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Blood vessels are constantly exposed to mechanical stimuli such as shear stress due to flow
and pulsatile stretch. The extracellular matrix maintains the structural integrity of the vessel
wall and coordinates with a dynamic mechanical environment to provide cues to initiate in-
tracellular signaling pathway(s), thereby changing cellular behaviors and functions. However,
the precise role of matrix–cell interactions involved in mechanotransduction during vascu-
lar homeostasis and disease development remains to be fully determined. In this review,
we introduce hemodynamics forces in blood vessels and the initial sensors of mechanical
stimuli, including cell–cell junctional molecules, G-protein-coupled receptors (GPCRs), mul-
tiple ion channels, and a variety of small GTPases. We then highlight the molecular mechan-
otransduction events in the vessel wall triggered by laminar shear stress (LSS) and disturbed
shear stress (DSS) on vascular endothelial cells (ECs), and cyclic stretch in ECs and vascu-
lar smooth muscle cells (SMCs)—both of which activate several key transcription factors.
Finally, we provide a recent overview of matrix–cell interactions and mechanotransduction
centered on fibronectin in ECs and thrombospondin-1 in SMCs. The results of this review
suggest that abnormal mechanical cues or altered responses to mechanical stimuli in EC
and SMCs serve as the molecular basis of vascular diseases such as atherosclerosis, hy-
pertension and aortic aneurysms. Collecting evidence and advancing knowledge on the
mechanotransduction in the vessel wall can lead to a new direction of therapeutic interven-
tions for vascular diseases.

Introduction
Deciphering the role of hemodynamic forces in homeostasis and disease development is a fundamental
aspect of cardiovascular biology [1–3]. Blood flow generates frictional shear stress (parallel to the vessel
wall) and acts on the vascular endothelial cells (hereafter referred to as ECs). Shear stress can be catego-
rized as laminar shear stress (LSS; uniform and smooth flow) and disturbed shear stress (DSS; turbulent
or oscillatory flow). Pulsatile pressure originating from cyclic cardiac pumping generates circumferential,
axial and radial stresses, and stretches in the vessel wall that acts on ECs and vascular smooth muscle cells
(hereafter referred to as SMCs). Hydrostatic pressure is generated by the pressure exerted by the fluid.
Notably, this pressure is a critical determinant of fluid distribution across the semi-permeable capillaries
and serves a crucial role in microcirculation. Since the present review focuses primarily on hemodynamic
forces in large arteries, readers should refer to other reviews for information on hydrostatic pressure and
microcirculation [4,5] ).

Mechanotransduction is a process in which mechanical stimuli are sensed by cells and converted into
biochemical signals to elicit various cellular functions, including changes in cell shape, migration, pro-
liferation and transcriptional regulation (reviewed in [6,7]). The alteration of mechanical stimuli and
resultant changes in intracellular signaling in ECs and SMCs are involved in various vascular diseases,
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including atherosclerosis, hypertension and aortic aneurysms [2,8]. Arterial stiffness is highly predictive of major
adverse events in vascular diseases and modulates mechanotransduction [9,10]. Altering the quantity and quality of
the extracellular matrix (ECM) contributes to the overall stiffness of blood vessels and affects the responses of ECs and
SMCs to hemodynamics forces. ECs control SMC relaxation and contraction through paracrine mediators such as
nitric oxide (NO), calcium ions (Ca2+), oxidative stress, angiotensin II (Ang II) and endothelin under hemodynamic
forces [11–13]. SMCs regulate vascular tone as well as matrix synthesis and decomposition, thereby remodeling the
vessel wall and maintaining its integrity and elasticity.

The ECM initiates mechanical cues and propagates intracellular signaling by interacting with cells. Recent studies
have also proposed that ECM coordinates with hemodynamic forces and initiates signaling to activate mechanosen-
sitive transcription factors [14,15]. Matrix–cell interactions are mediated by integrins and integrin-mediated focal
adhesion (FA) molecules such as talin, focal adhesion kinase (FAK), paxillin, and vinculin, which form a mechan-
otransduction complex connecting the matrix, integrins and actin cytoskeleton that transduces signals to the nucleus
(reviewed in [16,17]). Integrins are heterodimeric cell surface receptors composed of α- (18 types) and β- (8 types)
subunits that serve as matrix receptors. Integrins can be activated by intracellular signaling that induces talin recruit-
ment to the cytoplasmic domain of β integrin (inside-out signals) or by matrix ligand binding that induces clustering
of the activated form of integrins via actin cytoskeleton-generated mechanical forces (outside-in signals) [18] (see
articles [19–21] for a more comprehensive review on integrins).

In this review, we first introduce the hemodynamic forces, biomechanics of the vessel wall and arterial stiffness,
then highlight molecular events in mechanotransduction triggered by flow-induced shear stress (FSS) and cyclic
stretch in ECs and SMCs. We discuss the initial sensors of mechanical stimuli within the vascular cells, including
endothelial junctional molecules, G-protein–coupled receptors (GPCRs), multiple ion channels and a variety of sig-
naling molecules such as small GTPases and their effectors. We also present several key transcription factors activated
by mechanical stimuli, such as Kruppel-like factor 2 (KLF2), nuclear factor κB (NF-κB) and Yes-associated protein
(YAP). A summary of recent developments in ‘matrix mechanotransduction’ centered on fibronectin in ECs and
thrombospondin-1 (Thbs1) in SMCs is also presented, while insights into vascular remodeling and disease develop-
ment are provided with a focus on atherosclerosis and aortic aneurysms.

Biomechanics in the vessel wall
Hemodynamic forces
In addition to creating FSS that acts on ECs, blood flow also creates circumferential, axial and radial stresses and
stretches on both ECs and SMCs in response to changes in transmural pressure (Figure 1A). The FSS can be calculated
as follows [22,23] (eqn 1):

τw = 4μQ
πr 3 or τw = μ

�u
�y

(1)

where τw is the wall shear stress, μ is the blood viscosity, Q is the mean volumetric flow rate, π is the ratio of the cir-
cumference of a circle to its diameter, r is the radius of the lumen, and�u/�y is the velocity gradient. For example, in
the arterial stenosis area, the same blood volume (volumetric flow rate; Q) is pushed through a narrow region, result-
ing in increased blood velocity. Consequently, the wall shear stress (τw) increases inside the stenotic area. Therefore,
decreasing vessel diameter significantly influences FSS.

Laminar flow (smooth and steady) is prominent in the straight regions of large arteries, small arteries, small veins
and capillaries. In contrast, disturbed flow (turbulent or oscillatory flow) occurs in curves and bifurcation regions
or more severe irregularities associated with pathological conditions (Figure 1B). A transition from laminar flow to
turbulent flow is characterized by the Reynolds number (Re) (eqn 2):

Re = ρu2r
μ

(2)

where ρ is the blood density, u is the flow speed, r is the radius of the lumen, and μ is the blood viscosity. A Reynolds
number greater than 2000 is defined as turbulent flow.

Circumferential stress (σθ) is due to the wall tension caused by distending blood pressure that changes the circum-
ference cyclically. Axial stress (σz) is caused by force in the direction of the long axis, and radial stress (σr) is directly
related to blood pressure. These stresses can be measured by using Laplace’s law formula (eqns 3-5):

σθ = Pr
w

(3)
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Figure 1. Hemodynamic forces and biomechanics in the vessel wall

(A) A section of an artery wall. ECs form the inner layer and align longitudinally, while SMCs form the medial layer and align

circumferentially. Pressure (P) is perpendicular to the vessel wall, which results in circumferential stretching of the vessel wall.

Purple arrows indicate shear stress (τw), circumferential stress (σθ), axial stress (σz) and radial stress (σr). A cross-section of the

aorta is shown on the right. The aortic wall comprises three layers: (1) the intima includes endothelial cells (ECs) and the basement

membrane (BM), (2) the media includes multiple layers of smooth muscle cells (SMCs) and elastic fibers, and (3) the adventitia

predominantly includes fibroblasts. (B) Schematic figure illustrating the characteristics of flow patterns (white arrows) and blood

velocity gradient (black arrow lines): (a) laminar flow is a smooth stream defined by having a Reynolds number (Re) < 2000, and (b)

turbulent flow is defined by Re > 2000. (C) Circumferential stress is directly proportional to blood pressure (P) and the inner radius

(r) and inversely proportional to wall thickness (w).

σ z = f
πw (2r + w)

(4)

σ r = − P
2

(5)

where P is the transmural pressure, r is the radius of the lumen, w is the wall thickness and f is the axial force.
This law states that for a given transmural pressure (P), the wall tension (σθ) is proportional to the radius of the
vessels (r). Thus, large thin-walled vessels have high circumferential stress and small thick-walled vessels have low
circumferential stress (Figure 1C).

Average wall shear stress (τw) in the human aorta varies from 30–60 dynes/cm2 (1 Pa = 1 N/m2 = 10 dyne/cm2)
and the mean radial stress (σr) is 1.5 Pa. On the other hand, circumferential stress (σθ) and axial stress (σz) vary
from 1 to 2 × 106 dynes/cm2; 100–200 kPa [24,25] (Table 1 [26–28]). Thus, the shear stress (τw) and radial stress (σr)
are smaller in amplitude (1–6 Pa) when compared with axial (σz) and circumferential stress (σθ) stresses (100 kPa).
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Table 1 Flow characteristics in human vessels

Vessel Diameter (mm)
Average flow velocity
(mm/s)

Average shear stress
(dynes/cm2)

Average Reynolds number
(Re)

Ascending aorta 25–30 630 10–60 3600

Descending aorta 20–25 270 30–100 1500

Arteries 2–6 200–500 30–40 800

Capillaries 0.005–0.01 0.5–1 4–8 0.003

Large vein 20 100–150 5–10 900

Small vein 5–10 150–200 1–10 570

*Adapted and approximate normal values from previous reports [26–28].
The Re > 2000 cut off for the transition from laminar to turbulent flow.

However, all four stresses play a crucial role in the activation of mechanotransduction pathways leading to vessel wall
remodeling.

Arterial stiffness
Arterial stiffness refers to decreased compliance of blood vessels and is intimately associated with arterial pressure
and hemodynamic responses [11]. Clinically, arterial stiffness can be estimated by the pulse wave velocity (PWV),
which is determined by the time taken for the pressure pulse wave to travel from the carotid to the femoral artery. The
stiffer or less compliant the arteries are, the faster the pressure pulse wave moves along a vessel. PWV is frequently
used as a surrogate marker for vascular diseases such as hypertension, aortic stenosis and atherosclerosis, as well as
aging-related arterial stiffening [29]. Recently, the arterial stiffness index has been measured by the finger photo-
plethysmography and pulse pressure methods, both of which are two independent vascular aging indices that have
been shown to predict cardiovascular diseases and mortality outcomes [30].

The association between blood pressure and arterial stiffness generally suggests that hypertension increases pul-
satile wall stress and causes elastin degradation, and subsequently progresses arterial stiffness [31]. The postnatal time
course study using mutant mice with reduced levels of elastin, however, shows that changes in mechanical properties
such as decreased aortic diameter and compliance precedes systolic blood pressure increase [32]. The mutant mice
with normal levels of elastin but containing disorganized elastic fibers also show an increase in systolic blood pres-
sure [33]. Recently, the association between short- to mid-term blood pressure, arterial stiffness and the mechanical
properties of the blood vessel wall has been examined in a large cross-sectional study. This study showed that greater
systolic blood pressure is significantly associated with increased PWV, increased circumferential wall tension and
circumferential wall stress despite increased intima-media thickness [34]. This finding suggests that high blood pres-
sure increases arterial stiffness and circumferential stress while also causing maladaptive remodeling of the vessel
wall, which may be an underlying factor in increased vascular disease risk.

At its structural basis, the aortic wall comprises a single layer of EC, multiple layers of SMCs in the medial layer,
and an adventitial layer with predominantly composed of fibroblasts (Figure 1A). Elastin, which is a major ECM
component and secreted by SMCs, assembles into elastic fibers together with microfibrils and provides elasticity and
recoiling (reviewed in [35]). Elastic fibers and SMCs alternately align and are connected by elastin extensions that
bind with integrins and the actin cytoskeleton to organize the medial layers of the blood vessel [36]. The vessel wall
also contains various matrix components, including collagens, glycosaminoglycans and proteoglycans, among which
collagens provide structural integrity and tensile strength to the vessel wall [37]. The loss or fragmentation of elastic
fibers, deposition of excess collagen or an increase in collagen cross-linking by non-enzymatic glycation results in
stiffening of the aorta (reviewed in [38,39]).

The sensing of matrix stiffness by SMCs has been studied in vitro using elastomeric substrates with increasing stiff-
ness. Cells sense matrix stiffness through integrins and form focal adhesions to increase actomyosin contractility. This
leads to the conformational change of talin and enhances vinculin binding, thereby stabilizing matrix–integrin inter-
actions [40,41]. Recently, collagen-binding receptor discoidin domain receptor-1 (DDR1) has been reported to sense
matrix stiffness and lead to RhoA activation and stress fiber formation [42]. Several in vitro studies have shown that
changes in individual matrix composition and overall matrix stiffness can alter the phenotypes of SMCs. For exam-
ple, matrix stiffness induces the contractile-to-synthetic phenotype by down-regulating SMC contractile genes and
up-regulating matrix genes [43,44]. The DDR1-mediated signaling promotes transdifferentiation to osteochodro-
cytic lineage [42]. A recent study has identified 3098 stiffness-sensitive genes through transcriptomic analysis, which
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includes 157 long non-coding RNAs in aortic and coronary SMCs [45]. Among them, MALAT1 has been shown
to positively regulate SMC proliferation and migration, and its expression is down-regulated in response to matrix
stiffness.

Arterial stiffness has also been linked to EC dysfunction in human studies. Higher PWV or lower flow-mediated va-
sodilation (indicative of EC dysfunction) are significantly associated with cardiovascular events [46–48]. Mechanisti-
cally, EC dysfunction induced by arterial stiffness is supported by the observation that ECs cultured on a stiff substrate
exhibit increased proliferation, increased permeability and leukocyte extravasation, endothelial-to-mesenchymal
transition and decreased NO production [49–52]. A vasoconstrictor peptide (Ang II) triggers oxidative stress, matrix
degradation and endothelial nitric oxide synthase (eNOS) inhibition and modulates arterial stiffness [53]. The ad-
ministration of NOS inhibitor, L-NAME, significantly blocked NO production and increased PWV in rats and rabbits
[54,55]. Moreover, Ang II receptor antagonist (ARB) and angiotensin-converting enzyme (ACE) inhibitor decrease
blood pressure and improve PWV in humans and mice [56]. Furthermore, a recent study noted that a stiff substrate
inhibits the expression of glypican—a core protein of cell surface glycocalyx— thereby decreasing the protection of
ECs by glycocalyx [57]. Based on the existing literature, it is evident that arterial stiffness triggers and/or modulates
responses to mechanical stimuli at the cellular and tissue level and significantly alters mechanotransduction in the
vessel wall.

Mechanotransduction of ECs under flow-induced shear
stress (FSS)
Etiology of atherosclerosis and flow-induced shear stress response
ECs are directly exposed to flow forces on the apical side and express various mechanosensors, including ion chan-
nels, glycocalyx, primary cilia, and cell receptors that sense and transduce mechanosignals to intracellular signaling
pathways [58]. As previously described, FSS mediates two types of shear stresses: LSS from the laminar flow and
DSS (turbulent or oscillatory shear stress) from the disturbed flow. Notably, these different flow patterns control dis-
tinct EC phenotypes [59]. Generally, high shear stress (mediated by LSS) causes anti-inflammatory and antioxidative
stress gene expression, which is known as the anti-atherosclerotic phenotype. In contrast, DSS induces proinflam-
matory and oxidative stress gene expression, which leads to the formation of atherosclerosis. Thus, atherosclerosis
is associated with the region of DSS at the lesser curvature of the ascending aorta and arterial branches (Figure 2).
Additionally, different flow patterns affect the alignment of ECs, as cells align in the direction of flow under LSS but
not in DSS, while the defective alignment of ECs represents a hallmark of atherosclerosis formation [58]. Studies
have revealed that ECs induce the binding of subsets of transcription factors to the shear stress-responsive elements
(SSREs) in response to LSS and DSS and promote the expression of several downstream genes involved in inflamma-
tion and oxidative stress, which serve a central role in the initiation and progression of atherosclerosis [60,61]. This
section first introduces mechanosensors located on the cell surface and cell–cell junctions of ECs and describes their
pathophysiological roles with a focus on atherosclerosis. Thereafter, the transcriptional regulation of ECs in response
to LSS and DSS is highlighted.

Mechanosensors located at the cell surface and cell–cell junctions in ECs
ECs contain tight junctions, adherens junctions and gap junctions at the lateral side (also called cell–cell junctions).
The sensing of FSS has been attributed to different mechanosensors and the mechanosensory complex at adherens
junction is well studied. This complex comprises platelet and endothelial cell adhesion molecule 1 (PECAM-1), vas-
cular endothelial (VE)-cadherin, vascular endothelial growth factor receptor 2 (VEGFR2) and VEGFR3 [62,63].
PECAM-1 was initially identified as a mechanosensitive homophilic adhesion protein that was phosphorylated by
FSS and mediates endothelial cell response to flow [64,65]. VE-cadherin is an EC-specific adhesion molecule that
serves as an adaptor protein to assemble VEGFRs to the mechanosensory complex via its transmembrane domain
[63,66]. Notably, the function of VE-cadherin in FSS-induced downstream signaling is independent of cell–cell ad-
hesion [62].

Measurements using fluorescence resonance energy transfer (FRET)-based tension sensors for PECAM-1 and
VE-cadherin confirmed that LSS rapidly increases the force on PECAM-1 by inducing the association with vimentin
in a myosin-dependent manner. A tension force exerted on PECAM-1 activates a Src family kinase and phospho-
rylates VEGFR2, thereby activating PI3 kinase and integrin [67]. This observation suggests the possible existence of
an upstream mechanosensor that initiates vimentin-PECAM-1 binding and transmits forces to PECAM-1 through
cytoskeletal rearrangement. The localized tension force placed on PECAM-1 is sufficient to activate a global signaling
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Figure 2. Illustration of disturbed arterial flow

Schematic illustration of calculated flow patterns in an idealized model of the human aorta. Wall shear stress (WSS) immediately

after the start of diastole is illustrated on the left. Streamlines in the enlargements indicate the velocity and show the region of

disturbed flow at the inner curvature of the aortic arch (top) and the branches of the abdominal aorta (bottom). Images adapted

and modified from reference [27] with permission from the Company of Biologists Ltd.

response involving PI3 kinase, integrins, and Rho A, thereby connecting the adherens junctional FSS sensing to cy-
toskeletal alterations downstream of integrin [68]. In contrast with PECAM-1, LSS decreases tension on VE-cadherin
and induces binding between VE-cadherin and VEGFR2 and VEGEFR3, thereby activating shear-mediated signaling
[63,67].

A recent study revealed that a small pool of VE-cadherin is phosphorylated on tyrosine Y658 by a Src family
kinase and induces the dissociation of p120-catenin, which subsequently binds to the polarity protein LGN and ac-
tivates NF-κB signaling at the DSS region [69]. PECAM-1 can also be phosphorylated on tyrosine in response to
LSS and enhances the association with eNOS. Concordantly, Pecam-1-deficient mice show a loss of FSS response
and the attenuation of NO production due to the decreased phosphorylation of AKT and eNOS, which may affect
the overall response of vessel walls [70]. Interestingly, Pecam-1-deficient mice in a hyperlipidemic condition show
reduced NF-κB activation and VCAM-1 expression in atheroprone lesions where DSS is dominant [71]. DSS induces
the prolonged expression of fibronectin and its increased deposition at the subendothelial layer and activates NF-κB
via integrin in a PECAM-1-dependent manner [72]. Thus, the fibronectin-integrin interaction serves a key role in
the progression of atheroprone lesions in DSS. These observations highlight the importance of local hemodynamic
forces and flow patterns in mechanoresponses downstream of the mechanosensory complex at cell–cell junctions in
vivo.
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EC surface receptors and complexes such as caveolae, glycocalyx, primary cilium, GPCRs, Notch1, Piezo1 and plex-
ins are also identified as mechanosensors that respond to FSS [73–78]. Mechanosensitive ion channels are involved
in the earliest cellular event within microseconds [79,80]. Piezo1 was discovered as a mechanically activated cation
channel and acts as an FSS sensor [74]. Piezo1-deficient mice and EC-specific (under Tie2Cre) Piezo1-deficient
mice exhibit defective vessel remodeling and die at mid-gestation [81,82]. The loss of Piezo1 in ECs leads to im-
paired calcium (Ca2+) influx and the Ca2+-dependent activation of calpain-2 in response to FSS, resulting in abnor-
mal cell orientation and stress fiber formation. Even in the static condition, the loss of Piezo1 leads to a decrease in
the VEGF-dependent phosphorylation of eNOS and impaired EC migration [81,82]. Piezo1 mediates flow-induced
ATP release and activates the purinergic receptor P2Y2-Gq/11 signaling pathway, thereby regulating calcium tran-
sients, the phosphorylation of PECAM-1 and VEGFR2, and the activation of eNOS and NO production through the
phosphorylation of AKT [83,84].

A more recent study noted that Piezo1 releases adrenomedullin in response to FSS, activates its Gs-coupled re-
ceptor and induces the PKA-mediated phosphorylation of eNOS at serine S633, which is distinct from the eNOS
phosphorylation mediated by AKT [85]. Interestingly, LSS activates the Piezo1-Gq/11 pathway and elicits an athero-
protective response, whereas DSS induces a pro-atherogenic response that requires integrin α5 activation and FAK
phosphorylation in vivo [86]. The ATP-gated P2X4 ion channel (one of seven P2X receptors), also responds to FSS,
and increases Ca2+ influx, and produces NO [87]. P2rx4-deficient mice fail to respond to acute increases in blood
flow and induce vessel dilatation [88]. However, it remains unknown whether FSS modulates P2X4 directly or has an
upstream mechanosensor.

Among GPCRs, GPR68 has recently been identified as a proton and flow mechanosensor that exhibits
FSS-activated calcium transients and is required for FSS responses in peripheral arteries [75]. Gpr68-deficient
mice exhibit markedly impaired flow-mediated dilation and outward remodeling in mesenteric arteries [75].
Protease-activated receptor 1 (PAR1) has also been identified as a novel mechanosensor that is activated in response to
LSS and induces eNOS phosphorylation and the up-regulation of atheroprotective gene expression by regulating Src,
adenosine monophosphate-activated protein kinase (AMPK), ERK5, KLF2 and histone deacetylase 5 (HDAC5) [89].
Thus, PAR1-deficient mice exhibit up-regulation of NF-κB activation and subsequent inflammatory gene expression,
leading to EC dysfunction and atherosclerosis [89].

Notch1 is a single-pass transmembrane receptor that is activated by FSS to maintain the integrity of cell–cell junc-
tions through canonical and non-canonical pathways [76,90,91]. In the latter case, LSS triggers the delta-like lig-
and 4 (DLL4)-dependent proteolytic activation of Notch1 and exposes its transmembrane domain, thereby stabiliz-
ing the assembly of VE-cadherin and establishing the EC barrier function [91]. EC-specific (under Cdh5CreERT2)
Notch1-deficient mice exhibit the dysregulation of cell alignment to flow direction, enhanced EC proliferation, and
compromised cell–cell junctions, which leads to an increase in hypercholesterolemia-induced atherosclerotic lesions
in the descending aortas [76]. Plexin D1 (PLXND1), a member of the semaphorin family of cell–surface receptors,
has been identified as a direct force sensor that forms a mechanocomplex with neuropilin-1 and VEGFR2, which is
necessary for conferring mechanical stimuli to the junctional complex and integrins [92]. The EC-specific (under
Cdh5CreERT2) deletion of Plxnd1 in mice results in exhibiting the atheroprotective phenotype and reduces plaque
formation in Apoe−/− mice. Apart from cell surface mechanosensors, the long non-coding RNA LASSIE has been
recently identified as a new class of FSS sensor that binds to VE-cadherin and PECAM-1 and stabilizes the junctional
complex by promoting an association with the cytoskeleton [93]. Similarly, a human-specific LSS-responsive SENCR
has been shown to promote junction integrity by binding to cytoskeletal-associated protein 4 (CKAP4) [94].

Collectively, these data indicate that different categories of mechanosensors on the EC surface and cell–cell junc-
tions play a pivotal role in FSS-dependent mechanotransduction (Figure 3). However, it remains to be clarified
whether multiple actions of these mechanosensors occur simultaneously or in a coordinated manner, and how the
interplay between these mechanosensors takes place in different vessel types, and if the expression of mechanosensors
changes during aging.

Transcriptional regulation of ECs under LSS
A high magnitude of LSS (15–70 dyne/cm2 in human arteries) occurs in the straight regions of arteries where blood
flow is generally smooth and uniform (Figures 1B and 2). Transcription factors, KLF2, KLF4 and nuclear factor ery-
throid 2-like 2 (NRF2) are highly expressed in regions exposed to LSS via the extracellular signal-regulated kinase
5 (ERK5) signaling pathway [95–99]. Among these transcription factors, KLF2 plays a pivotal role in LSS response
in ECs [100]. KLF2 was identified as an endothelial specific gene induced by prolonged FSS in vitro [101]. KFL2
regulates downstream target genes, including thrombomodulin (THBD) and eNOS, and also negatively regulates
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Figure 3. Endothelial mechanotransduction under flow-induced shear stress

Schematic diagram of EC responses to laminar flow (LSS, left) and disturbed flow (DSS, right). LSS induces EC responses that are

required for homeostasis and quiescence that up-regulates the expression of anti-inflammatory and antioxidative stress genes. In

contrast, DSS induces the activation and dysfunction of ECs, leading to pathological conditions. For information regarding matrix–

mediated mechanotransduction, lamininα5 stabilizes VE-cadherin via integrin β1 under LSS, whereas fibronectin binds to integrin

α5 and associates with PDE4D5, thereby promoting NFκB-mediated inflammatory gene expression under DSS. GPCRs (G-pro-

tein–coupled receptors), PAR1 (protease- activated receptor 1), VEGFR (vascular endothelial growth factor), PECAM-1 (platelet and

endothelial cell adhesion molecule 1), VE-cadherin (vascular endothelial cadherin), ERK5 (extracellular signal-regulated kinase 5),

JNK (c-Jun N-terminal kinase), SIRT1 (sirtuin 1), KLF (Kruppel-like factor), eNOS (endothelial nitric oxide synthase), NF-κB (nuclear

factor κB), Nck1 (NCK adaptor protein 1), IRAK-1 (interleukin-1 type I receptor kinase-1), NRF2 (nuclear factor erythroid 2 like 2),

PPAP2B (phosphatidic acid phosphatase type 2B), PFKFB3 (6-phosphofruct 2-kinase/fructose-2, 6-biphosphatase-3), PDE4D5

(phosphodiesterase-4D5), YAP (Yes-associated protein), CTGF (connective tissue growth factor), CYR61 (cysteine-rich angiogenic

inducer 61), Egr1 (early growth response 1), HIF-1α (hypoxia-inducible factor 1α), AP-1 (activator protein 1), FAK (focal adhesion

kinase), LGN (G protein signaling modulator 2), p120cat (p120 catenin), ECs (endothelial cells), ECM (extracellular matrix).

vasoconstrictive genes and proinflammatory genes such as endothelin 1 (EDN1), vascular cell adhesion molecule
(VCAM-1), monocyte chemoattractant protein (MCP1) and plasminogen activator inhibitor-1 (PAI-1) [100,102].
NRF2 is induced by KLF2 after LSS and regulates the expression of genes involved in the antioxidative response,
such as NAD(P)H quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HMOX1) [103,104]. KLF2 also reg-
ulates phosphatidic acid phosphatase type 2B (PPAP2B) (essential for LSS-induced cell orientation toward the flow
and anti-inflammatory effects) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-3 (PFKFB3) (contributes
to glycolysis and metabolisms in ECs) [105,106]. Furthermore, KLF2 shows protective effects against atherosclerosis
formation in vivo and KLF2 deficiency promotes atherosclerosis in LDL receptor-deficient (Ldlr−/−) or apolipopro-
tein E-deficient (Apoe−/−) mice [107,108]. Thus, LSS predominantly provides anti-inflammatory and atheropro-
tective effects through KLF2 and regulates the alignment of ECs, maintains their quiescence, and preserves their
homeostasis (Figure 3; left).

Activation of the transcriptional network in ECs under DSS
A low magnitude of DSS is frequently associated with a non-uniform turbulent flow (<12 dyne/cm2 in human ar-
teries) and generally occurs in areas of arteries that curve sharply or in arteries with stenosis or bifurcation (Figures
1B and 2). DSS enhances the transcriptional activation of NF-κB. NF-κB is a family of transcription factors that is
primarily involved in the inflammatory response; notably, five members exist in mammals; p50, p52, p65 (RelA),
c-Rel and RelB [109]. The activity of NF-κB is strictly regulated by its phosphorylation and subcellular localization
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by the inhibitor of κB (IκB) protein and IκB kinase complex [110,111]. Additionally, it has recently been shown that
DSS activates interleukin-1 type I receptor kinase-1 (IRAK-1) by binding to Nck1 (a member of the Nck family of
adaptor proteins) in ECs. This binding promotes the nuclear translocalization of NF-κB and the up-regulation of
proinflammatory and pro-adhesive genes such as VCAM-1, intracellular adhesion molecule 1 (ICAM-1) and MCP1
[112]. NF-κB is highly expressed in ECs of atherosclerosis regions in vivo, and EC-specific (under Tie2CreERT2)
inhibition of NF-κB reduced atherosclerotic plaque formation in Apoe−/− mice [113,114].

Other transcription factors, including activator protein 1 (AP-1), early growth response-1 (EGR1),
hypoxia-inducible factor 1α (HIF1α) and YAP are known to be activated by DSS [113,115–118]. AP-1 is a
transcription factor belonging to the activating transcription factor (ATF) family and is a heterodimer composed of
c-Fos and c-Jun that binds to the 12-O-Tetradecanoylphorbol-13-acetate (TPA) response element (TGA G/C TCA),
which is also an SSRE. DSS-induced lipocalin-type prostaglandin D synthase (L-PGDS) in ECs regulates platelet
aggregation and arterial relaxation via AP-1 [119]. Additionally, DSS-induced HIF1α expression is regulated by
NF-κB and stabilized by reactive oxygen species (ROS) and drives vascular permeability and leukocyte recruitment
in ECs [117]. EC-specific (under VE-cadCreERT2) Hif1a-deficient mice ameliorated DSS-induced atherosclerosis
formation in Apoe−/− mice by decreasing microRNA miR-19a-mediated chemokine CXCL1 expression, thereby
leading to a reduction in monocyte adhesion in the atheroplaque regions [120]. These results indicate that NF-κB,
AP-1, and HIF1α are prominent transcriptional factors activated under DSS and contribute to the pathogenesis of
atherosclerosis.

The mechanical stress response transcription factor EGR1 is also known to be induced by DSS and increases the
transcription level of platelet-derived growth factor subunit A (PDGFA) [121]. More recently, transcription cofactor
YAP has been identified as a novel mechanotransducer in ECs [115,116,122]. YAP and its cofactor TAZ (a transcrip-
tional coactivator with a PDZ-binding motif) are effectors of the Hippo pathway that bind to the transcriptional
enhancer factor domain (TEAD) family of DNA-binding factors and regulate organ size. DSS promotes the nuclear
localization of YAP via the suppression of YAP phosphorylation at Ser127, which is followed by the increased expres-
sion of YAP target genes such as cysteine-rich angiogenic inducer 61 (CYR61, also known as CCN1) and connec-
tive tissue growth factor (CTGF, also known as CCN2) [115]. It has also been shown that DSS inhibits integrin and
Gα13 interaction and activates RhoA and YAP, thereby activating c-Jun N-terminal kinase (JNK) and up-regulating
pro-inflammatory genes [116]. Moreover, the degradation of YAP by autophagy and its nuclear export via sirtuin 1
(SIRT1)-mediated deacetylation of YAP has been described as atheroprotective effects under LSS [123]. EC-specific
(under Tie2Cre) YAP-deficiency in vivo reduces atherosclerosis in Apoe−/− mice, whereas overexpression of en-
dothelial YAP or the constitutively active form of YAP in Apoe−/− mice induces atherosclerosis formation [116,124].
DSS exhibits proinflammatory and atherosclerotic effects through the activation and dysfunction of ECs (Figure 3;
right). These results indicate that the inhibition of mechanical stress responses in ECs mediated by signaling pathways
such as YAP and NF-κB may offer a new target for the prevention and treatment of atherosclerosis.

Mechanotransduction of ECs and SMCs in response to cyclic
stretch
The vessel wall rhythmically distends and relaxes, which causes circumferential and axial stresses of approximately
100 kPa (1 × 106 dyne/cm2) on both ECs and SMCs under physiological conditions. A cyclic stretch system (e.g.,
FLEXCELL® or STREX® cell stretching system) is an artificial model of mechanical force loading used in in
vitro that mimics in vivo wall distension. A physiological extension is defined as a 5–10% strain, while excessive
strain (15–20%) is defined as a harmful pathological mechanical stretch. Mechanical stretch induces the opening of
non-selective stretch-activated cation channels (SACs) in vascular cells. Three models have been proposed for the
activation of SACs, which include direct activation of the channel due to the tension in the lipid bilayer, the tension
produced by the pulling of tethered extracellular matrix proteins and/or cytoskeletal proteins, and indirect activa-
tion by the primary mechanical sensors (reviewed in [125,126]). GPCRs such as angiotensin II type 1 receptor can
also be activated by mechanical stretch in a ligand-independent manner and induce ERK signaling and phospho-
inositides [127]. Excess strain results in the dysregulation of vascular tone and abnormal cellular responses such as
over-proliferation, apoptosis and phenotypic switching—all of which are associated with vascular diseases such as
hypertension, aortic aneurysms and arterialization [128,129]. Therefore, in this section, we highlight the responses
of ECs and SMCs to cyclic stretch and describe the cell behaviors involved in the pathogenesis of vascular diseases
under mechanical stretch (Figure 4).
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Figure 4. Mechanotransduction in response to cyclic stretch

Schematic diagram of responses to the high strain of (pathological) cyclic stretch in ECs (left) and SMCs (right). A physiological

extension is defined as a 5–10% strain, while high strain (15–20%) is defined as a harmful pathological mechanical stretch. GPCRs

(G-protein–coupled receptors), TNFαR (tumor necrosis factor alpha receptor), TGFβR (transforming growth factor beta receptor),

VCAM-1 (vascular cell adhesion molecule-1), Alk-1 (activin receptor-like kinase 1), CD62E (E-selectin), MMP-9 (matrix metallopro-

teinase-9), iNOS (inducible nitric oxide synthase), Cdkn1A (cyclin-dependent kinase inhibitor p21), NF-κB (nuclear factor κB), YAP

(Yes-associated protein), Egr1 (early growth response 1), TRPV4 (transient receptor potential vanilloid channel 4), FAK (focal adhe-

sion kinase), PI3K (phosphatidylinositol 3-kinase), SOLO (Rho guanine nucleotide exchange factor 40), K8/K18 (keratin 8 / keratin

18), ROCK (Rho-associated kinase), ER (endoplasmic reticulum), ECs (endothelial cells), SMCs (smooth muscle cells).

Cell orientation in response to cyclic stretch
ECs in the vessel wall display an elongated spindle morphology with an orientation of the long axis toward the blood
flow. Notably, SMCs exhibit a rhomboid shape in vivo. The cyclic stretch system induces the reorientation of ECs and
SMCs. When these cells are subjected to a uniaxial cyclic stretch, they become elongated and aligned perpendicular
to the stretch direction with the remodeling of the actin cytoskeleton [130]. For cells to respond to mechanical stretch
and change orientation, integrins serve an integral role in transducing the force to initiate cytoskeletal remodeling.
Within FAs, talin adopts the integrin binding site and force-dependent vinculin is recruited on the tip of actin fibers
to make a hub that provides a molecular link across integrin to the actin cytoskeleton and leads to maturation of FAs,
thereby organizing cell orientation [131,132].

The transient receptor potential vanilloid channel 4 (TRPV4) is abundantly expressed on the plasma membrane
of capillary ECs. It is activated by mechanical stretch and involved in the cyclic stretch-induced reorientation of ECs
by binding to integrin β1 and the activation of phosphatidylinositol 3-kinase (PI3K) [133,134]. The Rho guanine
nucleotide exchange factor (RhoGEF) SOLO (also known as ARHGEF40) was also identified as a key regulator of
cyclic stretch-induced cell reorientation in human umbilical vein endothelial cells (HUVECs) [135]. The knock-
down of SOLO suppressed cyclic stretch-induced RhoA and Rho-associated kinase (ROCK) activation and impaired
the proper orientation of HUVECs by reducing their interaction with keratin-8/keratin-18 intermediate filaments
[135,136]. In SMCs, p38 mitogen-activated protein kinase (MAPK) pathways and iNOS-mediated NO synthesis are
associated with cyclic stretch-induced cellular orientation [137,138]. These results indicate that cyclic stretch con-
tributes to the morphology and orientation of ECs and SMCs.
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Modulation of cellular proliferation and apoptosis by cyclic stretch
The abnormal proliferation of ECs and SMCs contributes to the development of vascular diseases such as atheroscle-
rosis and hypertension [139]. There is growing evidence to suggest that cyclic stretch induces the proliferation of
SMCs and also induces apoptosis, thereby maintaining the steady status of SMCs [140–142]. A high-magnitude of
cyclic stretch (15–25%, 1 Hz) promotes SMC proliferation through the activation of the extracellular signal-regulated
kinase (ERK) and AKT signaling pathways [143]. Cyclic stretch also induces apoptosis via the endothelin B receptor
and integrinβ1-dependent signaling pathway [144,145]. Cyclic stretch under physiological conditions (5–10%, 1 Hz)
causes cell cycle arrest in SMCs by inhibiting the G1/S phase transition with the up-regulation of the cyclin-dependent
kinase inhibitor p21 (Cdkn1A) or suppression of Notch3 in a Gi-and MAPK-dependent manner [146,147]. A recent
phosphoproteomics analysis showed that the PKC family (PKCθ and PKCμ), ROCK1, and AKT are phosphorylated
under physiological stretch and could be involved in SMC functions [148]. Interestingly, cyclic stretch-induced prolif-
eration is distinctly regulated in SMCs and ECs. SMCs require the activation of RhoA and the subsequent regulation of
stress fibers, whereas ECs require the activation of Rac1, rearrangement of lamellipodia and cell–cell contact through
VE-cadherin [149]. A high magnitude of cyclic stretch also induces a proinflammatory response and ROS production
via Ras/Rac1-p38/MAPK/NF-κB signaling pathways and NAD(P)H oxidase in SMCs [150,151]. In ECs, the expres-
sion of CD40 (a co-immunoreceptor) can be induced by a combination of cyclic stretch and co-culture with SMCs
through transforming growth factor β1 (TGFβ1) and activin receptor-like kinase-1 (Alk-1) in arterial ECs [152].

Mechanical stress response and aortic diseases
Arterialization
A notable clinical operation involving cyclic stretch is vein graft adaptation to the arterial circulation (also known as
arterialization) for patients undergoing coronary artery bypass or peripheral bypass for critical limb ischemia. The
autologous-grafted vein must adapt to a new (arterial) hemodynamic environment with high strain from cyclic forces
and FSS. Therefore, proliferation and apoptosis must be regulated and well-balanced. However, arterialization often
causes excessive proliferation and neointima in the grafted vein due to the structural difference in wall thickness
and differential stretch response between arterial SMCs and venous SMCs [153]. The vein remodeling mediated by
cysteine and glycine-rich protein 3 (Crp3) has been linked to the adaptation mechanism in arterialization. Cyclic
stretch-induced Crp3 upregulation in vein SMCs promotes apoptosis by associating with FAK and inhibiting the sig-
naling downstream of integrin, thereby sensitizing SMCs to apoptosis during arterialization [154]. Consistent with
in vitro findings, Crp3-knockout rats fail to show early apoptosis and develop marked neointima after jugular vein
arterialization. The contribution of microRNA-mediated regulation has recently been reported. Using the in vivo
venous graft model and venous SMCs, it has been shown that mechanical stretch induces micro RNA miR-29a ex-
pression and targets DNA demethylase ten-eleven translocation methylcytosine dioxygenase (TET), thereby inducing
phenotypic transformation of SMCs [155]. Conversely, grafted veins down-regulate miR-33 expression and increases
BMP3 and the phosphorylation of Smad2 and Smad5, which causes the proliferation of venous SMCs [156]. These
findings indicate that differential regulation and signaling pathways govern responses to mechanical stress in arterial
and venous walls. A more detailed mechanism must be examined for the improvement of arterialization outcomes.

Aortic aneurysms
Aortic aneurysms involve the abnormal dilatation of the aorta, with high mortality in the case of aneurysm rupture
and/or dissection. Since elastic fibers in the aortic wall are directly connected to integrins via elastin extensions and
indirectly connected to FAs and the actin cytoskeleton of SMCs, this anatomical and functional continuum is called
‘elastin contractile units’. Therefore, hemodynamics forces are transmitted to SMCs through the elastin contractile
units [36]. Abnormal responses to mechanical stress in ECs and SMCs have been suggested as one of the underlying
causes of aortic aneurysms at all stages (i.e., initiation, progression and rupture) [8]. It has been shown that defects in
matrix proteins and alterations of the contractile phenotype of SMCs are responsible for developing thoracic aortic
aneurysms (TAAs) (reviewed in [157]). SMCs isolated from the aortas of Marfan syndrome mice (in which fibrillin-1
gene is partially deleted) show phenotypic transition to mesenchymal cells, lower traction force-generating capacity,
and impaired focal adhesion/actin cytoskeleton organization [158].

Among FA molecules, mice with SMC- or neural crest-specific deletion of integrin-linked kinase (ILK) (un-
der SM22Cre and Wnt1Cre, respectively) show the aneurysm phenotype with dysregulation of RhoA/ROCK
signaling, impairment of actin filaments and round morphology of SMCs [159,160]. The haploinsufficiency of
Notch1 (Notch1+/−), a mechanosensor identified in ECs, exacerbated the root aneurysms in fibrillin-1 mutant mice
(Fbn1C1039G/+) [161], suggesting that the proper sensing of FSS can be protective against aneurysm progression. Our
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group previously showed that SMC-specific deletion (under SM22Cre) of Efemp2 (Fbln4SMKO), the gene that en-
codes for matrix protein fibulin-4, exhibits ascending aortic aneurysm with disrupted elastin contractile units and the
marked dysregulation of actin depolymerization factor, cofilin, and its phosphatase, slingshot-1, in the aneurysmal
wall [162,163]. We further found that the matricellular protein thrombospondin-1 (Thbs1) is highly expressed in the
aneurysmal wall of Fbln4SMKO mice and human TAAs [164]. Additionally, Thbs1 is induced by Ang II stimulation or
high strain of cyclic stretch in SMCs in vitro [14,164]. Thbs1 is also induced by disturbed flow in EC in vivo [164,165].
Surprisingly, the deletion of Thbs1 in Fbln4SMKO mice prevented the formation of ascending aortic aneurysm with
restored connections between elastic fibers and SMCs, inactivation of cofilin, and improved actin filaments in SMCs
[164]. In human abdominal aortic aneurysms (AAAs), the matrix periostin is markedly up-regulated and rat SMCs
subjected to high cyclic stretch induces the periostin-mediated phosphorylation of FAK, ERK, JNK, as well as the up-
regulation of MCP1 [166]. Interestingly, ECs subjected to cyclic stretch counteract the TNFα-mediated up-regulation
of MMP-9 and inflammatory signals induced by NF-κB, which illustrates a potential differential role of SMCs and
ECs in AAAs in response to mechanical stretch [167]. These results suggest that mechanosensor molecules in the
vessels and adaptation to circumferential stress serve an important role in preventing aortic aneurysm formation and
progression.

Matrix-mediated mechanotransduction involved in the
pathogenesis of vascular diseases
The extracellular matrix initiates mechanical cues and activates intracellular signaling through matrix–cell interac-
tions. In addition to physical properties provided by assembled extracellular matrix such as elasticity or stiffness,
consideration of the biochemical properties of each matrix is crucial for understanding matrix-mediated mechan-
otransduction. This section includes a discussion on the contribution of each matrix in mechanotransduction, how
they influence cellular functions and the behavior in ECs or SMCs, and how the altered matrix-mediated signaling
leads to the pathogenesis of vascular diseases.

Matrix mechanotransduction in ECs
ECs align on the basement membranes that are typically consisted of laminin, collagen IV, proteoglycans and
nidogen. These matrix membranes serve roles in the selective barrier function and maintenance of the EC phe-
notype under LSS. DSS-induced inflammatory signals in ECs are regulated by fibronectin, but not by collagen
IV or laminin [168,169]. In vivo, fibronectin is deposited at atheroprone regions of arteries in Apoe−/− mice,
and its receptors integrin α5β1 and αvβ3 induce the activation of NF-κB, thereby promoting inflammatory sig-
nals [168,170–172]. Mechanistically, fibronectin binds to integrin α5 on ECs, and α5 subsequently associates with
phosphodiesterase-4D5 (PDE4D5) and suppresses cyclic adenosine monophosphate (cAMP)—an anti-inflammatory
signal—by promoting the phosphodiesterase (PDE) activity of PDE4D5 via protein phosphatase 2A [173]. Block-
ing the fibronectin-mediated integrin α5 pathway by changing the cytoplasmic tail of α5 to that of α2 attenuates
atherosclerosis plaque formation in Apoe−/− mice [174]. Additionally, the basement membrane component, laminin
511 (laminin α5; Lama5), is involved in FSS response in small arteries [175]. Laminin α5 stabilizes VE-cadherin via
integrinβ1 under FSS. Lama5-deficient mice show an abnormal response to LSS and the EC-specific (under Tie2Cre)
deletion of Lama5 reduces the junctional tension of ECs in vivo.

Matrix mechanotransduction in SMCs
SMCs are tethered to elastic fibers via elastin extensions that primarily consist of fibrillin-1, fibronectin, and integrins
α5β1 and αvβ3 [176]. These extensions are necessary for the proper mechanosensing of SMCs as described in the
previous section. The disruption of elastin extensions results in the up-regulation of mechanosensitive molecules
such as ACE, Egr1 and Thbs1 in SMCs and the formation of thoracic aortic aneurysms [163,164,177]. Although the
deletion of either integrinα5 orαv alone in mice shows no vascular defects, both integrin deletion exhibit interrupted
aortic arch and large brachiocephalic artery aneurysm [178]. These results suggest that connections between SMCs
and elastic fibers (presumably via integrin α5β1 and αvβ3) are crucial for the maintenance of SMC signaling and
vascular development.

We have recently reported that Thbs1 is an extracellular mediator of mechanotransduction that promotes the nu-
clear shuttling of YAP (activation of YAP) in response to the high strain of cyclic stretch [14]. Thbs1 is one of 87
proteins secreted in response to cyclic stretch in SMCs, some of which include lumican, fibrillin-1, collagens and
fibronectin, which are involved in blood vessel development and matrix–cell adhesions. We further showed that
secreted-Thbs1 binds to integrinαvβ1 and regulates maturation of the FA complex that controls cell stiffness, thereby
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promoting nuclear shuttling of YAP in a small GTPase Rap2- and Hippo signaling-dependent manner. Interestingly,
although cyclic stretch induces upregulation of Thbs1 in HUVECs, the translocation of Thbs1 to FA is not observed
and the nuclear shuttling of YAP does not occur, which indicates that the Thbs1-mediated activation of YAP is depen-
dent on integrinsαvβ1—which are expressed in SMCs but not in ECs. The in vivo significance of the Thbs1-mediated
nuclear translocation of YAP is further supported by the observation that Thbs1 deletion in mice resulted in the mal-
adaptive remodeling of the ascending aorta in response to pressure overload by transverse aortic constriction (TAC).
Surprisingly however, Thbs1 deletion resulted in the inhibition of neointima formation upon carotid artery ligation.
These context-dependent actions of YAP mediated by Thbs1 indicate that the matrix plays pivotal roles in mechan-
otransduction by connecting the extracellular environment to intracellular signaling during vascular remodeling in
vivo.

Future perspectives
Hemodynamic forces initiate vessel adaptation and remodeling to maintain vessel homeostasis. The present study
described the remarkable abilities of ECs and SMCs to continually sense and respond to multiple stimuli to reg-
ulate dynamic changes of intracellular signaling pathways in the vessel wall. The present review further discussed
how mechanotransduction plays an essential role in the initiation and progression of vascular diseases, focusing
on atherosclerosis and aortic aneurysms. In atherosclerosis, DSS can trigger an inflammatory signaling pathway
predominantly mediated by NF-κB in ECs via DSS mechanosensors; this results in alteration in matrix composi-
tion (such as fibronectin) and amplification of inflammatory responses. In aortic aneurysms, specifically in tho-
racic aortic aneurysms, defects in the elastin-contractile units in SMCs impair mechanotransduction and reduce
actomyosin-mediated force generation. This leads to the activation of cytokines and secretion of matrix proteins
(such as thrombospondin), thereby activating the intracellular signaling.

Elucidating the molecular mechanisms of mechanotransduction in each vascular cell type and identifying molec-
ular players that respond to hemodynamic forces represent important directions for this field of research. However, it
remains unclear how FSS-induced signals are transmitted from ECs to SMCs and how cyclic stretch-induced secreted
factors from SMCs affect the functions and behaviors of ECs, especially near the EC-SMC boundary. Importantly, it
remains unknown whether a specialized mode of communication exists or whether cells communicate with each
other via mechanical stress-induced signals over multiple layers of cells or direct cell–cell contact. Also, the identifi-
cation of the key downstream molecules(s) in the mechanotransduction pathway and the enhancing or blocking of
its function(s) without correcting an abnormal environment (i.e., DSS or stiffness) may offer a therapeutic rationale.
Understanding the interplay between mechanosensors and matrix-mediated transduction pathways, and how they
are regulated, may shed light on an advanced therapeutic strategy for vascular diseases.
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