CHAPTER 4
Chapter 4

[4.1] An ideal gas undergoes an isothermal process from an initial State 1:
(P1,V1.T) to a final State 2: (P,,V,,T). Prove
AGr=RT In(Py/P,).
Solution
0]
dG =VdP - 4TV = RT | P

Py
dG = %dp = AG, = RTJ‘ dP/P

L5

=RTIn(P,/R,).

[4.2]1 The initial state of one mole of a monatomic ideal gas is P; = 5 atm and
T, = 300 K. Calculate the entropy change of the gas for:
(a) an isothermal decrease in pressure to 1 atm.
(b) a constant volume decrease in the pressure to 1 atm.

Solution

(a) Since the process is isothermal and the pressure change is known, use § =

fPT)

a5
“"(EL"“@%}”

AN O AN
Also, (@-)Tu [aTJP—R/P

s, 1
as=[ds= —R_[dP/P — -831441n(0.2) = 13.38 J /(mol -K).

() Use S=7(TV)

(3 (3

From [3-13],
S2 TZ
JdS:AS=CV-"dT/T
s, 300
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B
Where T, :7}'1; =1/5%300= 60
1

60
AS = 3/2Rde/T
300

=-20.07J /(mol -K).

[4.3] Prove by two methods that at constant temperature,

) AHIsolhennal =0
for an ideal gas, regardless of the pressure path,

Solution

Method 1 Let H=U+PV
dH = dU + d(PV)
For an ideal gas, U = {(T) only,

hence dU = 0 at constant temperature.
Also, since PV = RT,

d(PV)=d(RT) =0, Substituting,

H,
jdH=AH=O.
‘HI
Method 2 dH:(a—H] dP + Efi dar
) \ar ),

oH a
(l)(—a—) — T(—J +V. Substituting [4-23],
T T
v .
’ =-T 7 . + V. From the ideal gas equation,

R/ P. Substituting into the expression above,

Sy
Il

oH
_.F =-TR/P+V =0. Hence,
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H,
J.dll =AH =().
H,
[4.4] Prove that at constant temperature,

Asfsolhennai =-nR ln(PdPI)
for n moles of an ideal gas.

Solution
Let 8= f(P,T),
,_[35 o5’
4 _[8PJTdP+[aT}PdT

as’y _ (aV’
From [4-23], (3p LT LT )

Substituting the last expression into the equation for dS’ gives

v’ nRT
M= dP. For anideal gas, V' =—— and therefore
“ (Jr )p s P

’ 83 Py
—a—‘-f— =_3_(ﬂj =E. Hence, dS’=ﬁ£~Ri-dP=> dS'=—nR | dP/P
or ) or\ P Jp P P - N

or

P
AS}, shermat = —AR 1n(7_§-].

1

[4.5] Calcium boils at 1440°C. The standard free energy of vaporization of
liquid calcium is given by
AGY (cal/mol) = 41,030 + 5.83T log(T) - 42.23T,
where log = log,, (personal communication, 1959, R. Schuhmann, Jr.,
Department of Metallurgical Engineering, Purdue University, West
Lafayette, Indiana).
(a) Find the linear Gibbs free energy equation of the form
AGy =a+bT
which approximates the above equation as closely as possible near
1500 K.
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(b) Calculate the boiling point from the linear equation and compare

with the actual value.
Solution

(8) AG® = 41,030 + 5.83T log(T) - 42.23T

= 41,030+ 2.53T In(T) - 42.23T
From [4-25],

(%;:JP =—AS° = 2.53[T(%“;:Q] + ln(T)[%;-JJ -42.23

AS® =-2.531+In(T)]+ 42.23
=-2.531n(T) - 2.53 + 42.23

=-2.531In(T) +39.70
From [4-30],

oAG °/T) AH® 8(4]’7,& +2.53In(T) - 42.23)
[ oT :,P T oT
—41,030 2.53
= i
T? T

AH® = 41,030 -2.53T

AHY| 0= 37,235

A ppor =212

AG®(cal/ mol) = 37,235 — 21.2T.

(b) At the boiling point, liquid and vapor are at equilibrium, hence AG® = (-
0=37,235-21.2T
1756 —1440-273
1440+273

T= 1756 K ( x 100 = 2.5%ermrJ_

[4.6] Phosphorous bearing vanadium deposits of the western U.S. are a source
of vanadium used in the steel industry as an alloy component. X-ray
examination of a representative sample of raw material from these de-
posits reveals that the major impurity present in the ore is iron in the
form of Fe,P. A suggested method for removing the iron is to convert
Fe,P to Fe,P and pure iron (ferrite) by vacuum distillation of the phos-
phorous and remove the iron magnetically. Assuming the best vacuum
obtainable in a large scale operation is 10-2 mm Hg, estimate the operat-

ing temperature of a vacuum furnace required to accomplish this distil-
lation.
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Solution
(1) Set Up |

AG |

I [ hele

2 A6, 146, A6,

| ] |

AG°
2oy P s Fayt )

(2) Sum
IAG, =0=AG° + AG, + 4AG, — AG - 2AG,

(3) Substitute

144T'1 (3'9)
AG,=RTn(P,)=83 )=
AG, =AGy =0

AG =0 (equilibrium)

AG? is determined as follows:

4Fe+2P =2Fe,P AH® = —320.5 kJ
P, =2P AH® = ~143.83kJ AH® = -143.83k]
4Fe+ P, = 2Fe,P AH® = —464.4kJ / mol P,
AS® = 2(72.38) — 4(27.28) - 218 = —182.4kJ /(mol P, - K).
(4) Solve

AG =0=-93.44T + 464,400 - 182.4T
T ~ 1684 Kor1411°C.

[4.7] Estimate the pressure which must be applied to increase the melting
point of pure Au by 20°C.

Solution

Three TL’s are used to solve this problem.
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TL #1 - Pressure
(1) Setup

A G—F::'- (o]

Au(s) msok > Au (L)

P T ’r 5
AGy_‘i"(Aq) dap O AG lgjv[:‘“u:! aP
1 ] ‘ i

Act

Au(s) Tesok ~ Au (L)

Molar volumes are obtained from literature da f
#2 and #3. ke

is calculated from TL

Aunf
A,}.* (=) 256K 7 ?u(i)
1355 135(0
1336 ’ 1336
H'F:'. 12 , 1O

l A
(2)&(3)&:mm

1356
ZAHp =0=12,760+ | 29.29dT — AH/, -J'lm -3
27 1156 1336(23] 68+5.19x10°T)dT

=12,760 +(29.29 X 20) - AH/, - 613.6

(4) Solve
AH, . = 12,732 J/mol.
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TL#3 - Entropy of fusion at 1356 K (see Example Problem 3-5)
(1) SetUp

£
A5 s AU\_(_-Q.)
A

Au(s) | 350K
il 1256
As ’*=ch0? /T)d'r ASF £(Cp/‘r) dT
' 122 ¢ 133k
| AS =4.85
Auls) TE30RK >Aunll)

(2) & (3) Sum & Substitute

2929 0368
YASy =0=9.55+ —'—dT—ASlfssﬁ-J‘ (—];—+5.19x10"3}17
1336 1336

o g 53
AS! , =9.55+0.435-0.248=9.737 J/(mol - K) = = i
Calculating AG/,, from [4-8]: ¢
AGL = 12,732 1356(0.737) =—4714 Jmol = — N 30( 6

Now, referring to TL # 1. 3| 53

(2) & (3) Sum & Substitute
P P
5 AGy, =414+ Vi, [ dP-0- V(Au}jldP =0

M
Substituting Vju,) = > =T70" 197 = 11.59 cm?/mol

1

Vi = —— % 197=10.207 cm?®/mol,
19.3

(av)
3 AGy, =0=—471.4+[11.59(P - 1)- 10.207(P - 1)] x0.1013

(4) Solve
P = 3370 atm.
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[4.8]  Assuming that A/ and ASO

the temperature
O,(g) at 1 atm.

Solution
(1) Set Up
AU

Hq0 () > Ha (W +% 0, (9)

7 0 i

|

: | |
HSO(S) AH7,Q$I<.7\ H,f) (g_)+yz 01(33
2)& (3) Sum & Substityte

T

Since AC, =0, J‘ AC,dT =0, hence, the solution only requires standard data
298

are independent of lemperature, calculate
at which solid HgO will dissociate into liquid Hg and

at 298K.
LAHy =0= A11'2093 —AHJ

(4) Solve
AH7= 90.8 kJ/mol

Applying the same TL in a similar manner for entropy: AS? == AS;?S,8 =75.91
+1/2 (205.02) -70.3 = 108.12 J/(molK).

Using [4-11] and setting AG) =0, AG? =0 = AHZye — TAS,

7=20800 5308 k= s67°C.

108.12 T

[4.9] Thermodynamic analysis of the equilibrium state for carbon, chromium,
and niobium carbide reveals that niobijum is an effective alloying agent

for limiting grain boundary precipitation of chromium carbide by pref-
erentially removing carbon as niobium carbide.

(a) Write a single equation describing C-Nb-Cr equilibria neglecting
solubility effects,

(b) Confirm thermodynamically the alloying effect of Nb at 1200 K.
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S
(2) 6Nb + CrysCs —29° 3 6NDC + 23Cr.
(b) From TL analysis:
(1) SetUp
44 +232C

e ol - | -

oN b + C'rzg, Ce 1zook G

/]\

23n
6AG,  AG, bos, “

AG° l |
leNb t Cr-lz_% C T1zook brlbC 230

(2) Sum .
T AGy, = AGY,, +23AG, +6AG, — AG ,,, —6AG, — AG,; =0

(3) Substitute All pure components, no solid solubility,

AG, =AG, =AGy = AG, =0

AG 0, = MGy, = 868Gy, — BGE, ¢,

AGyg, =6~130,135 + 1.67(1200)] - 6[- 68,540 - 6.44(1200]
=-311,200 J/mol < 0 = NbC formation is favored.

[4.10] Three equations for the oxidation of a me@ M are given btt;,llow. %23 (;)rf
these equations is for the oxidation of solid M, one is for e mt(;l j
of liquid M, and one is for the oxidation of gaseous M. Using [.:1
data given, identify the reaction and the state of the reactant metal.

(a) 2M + Oy(g) — 2MO(s) AGY =-290,400 + 46.1T
(b) 2M + Oy(g) — 2MO(s) AGY = -358,754 + 102.6T
(€) 2M + Oy(g) — 2MO(s) AG? =-298,400 + 55.4T

Solution
From [4-27], entropies for each reaction are:
Reaction (a)
anG®) ASO = 9(~290,400 + 46.1T)| _ 46.1 cal/(mol-K)
I ), ar lr
P
AS? =— 46.1
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Reaction (b)

IAG° o _ 9(=358,754 +102.67)
[ — ]P =-AS" = = | =102.6 cal/(mol-K)

s
AS® =-102.6

Reaction (c)
( QAGUJ _ _g0 - (298,400 +554T
P

| 54 cal/(mol-K)

or ar !

AS® = -55.4

From the discussion in section 3.5,
AS°(gas) > AS°(liquid) > AS°(solid)
hence, from the data above

AS° reaction (a) is solid M

AS® reaction (b) is gaseous M

AS® reaction (¢) is liquid M

[4.11] For the reaction SiC(s) — Si(s) + C(s), AG? = 12,770 — 1.66T cal/mol
from 298-1680 K. Using this data, determine:
(a) AS? at 1000 K.
(b) AH® at 1500 K.

Solution
From direct examination, the expression is identical to [4-11], hence AH®
and AS® are constants over the applicable temperature range.

(@) AS Yo0ox=1.66 cal/(mol -K),
(b) AH 9s00x= 12,770 cal/(mol).

[4.12] Hs;ng the general expression for C, - C, given in Exercise Problem
3]:

(a) Show t‘hat C,— C, = o2VTI for any substance.
(b) Use this expression to estimate C, - C, for pure copper at 298 K.

luti
(a) From Exercise Problem [1.3]:

o-cor(Z)(2

Using [1-2], [1-3], and the transformation formula [4-18],
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3) -
ar )p
(2 J _—{av/eT), —av
oT J,  (9V/aP), -bV
(5,5
a)y B
Substituting into the above expression,
2
a a“vT
C -Cy = T aV —_|=
p-0y=16v|3)-%5
(b) From Table B.1
c. _c. - (185x 10-4)" -cm?-298 K -atm
PUVT T K2.896gm-7.6x10%
_0.0012 atm -cm? 1mol-K " 8'3144Jx 63.54gm
- K-gm 82.057 atm-cm?® mol-K mol

~0.01 J/(mol -K).

[4.13] Use the data in Exercise Problem [3.8] and the Gibbs free energy crite-
ria to confirm that solidification is spontaneous after supercooling.

Solution
AG:AH—TAS

=-12,136 - 803(-11.53)
=—-2877 J/mol < 0 = spontaneous.

[4.14] (a) Starting with [4-13], use [4-27] and [4-30] to compute AS® and AHC,
respectively, as a function of temperature.
(b) Use the results from (a) and Appendix A, Table A.4 to obtain AH?
and AS® as a function of temperature for the reaction
2Cu(s) + (1/2)04(g) — Cu0(s).
Compare the results at T = 298 K with the data in Appendix A, Table
Al

63




THERMODYNAMIC LOOP APP ICATIONS IN MATERIALS SYSTEMS
Soluti

(a) AS}: AGE =A +

B
2305 7 In(T)+CT

(aAG;: —age-_B
T ), =" T=2‘303[T-]/T+ln(T)]+C

A0 =B
ey [1+ In(T)]+C
o_ B
T = 5305 MUT)-1]-C
Gn
AlY 291 - N
AHy : < L=AT+ o In(T)+C
a(AGy/T) B
- AT YT = _AH}
T AT e YW=
AHY = A~ _BT_
2.303
(b) AS? and ASY,:
16.4
ASp =— i [In(yT)- 1]-123.44

=7.121n(T)- 116.3

(Table A.4: Derived Equation)
ASg,, = -75.74 J/(mol -K)

205.22
- 2(33.35)

=-175.27 J /(mol -K)

ASg,, =93.94 -

(Table A.1)

AH? and AHY, :

AHY =-169,470 +

16.4T

2.303
=-169,470 +7.12T

AHY =~ -167,350 J/mol

_

(Table A.4: Derived Equation)

(Table A.1) {AHg,;, =—167,380 J/mol.
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[4.15] The thermodynamics of SiO is important in many materials applica-
tions because of its high vapor pressure. Develog an expression for the
Gibbs free energy of formation of SiO(!), AGg;,,, as a function of
temperature between 298-1700 K using the data in Appendix A, Table

A4,

Solution

(1) (Si0,) +(Si)=2(si0)

AG® = 697,539 +53.98T log(T) —518.45T J/mol,
(2) (8i0,)=(Si)+(0,)

AG%/ =881,235 +12.55Tlog(T)-218.51T J/mol
3)=MD-2).

(si)+(0,) — 2(Si0)

AG*S =-183,696 + 41.3T log(T) — 300T

AGZ , (J/mol) = -91,848 +20.72T log(T) - 1507,

[4.16] One mole of a metal, m, at 1 atm pressure is heated at constant volume
from 300 to 500 K. Calculate the hydrostatic pressure that results from
such a process. What is the work done? Assume C,, is constant over the
temperature interval. o, = 5 x 105 K-1, and f, = 8 x10-® atm™".

Solution
Since the process is constant volume, the path may be expressed by the

dP
artial derivative | — | :
P [JF )v

Po=1adm. [ (9FT), Pz
From [4-18],

(£J=_% d applying [1-2] and [1-3 i -
3T ), (aV/E)P)T and applying [1-2] and [1- ],(E)V —E
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Expanding and intergrating,

P, -5
5%10

dp = JdT_

.[ 8x107° ax10° 2%0)

P, =1251 atm;

w=[Pav=g

[4.17] Referring to Exercise Problem
the same process. Let C, =209 J/(molK), V,, = 6 cm?/(gm mol).

Solution

S=f(T.P)

as aS
ds = dT +
(aTl- [aPJ ar

Using the differential form of [3-10] and applying [4-23],

5-SL_(3) G

) (%)
J‘ 45— 5= j Cear- avjdp

Where V (assumed) # f(P)

500\ 5x10%x6cm?
AS = 2091( ) e ol
- (1251 atm)
:10.68_5x10’5x6cm3x 1251 atm x J
mol -K 9.869 cm? - atm
=10.68 —0.038 =10.64 J/(mol -K).

[4.18] Use the Gibbs free energy criteria to confirm that liquid potassium and
its vapor are in equilibrium at 950 K and 0.447 bar,
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[4.16], calculate the entropy change for
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ol
(Table D.2)

= Ahy, —Ths,,
= (2750.4— T71.4) - 950(4.8129 - 2.7313) kJ/kg
=1979-1978=0.

[4.19] Use [3-6] to confirm the value of u, — u; in Appendix D, Table D.2, at
900 K and 0.251 bar.

Solution

jduszds—PIdv

Au = 900(4.9175 - 2.6874)—

> 21510 (7180 -1.438)

=1827 kJ/kg (check).

[4.20] Referring to Exercise Problems [4.16] and [4.17], estimate the enthalpy
change for the same process if V,, = 10 cm*mol. State any assumptions
in making the calculations.

Solution
From [4-33],

1251

Aff= cIdT+VJ(1 oT)P

3 1251
=2°-9_[ dr 4 10cm’, 0101 atm I (1-5x107T)2P
200 1

mol cm? -am

Since the functional dependence between T and P is unknown, a rigorous
solution to the problem cannot be obtained. However, since
5 x 10T <<1, proceed by neglecting the last term:
=20.9(200) + 10 % .101 x 1250
~ 5440 J/mol, V_and o_are assumed constant.

Note: If the substance were an ideal gas for which the equation of state is
known, the pressure term would disappear since (1-oT) = (1-1)=0. In
such a case, a rigorous solution is obtained. This illustrates the importance of
identifying reasonable assumptions in determining thermodynamic properties
of condensed states for which equations of state are empirical and limited in
application.
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[4.21] Using the standard enthalpy and entropy changes computed in Exercise

Problems [2.10] and [3.14] for the reaction
Mg3Si,05(0H)4(s) + 2Si0,(s) — Mg3Si,0,4(0OH,)(s) + H;0(g),

calculate AGy at temperature T where 373 K < T < 800 K. No phase

changes occur.

Solution

AGP = AHY — TAS?

AG? (J/mol)=

(—69.42x 10*T - 2,597 + 4672.2T —3.70x 1071 +4672.17T - 2.59T

—6.94x 10T - 131,2647°5 — 82,315) — T(-771.17 +4672.2In(T) - 5.17T
—10.41x 10772 + 181.26 x 103705 _ 389.32 x 1037-2),

Collecting like terms :
AGY (J/mol)= _ 82 315 — 4672.2TIn(T) + 5.44 x 10°T + 2.58T2+ 347 x

107 T3-3.66 x 107 T-1 - 2.63 x 105TOS.

[4.22] Using the standard enthalpy and entropy changes computed in Exercise
Problems [2.12] and [3.15] for the reaction

NaAlSi;Og(s) — NaAlSi,O(s) + SiOs(s),

calculate AG; at temperature T where 298 K < T < 844 K. No phase
changes occur.

Solution
AGY (J/mol)= (53.21 X 103~ 238.21T + 7.04 x 10-2T2— 7.57 x 10-5T3 + 4.92

X 10°T-1 + 8.74 x 10°T05) - T(1762.21 — 238.21 In(T) + 140.749 x

10T - 113.61 X 10-7T2 - 87.384 x 102T-95 + 24.596 x 10°T-2),
Collecting like terms:

AGR (J/mol)= 5321 x 103- 20004T + 238 21T In(T) -

70.349 x 103T2+ 3.791 x 105 T3 +
17.478 x 10°T%5 + 24604 x 103T-1.

[4.23] The sorosilicate lawsonite, CaAl,Si,0,(0H),-H,0(s), is a common con-
stituent of metamorphic rocks formed at low temperature and high pres-
sure. Assuming the molar volume of this mineral is independent of pres-
sure, calculate the molar isothermal Gibbs free energy change for

lawsonite subjected to a reversibly applied pressure increase from 1 to 5
bar at 298 K.
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Solution
Since T & V are coonsuml,

dG =VdP-SdT =

P
AG = VAP, hence from B.2,

cm? 4184 J )( 1atm )AP
AG — (101.32 mol 41.3223 Cma . atm 1‘01325 bar

J
o M
= (10.125 — _bar]

G, B
dG:VdPorJ.dG=V dP =
Gl

J
AP =4bar: AG = (10.125 -m——w—}'i bar) = 40.5 J/mol.

ol-bar

[4.24] Using the standard enthalpy and entropy of forr‘nation computed in
Exercise Problems [2.13] and [3.13] for the reaction

2Cu(l) + 1/2S5(g) — CuS(M,
determine whetheruor not this2 reaction is spontaneous at 1356 K as
written.
Solution
(1) SetUp
A6 _ >
\
276, 206, AG,
Ac®

2 cul) ‘P‘Vz. SZ_CS) 12S6K Cu-z_s (6)

(2) Sum )
Y AGy, = 0= AGly, + AG, — AGiyss =5 AG, ~24G,
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(3) Substitute
AG s = AH g, — 1356(A810355)
=—108,371- 1356(122.244)
=-274,260 J/mol
AG, = AG, =AG, =0
(4) Solve
AG 55, =~274,260 J/mol < 0 = spontaneous.

[4.25] For the contact metamorphic reaction
510,(r) + CaCO4(s) — CaSiO4(s) + CO4(g),
(a) Calculate the standard Gibbs free energy change at temperature

298 K < T < 844 K. Assume AC, = 0 and use the value of ASY,
computed in Example Problem [30. 12].

(b) Plot AGY as a function of T. Label line segments and points corre-

sponding to a reversible reaction, a spontaneous reaction, and a
nonspontaneous reaction as written.

Solution
Since ACp =0, AGR = AHY,, — TASY,,

AS,, = 165.65 J/(mol -K)

AHg,, =(1)AH, sse.<casiop> + (1)AH, 208,00,@) (I)AHgmisﬁiO,:-, —(1aHy,

288,<CaCOy>
—1635.22 kd/mol - 393.51 kJ/mol — (-910.7 kd/mol) - (-1206.7kJ / mol)
= 88,670 J/mol

AGR(J/mol) = 88,670 - 165.65T.
(b) Reversible reaction = AG) =0=88,670-165.65TR =

TR =535 K,
Spontaneous reaction = AG2 < 0 = 88,670 — 165.65T < 0

T > 535K;
Eaa——————
Nonspontaneous reaction = AG2 > 0 = 88,670 — 165.65T Nenspon. > ()

= T'Nonspon < 535K
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AG®; as a Function of T for the
Reaction (SiO,), + <CaCO,>—<CaSiO,> + CO,(g)

Ag—i‘;wf"“b‘ﬂ P°= | atm.

45 x10% -
35x10% 4
.?,Ssltu:-é -
15%10> 4

%
=z
&
2
%

5x10% 4 / REVERSIBLE

o v T
200 400
~5x10° 4

- 15 %10 4

-26%10° 4

-3 X102

~45%10% -

POINT AT T=844K
IS EXCLUDED
- 550> 4

v

[4.26] Show that the Gibbs free energy change for an isobaric chemical reac-
tion occurring at a temperature T is

AGT = AHTl e TASTl

when AC, = 0 in the temperature range between Ty to 7.
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Solutio

At constant pressure,
AG, = AH - TAS.,

T T
AH, = AH; +J.AdeT; ASp =ASy + J AC;dT
i I
Since ACp=0,
AH), = AH, and AS, = AS, Hence,
AG, =AH, —TAS, .

[4.27] Derive [4-13] showing all steps.

Solution

AGP = AHP — TASY
T

AHP = AHS, +J‘AC‘PdT

298

T
0 0 AC,
ASr = ASpgs + —T——dT. Assume a=AC, = constant,
298

hence, AHp = AH + a(T - 298)

AS7 = ASy + aln(T/298)

Substituting AH7 and AS? into AGC,

AGY = At ~298a - aT In(T) + T[a~ASYy +a In(298)]
LetA= AH{,)‘,S —298a (all constants)

-aln(T/298)
B=—" oo
log(T)

C=a- ASgy, (all T terms)
Substituting A, B, and C:

AGf = A+ B Tlog(T)+CT.
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CHAPTER 4

[4.28] Derive [4-14] and show that
7,7
aPJ)r \dl)p
Solution

LetG=H-TS,H=U+PV,dU= 80— 6W,0W = PdV, and dS=6Q /T
dG =dH - d(TS) = d(U + PV) — d(TS)
dG =dU + d(PV) - d(TS)
=80 — W + d(PV) - d(TS)
= TdS — PdV + PdV + VdP - TdS - SdT. Hence,
as

4
dG =VdP - SdT. From [1-5], - (‘37’.]1‘ = [JTJP'
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