 R-squared 0.982 

 
0.982 

 
0.958 

  
C. Motor vehicles, 1910 – 2007 

𝜇 5.30 (.06)*** 7.32 (1.63)*** 
  𝜎 0.49 (.10)*** 1.61 (1.17) 
  𝛾 64.60 (4.55)*** 81.13 (24.79)*** 
  𝛼 

  
-0.80 (.68) 

  Observations 61 
 

61 
   R-squared 0.984 

 
0.985 

   Note: Non-linear least squares estimates of equation (4) in columns 1 and 2 and equation (5) in column 3. 
Robust standard errors in parentheses; ***= significant at 1%; ** = significant at 5%; * = significant at 10%. 
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Table 3. Annual Growth Rate of Industry Hours  
 OLS  FE  IV  IV  

 
1 

 
2  3  4 

 Computer use x nonmanufacturing 1.37 (1.97) -5.23 (5.10) 3.53 (3.48) 1.58 (2.21) 
Computer use x manufacturing -5.38 (2.50)** -23.54 (5.89)*** -21.44 (8.60)** -16.59 (12.30) 

 
  

    
  No. observations 1299 

 
1299  1275  1299 

 Test of zero coefficients .000 
 

.000  .036  .394 
 Test of 𝛽!"!#$!% = 𝛽!"#$  .000 

 
.003  .011  .172 

          
Percentage contribution to annual employment growth      
Nonmanufacturing 0.58 

 
-2.22  1.48  0.67 

 Manufacturing -2.06 
 

-9.00  -8.19  -6.34 
  

Note: Errors, clustered by industry, in parentheses. ***= significant at 1%; ** = significant at 5%; * = 
significant at 10%. Data are for 1984, 1989, 1993, 1997, 2001, and 2003 (extending to 2007 for the dependent 
variable). The dependent variable is the annual growth rate in hours worked from the observation year to the 
next year in the sample trimmed of 1% tails. Year dummies not shown. The fixed effects regression is over 227 
detailed industries. The regression in column 3 instruments computer use with year dummies and a measure of 
average state levels of computer use; column 4 uses year dummies and the industry rating of strength required 
based on the Dictionary of Occupational Titles (see text). Probability values are shown for F tests of null 
hypotheses that all coefficients are zero and that the manufacturing coefficient equals the nonmanufacturing 
coefficient. 
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