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Preface 

As chapter one of this book makes clear, quantitative methods 
have become increasingly important in archaeology in recent years, 
and indeed considerable progress has been made in terms of the 
degree of sophistication of the analyses and of the matching be-
tween archaeological data and appropriate mathematical methods. 
The specialists in any sub-field of a discipline, particularly when 
that sub-field involves mathematics, are always going to be working 
at a level which non-specialists cannot match, but it is important for 
the general health of the discipline as a whole that its practitioners 
should have some awareness of the sub-field and its wider implica-
tions. Archaeology now has a small group of impressively com-
petent mathematical specialists but the bulk of the people practising 
the discipline do not even understand what they are talking about, 
never mind its implications. This is a dangerous state of affairs 
because it leads on the one hand to the outright dismissal of 
methods which may be useful, and on the other to an excessive 
gullibility with regard to claims backed by mathematical arguments 
and analyses. If you can't actually evaluate the arguments, what 
choice is there? This situation contrasts with what I believe is a 
much more healthy situation in geography, where the body of 
mathematical and statistical specialists is at the apex of a broadly 
based pyramid of practitioners with basic mathematical and statisti-
cal knowledge. 

The difference lies in the educational process in the two discip-
lines. Quantitative methods were quickly integrated into the educa-
tion of geographers as a result of the quantitative geography revolu-
tion of the 1950s and 1960s. Comparable developments in archae-
ology were never incorporated into the education of archaeologists 
to anything like the same extent, for reasons which, I suspect, have 
more to do with the sociology of the discipline, especially within the 
universities, than with anything else. Correspondingly, textbooks 
on mathematics and statistics in geography have proliferated, while 
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viii Preface 

it would be true to say that archaeology has had nothing compar-
able. 

This book aims to fill that gap. It fits between Mathematics in 
Archaeology (Orton 1980) on the one hand, and Mathematics and 
Computers in Archaeology ( Doran and Hodson 1975 ) on the other. 
Orton's book is a very clear, indeed excellent, account of how 
quantitative methods can be of assistance to archaeologists, but in 
no sense is it a textbook. Doran and Hudson's book is basically 
more advanced than this one. Its brief coverage of elementary 
methods, while in many ways a model of elegant conciseness, is too 
compressed for people who don't know the material already. 

This book arises from a course in quantitative methods of data 
analysis which I have given over a number of years in the Depart-
ment of Archaeology, University of Southampton. As time has 
gone on the course has changed considerably from the earliest 
version, in response to student feedback and developments in the 
field. (Statistics itself is a fast changing discipline, a fact which 
outsiders tend not to appreciate.) Indeed, some discussion and 
explanation is appropriate at this point, concerning what the book 
contains and what it doesn't. 

First, it is about data analysis in archaeology and is thus oriented 
more towards studies of objects, excavations and archaeological 
data from surveys than towards more laboratory based studies, 
such as soil properties, chemical analyses, etc. ; in general such 
studies have their own mathematical and quantitative tradition, 
derived from the discipline where the techniques originate. 

This orientation has undoubtedly influenced the selection of 
material to present here. And indeed my next point concerning the 
book's content is precisely that it is not comprehensive, in the sense 
of covering all the quantitative techniques which have been used or 
could be useful to archaeologists. To do that would have taken a 
book far longer than this one. The intention has been to give an 
impression of the kinds of things which can be done at different 
levels ; how the archaeological topic becomes translated into statis-
tical terms, and the problems associated with this ; and to provide a 
technical grounding in some of the most important techniques. In a 
textbook such as this it is natural that the latter should take up most 
of the space. 

The aim of the first part is to show students how to carry out some 
of the most basic techniques for themselves ; the aim of the second 
part is to give an intuitive understanding of some of the more 
complex methods, based on a geometric approach and archaeo-
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logical examples, as a basis for understanding the literature. Famili-
arity with the material presented here in the context of archaeologi-
cal examples will make it much easier for those who want to use 
other techniques not covered here to understand statistical litera-
ture written for other audiences, such as geographers and socio-
logists. 

At the basic statistics level the most obvious omission is the Mest, 
and more generally a lack of discussion of distributional theory, 
except rather briefly in chapters 8 and 14. This was not done 
without considerable thought. In fact, such material was covered 
extensively in the early versions of the course from which this book 
originates. It was dropped because the amount of complex technical 
detail which had to be covered at a fairly early point in the proceed-
ings was proving to be a major obstacle both to understanding the 
quantitative methods themselves and to seeing any relevance of 
them to archaeology. Not including them proved to be a lot more 
satisfactory: the gain far outweighed the loss. 

Another obvious omission is spatial analysis. Hodder and Orton 
(1976) still provide a good introduction for archaeologists here, 
backed up by the many geographical texts. In this light it was felt 
that the desirability of including something rather more elementary 
than Hodder and Orton on spatial analysis was outweighed by the 
significant increase in size of this book which it would have in-
volved. 

The introductory intention of the book precludes examination of 
the more advanced techniques now being used in archaeological 
research, such as those based on computer simulation, but there is 
a brief discussion of these in the final chapter. One or two sections 
of the book, however, are more advanced than the rest and many 
people will want to skip them on the first time through. This is 
especially the case with the last section of chapter 7 and, to a lesser 
extent, parts of chapter 10 and 11. They are included to show what 
detailed data analysis can involve and how it may be done. They are 
examples, as are others in this book, of the realisation of a sceptical 
approach to data and data patterning. Indeed, if I have one hope 
for this book, it is not that readers will retain a memory of the 
details of the statistical techniques it covers, but that they will have 
acquired an informed, sceptical and questioning attitude to the 
quantitative analyses of themselves and others. In this way things 
can only improve. 

Over the years, in teaching quantitative methods and preparing 
this book I have incurred a number of debts which must be acknow-
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ledged. First, and most important, I have to thank the students who 
have taken my courses, especially Todd Whitelaw, Hans-Peter 
Wotzka and Nick Winder. Their critical questioning has meant that 
I could never get away with anything and I've benefited enormously 
as a result ! I'm also grateful to Professor Colin Renfrew for his 
early encouragement and support for the teaching of quantitative 
methods at Southampton, and to Archie Turnbull of Edinburgh 
University Press for encouraging me in the writing of this book and 
offering many constructively critical comments on an earlier draft. 
Finally, I owe a special debt of gratitude to Dr Nick Fieller, Depart-
ment of Probability and Statistics, University of Sheffield, for his 
invaluable assistance in reading the manuscript with an expert eye ; 
and to Professor R.Barry Lewis, Department of Anthropology, 
University of Illinois at Urbana-Champaign, who made many help-
fully blunt comments and suggestions. Neither they nor anyone else 
except myself is responsible for the inadequacies that remain. 



One 

Introduction 

The aim of this text is to make students familiar with some of 
the basic quantitative methods currently used in archaeology. Of 
course, these techniques are not specific to archaeology, being used 
in a great variety of fields, but experience has shown that archae-
ology students do not gain a great deal from attending statistics 
classes for sociologists or biologists because, although the statistical 
theory and methods are the same, the examples used are alien. To 
the student of archaeology such examples are boring and often 
incomprehensible. To most people quantitative methods tend to be 
sufficiently forbidding to need no handicaps of this kind. Teaching 
in such an alien framework is particularly unfortunate because 
many non-mathematically inclined people find that they can best 
get an initial grasp of a topic not by learning about the theory 
behind it, but by following through a worked example. For these 
reasons a specifically archaeological introductory text seemed 
worthwhile. 

It is hoped that by the end of the book students will themselves 
be able to use the simple techniques described, will have some feel 
for the way archaeological questions can be translated into quanti-
tative terms, and will have a basis for talking to statisticians, in their 
own terms, if problems are more complex. This last point is of some 
importance. If you turn to a statistician for help and neither of you 
knows what the other is talking about, you will probably end up 
with the wrong answer to the wrong question. 

The text assumes very little in the way of prior knowledge. Only 
the most basic mathematical operations of addition, subtraction, 
multiplication and division, together with roots, powers and loga-
rithms are needed. Calculus and matrix algebra are not required. 

WHY QUANTITATIVE METHODS? 

This question must be considered before we go further. In fact, it is 
possible to divide it into two rather different questions : why should 

1 



2 Quantifying Archaeology 
students concern themselves with quantitative methods in archae-
ology, and why should archaeology, as such, concern itself with 
quantitative methods. 

One answer to the first of these questions is that the archaeologi-
cal literature is increasingly given over to papers whose arguments 
depend on the application of such methods. A knowledge of them 
is therefore essential if their arguments are to be understood and 
evaluated. This is certainly true, but it does not answer the second 
and larger question. The most cynical view would be that archae-
ology has become involved with quantitative methods purely as a 
result of disciplinary fashion. The last thirty years have seen the 
biological sciences, geography and many of the social sciences 
become increasingly quantitative ; it is now a matter of prestige for 
a discipline to appear to be 'scientific', an endeavour in which 
quantitative methods have a key role. Archaeology has simply 
followed this trend, adopting the 'archaeologists in white coats' 
image, and in the process has carried out a successful piece of 
disciplinary imperialism, expanding its influence, its manpower and 
the resources allocated to it generally. In due course, such an 
argument might go, such approaches will become less fashionable, 
indeed perhaps are already becoming so, and will gradually fade 
from significance. I think it would be foolish to try to deny al-
together this aspect of the 'quantitative revolution' as it has been 
called in geography, but such arguments from the sociology of 
science are certainly only part of the story. 

One key factor has been the rise of the computer. As we are well 
aware, computers now have a great variety of roles in archaeology. 
In the last decade they have become increasingly widely used as 
data management tools for such tasks as the recording of excavation 
data and the building up of regional data banks of archaeological 
information, the former development in particular greatly en-
hanced by the advent of microcomputers ( Richards and Ryan 1985, 
Gaines 1981 ). The use of computers in archaeological model-build-
ing has also become important: computer programs have been 
written to simulate processes as diverse as the collapse of Maya 
civilisation ( Hosier et al. 1977 ) and tool manufacture and discard in 
Australian aboriginal subsistence-settlement systems ( Aldenderfer 
1981); numerous examples are to be found in books edited by 
Hodder (1978), Renfrew and Cooke (1979) and Sabloff (1981). 

Here I want to consider only their use as tools for carrying out 
data analysis, which is in fact the purpose for which computers were 
first introduced into archaeology, and indeed into many other sub-
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jects. Prior to the development and first application of computers in 
the 1950s and early 1960s uses of mathematics and statistics were 
largely restricted to the 'hard sciences'. This was at least partly 
because the solutions to many problems of interest could be ob-
tained by means of elegant methods of mathematical analysis which 
did not require enormous numbers of calculations. Similarly, the 
statistical techniques which for the same reason were practically 
possible, proved very useful in many scientific, technological and 
industrial applications, but less so with the more intractable data of 
geography, archaeology or the social sciences. Only with the de-
velopment of a means of carrying out enormous numbers of calcula-
tions at very high speeds did it become possible to apply methods 
appropriate to the kind of problems which the data from such 
disciplines presented. 

It might be said that such an exciting new toy as the computer was 
eventually bound to be tried by archaeologists, and that the involve-
ment of archaeology in quantitative methods simply stems from an 
attempt by archaeologists who like such toys to find a use for them. 
This cannot altogether be excluded. 

However, it still does not take us to the heart of the matter, which 
lies not in fashion, nor in the availability of computers, but in the 
fact that quantitative reasoning is central to archaeology, and that a 
better grasp of this fact might well improve our work as archae-
ologists. Clive Orton's book Mathematics in Archaeology (1980) 
provides an excellent demonstration of why this is the case, by 
taking some of the standard questions which archaeologists ask, 
such as 'What is it?', 'How old is it?', 'Where does it come from?' 
and 'What was it for?', and showing how a quantitative approach 
can help to provide the answers. It follows, therefore, that quantita-
tive methods should be seen, not as a distinct scientific specialism 
within archaeology, like pollen analysis, for example, or the various 
techniques of artefact characterisation, but as part of every archae-
ologist's mental tool-kit. Statistical, mathematical and computer 
specialists may often be required to cope with particular problems, 
but archaeologists must have sufficient quantitative awareness to 
recognise when problems arise which can be helpfully tackled in a 
quantitative fashion. No one else can do this for them. 

Given that this is the case, it remains to be specified exactly 
where the mathematics and the archaeology come together. Part of 
the answer is in the simple description of the archaeological record : 
numbers of potsherds of different types, sizes of pits, and so on. 
Such quantitative information is an essential part of all modern 
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archaeological reports, and simple quantitative description is the 
first topic we will consider. 

Much more important than this, however, is the link described by 
Orton (1980). The archaeologist makes his inferences about the 
past on the basis of patterning and relationships in the archaeologi-
cal record. Mathematics is an abstract system of relationships. The 
possibility then exists that mathematics may help us to recognise 
patterning in the archaeological record and to specify its nature. 
The area where mathematics meets the messier parts of the real 
world is usually statistics. It is precisely this fact that makes statistics 
in many ways a tricky subject, because mathematical and factual 
considerations are both involved, and because the relationships 
which we look at are almost never perfect ones. 

Orton shows very clearly that all interpretation of the archaeo-
logical record is concerned with identifying patterning and is cap-
able of benefiting from a quantitative approach. It is nevertheless a 
historical fact that the main impetus for the introduction of quanti-
tative methods of archaeological data analysis came from the North 
American 'New Archaeology' tradition of the 1960s, and as a result 
of this 'New Archaeology' and the use of quantitative methods 
became inextricably associated in the general archaeological con-
sciousness, both being labelled as 'anti-humanistic' (Hawkes 1968). 
Doran and Hodson (1975) were at pains to point out, correctly, 
that^there was no necessary connection between the two, and that 
quantitative approaches could be used to tackle traditional archaeo-
logical problems. However, it is still the 'New Archaeology' tradi-
tion, now known, twenty-five years on, as the 'processual' school, 
that has made the greatest use of such techniques and it is worth 
asking why quantitative analysis has been, and remains, one of its 
distinguishing features, despite the fact that some applications of 
such methods have since been shown to be classic examples of 
misuse and misinterpretation (Thomas 1978). 

I believe there are several reasons for this. First, least praise-
worthy and probably least important: quantitative methods are 
regarded as 'scientific' and the New Archaeology specifically set out 
to adopt a scientific approach to the subject, making the use of 
quantitative methods ideologically necessary. Second, New Archae-
ology emphasised explicitness and objectivity, both of which are 
considerably aided by the rigour of quantitative analysis, which has 
a vital role to play in removing at least some potential sources 
of self-deception. Third, it advocated a hypothetico-deductive 
approach to the study of the past, in which hypotheses are gener-
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ated, ideally from a strong base in theory; archaeological implica-
tions of those hypotheses are deduced ; and these are then com-
pared with the archaeological record for their goodness of fit. 
Whatever the merits or demerits of such an approach - and they 
have been the subject of considerable debate - it remains the case 
that testing for the goodness of fit between hypotheses and data is 
one of the main tasks with which statistics concerns itself. 

Finally, and probably most important, the New Archaeology 
took a systemic view of the past. Rejecting the view that spatial 
differences in the archaeological record stemmed from the spatially 
varying norms of the population, and that change through time was 
the result of changing norms arising from diffusion, or the replace-
ment of one people by another, it argued that what mattered was 
the adaptive context - how people related to the environment and 
to other people. Within this framework the investigation of re-
lationships between variables which could be measured in the 
archaeological record attained a new and justified significance ; the 
only way to do it was quantitatively. 

To sum up, inasmuch as the processual school has been more 
concerned than any other school of archaeology with the formula-
tion of explicit hypotheses about relationships between features of 
the archaeological record, it has inevitably been forced more fre-
quently to depend on quantitative analysis. The demonstration of 
the inadequacies of the normative approach and of the importance 
of investigating systemic relationships has been a major advance, 
and the quantitative consequences have to be faced. 

Of course, in the last twenty-five years the processual school has 
changed considerably. It has also been heavily attacked, particu-
larly from the European side of the Atlantic, by critics who argue 
that many of its most basic assumptions are invalid (e.g. Hodder 
1982). It might perhaps be thought then that we are now in a period 
when the use of quantitative methods in archaeology is going out 
of fashion and declining in importance. Changes have certainly 
occurred in the quantitative field. There is now less emphasis than 
there used to be on statistical hypothesis testing in archaeology, a 
situation which this book reflects. Furthermore, a greater aware-
ness of the problems of interpreting the archaeological record as 
evidence of past behaviour has also developed, and with it a rejec-
tion of the over-optimistic notion that quantitative data analysis 
could somehow provide direct insights into the past which are 
denied to more traditional approaches. However, I do not believe 
that the theoretical changes which have been taking place within 
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the discipline as a whole will result in a decline in the use of 
quantitative techniques because the study of relationships between 
phenomena remains of fundamental importance, whatever the 
theoretical framework adopted, and in many cases the only way to 
investigate relational patterning in the archaeological record is 
quantitatively. Thus, for example, Tilley (1984, Shanks and Tilley 
1982) makes extensive use of multivariate data analysis(see below, 
chapters 11 and 12) but rejects the theoretical basis of processual 
archaeology out of hand. The need for the methods arises because 
the archaeological record presents itself to us as an apparently 
largely disorganised mass of material, eloquent in its silence. 

THE PLACE OF QUANTITATIVE METHODS 

IN ARCHAEOLOGICAL RESEARCH 

Before turning to the techniques themselves it is best to say some-
thing about the exact place of quantitative methods in the archaeo-
logical research process. Such analysis itself generally comes at a 
very late stage, but this is deceptive. At the research design stage 
the investigator should be deciding not just what to do but how to 
do it, including appropriate forms of analysis. Once these decisions 
are made they define the conduct of the research, and nowhere is 
this more important than in ensuring that the data collected and the 
method of their collection correspond to the requirements of the 
techniques it is proposed to use, including the theoretical assump-
tions the techniques presuppose. Discovering the problems at the 
analysis stage is too late. 

Finally, and in a sense obviously, the techniques used have an 
effect on the results obtained and the archaeological conclusions 
drawn from them. In fact, as we shall see, the relation between the 
methods used and the patterns 'discovered' can be quite complex. 

Research is not a linear process, of course ; it is a loop, because 
the conclusions will inevitably send you or somebody else back to 
the first stage again, to design a new investigation. 

THE EXERCISES! A COMMENT 

The way in which the techniques used relate both to the initial 
research design and to the archaeological conclusions is obviously 
of considerable importance - indeed, in conceptual terms it is 
obviously more important than the details of the techniques them-
selves. These issues will inevitably be raised in this text, but its main 
aim is to make you familiar with the techniques, so it will be 
necessary to devote most attention to the details of how they are 
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carried out. The importance of doing the exercises and problems 
cannot be over-emphasised. You may think you have understood 
everything you have read but you will only find out whether you 
have in fact done so by attempting and solving the problems. It is 
only by this process that you will achieve a degree of numeracy and, 
as Colin Renfrew has said, The days of the innumerate are num-
bered'. 



Two 

Quantifying Description 

Collections of archaeological material do not speak for themselves ; 
it is necessary for archaeologists to specify aspects which they are 
interested in, and these will be determined by their aims. The 
process of going from aims to relevant aspects of one's material is 
by no means simple. Some archaeologists, Lewis Binford in particu-
lar, would say that it has rarely been done successfully and that 
consequently most archaeological reconstructions of the past are 
no better than fictions (Binford 1981). 

Let us consider an example. Suppose one is interested in studying 
social stratification through time in a given area. The next step 
might be to look at the archaeological record of that area and to 
decide that the best aspect for giving us an indication of changing 
social stratification would be the variation, through time, in the 
quantity of metal grave goods deposited in the richest graves in the 
area. A diachronic picture showing the changing quantities of metal 
could then be drawn. However, if the quantities of metal deposited 
related not to the wealth of the individuals but to changes in mining 
technology or in the trade contacts of the area, then the picture 
would reflect, not changing social stratification at all, but something 
else. If, after we had mistakenly argued that metal deposition 
related to social stratification, we then went on to try and explain 
the reasons for growing social stratification, we would be making 
matters even worse, because we would be trying to explain some-
thing that never occurred ! Presented in this stark form, the pitfalls 
seem obvious enough, but they are very easy to fall into in practice, 
and much recent work has been devoted to improving our under-
standing of the processes which produce the archaeological record. 

For the purposes of this text we will have to skirt round this 
problem most of the time and to assume that we have selected for 
investigation an aspect of our material which is appropriate to our 
interests. In practice, particularly at the level of describing material, 
such as that recovered from an excavation, there is broad agree-
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ment about what categories of information should be recorded and 
presented, so that, for better or worse, we do not have to agonise 
too much. Nevertheless, the problem sketched above is a very real 
one, basic to archaeology, and it will be necessary to return to it 
later. 

Once we have defined the aspects of our material in which we are 
interested, it is necessary to prepare a record of them ready for 
analysis. When data are being collected, the process of assigning a 
value or score to the material in which we are interested constitutes 
the process of measurement. This is a much more general definition 
than simply measuring things with a set of calipers or weighing them 
on a pair of scales - measurement can be of many different kinds. If 
we are studying a collection of pottery, for example, there are many 
aspects in which we could be interested : the height or volume of the 
vessels, the decorative motifs used on them, the fabrics of which 
they are made, or their shapes. For each vessel in our collection we 
need to record the information in which we are interested. The 
result of this work will be a large table of scores and values for each 
aspect of interest to us (table 2.1). The aspects of our material in 
which we are interested in a given study are often referred to as the 
variables of interest. 

Table 2.1. Example of the information recorded 
for a group of ceramic vessels. 

Vessel 1 
Vessel 2 

Vessel n 

Height 
(mm) 

139 
143 

154 

Rim 
diameter 

(mm) 

114 
125 

121 

Fabric 
type 

1 
2 

4 

Rim 
type 

1 
1 

3 

Motif in 
position 1 

16 
12 

21 

Motif in 
position 2 . . . 

11 
9 

15 

The process of measurement, especially the coding of such things 
as pottery descriptions, is by no means always a straightforward one 
and requires a lot of clear thinking (see Richards and Ryan 1985, 
Gardin 1980 for further discussion of this topic). More often than 
not it is carried out as a preliminary to entering the data into a file 
on a computer, prior to detailed analysis. It is very important that 
the data are coded in a form relevant to the intended analyses, 
otherwise a great deal of time may be wasted in juggling with the 
data in the computer files in order to put them into the right form. 
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The precise form in which the coding problem arises is now 

beginning to change as archaeologists increasingly use special data-
base management programs for the input and handling of their 
data, as opposed to inputting them directly into specific data ana-
lysis programs with very precise data format requirements. This 
new development gives a welcome extra degree of flexibility but it 
does not remove the substantive problem of data description, as 
Gardin (1980) emphasises. 

Other questions are raised by the coding process itself: it is 
important to avoid ambiguities and logical inconsistencies. Coding 
pottery decoration can be especially difficult since it can involve 
making decisions about what are the basic units of the decorative 
scheme, what are simply variations within the basic structure, and 
many others such ; the matter is well discussed by Plog ( 1980). 

A general question which often arises is what to include and what 
to omit from the description, even when you know what your aims 
are. For example, if studying a cemetery of inhumation burials 
containing grave goods and trying to make inferences about the 
social organisation of the community which deposited the burials, 
do you include information on the position of each of the grave 
goods in the grave as well as what they are? Perhaps the exact 
position of the limbs of the skeleton is significant in some way ? The 
usual answer is to err on the side of inclusion rather than omission, 
but in a very large study this may involve an enormous amount of 
work which may not prove relevant and which may have cost an 
enormous amount of money, especially if it is fieldwork. A solution 
here is to carry out a pilot study : a preliminary analysis of a small 
part of the data is made using the full description and any variables 
which do not seem to vary are not recorded for the full data set. It 
is no exaggeration to say that decisions taken at the coding stage can 
have a major effect on the outcome of the subsequent analysis. 

Once we have produced the table of data, all the information is 
there but it is not yet very accessible to us. We are not usually 
interested in the characteristics of each individual item, but in the 
assemblage of material as a whole, so that when we ask questions 
such as, 'How common are the different pottery fabrics?', 'Are the 
vessels a standard size?', answers are not immediately available 
from the table. We need to summarise our data (the values of our 
variables) in some way. Pictures are one of the best ways, but in 
order to produce appropriate ones we first need to consider the 
measurement characteristics of our variables, or what are known as 
levels of measurement. What are these levels, or scales ? They are, 
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in order of their mathematical power, nominal, ordinal, interval 
and rai/o. To start with the lowest, the nominal scale is so-called 
because it involves no more than giving names to the different 
categories within it. You might not think of this as measurement at 
all, but as the process of classification: placing things in groups or 
categories, a basic first step in virtually any investigation. Suppose 
we were studying British bronze age funerary pottery and we were 
dividing up the pots into collared urns, globular urns, barrel urns 
and bucket urns. This would represent a nominal scale, appropriate 
for this particular set of pots, in which there were four categories. 
In this case the process of measurement would consist of assigning 
one of these categories, or values to each of our pots. There is no 
inherent ordering among the pots implied by categorising them in 
this way. We could assign numbers to the categories, e.g. 

1 = collared urn 
2 = globular urn 
3 = barrel urn 
4 = bucket urn 

If we did this we would be using the numbers merely as symbols that 
are convenient for us for some reason - perhaps as a shorthand 
notation. It would be meaningless to add or multiply these numbers 
together. 

If it is possible to give a rank order to all of the categories, 
according to some criterion, then the ordinal level of measurement 
has been achieved. Thus, if we divided a collection of pottery up 
into fine ware, everyday ware and coarse ware, we could say that 
this was an ordinal scale with respect to some notion of quality. We 
could rank fine wares as 1, domestic wares as 2, and coarse wares as 
3. Similarly, the well-known classification of societies into bands, 
tribes, chiefdoms and states (Service 1962) is a rank-ordering of 
societies with respect to an idea of complexity of organisation. Each 
category has a unique position relative to the others. Thus, if we 
know that chiefdom is higher than tribe and that state is higher than 
chief dorn, this automatically tells us that state is higher than tribe. 
On the other hand, we do not know how much lower chiefdom is 
than state, or tribe than chiefdom, we simply know the order - it is 
lower. It is this property of ordering which is the sole mathematical 
property of the ordinal scale. 

In contrast to the ordinal scale, where only the ordering of the 
categories is defined, in interval and ratio scales the distances be-
tween the categories are defined in terms of fixed and equal units. 
The difference between these two, however, is rather less obvious 
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than the others we have seen so far, and is best illustrated by an 
example. Is the measurement of time in terms of years AD or BC on 
an interval or a ratio scale ? It is certainly more than an ordinal scale 
because time is divided into fixed and equal units - years. The 
distinction between the two depends on the definition of the zero 
point - whether it is arbitrary or not. Defining chronology in terms 
of years AD or BC is an arbitrary convention. Other different but 
perfectly valid chronological systems exist, with different starting 
points, for example the Jewish or Islamic systems. If, on the other 
hand, we consider physical measurements - such as distances, vol-
umes or weights - then the zero point is not arbitrary ; for example, 
if we measure distance, whatever units of measurement we use, a 
zero distance is naturally defined: it is the absence of distance 
between two points ; and the ratio of 100 mm to 200 mm is the same 
as that between 3.94 inches and 7.88 inches, i.e. 1:2. This is not true 
of our chronological systems : the ratio of 1000 AD to 2000 AD is 1:2, 
but if we take the corresponding years of the Islamic chronology 
378 and 1378, the ratio is 1:3.65. Chronology then is an example of 
an interval scale but physical measurements are examples of ratio 
scales. In practice, once we get beyond the ordinal scale it is usually 
ratio scale variables that we are dealing with in archaeology -
physical measurements of the various types referred to above, and 
counts of numbers of items. 

The reason for knowing about these distinctions is that they 
affect the statistical techniques which we can use in any particular 
case, whether we are using complex techniques of multivariate 
analysis or merely drawing diagrams. In the chapters which follow, 
as the different techniques are presented, one of the first considera-
tions will always be the level of measurement of the data for which 
the methods are appropriate. It is particularly easy to slip into 
applying inappropriate methods when you are using a computer 
since it will take the numbers you give it at face value and not 
question what you ask it to do with them. 

MOVING FROM ONE LEVEL 

OF MEASUREMENT TO ANOTHER 

The discussion so far has emphasised the distinctions between the 
various levels of measurement, but it may be worth finishing by 
looking at the possibilities of making the transition from one level 
to another, for the scale of measurement for a particular property 
of a set of data is not necessarily immutable. 

Let us return to our example of dividing a pottery assemblage 
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into fine ware, everyday ware and coarse ware, an ordinal scale 
based on an idea of fineness or quality. In principle there is no 
reason why we should not quantify the fineness of the pottery 
fabric, for example in terms of the mean grain size of the tempering 
material, or the ratio of inclusions to clay. We would then have a 
ratio scale of measurement of fineness and we could place each 
sherd or vessel at some specific point on the line from fine to coarse, 
measured in terms of fixed and equal units. 

Some people see the prevailing level of measurement in a discip-
line as a measure of its scientific sophistication. Thus, a discipline in 
which many of the variables are measured on a ratio scale is more 
advanced than one in which the majority are only nominal scale 
variables. Whether one accepts this view or not, it is certainly the 
case that ratio scale variables, as in our pottery fabric example, 
contain more information about the property in question than 
ordinal scales, such as fine, medium and coarse. 

There is, of course, no reason in principle why we cannot reverse 
the process. Starting with measurements of grain sizes in our pot-
tery fabrics, for example, we could then categorise them as fine, 
everyday and coarse. If we do this, however, we are neglecting in-
formation, which is generally not a good thing to do. Nevertheless, 
the argument is not completely straightforward and controversies 
have raged in the archaeological literature about when and whether 
it is appropriate to categorise ratio scale variables ( see the contribu-
tions to Whallon and Brown (1982), particularly those of Hodson 
and Spaulding). 

The best guide is to make use of the level of measurement that 
will provide an answer to the question being investigated for the 
least cost. To refer again to the pottery, if our investigation requires 
no more than a distinction between fine ware, everyday ware and 
coarse ware, it is a waste of time and money to produce a detailed 
quantified description of every vessel's fabric. However, we may 
want to analyse a few samples of each fabric type to demonstrate to 
others that our distinctions between the fabrics are not purely 
subjective. 

EXERCISES 

2.1. Look at the series of decorated ceramic vessels from the Ger-
man neolithic in figure 2.1, p. 14 (after Schoknecht 1980), and 
devise a coding system that you think provides the basis for an 
adequate description of them. Code each of the vessels using your 
system (scale 3:16). What problems arose in coding, if any? 



14 Quantifying Archaeology 

Figure 2 A 
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2.2. Try the same exercise with the set of illustrations of grave plans 
and their contents from a late neolithic cemetery in Czechoslovakia 
which appear in figures 2.2 to 2.7, pp. 16-21 (after Buchvaldek and 
Koutecky 1970). The contents of the graves are also listed since the 
nature of the objects is not always clear from the drawings and not 
all of them are illustrated. Scale : plans 1:27, pottery and grindstone 
1:4, other items 1:2. 

Grave 1 1. Amphora 
2. Decorated beaker 
3. Flat axe 
4. Flint blade 
5. Grindstone 

Grave 2 1. Base sherds of beaker 
2. Decorated beaker 

Grave 3 1. Decorated beaker with handle 
2. Decorated amphora 
3. Flint blade 
4. Piece of a copper spiral 

Grave 4 1. Piece of flint blade 
2. Sherds probably from two vessels 

Grave 5 1. Amphora 
2. Decorated amphora 
3. Mace head 
4. Flint blade 

Grave 6 1. Quartzite scraper 
Grave 7 1. Amphora 

2. Decorated beaker with handle 
3. Decorated jar 
4. Cylindrical beaker with lug 

Grave 8 1. Amphora 
2. Decorated amphora 
3. Decorated beaker with handle 
4. Hammer axe 
5. Flint blade 

Grave 9 1,2. Decorated beakers 
3. Jug 
4. Decorated beaker 
5. Jar 
6. Decorated amphora 
7. Amphora 
8. Flint blade 
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Figure 2.2 
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Figure 2.3 
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Figure 2.4 
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Figure 2.5 
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Figure 2.6 
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Figure 2.7 



Three 

Picture Summaries 
of a Single Variable 

In using quantitative methods in archaeology it is possible to get a 
long way simply by devising some pictorial means to represent your 
data. Once data are represented visually the power of the human 
eye and brain to detect and assess patterns can be immediately 
employed, and some very complex methods of quantitative analysis 
boil down to little more than ways of obtaining the best possible 
picture of a complicated data set. Conversely, however, the human 
eye can see patterns when none are really there, and this is a point 
to which we will return later. 

The use of graphs and charts to display information has always 
had an important role to play in statistics, but essentially as a 
preliminary to the use of numerical summaries of the data, usually 
followed by the use of statistical inference (see below). Recently, 
an approach has been developed which pays less attention to the 
traditional methods of inferential statistics ; it is known as the ex-
ploratory data analysis approach, and its hallmarks are a far greater 
concern with visual displays of data than with summary statistics 
derived from them, and a far lower emphasis on statistical signifi-
cance tests (see Hartwig and Dearing 1979, Mosteller and Tukey 
1977, Tukey 1977 ; for an archaeological discussion see Clark 1982, 
Lewis 1986). Rather, the aim is to explore the data set to hand, 
defined as relevant to some problem, to see what there is in the way 
of significant patterning. The idea is, to use the jargon of explora-
tory data analysis (or EDA as it is known), that 

data = smooth + rough 
In other words, a given set of observations can be divided into two 
components, a general pattern, the 'smooth', and the variations 
from that pattern, the 'rough'. The task of the data analyst then is 
to distinguish the smooth from the rough in the most objective kind 
of way, being continuously sceptical as he does so. 

As Tukey ( 1980) has explained, the idea is not to reject tradition-
22 
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al statistical inference methods, such as significance testing (see 
chapter 5), but to put them in their place, as only one part of the 
research loop, the continuing interplay between ideas and data. 
Just as important as the traditional role of statistics in testing ideas 
(what Tukey calls confirmatory data analysis) is its role in develop-
ing them, since they often arise from previous exploration of data 
rather than being 'bolts from the blue'. Visual display of the data is 
a good means to this end, not an end in itself. 

This chapter will be concerned with the various visual means of 
representing the distributions of single variables, including methods 
which have become well-established in archaeology over the years 
and one which has seen relatively little use in archaeology, the 
stem-and-leaf diagram. Whatever the technique, however, the idea 
is to reduce the data to some kind of order, so that it is possible to 
see what they look like, to obtain an initial impression of the 
'smooth' and the 'rough'. In general, this involves the presentation 
of frequency distributions, in which the observations are grouped in 
a limited number of categories. 
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Figure 3 A. Bar chart of the number of bone fragments of 
different domestic animal species from a hypothetical 
British iron age site. 

Probably the best known of these are simple bar charts or bar 
graphs, which are familiar from everyday life and whose use in 
archaeology is long established. These permit a distinction in terms 
of whether the categories are simply at the nominal scale, or 
whether there is an inherent ordering of the bars. An example of 
the former would be figure 3.1, which is a summary of the numbers 
of bone fragments of different types from a hypothetical British 
Iron Age site. There is no particular significance in the ordering of 
the species on the horizontal axis ; it could be changed to any one of 
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the different possible ways and the information contained within it 
would stay the same. The problem of having to commit yourself to 
a specific ordering which you automatically tend to read from left to 
right, can be circumvented by the use of the pie chart or circle 
graph. This requires the absolute numbers involved to be converted 
into relative proportions, and thus represents a gain in information 
in one sense and a loss in another : an idea of the total number is lost 
but the relative proportions emerge more clearly. 

Horse 
3% = 11° 

Figure 3.2. Pie chart of the relative proportions of bone 
fragments of different domestic species using the data 
from figure 3.1. Number of bone fragments = 330. 

If it is felt to be important to present an indication of the number 
of cases involved rather than just the proportions, then this can be 
indicated in the key to the diagram ; it is probably good practice to 
do this in any event. If a number of pie charts are being displayed 
together an idea of the relative sizes of the different samples can be 
given by making the area of the circles proportional to the sample 
size. In the case of the example using animal bone fragments just 
given, the pie chart would come out as figure 3.2, where the angle 
of the appropriate sector at the centre of the circle is the corre-
sponding percentage multiplied by 360/100. Thus, if the cattle 
percentage was 46 % this would give 46 x 360/100 « 166°. 

The pie chart is a very helpful mode of data presentation when 
the aim is to illustrate relative proportions of unordered categories, 
but it can be confusing if there are numerous categories, or cate-
gories with zero or very small entries, when the small entries have 
to be grouped together. Some authors, however, object to pie 
charts altogether (e.g. Tufte 1983), arguing that, for the relatively 
small quantities of data that can be contained in them, tables show-
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ing the actual percentages are more satisfactory. 

With an ordinal scale the ordering of our categories is fixed by 
reference to some criterion, so here the horizontal ordering of the 
bars in the bar graph does mean something. At a higher level of 
measurement again not only is the ordering significant but so is the 
interval between the bars ; an example is given in figure 3.3, where 
each bar is a count of one away from those adjacent to it. 
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Figure 3.3. Bar chart of the number of graves containing 
different numbers of grave-good types for a hypothetical 
central European bronze age cemetery. 

Here we have a bar graph summarising the numbers of graves in 
a bronze age cemetery which have particular numbers of types of 
grave goods. This time we are dealing with a ratio scale - zero here 
means a lack of grave goods. But the scale shown here has one 
particular characteristic to which attention needs to be drawn : it 
can only take countable whole number, or integer values. For a 
grave to contain 3.326 types of grave goods is simply impossible. 

Other interval or ratio scales can take any value, and these are 
referred to as continuous numeric scales (often referred to as real 
values). Suppose we are measuring, for example, the heights of 
pots or the length of bones, then we might have measurements of 
182.5 mm, 170.1 mm and 153.6 mm. Although the particular set of 
pots or bones which we measure will take a particular set of values, 
there is no theoretical reason why they should not take any decimal 
point value, the number of places after the decimal point simply 
being determined by the accuracy to which we are willing or able to 
take our measurements. 

When we want to represent the frequency of different measured 
values of some continuous numeric variable like height, length or 
weight, then we are in a different situation from any of those looked 
at so far. We cannot have a separate category for 182.5 mm, 
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Figure 3.4. Bar chart of the distribution of vessel 
capacities for a group of 40 bell beakers. 

another for 170.1 mm and another for 153.6 mm ; probably at most 
one of our objects of interest will have exactly these values. What 
we have to do is divide our variable up into a number of intervals, 
whose width has been chosen by us, and then count the number of 
observations falling into each interval. For example, figure 3.4 
shows the frequency distribution of the capacities of a number of 
bell beaker pots. Into each of the intervals are placed all the obser-
vations which fall within it. The decision on the number of intervals 
to use is an arbitrary one, but should not be made without some 
thought. We do not want to have so few intervals that any pattern-
ing in the distribution disappears altogether. On the other hand, if 
we have very narrow intervals there will be lots of gaps and holes in 
the picture. This will make it difficult to spot any trends in the 
distribution, when one of the reasons for drawing the picture in the 
first place was to pick up such patterns. In general, it is never good 
to have more than twenty intervals because the picture then be-
comes too confusing. One useful rule-of-thumb which generally 
produces a reasonable picture is to make the number of intervals 
roughly equal to the square root of the number of observations ; so, 
for example, if our data are the volumes of forty pots then we would 
divide volume into six intervals. 

Because the variable is continuous it is important to be clear 
exactly what the bar chart category intervals are. First, they must be 
exhaustive, in other words the range must include all the observa-
tions; this is straightforward enough. Secondly, they must also be 
mutually exclusive. If one of the capacity intervals was 900-950 ml 
and the next 950-1000 ml then there would be ambiguity, since a 
value of 950 would fall into both classes. We should be clear that the 
range for the first interval is 900-949.9 ml, and for the next 950-
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Figure 3.5. Frequency polygon of the data in figure 3.3. 

999.9 ml, and so on. 
Another way of expressing the information in an ordered bar 

graph is by means of what is called a frequency polygon. Figure 3.5 
shows the grave-goods example illustrated above (figure 3.3) as a 
frequency polygon. This sort of presentation is frequently used for 
documenting change through time, with a time scale as the horizon-
tal axis and some quantity as the vertical. 

The methods outlined above are the traditional means of repre-
senting the distribution of single variables in diagrammatic form. 
The problem with them is that the only real 'truth' in a set of 
observations is the scores of the observations themselves. Once we 
try and summarise them, even in the form of a display like those 
above, we start losing information. (This is not necessarily a bad 
thing. As we have seen already, we often need to lose detail to gain 
in knowledge, to see the wood for the trees. However, there is no 
point in losing it if you don't have to.) Worse still, there is no single 
'correct' picture. The shape of a histogram can vary considerably, 
depending on the width of the intervals and the exact starting point 
selected. On the other hand, a simple list of the data values is 
usually not conducive to pattern detection. 

The integration of exact data values into a histogram can be 
achieved by means of a graphical method known as a stem-and-leaf 
display. It may be illustrated by means of data on the diameters of 
a sample of thirty-five post-holes from the late neolithic henge 
monument of Mount Pleasant, Dorset, England (from Wainwright 
1979) ; these are listed in table 3.1. To produce the stem-and-leaf 
the first digits of the data values (here the post-hole diameters) are 
separated from the other(s). These first digits are then listed verti-
cally down the left-hand side of the diagram in order, and form the 
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Table 3.1. Diameters ( in cm) of 35 post-holes 
from the late neolithic henge monument of 
Mount Pleasant, Dorset, England. 

48 
48 
43 
48 
38 

57 
49 
40 
53 
35 

66 
48 
44 
43 
30 

48 
47 
40 
43 
38 

50 
57 
34 
25 
38 

58 
40 
42 
45 
28 

47 
50 
47 
39 
27 

stem (figure 3.6). The remaining digit(s) for each score is then 
placed in the row corresponding to the first digit, in ascending 
order, to form the leaf (figure 3.7). This gives us a picture that loses 
none of the initial information. 

2 | 
3 
4 
5 
ö | 
Figure 3.6. The 'stem' of a stem-and-leaf 
diagram of the Mount Pleasant post-hole 
diameters listed in table 3.1. 

2 I 5 7 8 
3 0 4 5 8 8 8 9 
4 0 0 0 2 3 3 3 4 5 7 7 7 8 8 8 8 8 9 
5 0 0 3 7 7 8 
6 I 6 
Figure 3.7. Stem-and-leaf diagram of the 
Mount Pleasant post-hole diameters listed 
in table 3.1. 

If, on inspection, we felt that it would be helpful to make the 
intervals narrower, by making them five units wide rather than ten 
units, this is easily done; we simply have two rows for each first 
digit, one for second digits 0-4 , the other for second digits 5-9 
(figure 3.8). 

One further useful point about this form of display is that it 
enables one to see very easily exactly which are the aberrant values 
in a distribution, and to investigate them further if necessary; in 
fact, any peculiarities in the distribution will be easily visible. 
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Figure 3.8. Stem-and-leaf diagram of the 
Mount Pleasant post-hole diameters listed 
in table 3.1 with stem intervais 5 units wide 
instead of 10. 

Rather different is the cumulative curve, which does not give the 
same kind of picture at all but can in many circumstances give us a 
clearer representation of our data than is obtainable by other 
graphical means, especially when we want to compare one set of 
data with another. In general, cumulative curves are based not on 
the actual numbers in our categories or intervals but on those 
numbers expressed as a proportion or percentage of the total num-
ber of observations. How they work may be illustrated once again 
with the grave-goods example, which is first presented in the form 
of a table (table 3.2). 

Table 3.2. Number of graves 
containing different numbers 
of grave-good types from a 
hypothetical central European 
bronze age cemetery. 

No. of 
types of 
goods 

0 
1 
2 
3 
4 
5 

No. of 
graves 

17 
30 
26 
17 
13 
6 

Percentage 
ofgraves 

15.6 
27.5 
23.9 
15.6 
11.9 
5.5 

109 100.0 
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Figure 3.9. Cumulative curve of the data on numbers of 
grave-good types presented in table 3.2. 

A new graph may now be drawn, with the horizontal scale as 
before indicating the number of types of grave goods in the grave 
but with the vertical scale a percentage scale ranging from 0 to 100. 
We note first that 15.6% of the graves are in the zero grave-goods 
category, so we mark that on the graph. Now when we come to the 
27.5 % of graves in the one grave-good category we add or accumu-
late these onto the 15.6% in the zero category, so we have 15.6 + 
27.5 = 43 .1%, which is the value for the one grave-good category, 
which can also be marked on the graph. The value tells us that 
43.1 % of the graves have one grave good or less. We do this for all 
the categories in turn until the full 100 % of graves has been accumu-
lated : 

43.1 + 23.9 = 67.0 
67.0 + 15.6 = 82.6 
82.6+ 11.9 = 94.5 
94.5 + 5.5 = 100 

When the points have all been put in on the graph we can join them 
up and the resulting line is the cumulative curve shown in figure 3.9. 
This represents the shape of the cumulative distribution. 

Simply as a means of representing the shape of the distribution of 
a single variable it may seem rather complicated and unnecessary. 
Why not use a bar chart ? The answer is that it really comes into its 
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own in making comparisons between distributions. Bar charts, with 
their varying patterns of bar heights, are rather difficult to compare 
visually. With the continuously rising line of the cumulative curve, 
similarities and differences between distributions are much more 
readily apparent. 

This form of presentation is obviously truly meaningful only if 
there is a real ordering on the horizontal axis, that is, if we are 
dealing with data measured at an ordinal scale or above. If the level 
of measurement is nominal, any ordering will be arbitrary, as we 
have already mentioned, and the shape of a cumulative curve based 
on any such orderings equally arbitrary ; it would be possible to play 
around with the data to produce a curve of some desired shape. 
Nevertheless, if a fixed order of presentation of the categories is 
adopted when comparisons are being made, cumulative curves can 
and have proved helpful in the presentation of nominal data such as 
paleolithic assemblages described in terms of numbers or percen-
tages of particular artefact types : they should simply be used and 
viewed with caution. 

The techniques described in this chapter have provided you with 
the basic tools for describing data distributions by pictorial means. 
As such, they may be used whenever we want to present a summary 
account of some results, or to have a first look for any patterning 
present in the data. Study of such distributions and their implica-
tions is also a prerequisite step before the use of many of the 
statistical methods to be described in this book. 

EXERCISES 

3.1. The following are the figures for the number of sherds of 
different pottery types from the henge monument at Mount Pleas-
ant, Dorset, England (data from Wainwright 1979). Represent 
them by means of a bar graph and a pie chart and say which you 
prefer. 

Neolithic plain bowl 391 
Grooved ware 657 
Beaker 1695 
Peterborough ware 6 
Bronze Age 591 

3.2. The sizes (in hectares) of a number of Late Uruk settlement 
sites in Mesopotamia (data from Johnson 1973) are as follows : 

45.0 37.0 34.8 52.0 75.0 86.0 59.7 74.0 32.0 
57.7 65.0 86.0 37.0 38.4 90.5 45.0 67.0 50.0 
33.0 30.0 43.2 32.0 35.2 54.5 43.1 



32 Quantifying Archaeology 
Use an appropriate graphical method to represent these data. Does 
there seem to be any pattern in the distribution of settlement sizes ? 
Does it change if you use a different width interval ? 

3.3. Draw a cumulative percentage frequency distribution of the 
following data on the age at death of the individuals buried in a 
prehistoric cemetery. 

Age 
category 
Infans i 
Infansn 
Juvenilis 
Adultus 
Maturus 
Senilis 

No. of 
burials 

10 
16 
10 
32 
34 
4 



Four 

Numerical Summaries 
of a Single Variable 

The last chapter examined methods of graphical representation for 
distributions of observations measured at different levels. This one 
considers numerical summaries of information. I would be the first 
to agree that this is not intrinsically a very exciting topic, but there 
are two main reasons why it cannot be neglected. The first is that 
such summaries are becoming an increasingly important element of 
published descriptions of archaeological work. Modern excava-
tions, for example, often produce so many finds of certain cate-
gories that the only way in which the information may be presented 
in a form sufficiently compact to be published, is in some kind of 
graph, with an associated numerical summary. Presenting informa-
tion in this form is not to dehumanise archaeology but simply to 
offer in a publishable and comprehensible fashion the information 
on which inferences have been based, so that readers may have an 
opportunity of evaluating it. This presupposes, of course, a reader-
ship sufficiently educated to do so, a requirement which is vital for 
the future progress of archaeology. 

The second reason for a concern with numerical description is 
that, on the whole, the methods to be described later in this book, 
which are concerned with the much more interesting questions of 
identifying patterns and relationships between variables, depend 
on the use of the descriptive measures now to be introduced. 

It is important to remember that what we were doing with our 
graphical methods was summarising data ; we were forgetting about 
individuals, individual sherds, pieces of chipped stone or whatever, 
and attempting to obtain some kind of overall picture of general 
trends in the data distribution. Although a picture or diagram of 
some kind may very often give us the summarised information we 
want, it is sometimes useful to reduce a data set still further, simply 
to one or two numbers, or descriptive statistics. This will be particu-
larly useful when we want to make comparisons, for example be-
tween sets of data from different sites. On the other hand, reduction 

33 
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to one or two simple numbers can be potentially risky. When a lot 
of information is reduced to one or two numbers there is a greater 
danger of being misled, than when you have a graphical picture of 
the data in front of you. The conclusion to be drawn from this is that 
even if you are summarising data numerically you should always 
look at them graphically as well. 

For nominal scale variables the matter of numerical summary is 
essentially trivial. We have our different categories, for example 
animal bones classified by species, or pots divided into types, and 
we can express the relations between the categories in terms of the 
percentages of the different categories in the assemblage ; we might 
refer to the most common, or modal, category. Once this has been 
done there is little more to be said as far as summary description is 
concerned. 

When we consider variables measured at interval scale and 
above, and require a best numerical summary of the information at 
our disposal, a number of different questions may be asked. To 
summarise the information fully, in fact, we need to measure four 
different aspects of the bar graphs or histograms that we have seen. 
These are : 

i) Central tendencyy or what is a typical individual? 
ii ) Dispersion, or how much variation is there ? In a picture like 

figure 4.1(a) a typical individual is much more representative than 
in a distribution like figure 4.1(b). 

(a) (b) 

ΓΤΤΤίΤΐ MÎTTTH 
Figure 4.1. Two distributions in which there is 
(a) very little, and (b) a great deal, of dispersion 
round the central value. 

iii ) Shape, which has two aspects : 
(iiia) is the distribution symmetrical or not? Figures 4.2(a), (b) 

(a) (b) (c) 

l î Î ln- i Γ^ΤΠΤ 
Figure 4.2. Examples of distributions of different shapes. 
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and (c) indicate some of the possibilities. In both the latter two 
cases the distribution is said to be skew. In (b) it is skew to the right 
- it has a long tail extending to the right. In (c) it is skew to the left 
- the tail is to the left. 

(b: 

r 

1 

~l 
Figure 4.3. Examples of distributions with 
different length tails. 

( iiib ) The second aspect of shape concerns the length of the tails 
of the distribution, illustrated in figures 4.3(a) and (b). The degree 
of dispersion of these two distributions is fairly similar, but one has 
longer tails than the other. The length of the tails of a distribution 
is referred to as its degree of kurtosis. Distributions with long tails 
are leptokurtic and distributions with short tails are platykurtic. 

In fact, the measures of shape figure much less prominently than 
the measures of central tendency and dispersion in most statistical 
applications, although the question of skewness is of great signifi-
cance, usually as a problem to be overcome (see chapter 8). How-
ever, one area where measures of skewness and kurtosis are of 
interest in their own right is in the field of particle size analysis. An 
example of such analysis in the field of archaeology would be the 
description and comparison of pottery fabrics in terms of the distri-
bution of different sizes of inclusions (e.g. Peacock 1971 ). 

MEASURES OF CENTRAL TENDENCY 

Now that these descriptive characteristics have been listed we can 
look at the question of central tendency in more detail. There are 
several ways of measuring this, and the same is true for dispersion. 
The best known and most commonly used measure of central ten-
dency is the arithmetic mean, defined as the sum of the scores 
divided by the total number of cases. 

Let us take as an example the diameters of seven of the Mount 
Pleasant post-holes listed in the previous chapter. 

48 + 57 + 66 + 48 + 50 + 58 + 47 = 374 
There are seven post-holes here so we divide 374 by 7 to give 53.4 
cm as the mean diameter for this set of post-holes. We are, in effect, 
saying here that a typical post-hole is 53.4 cm in diameter. No 
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post-hole is really 53.4 cm in diameter but this value is somewhere 
in the middle of all of them. In fact, the mean represents the centre 
of gravity of the distribution and has the specific property that the 
sum of the deviations of the individual scores from the mean is 
always zero. That is, if we take each of our observations, subtract 
the mean from each in turn and add up all the resulting differences, 
the answer will be zero. Thus : 

(48 - 53.4) + (57 - 53.4) + (66 - 53.4) + (48 - 53.4) 
+ (50 - 53.4) + (58 - 53.4) + (47 - 53.4) 

= (-5.4) + 3.6 + 12.6 + (-5.4) + (-3.4) + 4.6 + (-6.4) 
= 0.2 

(This result is not exactly zero because of rounding error in the 
calculations.) 

Here it is necessary to digress slightly. A verbal description has 
just been given of how to obtain an arithmetic mean, and the 
property which characterises it ; this description has been supple-
mented by a numerical example. However, if we want to specify 
general rules for doing operations on numbers it is much more 
convenient to use mathematical symbolism. Symbols are an essen-
tial part of mathematics and they are probably the single most 
off-putting factor for people not naturally attracted to the subject. 
The main thing to remember about symbols is that they are simply 
a form of short-hand notation which can be easily manipulated. 

Let us now have a look at the symbolism that relates to the 
arithmetic mean, which is conventionally expressed by x (called 
x-bar). We can say in general that : 

X\ i Λ*2 i X3 1 . . . 1 Xn 

X = 

n 
where χλ is our first observation, x2 the second observation, and so 
on. In the particular case of the post-holes : 

χλ = 48 x2 = 57 
x3 = 66 x4 = 48 
x5 = 50 x6 = 58 
JC7 = 4 7 

There are seven observations here, n = 7, and the last observation 
is the seventh ; so here xn = x7 = 47. 

But we can summarise conveniently still further and say 
X] T" X2 1 X3 "Γ . . . "r Xn ±-'^i 

n n 



Numerical Summaries of a Single Variable 37 
Here xt stands for any of our x values. Σ is the upper case Greek 
letter sigma and stands for summation. So we are being told to add 
up some x's. Which JC'S? The subscript and superscript of the Σ tell 
us which ones ; they give us the range over which we are summing, 
from the first x to the nth x, or / = 1 to n. In the post-hole example 
there are seven x values which we want to add up, so we have 

7 

ΣΧ; 
i =l « 

When we have done the addition we divide by the number of 
observations n, again 7 in the example, to arrive at our value for x. 

If the numbers which we have to add up - the range of summation 
- is obvious then we might leave out the subscript and superscript 
and simply write 

ΣΧΪ 

You will meet this notation all the time in statistics and it is very 
important not to be put off or intimidated by it. Notation and 
symbolism are only a convenience, to make things easier for you. 
We can now return to the main theme, making use of this symbolic 
notation. 

Calculation of the mean in the way just described is an easy 
matter when you have only small numbers of observations. Once 
you have large numbers of observations it becomes tedious even if 
you use a calculator, because you have to enter so many numbers ; 
furthermore, the probability of making mistakes in data entry also 
rises. When you want to calculate a mean and have a large number 
of observations, it is generally best to group the data into a fre-
quency distribution, as you probably have done anyway to produce 
a histogram or bar graph. The formula for the mean then becomes 

x = 
n 

where ft is the number of cases in the ith category, n = Σ/), χέ is the 
value of the /th category, and k is the number of categories. 

As an example, let us suppose once again that we are concerned 
with graves and grave goods and want to find the average number 
of grave-good types in a group of graves. The data are shown in 
table 4.1, whence x = 215/67 = 3.2. Thus the average number of 
goods types per grave is 3.2. 

When dealing with a set of continuous numeric values the situa-
tion becomes slightly more complicated, because observations with 
differing values will have been grouped together to form the bars or 
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Table 4 A. 

No. of No. of 
goods types graves in 

in graves category 
(*/) 

1 
2 
3 
4 
5 

k = 5 

(//) 

1 
22 
15 
20 
9 

M=67 

fat 

1 
44 
45 
80 
45 

Σ / Λ - = 2 1 5 

categories of the frequency distribution. In this case the x value for 
each category is given by the midpoint of that category. The figures 
for the vessel-capacity data illustrated in the previous chapter are 
shown in table 4.2, whence x = 41100/40 = 1027.5. The mean 
capacity for this group of vessels is 1027.5 ml. 

Table 4.2. 

Boundaries 
of capacity 
classes (ml) 

900-949.99 
950-999.99 
1000-1049.99 
1050-1099.99 
1100-1149.99 
1150-1199.99 

Midpoint 
of capacity 
classes (ml) 

(Xi) 

925 
975 

1025 
1075 
1125 
1175 

k (no. of categories) = 6 

No. of 
vessels ir 

class 
(fi) 

4 
10 
13 
8 
3 
2 

M = 4 0 

1 

Jifar-

fai 

3700 
9750 

13325 
8600 
3375 
2350 

= 41100 

That completes our account of the arithmetic mean, but there are 
other measures of central tendency of a distribution to be con-
sidered. One important one is the median, which plays a vital role in 
the exploratory data analysis approach to the numerical description 
of distributions presented later in this chapter. The median is the 
value such that half of the observations are above it and half below 
it. Obviously, if we want to find such a value we have to arrange our 
observations in ascending or descending order of size, in other 
words in rank order ; it is therefore possible to calculate the median 
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for ordinal as well as interval and ratio data. 

Let us look again at the post-hole diameters, which were as 
follows : 48, 57, 66, 48, 50, 58, 47 cm. The first step is to put them in 
order, smallest to largest (or the reverse) : 47, 48, 48, 50, 57, 58,66 
cm. If we are interested in the value such that half the observations 
are above it and half below, then obviously we want the middle 
value. Here we have seven observations. If we count along to the 
fourth one, from either end, we find 50, which is the median and has 
three observations below it and three above. If the number of cases 
is odd then the median will be the score of the middle case. If the 
number of cases is even then clearly there will not be a middle case, 
so the median is taken to be the mean of the two middle cases. 

Suppose there were just six post-hole diameters: 48, 48, 50, 57, 
58, 66 cm. In this case the median would be between 50 and 57, the 
mean of which is 107/2 = 53.5 cm. For ordinal scale data the median 
rank may be calculated. 

Finally, the mode should be mentioned. This is simply the most 
common or frequent value and obviously applies to nominal scales 
as well. In the grave-good example above (table 4.1) the modal 
value is 2, in the vessel-capacity example (table 4.2) it is the class 
1000-1049.99 ml. It is clearly impossible for a mode to exist unless 
we already have a frequency distribution of some sort, a point 
which is particularly relevant to continuous numeric data, where 
two observations will hardly ever have the same value. 

HM ΓίττΤΉ ΜΊ H ih-Hii ΓΚπ 
Figure 4.4. An example of a Figure 4.5. A distribution with 
bimodal distribution. a main and a subsidiary mode. 

It is possible for a distribution to have more than one mode 
(figure 4.4) or to have a main mode and a subsidiary one (figure 
4.5). It is perhaps worth emphasising that if a distribution is bi-
modal, or has a mode and a major subsidiary mode, then providing 
a single measure of central tendency or dispersion for it is meaning-
less and totally inappropriate. You must either give the two modes 
or, preferably, split the distribution into its constituent parts and 
calculate the relevant measures for each part separately (see Mel-
lars and Wilkinson 1980 for an example of the analysis of bimodal 
data in archaeology). 
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In the case of the post-hole diameters we might be particularly 

interested to see if there was more than one mode in the data since 
that might suggest that different thicknesses of posts had different 
functions. If we simply had variation around a single mode it might 
merely indicate the degree of success the builders had in finding 
timber of the right size for one single purpose, or the flexibility of 
their specifications. 

How do these different measures of central tendency compare 
with one another? To some extent the one we will use will depend 
on what we are trying to do ; but in general, if we have nominal or 
ordinal data then we do not have much choice, while for interval 
and ratio data the most frequently used measure of central tendency 
is the mean. 

The mode simply gives us the most common value, but does not 
tell us where it lies in relation to the other values. The mean uses 
more information than the median, in the sense that all the exact 
scores are used in computing it, whereas the median uses only the 
relative positions of the scores. Very often it is desirable to make 
use of all the information available, so the mean is to be preferred. 
In fact, if the distribution is symmetrical, the mean, the median and 
the mode all coincide. If the distribution is very skew, however, the 
situation changes significantly. Suppose, for example, that in the 
case of the vessel capacities illustrated in figure 3.4 one of them had 
a volume of 2500 ml. Such a distribution would be skew, with one 
observation a long way over to the right. In this case the mean 
vessel capacity would change considerably ; it would be pulled over 
to the right and move away from the bulk of the observations, and 
as a result it would not be very representative. The median on the 
other hand would hardly be affected at all in such a case ; it would 
be much more representative of the mass of observations. 

From this you can see that we cannot consider the question of 
central tendency - what is a typical individual - in isolation, but we 
have to think about the shape of the distribution as well. It is always 
helpful to know what the frequency distribution of your data looks 
like, not least if you intend to go on to use complex statistical 
methods, because if the distribution has any peculiarities of shape 
or dispersion you need to know about them. 

MEASURES OF DISPERSION 

If data are widely dispersed then a simple measure of central ten-
dency will not be such a 'typical' value as it is when data are 
narrowly dispersed ; this point was illustrated in figure 4.1. 
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There are several ways of quantifying dispersion. The simplest is 

the range, the difference between the highest and the lowest scores 
in the data under consideration. Its disadvantage is that it is based 
on only two cases and those the two most extreme ones. Since 
extremes are likely to be the rare or unusual cases, almost by 
definition, it is usually a matter of chance if we happen to have one 
or two very extreme observations in our sample. For this reason the 
range is not particularly satisfactory as a measure of dispersion. 

More useful is a quantity known as the inter-quartile range. Just 
as we can specify the median of a distribution as that value such that 
50 per cent of the observations fall below it and 50 per cent above 
it, so one can define the first and third quartiles of a distribution of 
data values measured at an ordinal scale or above. The first quartile 
is that value which has 25 per cent of the observations below it and 
75 per cent above it, while conversely the third quartile is that value 
which has 75 per cent of the observations below it and 25 per cent 
above it. The difference between the value of the first and third 
quartiles, the middle 50 per cent of the distribution, is known as the 
inter-quartile range. Obtaining it is clearly directly analogous to 
obtaining the median, and its properties likewise, in the sense that 
only the rank order of the observations is taken into consideration 
and the existence of very large or very small values at either end of 
the distribution will not make any difference. We will look again at 
the inter-quartile range below (p. 44) but can note for the moment 
that it has found occasional use in the archaeological literature 
(e.g. Ottaway 1973). 

Since the inter-quartile range only makes use of the rank-order of 
the observations, if the data are measured at an interval scale, or 
above, information is being lost - the exact scores of the observa-
tions are not being used. It has been usual to take the view that it is 
preferable to make use of all the information available when calcu-
lating a measure of dispersion, in the same way as when using the 
mean as a measure of central tendency; but, as with the mean, 
there are occasions when using all the information can give a posi-
tively misleading result, depending on the shape of the distribution 
(see p. 44). However, if we are using the mean as the measure of 
central tendency the obvious thing to do is to take the sum of the 
deviations of the observations from the mean as a basis for measur-
ing dispersion. Unfortunately, as we have already seen, this will 
always be zero, since the positive and negative differences cancel 
out one another. There are two ways round this problem : either we 
can ignore the sign and take the absolute value of the differences ; 
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or we can square the differences, remembering that a minus times a 
minus equals a plus so that all quantities become positive ones. 

In fact, the second solution is much more often adopted: the 
measure of dispersion is based on squaring the differences between 
the mean and the values of the individual observations and is 
known as the standard deviation, s : 

In words, we take the deviation of each score from the mean, 
square each difference, sum the results, divide by the number of 
cases minus one, and then take the square root. The result is that 
the greater the dispersion in the distribution, the larger the standard 
deviation. If we stop before taking the square root we have the 
variance, s2, the average (or mean) of the squared differences 
between the mean and the data values. Because the variance is a 
squared quantity it must be expressed in units which are the square 
of the original units of measurement. More often than not when 
describing a distribution it is desirable to have the dispersion mea-
sured in the same units as the original measurements, so the stan-
dard deviation tends to be intuitively more meaningful than the 
variance. For instance, if we wanted to know the degree of disper-
sion around the mean value of the length of a set of flint blades, then 
if we were measuring them in millimetres we would want dispersion 
measured in millimetres and not square millimetres. 

The variance/standard deviation plays an extremely important 
role in many statistical tests and for that reason is the most impor-
tant measure of dispersion for sets of data for which it is an informa-
tive measure, that is to say, distributions which are unimodal and 
symmetric. Some of the problems with it will be considered below 
but before turning to them it is necessary to look again at how to 
calculate it because the formula given above is laborious to use if 
you have many observations. Such difficulties present less of a 
problem nowadays because of the sophistication of modern calcu-
lators but it is probably still worth giving one of the versions of the 
formula that are easier to compute : 

Let us work out the standard deviation of the seven post-hole 
diameters, using both versions of the formula. 

We have already seen that 



Numerical Summaries of a Single Variable 43 

where xt is the value of the ith category,/) is the number of observa-
tions in the /th category, k is the number of categories and n is the 
total number of observations. 

The precise significance of the standard deviation as a measure of 
dispersion will be considered in chapter 8 when we turn to the 
'normal' distribution, a special bell-shaped distribution that statisti-
cians have found very useful; for the moment, however, we can 
note that, given a unimodal symmetric set of data, it tells us what is 
a 'typical' deviation from the data mean. In the case of our post-
holes a typical deviation from the mean is 7.1 cm. 

Sometimes we may want to make comparisons between sets of 
data in terms of their dispersion. For example, if we were studying 
standardisation of lithic core production in prehistoric quarries we 
might want to know if the sizes of cores from one quarry were more 
variable than those from another, perhaps to try and make infer-
ences about different degrees of craft specialisation. Very often, 
the larger the mean, the larger the standard deviation, so that if one 
quarry produced large cores and the other smaller ones, the distri-
bution of core sizes from the former might well have a larger 
standard deviation for this reason, rather than because production 

Using the first formula the sum of the squared deviations is 

Before illustrating the second method, and making sure we get the 
same result, it is important to be clear about the difference between 
the terms Σχ? and (Σχ,)2 in the formula. In the first case we are 
being told to take each x value, square it and sum all the squared 
values. In the second case we are being told to sum the x values and 
square the total. These give different results ! Now 

If we are dealing with grouped data the formula for the standard 
deviation is 
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was less standardised. We can get rid of this effect by using the 
coefficient of variation, simply the standard deviation divided by the 
mean; sometimes the result is multiplied by 100 to make it a 
percentage. This gives us a standardised measure of dispersion. 

THE EXPLORATORY DATA ANALYSIS VIEW 

OF NUMERICAL SUMMARIES: ROBUST DESCRIPTIONS 

OF CENTRAL TENDENCY AND DISPERSION 

Traditional mean-based numerical summaries are regarded with 
some suspicion by the exploratory data analysis approach, which, 
as we have seen, places considerable emphasis on the importance of 
good visual displays. Since such summaries are often convenient 
and necessary, however, the emphasis is on their being as robust as 
possible. In other words, they should do what they purport to do, 
give accurate summaries in a wide variety of different situations, 
not just under a very restricted set of assumptions ; in particular, 
they need to be resistant to changes in just one or two values in the 
distribution as a whole. If we are seeking robust summaries of 
central tendency and spread of a distribution, the mean and stan-
dard deviation are not very satisfactory, since their usefulness is 
restricted to distributions which are unimodal and symmetrical. In 
other circumstances the median and the inter-quartile range are 
likely to give a better indication of the value of a typical observation 
and the degree of dispersion around that value. This is the view 
taken by the ED A approach, although many of its advocates prefer 
to use the term 'midspread' rather than inter-quartile range, and 
refer to the lower quartile value as the 'lower hinge' and the upper 
quartile value as the 'upper hinge' of the distribution. 

The use of the median and inter-quartile range can be extended 
to produce a numerical summary of a distribution consisting of the 
values of the median, upper and lower hinges and maximum and 
minimum values of the distribution, together with a note of the 
intervals between them. For the 35 post-hole diameters it would 
look like this : 

Lower Upper 
Min hinge Median hinge Max 
25 38.5 44 48 66 

Intervals 13.5 5.5 4 18 

To this we can also add the distances between the minimum and the 
median (the 'lowspread'), between the lower and upper hinges 
(the inter-quartile range or midspread), and between the median 
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and the maximum value (the 'highspread'), thus: 

25 38.5 44 48 66 

13.5 5.5 4 18 

19 9.5 22 

We can now see at a glance, for example, that the size difference 
between the smallest post-hole (25 cm) and the lower hinge value 
(38.5 cm) is 13.5 cm, while from the lower hinge to the median 
(44 cm) it is only 5.5 cm ; the difference between the minimum and 
median is therefore a total of 19 cm. 

To find out whether the distribution is approximately bell-shaped 
or not, and therefore, for example, whether it might be appropriate 
to go on to use the normal-theory-based statistics discussed in 
chapter 8 and later chapters of this book, we can do a few quick 
checks on these numbers (Hartwig and Dearing 1979, 23). If the 
distribution is symmetrical and bell-shaped : 

1. The lowspread and the highspread will be equal. 
2. The distances from the lower hinge to the median and from the 

upper hinge to the median will be equal. 
3. The distances between the lower hinge and the minimum value 

and between the upper hinge and the maximum value will be equal. 
4. The distances from the median to the hinges will be smaller 

than those from the hinges to the extremes because of the concen-
tration of the cases in the middle part of the distribution. 

On the basis of these criteria it would seem that the post-hole 
distribution is quite close to 'normality', as indeed it appears from 
the shape of the stem-and-leaf histogram of these data (see figure 
3.7) but, as we shall see, this form of numerical summary does not 
give as much weight as it might to the distribution tails and these 
need to be investigated as well. 

Numerical summaries of the kind we have just seen may be 
contrasted with visual summaries of a distribution, as opposed also 
to the more complete visual representation of the stem-and-leaf 
diagram. When distributions are of an unusual shape this is very 
often particularly apparent in the tails, and may be revealed by the 
form of visual summary known as the box-and-whisker plot. 

A box-and-whisker plot for the Mount Pleasant post-holes is 
illustrated in figure 4.6. The left-hand side of the box is at the lower 
hinge of the distribution, the right-hand side at the upper hinge, 
and the vertical line marks the median. The box thus contains half 
the cases in the distribution. The crosses mark the cases furthest 
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Figure 4.6. Box-and-whisker plot of the diameters 
of 35 Mount Pleasant post-holes. 

from the box at either side but still within one* midspread of the 
nearest hinge. Beyond this, cases are marked individually. 

In a normal distribution 95 per cent of all cases will lie within the 
range defined by the endpoints (crosses) of the whiskers, so a 
distribution with much more than five per cent of the values outside 
this range is beginning to depart from normality (see Hartwig and 
Dearing 1979, 24). In the case of the Mount Pleasant post-holes 
(figure 4.6) we see that 5 out of the 35 observations, or just over 14 
per cent, fall outside this range, which suggests that the picture they 
present us with is not after all completely straightforward. In this 
case there are 3 post-holes which are extremely small and 2 which 
are extremely large, in relation to the rest of the distribution. In a 
real study an obvious next step would be to identify these on the site 
plan and investigate whether they appear to have to have any 
special functional role. 

Stem-and-leaf displays and box-and-whisker plots are both avail-
able on the M IN IT AB statistical package (see appendix 2), which 
certainly provides one of the easiest ways of obtaining them. As you 
have seen, the two techniques differ in that stem-and-leaf displays 
give a complete visual picture of the data, while box-and-whisker 
plots sacrifice this for the sake of applying, as it were, a magnifying 
glass to the distribution tails to see if they depart from normality. 
Box plots can be particularly useful when making comparisons 
between different sets of data because it is possible to see immedi-
ately if there is any asymmetry in the main bulk of the observations, 
and whether some sets have more extreme observations than 
others. The reasons for the differences can then be followed up. 

A combination of stem-and-leaf displays, number summaries 
and box-and-whisker plots will soon reveal any peculiarities of 
distribution shape. When such shape peculiarities as skewness, 
multiple peaks or the presence of outliers (values very different 

* On M IN IT AB the ends of the whiskers are at 1.5 midspreads 
from the nearest hinge. 
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from the bulk of the observations) do exist, the shape of the 
distribution, rather than its central tendency or dispersion, is likely 
to be its most important characteristic ; relying simply on central 
tendency and dispersion as summary measures of a distribution can 
cause you to miss the most important characteristic of a set of 
observations. Furthermore, if you do not know about the distribu-
tion shape, then it is impossible to tell whether, or in what way, the 
measures of central tendency or dispersion are misleading ; shape is 
relevant to the choice of appropriate measures for these. Finally, 
remember that shape is best perceived visually. 

The importance of considering the shape of the distribution can-
not be emphasised too strongly. It is surprising how many people go 
astray by ignoring the basic rules of studying the visual and numeri-
cal summaries of the individual variables they are studying even 
when they actually know them. 

EXERCISES 

4.1. Refer to the data on Uruk settlement sizes in exercise 3.2. (a) 
How would you describe the shape of the frequency distribution of 
these data? (b) What do you think would be the most appropriate 
measures of (i) central tendency, (ii) dispersion? (c) Calculate 
these measures. 

4.2. Below is a list of the lengths (in metres) of some neolithic 
burial mounds from southern England. Analyse this distribution 
using the techniques described in this chapter and the preceding 
one and discuss your conclusions. 

33 30 36 60 70 95 75 63 60 
34 58 72 70 44 35 71 51 36 
60 98 49 70 61 81 74 64 51 
95 69 56 37 31 58 51 51 52 
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An Introduction to Statistical Inference 

Now that we have covered some of the basics of descriptive statistics 
we can start looking at statistical inference and the use of statistical 
methods of comparison in archaeology. It should be said right at the 
start that statistical inference is by no means conceptually straight-
forward, and that the issues raised by its role in archaeology are 
controversial ones (see e.g. Cowgill 1977). There are two rather 
different contexts in which these topics impinge on archaeology and 
it is worth trying to keep them notionally separate from one another 
to start with, even though they are closely related. 

First, and conceptually more straightforward, is the case where 
the archaeologist is in control, actually carrying out a selection 
process in the course of an archaeological project. Rarely do archae-
ologists have the resources to investigate everything in which they 
are interested, whether whole regions, complete sites, or total 
assemblages of artefacts. Normally they can investigate only part of 
their population of interest and would like that part to be represen-
tative of the total if at all possible. Provided that aims are clearly 
formulated, concepts of statistical inference can be extremely useful 
in the selection of a sample which will provide results whose reliabil-
ity and precision we can assess. There is a relatively well-defined set 
of problems involved here, usually included under the heading of 
sampling in archaeology, and for the most part left to be discussed 
below in the chapter which deals with this topic. 

The second main context in which statistical inference can be 
relevant arises from the process of comparison. Is the density of 
sites in area A the same as that in area B ? Is the proportion of 
pottery type X the same at site Y as at site Z ? Do rings of type S 
tend to occur more often in female burials than in male burials at 
cemetery T? Archaeological questions are quite often of this form, 
either comparisons between different sets of data, as in the ex-
amples just given, or comparisons between an observed set of data 
and the expectations derived from a theoretically-based model : for 

48 
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example, whether a distribution of sites differs from randomness or 
not. 

In the instances just listed it is unlikely that the two sites, regions 
and sexes will have exactly the same values in each case for the 
variable concerned. In any comparison between two cases there 
will almost always be some difference between them, however 
slight. The question which then arises is, how great does the differ-
ence have to be before we start taking it seriously and acting on the 
assumption that it is a 'real' one ? This seems to be a perfectly valid 
question to ask and the discipline of statistics appears to provide a 
way of answering it in any given case, by means of significance 
testing. In order to see how this works it will be necessary to 
describe the theory behind it, in the abstract, before going on to 
look at its use in archaeology. It may be as well to state here, 
however, that I think significance testing does have a role, but it is 
by no means the only or even the main justification for the applica-
tion of quantitative methods in archaeology. 

SAMPLES AND POPULATIONS 

Statistical inference concerns the problem of making decisions in 
the face of uncertainty ; this uncertainty is quantified by means of 
probability theory. The inferences are about 'populations' and the 
uncertainty arises because they are made from samples of those 
populations. Precisely what the populations are in the case of 
archaeology is a matter for discussion (see below). There are two 
main aspects of statistical inference, hypothesis testing and estima-
tion (see Cowgill 1977). There is in fact quite a close connection 
between the two, but in general terms the first involves testing some 
idea about the population, the second involves estimating the value 
of some characteristic of the population on the basis of the sample 
data, or providing upper and lower limits within which the value 
may be expected to lie. The presentation of radiocarbon dates is the 
classic example in archaeology of this latter procedure. In both 
cases what we want to do is in effect to say something about some 
aspect of a population on the basis of a sample drawn from it. 

The characteristics of a population are known as parameters ; the 
characteristics of a sample are known as statistics, and it is important 
to make a clear distinction between the two. Population characteris-
tics are generally given as Greek letters, sample statistics by ordin-
ary lower case letters. Thus the population mean is designated by 
Greek μ ( mu ) and the sample mean by x ; the population standard 
deviation by σ (sigma) and the sample standard deviation by s. 
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Parameters are fixed values referring to the population and are 

generally unknown; for example, the mean rim diameter of all 
vessels of type Y from site X. Statistics on the other hand vary from 
one sample to the next and are known or can be obtained ; for 
example, the mean rim diameter of the vessels from trench A or 
trench B at site X. On the other hand we do not know how repre-
sentative the sample is of the population, or how closely the statistic 
obtained approximates the corresponding unknown parameter, 
and our goal is usually to make inferences about various population 
parameters on the basis of known sample statistics. 

In tests of hypotheses we make assumptions about the unknown 
parameters and then ask how likely our sample statistics would be 
if these assumptions were actually true. We attempt to make a 
rational decision as to whether or not our assumptions about the 
parameters are reasonable in view of the evidence at hand, so 
hypothesis testing is a kind of decision-making. The two types of 
questions most commonly found in hypothesis testing are : 

1. What is the probability that two (or more) samples are drawn 
from different populations ? 

2. What is the probability that a given sample is drawn from a 
population which has certain defined characteristics ? 

This is clearly a rather restricted sense of the general idea of 
hypothesis testing. In particular, as both these questions indicate, 
hypotheses are statements which are defined in terms of clear 
expectations about the data and are therefore potentially reject-
able. We reject or fail to reject the hypothesis realising that since 
our judgement is based only on a sample, we have always to admit 
the possibility of error due to the lack of representativeness of the 
sample. Probability theory enables us to evaluate the risks of error 
and to take these risks into consideration. 

In general we start off by testing what is called the null hypothesis : 
the hypothesis of no difference. To refer back to the two questions 
above, we start with the assumption that our two or more samples 
are in fact drawn from the same population ; or, that our sample 
really is drawn from a population with the characteristics which we 
have specified. Clive Orton (1980) presents this in the form of the 
question, 'Is there a case to answer?' What is at issue is best 
illustrated by a straightforward example. Suppose we want to com-
pare the densities of archaeological sites in two different areas : are 
they different or not? The usual procedure is to set up a null 
hypothesis stating that there is no difference between the two areas 
in their average densities of sites ; one then proceeds to examine the 
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evidence against this hypothesis of no difference. 

If we imagine our two areas divided into one-kilometre squares 
then it is highly unlikely that every square in each of the two areas 
will have an identical number of sites. There will be considerable 
differences from one to the next, so that if one randomly picked ten 
squares from one area and calculated the mean density of sites for 
those ten squares, and did the same for ten squares from the other 
area, the means of these two samples could be quite different from 
one another even if the population mean densities (the mean den-
sities for all the squares in each of the two areas) were identical. 
This would happen if, by chance, one picked ten squares from a 
thinly occupied part of one of the areas and ten squares from a 
densely occupied part of the other. Such chance or stochastic sampl-
ing effects are explicitly built into statistical tests and are therefore 
taken into account when we make our decision, on the basis of the 
test, about whether or not the population (as opposed to the sam-
ple) mean densities really are different from one another. 

Usually, the null hypothesis, H0 as it is designated symbolically, 
is compared to the alternative hypothesis, Hi. For the moment we 
can say that this alternative hypothesis is simply the hypothesis that 
there is a difference, it says nothing about what size or type of 
difference exists, although this point will have to be qualified below. 
It is commonly but not invariably the case in statistical analysis that 
we wish to reject the null hypothesis and accept the alternative, 
although occasionally the null hypothesis is set up in the hope that 
it is true. 

If we are going to make a decision about whether or not to reject 
the null hypothesis, what criterion do we use as the basis for making 
it, bearing in mind the chance effects that can arise when samples 
are selected from populations? Essentially, we look at the values 
for our two samples, note the difference between them, and ask 
how probable it is that a difference this large could occur if they 
were really two samples from the same population. If the probabil-
ity of the difference being as large as it is, is very small (on the 
assumption of no difference), we reject the assumption and infer 
that there is a difference. This probability is known as the level of 
significance, denoted symbolically by the Greek letter a (alpha). 

It is up to the investigator to decide on the level of significance 
which is acceptable. This means deciding how improbable a result 
has to be under the assumptions of the null hypothesis (the hypo-
thesis of no difference) before that hypothesis is rejected. Nor-
mally, before we go as far as rejecting the null hypothesis we want 
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the probability of it being valid, given the results, to be very small, 
so that some confidence can be placed in our rejection of it. 

By convention the two most commonly used significance levels 
are a = 0.05 and a = 0.01. When we select a significance level of 
0.05 it means that we have decided to accept the null hypothesis as 
true unless our data are so unusual that they would only occur five 
times out of 100, or less, if the null hypothesis (the hypothesis of no 
difference) were true; in which case we would reject it. In other 
words, if we drew 100 pairs of samples from two identical popula-
tions and noted the difference between their values, only five of the 
differences, on average, would be as large as that observed. In these 
circumstances we would decide that the results are such that it is 
highly improbable that the null hypothesis is true. Similarly for the 
0.01 significance level, except that this time we are asking for the 
results to be so unusual that they would only occur once in 100 
times, or less, under the null hypothesis before we would decide to 
reject it ; that is to say, if the hypothesis of no difference is true then 
we would expect such a result only once in 100 or less. 

Of course, it is perfectly reasonable to use other levels of signifi-
cance. If the decision is one of critical importance you may only 
want to take the chance of being wrong once in 1000. 

On the basis of this discussion you may think that the obvious 
thing to do is always to go for very conservative levels of significance 
- only rejecting the null hypothesis if the probability of it being 
valid is one in 1000 or less. But there is a catch to doing this, because 
if you insist on only rejecting the null hypothesis under very extreme 
circumstances, then you run a considerable risk of accepting the 
null hypothesis when it is in fact false, the converse error of the 
other. 

Rejecting the null hypothesis when in fact it is true is known as a 
'type i error'. This is a 'sin of commission' in statistical terms be-
cause it means that a significant relationship or difference is being 
claimed when none really exists. Accepting the null hypothesis 
when it is false is known as 'type π error', and represents a failure 
to identify a significant relationship or difference where one actually 
does exist. In most circumstances it is more serious to make a type 
i error - claim a relationship when none exists - than to fail to 
identify a significant relationship. 

In setting a significance level you decide on the probability you 
are prepared to accept of making a type i error. It is the seriousness 
attached to type i errors - claiming something is going on in the data 
when it is not - which leads statisticians to set fairly demanding 
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standards before they are prepared to reject the null hypothesis. 
This presupposes that we wish to reject the null hypothesis, which, 
as we have seen, is the usual case. If, on the other hand, we really 
hope that the null hypothesis is true, we should be trying to mini-
mise the probability of making a type π error, the probability of 
accepting H0 when it is actually false. 

SIGNIFICANCE TESTING IN ARCHAEOLOGY 

The preceding discussion of samples and populations, null hypo-
theses and levels of significance has given some indication of what 
is involved in carrying out a significance test, but it has not con-
sidered the assumptions required if such a test is to be satisfactorily 
carried out, nor how archaeological data relate to those assump-
tions ; the specific archaeological example used as an illustration 
above was in fact carefully defined to meet all the necessary assump-
tions. It is now necessary to raise the various issues involved in 
using significance tests in an archaeological context and the clearest 
method of doing this is to follow through a hypothetical example 
and consider its implications. 

For example : a study is being made of a hypothetical bronze age 
cemetery in Czechoslovakia and it has been noted that the female 
burials can be divided on the basis of the grave goods they contain 
into two groups, which we have labelled 'rich' and 'poor'. The 
question arises whether or not the distributions of ages at death of 
the individuals in these two groups are different from one another ; 
the answer we obtain to this question will have a considerable 
bearing on how we interpret the cemetery. The relevant informa-
tion is given in table 5.1. 

The question then is of the type noted at the beginning of this 
chapter : are these two distributions the same or not ? Given that 
they are not exactly the same, is the difference big enough to say 
that they really are different ? It is Clive Orton's question, is there a 
case to answer? The question is a fairly important one, since if we 
infer that there is a real difference we have something which needs 
to be explained. If, on the other hand, we infer that the difference is 
not large enough to be taken seriously then there is not much more 
to be said. 

If we want to use a significance test as a basis for making a 
decision about whether or not to take the difference seriously, the 
first thing to do is set up a null hypothesis and its alternative : 

H0: there is no difference between 'rich' and 'poor' female 
burials in their distribution of ages at death. 
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Table 5.1. The distribution of ages at death of 
a group of female burials from a hypothetical 
bronze age cemetery in Czechoslovakia for 
which the burials have been divided into 
'rich' and 'poor' categories on the basis of 
their associated grave goods. 

Age 
category 'Wealth' category 
at death 'Rich' 'Poor' 

Infans i 6 23 
Infansn 8 21 
Juvenilis 11 25 
Adultus 29 36 
Maturus 19 27 
Senilis 3 4 

Total 76 136 

Ηλ : there is a difference between 'rich' and 'poor' female 
burials in their ages at death. 

Let us suppose that in this case we will follow convention and select 
a significance level of 0.05 ; that is to say, we will reject H0 if, on the 
assumption that it holds, the results observed would only occur five 
times out of 100 or less. 

In carrying out any test it is necessary to make a number of 
assumptions, about the population in which we are interested and 
also about the sampling procedures used. These assumptions can 
be divided into two categories : those we are willing to accept, and 
those we are dubious about and therefore interested in. The null 
hypothesis is the assumption about which we are dubious and which 
therefore interests us. From the point of view of the statistical test, 
unfortunately, all assumptions have the same logical status: if the 
results of the test indicate rejection of the assumptions, all we can 
say on the basis of the test is that at least one of the assumptions is 
probably false. Since the test does not indicate which of the assump-
tions are erroneous, it is obviously vital, if results are to be meaning-
ful, that only one of the assumptions should be really in doubt ; this 
can then be rejected as the invalid one. Thus, when you are select-
ing a test, it is important to select one that involves only a single 
dubious assumption, the null nypothesis. 

One of the first things to be taken into account when selecting a 
test is the level of measurement of the data. Tests for data measured 
at interval or ratio level are not appropriate to data measured at a 
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very low level. On the other hand, if we use a test appropriate to 
data measured at a very low level on higher level data then we are 
wasting information and not using as powerful a test as we might. In 
the present case we can say that the age categories represent an 
ordinal scale. 

As we will see later, many statistical tests require specific assump-
tions to be made about the form of the distribution under investiga-
tion, but this is by no means true for all of them. One test appro-
priate for comparing two ordinal scales which specifies very few 
such assumptions is the Kolmogorov-Smirnov test. This requires 
that the observations should be divided into at least two mutually 
exclusive categories and that they should be measured at the ordinal 
level or above. The test is based on the difference between the two 
cumulative distributions of interest ; for the version described here 
both the samples should be greater than forty in size. 

The first step is to convert the original counts into proportions of 
their category total. Thus, for example, there are 76 burials in the 
'rich' category ; 6 of the 76 belong in the Infans i age category, which 
proportionally is 6/76 = 0.079, on a scale from 0 to 1, or 7.9 % on a 
scale from 0 to 100. In the 'poor' category 23/136 burials are in the 
Infans i age group, 0.169 on a scale from 0 to 1, or 16.9% on a scale 
from 0 to 100. This operation is performed on each of the age 
categories in each of the 'wealth' classes, to give table 5.2. 

Table 5.2. Numbers and proportions of 
burials by wealth and age categories. 

Age 'Wealth' category 
category 'Rich' 'Poor' 

Infans i 6 0.079 23 0.169 
Infans 11 8 0.105 21 0.154 
Juvenilis 11 0.145 25 0.184 
Adultus 29 0.382 36 0.265 
Maturus 19 0.250 27 0.199 
Senilis _3 0.039 4 0.029 

Total 76 1.000 136 1.000 

The proportions are then accumulated for each age category 
within each of the 'wealth' classes, in the way we have already seen 
when producing a cumulative curve. Thus, the proportion of 'rich' 
burials in the category Infans π or younger is 0.079 + 0.105 = 0.184 ; 
in the category Juvenilis or younger it is 0.184 4- 0.145 = 0.329 ; and 
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so on. The result of this operation is given in table 5.3. 

Table 5.3. Cumulative proportions of 
burials by wealth and age categories. 

Age 
category 

Infans i 
Infansii 
Juvenilis 
Adultus 
Maturus 
Senilis 

'Wealth' 
'Rich' 

0.079 
0.184 
0.329 
0.711 
0.961 
1.000 

category 
'Poor' 

0.169 
0.323 
0.507 
0.772 
0.971 
1.000 

The test is based on an assessment of the largest difference 
between these two distributions of cumulative proportions, so the 
next step is to calculate the differences between them for each age 
category and to note which is the largest (without regard to whether 
the difference is positive or negative) ; see table 5.4. 

Table 5.4. Cumulative proportions of burials 
by wealth and age categories and differences 
between them. 

Age 
category 

Infans i 
Infansii 
Juvenilis 
Adultus 
Maturus 
Senilis 

'Wealth' 
'Rich' 

0.079 
0.184 
0.329 
0.711 
0.961 
1.000 

1 category 
'Poor' 

0.169 
0.323 
0.507 
0.772 
0.971 
1.000 

Difference 

0.090 
0.139 
0.178 
0.061 
0.010 
0.000 

On the basis of this we can see that the largest difference lies at 
the Juvenilis category and is 0.178. Before considering what to do 
with this number, and how it relates to our declared significance 
level, it is worth noting that we can, of course, present these 
distributions graphically to obtain an intuitive feeling of what they 
look like and what the difference between them represents (figure 
5.1) ; the largest difference between the two curves is indicated on 
the figure. 
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Figure 5.1. Plot of the cumulative age distributions of 
'rich' and 'poor' burials using the data from table 5.1. 

What Does it Mean to Carry Out 
a Significance Test on Such a Problem ? 
Given that there is such a difference between the two distributions, 
is it 'real' or not? Using a significance test to answer the question, 
are these two distributions different from one another, presupposes 
the rephrasing of the question to read, do the two sets of sample 
data we have come from identical populations? As we have seen, 
statistical inference is all about making inferences about popula-
tions on the basis of samples. But what is the population of which 
our data can be regarded as a sample ? 

This question brings us to the key assumption of the Kolmogo-
rov-Smirnov test, indeed of all significance tests, which has not yet 
been mentioned. They presuppose that we have a sample of a 
population and that there is independence of selection within the 
sample, in other words, that the selection of one individual has no 
effect on the choice of another individual to be included in the 
sample. The method usually adopted to try and meet this specifica-
tion is random sampling. A random sample has the property not 
only of giving each individual an equal chance of being selected but 
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of giving each combination of individuals an equal chance of selec-
tion. 

It is obvious that no archaeological sample can be considered a 
random sample of what was once present. It is true, however, as we 
noted at the beginning of this chapter, that sometimes archae-
ologists are in a position to select random samples of the archaeo-
logical record, the problems of which are considered in the later 
chapter on sampling. On the other hand, in most cases, and cer-
tainly in that considered in our example, we are dealing with a set 
of data which has not been collected in this way. Furthermore, if the 
hypothetical cemetery from which the burials of our example are 
derived has been totally excavated, then in one sense at least we are 
dealing with a population and not a sample at all. If we are dealing 
with a population, where does the sampling variation come from 
which is supposed to account for the differences between the 
samples? 

It is perhaps worth noting at this point that this problem is by no 
means peculiar to archaeology but occurs in most social sciences 
where statistics are used, including geography and sociology, and in 
no case does it seem to be properly resolved. For some the line of 
reasoning just indicated leads to the conclusion that standard statis-
tical inferential procedures such as significance testing are simply 
irrelevant except in very restricted situations. Others, whose view-
point I share, suggest that in many circumstances we can postulate 
a hypothetical or ideal population of which we can consider our 
data a sample. This may seem a distinctly dubious argument, invok-
ing a population 'which can be loosely if unkindly defined as the 
population that we need in order that our sample may be considered 
random', as Orton ( 1982) has argued in a slightly different context. 
It is not necessarily as bad as it seems. 

There are two slightly different ways of considering how such 
hypothetical populations arise. One of these stems from the concept 
of randomisation. It may be illustrated with our example of the 
distribution of ages at death in the two groups of burials. We can 
take as given the fact that there are 76 burials in the 'rich' category 
and 136 in the 'poor' category. We can also take as given that there 
is a total of 6 + 23 = 29 burials in the Infans i category ; 8 + 21 = 29 
burials in the Infans π category ; and so on. This information is fixed 
for the set of data under consideration and what is at issue is the way 
the burials in each of the age categories are distributed across the 
two 'wealth' categories. Is the distribution of the ages of the two 
wealth categories different or not? If the distributions are not 
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different then the ratio of 'rich' individuals to 'poor' individuals in 
each age category should be the same as it is for the population as a 
whole. Thus, in category Infans i, on the basis of a distribution 
corresponding to 76:136, there should be 10 burials in the 'rich' 
category and 19 in the 'poor' category. If we imagine carrying out a 
large number of experiments in which we randomly assign burials 
to the 'rich' and 'poor' categories according to the ratio 76:136, for 
each of the age categories ; and if, each time we do it, we plot the 
cumulative curve for the two distributions and note the largest 
difference between them ; then, after a large number of such experi-
ments we will have a large number of largest differences, experi-
mentally generated, with which to compare the difference between 
our two real distributions, and on the basis of which we can decide 
whether it is an unusual one or not. If it is sufficiently unusual we 
will decide to reject the null hypothesis and decide there is a 'real' 
difference between the distributions. 

This is one way then in which we can obtain a population to which 
we can relate our sample. In some circumstances it is necessary 
actually to generate the randomised population using computer 
methods; in others, such as the case being considered in our ex-
ample, the standard test is such that its use can be regarded as 
equivalent to the randomisation process. 

Randomisation is probably the most straightforward way of con-
ceptualising, and indeed realising, the idea of a hypothetical popu-
lation. Another way is to conceive of the archaeological evidence in 
a given case as one specific empirical outcome of a system of 
behaviour based on social rules. Any given act or example of 
behaviour producing archaeological evidence will be based on the 
rules but is likely to be affected by all sorts of contingent circum-
stances, so that variation is introduced which is in fact random or 
chance variation, in the sense that it is not systematically related to 
the rules generating the behaviour. Such a line of argument in fact 
has been pursued most consistently not in relation to significance 
testing as such, but in the identification and definition of archaeo-
logical types by one particular school which believes that in defining 
types we should be discovering those in the minds of the makers of 
the artefacts and establishing the rules by which they were produced 
(for a recent discussion of these issues see Whallon and Brown 
1982). 

The whole argument is clearly more appropriate to some archaeo-
logical circumstances than others, and in particular to cases where 
we know we are dealing with the results of intentional behaviour, 
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and that our observations are not being biased in some way by 
recovery factors. In order to use such an approach in the case of our 
burial example we would have to be aware of two limitations. First, 
the results only apply to the burials in this particular cemetery ; they 
do not take into account the fact that 'rich' and 'poor' individuals in 
any or all of the different age categories may have been buried 
elsewhere, or may not have been buried at all in an archaeologically 
recognisable fashion. Secondly, it would have to be shown that any 
relationship between 'wealth' category and age distribution was not 
the result of some other factor, such as variation in preservation 
conditions. With these stipulations, it could be argued that any 
patterning in the relation between age at death and 'wealth' cate-
gory was the result of rule-bound social behaviour but that for all 
sorts of reasons there will have been variation in the closeness with 
which the rules were followed, producing a distribution of behav-
iour with a mean value and variation around it, as Barth, for ex-
ample, has argued (1967). Where such behaviour has an archaeo-
logical outcome, the particular set of behaviours whose evidence 
we recover will be just one of a range of possibilities. 

The arguments just presented are quite complex ones and are in 
many ways at a deeper level than the straightforward presentation 
of methods which occupies most of this book. Nevertheless, they 
are important ones, since they are at the heart of discussions about 
the appropriateness of statistical inference in archaeology, as in 
other disciplines, and therefore cannot be neglected. 

The Kolmogorov-Smirnov Test Completed 
After this long but important digression it remains to complete the 
example significance test we have been following through. We have 
found that the largest difference between the cumulative curves of 
age at death for our two 'wealth' categories is 0.178, at the Juvenilis 
category. The question is: do we regard this as an unusually large 
difference between the two curves on the null hypothesis that they 
both represent samples from identical populations whose differ-
ences arise from chance variation. To find this out the observed 
difference is compared with an expected distribution of differences 
derived theoretically. Such distributions are often presented in the 
form of statistical tables, and we will see an example of this in the 
next chapter. The Kolmogorov-Smirnov test is slightly different in 
that the minimum difference between two cumulative distributions 
which will be significant at a given level is obtained by evaluating a 
formula. If the observed difference is equal to or greater than this 
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then it is statistically significant at the set level. In this case we have 
set the significance level at 0.05 and the appropriate formula is 

1.36 / Π ι + Π 2 

ηλη2 

where nx = \hz number of individuals in sample 1 and n2 = the 
number of individuals in sample 2. Here 

/76+136 
1.36 / — — 7 = 0.195 

V 76 x 136 
1.36 is the theoretically derived multiplication factor appropriate to 
the 0.05 level. If the 0.01 level is required, the coefficient is 1.63 ; if 
0.001 it is 1.95. 

Having obtained the minimum required difference for H0 to be 
rejected at the given significance level we see that the observed 
maximum difference (Dmaxobs) at 0.178 is not as great as the 
minimum required difference for the 0.05 level ( Dmax 05 ), at 0.195. 
Since the observed difference is less than the minimum required to 
reject H0 at the 0.05 level, we cannot reject the null hypothesis. 
There is not a significant difference in the distribution of age at 
death between the 'rich' and 'poor' categories. 

It is important to note that this does not mean that the distributions 
are the same. It simply means that there is insufficient evidence to 
suggest that they are different ; there does not appear to be a 'case 
to answer'. We cannot be very sure that there is anything here to be 
explained. 

OTHER TESTS FOR DIFFERENCES 

BETWEEN TWO ORDINAL SCALE DISTRIBUTIONS 

The main intention of describing the Kolmogorov-Smirnov test in 
this chapter was to give an idea of what is involved in statistical 
inference, but it is worth noting that this is by no means the only 
technique for testing whether two ordinal scale variables are differ-
ent from one another. The Mann-Whitney test and the runs test 
may also be used in such circumstances. These are not described in 
detail here but may be found in many of the standard statistics 
textbooks (e.g. Blalock 1972). However, a brief indication of what 
is involved in these tests will be presented, to give an idea of when 
they are appropriate. 

Imagine that we have survey data for the sizes of 20 early neolithic 
settlements on two different soil types in southern Italy. Estimating 
site size from survey data can be problematical and is very often 
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imprecise. In this case we do not feel justified in stating the precise 
area of each site but do feel that we can rank them according to size. 
Do larger or smaller sites tend to be on one soil type rather than the 
other? 

We can rank the sites in order of size, indicating for each site the 
soil type ( A or B ) on which it lies ( largest to smallest, left to right ). 
We might obtain an ordering like this : 

AABABBBABAAABBABBAAB 
or like this : 

BBBBBABBBABBAAAAAAAA 
In the first case there are very short runs of sites on the same soil 
type mixed in with short runs of sites on the other soil type ; i.e. sites 
on the two soil types are intermixed in terms of size. In the second 
case the number of runs is much smaller : there is a predominance 
of sites on soil B at one end of the size range and of soil A at the 
other. The runs test will tell us whether the number of runs we have 
in a particular case is more or less than we would expect if the two 
distributions were randomly intermixed. 

The Mann-Whitney test is very similar, and to illustrate what is 
involved we can stay with the same example. Again we rank the 
sites in order of size. We can now focus on all the sites on one of the 
soil types. Here it doesn't matter which since there are ten on each, 
but if the numbers weren't equally balanced we would choose the 
soil type with the smaller number of sites. We then note for each of 
our sites, say those on soil B, how many of the sites on soil A rank 
lower than it. Thus, for the first of the two orders given above we 
see that the highest ranked soil-type B site is third, with eight 
soil-type A sites below it. The next highest ranked soil B site is fifth, 
with seven type A sites below it, and so on. In the second case 
above, each of the first five B sites has ten soil A sites below it. We 
add up the number of A sites below B sites for all the B sites. If in 
general the B sites are smaller than the A sites they will have very 
few A sites below them ; if they are larger they will have very many 
below them ; while if the site sizes on the two soil types are randomly 
intermixed the number of A sites below B sites will be somewhere 
in the middle. We use the Mann-Whitney test to find out if the 
numbers in our particular case do differ significantly from random 
intermixing. 

CONCLUSION 

This chapter has only attempted to deal with the significance test 
aspect of statistical inference ; estimation will be considered in the 
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chapter on sampling. The aim has been to discuss the issues in-
volved in using such tests in the context of a specific example. As I 
have already emphasised, however, significance tests are by no 
means the only, or the most important reason for the use of quanti-
tative methods in archaeology. In fact, as we will see in later 
chapters, statistical significance and substantive significance in 
archaeological terms are not necessarily the same thing at all : ques-
tions of the strength and the form of the relationship between 
variables are usually far more interesting and important than ques-
tions of statistical significance. 

EXERCISES 

5.1. On one side of a prehistoric settlement is a cemetery of mega-
lithic tombs. Among other aspects interest is focused on the signifi-
cance of the spatial distribution of the tombs and it occurs to the 
investigator that the proximity of the tombs to the settlement may 
be relevant in some way. The tombs and their contents vary in a 
number of different respects and in particular it has proved possible 
to divide them on the basis of their morphology into an 'elaborate' 
category and a 'simple' category. The cemetery has been divided 
into a number of bands of approximately 200 m width, although 
varying somewhat as a result of the local topography. Band A is the 
closest to the settlement and the distances of the bands increase up 
to band F, which is the furthest. Given the information below, is 
there any indication that distance from the settlement and tomb 
elaboration are related ? 

Band Number of tombs: 
Elaborate Simple 

A 
B 
C 
D 
E 
F 

12 
8 

17 
7 

13 
14 

6 
6 

10 
16 
19 
18 

Discuss the assumptions that you are making in your analysis. 

5.2. In a study of social organisation at a hypothetical Formative 
site in Mexico an investigation of the burials was carried out. Some 
of them were in ordinary graves whereas others were in built tombs. 
The question arose whether any biological characteristics of the 
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individuals in the cemetery were associated with the difference in 
burial mode. 

Below is information on the numbers of individuals in each of a 
series of age categories, divided according to whether they were 
buried in ordinary graves or built tombs. Are the age distributions 
of the buried populations different for the two burial types ? 

Graves 
Tombs 

Age Categories 
1 2 3 4 5 

25 18 29 14 24 
8 4 6 18 40 

6 

9 
5 

5.3. Below is information on the length of bone fragments from two 
pleistocene caves in southern England (data from Boyle 1983). Do 
you think that the length distributions of the fragments at the two 
sites are different from one another? 

Length 
category (mm) 

0-9 
10-19 
20-29 
30-39 
40-49 
50-59 
60-69 
70-79 
80-89 
90-99 
100-109 

No. of fragments: 
Cavel 

1 
21 
15 
5 
7 
1 
2 
3 
3 
0 
2 

Cave 2 

0 
6 

11 
11 
6 
6 
6 
4 
2 
5 
9 
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The Chi-Squared Test 

The previous chapter used the Kolmogorov-Smirnov test to de-
monstrate what is involved in carrying out a significance test and the 
kinds of assumptions which have to be made. Although it is very 
useful, there is a restriction on the use of the test, in that the level 
of measurement presupposed is ordinal or higher. The chi-squared 
test does not have this restriction. It can be used with data measured 
at the nominal scale, in other words, simply classified into cate-
gories; it is also easy to calculate, although this last point is less 
important these days with the wide availability of calculators and 
computers. Because of this lack of restrictions the chi-squared test 
can be used to assess the correspondence between distributions in a 
wide variety of different situations and as a result is applied very 
extensively. The test is being presented here for several different 
reasons ; first, because it is so commonly used and useful ; second, 
because it provides a further illustration of how significance tests 
may be set up in an archaeological context; and third, because it 
provides a convenient bridge from concepts of statistical signifi-
cance to concepts of the strength of the relationship between vari-
ables. 

There are two slightly different versions of the chi-squared test, 
although obviously the principle in both is the same. The first, 
perhaps less familiar to archaeologists, is the one-sample test, in 
which a sample is compared to a specified theoretical population 
and a test is made of how good the correspondence or 'fit' is 
between these two distributions ; the idea is clearly important when 
we are testing theoretically-derived models. 

In describing the test it is easiest to begin with an example. A 
question frequently of interest is the distribution of settlement in 
relation to soil differences ; were certain areas more attractive than 
others to early settlement ? 

Suppose we have an area in eastern France with three different 
soil types: rendzina, alluvium and brown earth. There are 53 late 
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neolithic settlements in the area and a look at the map suggests the 
possibility that the rendzinas may have been preferred. The ques-
tion is whether or not it is possible that the distribution of settle-
ments with regard to soil could be a matter of chance. If all three 
soil types were equally attractive to settlement then it would be 
reasonable to assume that we should find approximately the same 
density of settlement in each. In other words, the distribution of 
settlements would be roughly evenly spread over the landscape and 
variations would not relate to soil but to such factors as small local 
differences in topography, or the whims of the founding settlers. In 
this context we can use the chi-squared test. 

Table 6.1. Numbers of late neolithic settlements 
on different soil types in eastern France. 

Soil type No. of settlements 

Rendzina 26 
Alluvium 9 
Brown earth 18 

53 

The first thing we can do is to note the numbers of settlements on 
each of the soil types ( table 6.1). How do we calculate the theoreti-
cally derived expected frequencies to compare with these? We 
have already seen that if we postulate that all three zones were 
equally attractive to settlement, we should expect the same density 
of settlements in each. This represents our theoretically-derived 
null hypothesis for calculating expected frequencies. Thus, it is 
reasonable to assume that if rendzinas make up 32 % of the area, as 
we will suppose they do, then 32% of all the settlements should be 
on rendzinas ; similarly if we suppose 43 % of the area to be brown 
earth and 25 % alluvium. In other words, we calculate the expected 
number of settlements for each soil type by allotting the same 
proportion of the total number of settlements to that soil type as it 
occupies of the total area (table 6.2). 

If we compare the observed and expected values in this table for 
the number of settlements on each of the soil types, there are some 
obvious differences between the distribution anticipated if all areas 
were equally attractive to settlement and what we actually observe. 
The question is, are the differences so great that the probability of 
their being the result of chance variation is acceptably low? This is 
where the chi-squared test has its role. 
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Table 6.2. Observed and expected numbers of late neolithic 
settlements on different soil types in eastern France. 

Observed Expected 
Soil type no. of settlements % of area no. of settlements 

Rendzina 26 32 17.0 
Alluvium 9 25 13.2 
Brown earth \^ 43 22.8 

53 100 53.0 

The one-sample chi-squared test presupposes a set of observa-
tions divided up into a number of mutually exclusive categories. A 
comparison is then made between the distribution of observations 
across the categories and the distribution to be anticipated under 
some theoretically derived expectation, specified by the null hypo-
thesis. The differences between the two distributions for each cate-
gory are noted and a chi-squared value is calculated, based on the 
sum of the differences. The calculated value is then compared with 
the minimum value required to reject the null hypothesis at the 
level of significance which has been set. In effect, in setting the 
situation up as a significance test we are asking whether our obser-
vations could be a random sample of a population which has the 
characteristics specified in the null hypothesis. 

Carrying out the test requires a number of assumptions. As 
always, it is necessary to specify a null hypothesis and set a signifi-
cance level, and to be able to specify some population of which we 
can regard our observations as a sample in the way discussed in the 
previous chapter. As we have already noted, the level of measure-
ment required is not at all demanding, simply a nominal scale with 
at least two mutually exclusive categories into which the observa-
tions have been divided; the observations themselves must be 
counts, not percentages or other forms of ratio. 

The formula for chi-squared is given by 

2 _ ^ ( Q , - E , ) 2 

X - £,· 

where k is the number of categories, 0 , is the observed number of 
cases in category /, Et is the expected number of cases in category /, 
and χ2 is the symbol representing chi-squared, using the Greek 
letter 'chi'. 

In words this formula reads as follows : for each category subtract 
the expected value from the observed value, square this difference, 
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and divide the result by the expected value ; once this has been done 
for each category, sum the results for all categories. The result is a 
calculated chi-squared value. 

Once we have computed a value for chi-squared we need to test 
it for statistical significance. In the case of the Kolmogorov-Smir-
nov test this was done by comparing the observed largest difference 
with a value obtained by substituting sample size numbers into an 
appropriate formula giving the size of the difference required for 
the result to be statistically significant. In the case of chi-squared, 
tables have been produced which provide the values with which to 
compare the calculated value (see appendix 1, table A). In order to 
find the relevant value in the table with which to make the compari-
son it is necessary to know two things : the level of significance 
which has been decided - straightforward enough - and the number 
of degrees of freedom associated with the sample. 

What is meant by the number of degrees of freedom is not so 
straightforward. Essentially, the form of the theoretical chi-squared 
distribution, which is tabulated in the chi-squared table, varies 
according to the number of categories into which the observations 
are divided. The greater the number of categories, then the larger 
the value of the chi-squared statistic obtained from the data needs 
to be, in order to reach a given level of significance. This makes 
sense, since it is clear from the formula for the chi-squared statistic 
that the number of quantities being summed depends on the num-
ber of categories, so the larger the number of categories the bigger 
the sum, which is the calculated chi-squared, is likely to be. In the 
case of the one-sample test, however, the number of degrees of 
freedom is not equal to the number of categories but to the number 
of categories minus one ; in symbols : 

v = k-\ 

where v (Greek letter 'nu') is the number of degrees of freedom 
and k is the number of categories. 

Why should this be the case ? This is best illustrated by referring 
to our example, where there are 53 observations (settlements) 
divided into three categories (soil types). Given that there is a total 
of 53 observations altogether, and that 26 4- 9 = 35 are in the first 
two categories, then the value in the third category has to be 
53 - 35 = 18. In other words, the values in the first two categories 
are free to vary but the value in the last category is not ; it is fixed by 
the requirement that the sum over all three categories should equal 
the total number of observations with which we started. 
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When you know the relevant number of degrees of freedom and 

the level of significance which has been fixed, it is possible to find 
the appropriate value in the table with which to compare the calcu-
lated value. In a chi-squared table the number of degrees of free-
dom is given down the left-hand side and the significance level 
across the top. Thus, if you have two degrees of freedom and are 
using the 0.05 significance level, then you find the row for v = 2, go 
across it until you reach the column for the 0.05 significance level 
and read off the number, in this case 5.99. This is the tabulated chi-
squared value with which the calculated value obtained from the 
data must be compared : 

If xLc^X«, reject H0 

If Xcaic<Xa, accept H0 

Before turning to our example, however, one more point needs 
to be noted. The tabulated values in the chi-squared table only give 
the correct level of significance for samples above a certain size, 
although the restriction is not a very severe one. If the test has only 
one degree of freedom then no category should have an expected 
value less than 5 ; with larger numbers of categories this restriction 
can be relaxed considerably. In cases where this problem arises 
there are ways round it, for example by constructing a randomisa-
tion test. 

Now that the general procedure for carrying out a chi-squared 
test has been described, it is possible to show its use in our example, 
which must first be set up in the appropriate form for a significance 
test: 

H0: settlements are equally distributed across all three soil 
types. 

Ηλ : settlements are not equally distributed across all three soil 
types. 

Selected significance level : a = 0.05 
There is no need to be extremely conservative in selecting the level. 
We are interested in whether or not we have an indication of a 
divergence from equality of distribution. 

The data are measured at a nominal scale only, they are counts 
divided into categories and the categories are mutually exclusive. 
None of the expected values calculated above is less than 5. Use of 
a one-sample chi-squared test is therefore appropriate. 

The expected values under H0 have already been generated 
(table 6.2) so it is now possible to carry out the necessary calcula-
tions. 
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2 tJOi-Etf 
* '- Ei 

_ (26-17.0)2 (9-13.2)2 (18-22.8)2 

17.0 + 13.2 + 22.8 
= 4.76+1.34+1.01 

= 7.11 
This must now be compared with the appropriate tabulated value. 
Degrees of freedom are k - 1, where k is the number of categories : 
here 3 - 1 = 2. From the table the critical chi-squared value for two 
degrees of freedom and the 0.05 level of significance is 5.99. If 
Xcaiĉ Xa* reject H0: here 7.11 >5.99, and therefore we reject the 
null hypothesis in this case. 

But it is important not just to stop at this point. It is necessary to 
relate the result of the test to the archaeological problem. In this 
case we have to accept the alternative hypothesis that settlements 
are not equally distributed across all three soil types. To relate our 
data to a population in the way discussed in the previous chapter, 
we can say that if we carried out a large number of experiments 
randomly allocating 53 settlements to these three soil types on the 
assumption of an equal distribution, the distribution we have actu-
ally observed would be a very unusual one, and at the 0.05 level 
requires us to reject the assumption of equal distribution. There 
may be many reasons for this, and we will consider the problems of 
moving from statistically significant associations and correlations to 
inferences about causation below. 

THE CHI-SQUARED TEST 

FOR CROSS-CLASSIFIED DATA 

Having looked at the case in which a sample is compared to a 
specified theoretical population, let us now turn to the use of 
chi-squared to test for independence of classification in cases where 
data have been classified in terms of two different criteria, again 
beginning with an example. 

Suppose we are studying a north German iron age inhumation 
cemetery and we suspect there is a relationship between an indi-
vidual's sex and the side on which that individual is lying in the 
grave. We have the information given in table 6.3, which is often 
referred to as a contingency table. Tables like this one are 2 x 2 (2 
by 2) tables since there are only two rows - right-hand-side and 
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Table 6.3. Side on which individuals were placed 
in the grave cross-tabulated against their sex, for 
a north German iron age inhumation cemetery. 

RHS 
LHS 

M 

29 
11 

40 

F 

14 
33 

47 

43 
44 

87 

left-hand-side - and two columns - male and female. The individual 
entries in the table, e.g. that for male, right-hand-side, are referred 
to as the cells. The numbers at the end of each row are the row totals 
and at the bottom of each column, the column totals. In the bottom 
right-hand position is the total number of observations, here 87. 

Basically, the test for such tables is very similar to the one we 
have just seen, in that the data are counts divided into mutually 
exclusive categories. This time, however, instead of comparing the 
distribution of an observed sample with that of a theoretically 
specified population, we are asking whether two classifications of 
our data are independent of one another, in the sense that member-
ship of a particular category of one classification is unrelated to 
membership of a particular category of the other. Nevertheless, in 
both cases we are testing for what statisticians call 'goodness-of-fit'. 

The assumptions required in this case are again very similar to 
those for the one-sample test: nominal scale or higher level of 
measurement and no expected frequency less than 5 in the case of 
one degree of freedom (see p. 73 for degrees of freedom in contin-
gency tables). Now, however, we have two distinct classification 
criteria, divided into at least two mutually exclusive categories. 
Thus, to refer to our examples, for the one-sample chi-squared test 
our settlements were categorised according to one variable alone, 
their soil type ; for the contingency table our burials are categorised 
or classified in terms of two variables : their gender and the side on 
which they were lying in the grave. 

The calculation of chi-squared is as before, based on the differ-
ence between the observed and expected values for each category. 
The number of categories is the number of cells in the table : in our 
example there are two gender categories and two side categories, so 
the number of cells, as you can see from table 6.3, is 2x2 = 4. 

For the one-sample chi-squared test the expected values were 
generated by the theoretical population postulated by the null 
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hypothesis. The idea is very similar here, in that we are asking in 
this case whether male and female burials have the same propor-
tional division into left-hand-side and right-hand-side burials. Thus, 
if there are altogether 43 right-hand-side burials and 44 left-hand-
side, then we would expect the 47 female burials and the 40 male 
burials to be divided into the right-hand-side and left-hand-side 
categories according to the 43:44 ratio. In fact, rather than actually 
carrying out this operation, the appropriate expected values for a 
given cell in the table may be obtained by multiplying the row sum 
corresponding to the cell by the column sum corresponding to the 
cell and dividing the result by the total number of observations. 
Thus, for the top left-hand cell of the table given above the expected 
value i s (40x43) /87=19.8 . 

It is possible to work out the expected values for the other cells of 
the table in the same way. However, since we know the marginal 
totals of the table and the expected value for the top left-hand cell, 
we can obtain the expected values for the other three cells by 
subtraction. 

43 - 19.8 = 23.2 
40 - 19.8 = 20.2 
44 - 20.2 = 23.8 

We then make out a table including the expected values in paren-
theses (table 6.4), and we may now set up the significance test for 
the burial data. 

Table 6.4. Side on which individuals were placed 
in the grave cross-tabulated against their sex, with 
the expected values for each category shown in 
parentheses. 

RHS 

LHS 

M 

29 
(19.8) 
11 

(20.2) 

40 

F 

14 
(23.2) 
33 

(23.8) 

47 

43 

44 

87 

H0 : the distribution of male and female burials across the two 
burial position categories, left-hand-side and right-hand-
side is the same. 
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Ηλ : the distribution of male and female burials across the two 

categories is different. 
Selected significance level : a = 0.05 

The data meet the required assumptions for a chi-squared test on 
cross-classified data, so the next step is to calculate the chi-squared 
value for the data, using the formula given above (table 6.5). 

Table 6.5. Calculation table for obtaining 
chi-squared value from data in table 6.4. 

The process of testing this calculated value for significance is the 
same as before, in that it is compared to the value in the chi-squared 
table which corresponds to the required level of significance and the 
appropriate number of degrees of freedom. For the test on cross-
classified data, however, the number of degrees of freedom has to 
be calculated differently and is given by v = (the number of rows in 
table — 1 )(the number of columns in table — 1 ). For our example 
w e h a v e ( 2 - l ) ( 2 - l ) = l. 

This may be related to the observation above that once we had 
worked out the expected value for the top left-hand cell of the 
table, the expected values for the other cells were fixed and could 
be obtained by subtraction. If we now look up the tabulated value 
of chi-squared for one degree of freedom and the .05 level of 
significance we find that it is 3.84. Xcalc = 15.67, 15.67>3.84, and 
accordingly we reject H0. We can note incidentally that a value of 
15.67 for chi-squared would even be significant at the .001 level. It 
thus appears that male and female burials are not distributed in the 
same way over the two position categories. 

One final calculation note. The method described above is the 
general way of calculating chi-squared, however many rows and 
columns there are in the table. In fact, for the case of a 2 x 2 table, 
a table with 2 rows and 2 columns, there is an alternative more 
convenient formula : 

Category 

1 
2 
3 
4 

Oi 

29 
14 
11 
33 

Ei 

19.8 
23.2 
20.2 
23.8 

(Ο,-Ε,) 

9.2 
-9.2 
-9.2 

9.2 

(Ο,-Ε,)2 

84.64 
84.64 
84.64 
84.64 

x2 

(Ο,-Ε,.)2 

Ei 

4.27 
3.65 
4.19 
3.56 

= 15.67 
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2 _ n(ad-bc)2 

X ~ (a + b)(c + d){a + c){b + d) 

where n is the sample size and a, b> c, d refer to the cells of a table 
labelled 

a b 

c d 

HOW USEFUL IS THE CHI-SQUARED TEST? 

It should be clear from what has been said about the chi-squared 
test that it can be extremely useful and informative, but it is appro-
priate to finish this chapter with a list of its limitations : 

1. Chi-squared does not tell us about the strength of a relation-
ship ; it simply tells us about the probability of whether or not a 
relationship exists. This point will be amplified very considerably in 
the next chapter. For the moment we can note that even if the 
connection between the two variables is weak, we may still obtain a 
statistically significant result. Thus, to take the example we have 
just looked at, we might get a statistically significant result even if 
there was only a slight tendency for males to be buried on their right 
and females on their left. Even though slight the tendency could 
still be a real one (see the third point below). 

2. It does not tell us anything about the way in which the variables 
are related ; it simply measures departures of expected from ob-
served values. 

3. As with any test statistic, sample size affects the magnitude of 
chi-squared. For a given departure from independence its size is 
proportional to the size of the sample ; this means that you can 
practically always obtain a significant relationship by making the 
sample size large enough. The difficulty then arises of distinguishing 
statistical significance from substantive significance. 

What we need to do when we have cross-classified data is examine 
them in considerable detail ; simply carrying out a chi-squared test 
is not enough; indeed, often you know ahead of time that the 
chi-squared result is going to be significant, so by relying solely on 
this you gain little new information. It is now necessary to examine 
these points in more detail. 

EXERCISES 

6.1. In an excavated cemetery of single inhumation burials 35 % of 
the skeletons have been found to have bronze rings as grave goods. 
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A group of 15 graves has just been found, adjacent to but separate 
from the rest, and 10 of them contain bronze rings. Is this group of 
graves different from the rest of the cemetery with regard to the 
deposition of rings ? 

6.2. Work on the analysis of prehistoric rock art is often concerned 
with the identification of recurrent patterns of association between 
motifs. In the case considered here there were 9 different motifs. 
21.2 % of the individual occurrences of the motifs were involved in 
superimpositions with other motifs. 15 out of 24 occurrences of the 
'sheep' motif and 13 out of 127 occurrences of the 'human' motif 
were involved in superimpositions. Do these patterns appear to be 
different from those for the population as a whole ? 

6.3. In an analysis of spatial patterns in local exchange in Mesopota-
mia a particular type of centrally produced pottery is examined 
(data from Johnson 1973). Examination suggests that the width of 
the painted lines used in decoration differs between the two centres 
of manufacture ; study of a bar graph of line widths from the pottery 
suggests that the lines can be divided into two categories, heavy and 
fine. Settlements in the study area divide into two groups, eastern 
and western. Is the pottery with the two line types differentially 
distributed with regard to the east-west division, given the informa-
tion below? 

Heavy line 
Fine line 

Eastern 
area 

42 
17 

59 

Western 
area 

10 
21 

31 

52 
38 

90 

6.4. We are studying a cemetery in which there are three different 
grave types: simple earth pits, graves with wooden chambers, and 
graves with stone chambers. We suspect there may be a relationship 
between the type of grave in which individuals were buried and 
their age at death ; we can define three age categories by anthropo-
logical examination of the skeletons : less than 21, 21-40, over 40. 
Individuals are distributed as shown in the table on p. 76. Is there a 
significant relationship between age and grave type ? 
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Exercise 6.4 

Simple pit 
Wooden chamber 
Stone chamber 

<21 

23 
12 
10 

21-40 

19 
17 
16 

>40 

11 
13 
15 

Table 7.1. Side on which individuals were placed 
in the grave cross-tabulated against their sex. 

RHS 30 14 44 
LHS 10 34 44 

40 48 

Table 7.2. Side on which individuals were placed in 
the grave cross-tabulated against their sex. Num-
bers in each category are half those in table 7.1. 

RHS 15 7 22 
LHS 5 17 22 

20 24 44 

M F 

M F 

88



Seven 

Beyond Chi-Squared : 
Describing Association Between 

Two Nominal Scale Variables 

The limitations of chi-squared, listed at the end of the last chapter, 
can be construed more widely as limitations of the whole signifi-
cance test approach : it does not usually take us very far in under-
standing the object of our investigation. Indeed, if it is used 
incautiously it can be positively misleading, since statistical signifi-
cance may be taken more seriously than it deserves to be. This 
chapter outlines some methods which may be used to extract much 
more information from nominal scale data than simply subjecting 
them to a chi-squared test. But although the techniques described 
refer specifically to contingency tables, the approach behind them 
may be generalised to any kind of analysis and is not dissimilar from 
the ED A approach discussed in an earlier chapter; in fact, the role 
played by significance testing in the rest of this book is relatively 
small. The first stage in outlining this approach is to enlarge on the 
comments made at the end of the previous chapter. 

It was suggested that for a relationship to be statistically signifi-
cant, it is not necessary that it is significant in the sense of being 
strong ; it is possible for a relationship to be significant statistically 
yet quite weak. This is because statistical significance arises from 
the combined effect of two different factors : the strength of the 
relationship and the size of the sample. Consequently, we cannot 
use the value of chi-squared or its associated probability level as a 
measure of strength of relationship, and say, for example, that a 
result significant at the .001 level indicates a stronger relationship 
than one significant at the .05 level. 

The effect of sample size on the chi-squared value and signifi-
cance level may be illustrated by looking again at the burial example 
from the previous chapter, altered slightly for the purpose of this 
illustration so that all the numbers are even ones (table 7.1). Here 
chi-squared = 18.33 with one degree of freedom, significant at much 
more than the .001 level. If we halve the numbers but keep the same 
proportional distribution across the categories, we have table 7.2. 

77 
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Here chi-squared = 9.16 with one degree of freedom, significant at 
the .01 level. Similarly, if we doubled the original numbers, we 
could obtain a chi-squared value of 36.66. Thus, in general, if we 
keep the proportions in the cells constant and simply multiply the 
numbers by some factor k, then we multiply the resulting chi-
squared by k. 

All this makes sense. If we are asking the significance-test ques-
tion - does a relationship exist or not ? - we will have more con-
fidence in our answer if it is based on a large number of observa-
tions. If the number of observations is very large, then even if only 
a very weak relationship exists between our variables, or only some 
very slight difference between our samples, we can have some 
confidence that it is 'real'. Conversely, if the number of observa-
tions is very small then for any difference or relationship to be 
regarded as 'real' it will have to be very marked indeed. Such 
marked differences or strong relationships are almost bound to be 
of interest to us, but the same is not necessarily true of weak ones : 
a very slight relationship or difference may be 'real', but does it 
matter? 

The foregoing discussion shows that we need to measure strength 
of relationship separately from statistical significance, and that 
chi-squared at least is not an appropriate measure for doing this, 
except perhaps in those rare instances where our aim simply in-
volves the making of comparisons across samples which are identi-
cal in size. 

This question of comparison is an important one. Generally, we 
are not interested in a given single case where the strength of 
relationship is being measured. More often than not, comparisons 
are being made, for example with the same measure on other data 
sets. For this reason such measures need to be standardised. It is 
also convenient for such measures to have a well-defined upper and 
lower limit, conventionally 1.0 as the upper limit and either 0 or 
- 1.0 as the lower limit. Most measures take a value of 1.0 or - 1.0 
when the relationship is a perfect one and a value of zero when 
there is no relationship between the variables. 

Given that chi-squared is dependent on sample size one obvious 
thing to do is to divide the value of chi-squared by n, the number in 
the sample ; this means that we will get the same result when the 
proportions in the cells are the same, regardless of the numbers. 
The coefficient obtained by dividing chi-squared by n is known as φ2 

(phi-squared); its value is zero when there is no relationship be-
tween the two variables. With 2x2 (or 2xk) tables φ2 has an 
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upper limit of 1.0 which is reached when the relationship between 
the two variables is perfect, as shown in table 7.3. In this case χ2 = 
100 and φ 2 = 100/100= 1.0. 

Table 7.3. An example of a perfect re-
lationship or association in a 2 x 2 table. 

M 

LHS 50 0 5Θ-
RHS 0 50 50 

50 50 100 

In a 2 x 2 table, whenever two diagonally opposite cells are 
empty the chi-squared value for the table will be equal to the 
number of observations and φ2 will therefore be 1.0; this is some-
times referred to as absolute association. Referring to this substan-
tive case we could say that variation in the side on which individuals 
are lying in the grave is completely accounted for by their sex, or 
associated with their sex. 

As we noted above, φ2 has the convenient upper limit of 1.0 only 
when the table has two rows and/or two columns. This will hold 
true, for example, in a table of 2 rows and 20 columns, or 2 columns 
and 20 rows, but not in a table of 3 x 20, or even 3 x 3 . For tables 
where the number of rows and columns is greater than two, φ2 will 
have a higher upper limit than 1.0. In order to scale it down to have 
this limit for larger tables, φ2 itself must be standardised. The best 
known of these standardisations is Cramer's V2 : 

Φ 2 

min(r— 1 , / - 1) 

where min ( r — 1, c — 1 ) refers to either ( the number of rows - 1 ) or 
(the number of columns — 1 ), whichever is the smaller. This takes 
a maximum value of 1.0 even when numbers of rows and columns 
are not equal, and for tables larger than 2 x 2 or 2xk; in these 
latter two cases V2 obviously reduces to φ2. 

Yule's Q is another measure of association or relationship quite 
frequently used, although it is only applicable to the 2 x 2 table: 

_ ad — be 

^~ad + bc 

where a, by c, d refer to the cell frequencies of a table labelled as 

F 
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follows : 

a b 
c d 

Imagine a 2 x 2 table in which we plot the presence/absence of 
something, for example a particular grave-good type in a grave, 
against the presence/absence of something else, say another grave-
good type. We can label the table thus : 

The top left cell indicates joint presence, the bottom right joint 
absence, and the other two the cases where one is present and the 
other absent. The a and d cells are the cases where our two attri-
butes covary positively : when one is present so is the other, when 
one is absent the other one is too. Thus multiplying the number of 
instances of joint presence (a) and joint absence (d) gives us a 
measure of the positive covariation between our two attributes. On 
the other hand, multiplying the number of instances where one is 
present and the other absent (&), and where one is absent and the 
other present (c), gives us a measure of the negative covariation 
between our two attributes : the extent to which the presence of one 
implies the absence of the other. If, when one is present, the other 
is sometimes present and sometimes absent then there is no sys-
tematic relationship between the two. The definitive example of no 
relationship is when ad ( the positive covariation ) is equal to be ( the 
negative covariation), and thus 0 = 0. On the other hand, Q will 
have a limit of + 1.0 for perfect positive covariation or association 
and —1.0 for perfect negative association. Thus, while φ2 can only 
be positive, Q can also take negative values. However, the major 
difference between these two measures lies in the way that they 
treat association, a point best illustrated by an example. 

In both tables 7.4 and 7.5 the value of one of the cells is zero. It 
is a result of the formula for Q that it takes a value of 1.0 in both of 
them, and indeed in any 2x2 table with a zero entry. In this case we 
can see that it reflects the perfect association between the male 
category and just one of the two side-lying categories - the right-
hand-side. By contrast, in the first table female burials are equally 
split between the two sides, while in the second they tend towards 
the left, the opposite pattern to the males. In neither case are 

+ 

+ 

++(«) 
- + ( c ) 

-

—(d) 
—(d) 
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Table 7.4. Comparison between Q and φ2, 
example 1. Here β = 1.0 and φ2 = 0.375. 

M 

RHS 60 
LHS 0 

60 

F 

20 
20 

40 

80 
20 

100 

Table 7.5. Comparison between Q and φ2, 
example 2. Here Q = 1.0 and φ2 = 0.643. 

M 

RHS 60 
LHS 0 

60 

F 

10 
30 

40 

70 
30 

100 

females exclusively associated with the left-hand-side, which would 
be required for φ2 to take a value of 1.0, but of course φ2 does 
increase from the first table to the second as the distribution of 
females becomes more asymmetrical. 

Q is a good coefficient for picking out fairly weak associations but 
once it has reached its upper or lower limit it can obviously go no 
further. It has therefore been criticised because it cannot make the 
distinction between what is sometimes called 'complete' associa-
tion, when one cell takes a zero value, and 'absolute' association, 
referred to above, when two diagonally opposite cells take zero 
values and φ2 reaches its upper limit. Nevertheless, Q can be very 
useful so long as this point is borne in mind. 

OTHER MEASURES OF ASSOCIATION 

Phi-squared, Cramer's V and Yule's Q are by no means the only 
measures of association for variables measured at a nominal scale. 
A number of others are also available but are not described here in 
any detail. The aim is not to be comprehensive but to present a 
number of coefficients that are useful in themselves and, more 
importantly, to give an idea of what is involved in measuring associ-
ation. Now that you have seen the general idea you can look up 
some of these others, if you wish, in such textbooks as Blalock 
(1972). 

You will find that many computer statistical packages include 
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Goodman and Kruskal's tau and lambda. Both these statistics relate 
association between variables to reducing the number of errors we 
will make in guessing the value of one variable if we use the value 
of the other variable to help us in the guess. Thus, to take the data 
from table 7.5, we know that there are 100 graves, 70 with right-
hand side burials and 30 with left-hand side burials. Suppose we 
have to guess for each grave whether it is left-hand side or right-
hand side. If we made 70 right-hand guesses and 30 left-hand 
guesses many of them would be wrong. If, on the other hand, we 
know the sex of the individual buried, we can improve our guess-
work considerably because the individual's sex and the side on 
which they lie in the grave are related to one another. Thus, if we 
know that a grave contains a male we must guess that the burial is 
right-hand side, because there are no left-hand side male burials. If 
we know that the grave contains a female our best guess is that it 
will be a left-hand side burial, although we won't always be right. 
The stronger the relationship between the two variables the more 
successful will we be in using the value of a case on one to predict 
its value on the other. If there is no relationship between them, 
using one to predict the other won't be any help. 

Goodman and Kruskal's tau and lambda use this general idea in 
slightly different ways, but both of them are asymmetrical. This is 
worth thinking about ! To refer to our example in table 7.5 again : if 
we know that a grave contains a male we can predict with 100 % 
success that the individual will be on his right-hand side ; however, 
if we know that an individual is on its right-hand side we cannot 
predict with 100% success that it will be a male, because 10 of the 
70 are female. 

ASSOCIATION AND CAUSAL INFERENCES 

Often, when we are looking at association in the way indicated 
above, we are thinking, as we have already implied, in terms of an 
independent and a dependent variable. Thus, in the case of the 
individual's sex and the side on which they are lying in the grave, it 
is possible to visualise the side on which the individual was de-
posited in the grave as dependent on their sex, but not their sex 
being dependent on the side on which they are lying. This is satis-
factory as far as it goes. However, although we have talked in a 
statistical sense about one variable accounting for another or being 
associated with another, we cannot necessarily infer a causal re-
lationship between the two. All statistics books warn of the danger 
of inferring causation from association, because of the possibility of 
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spurious correlation. 

Of course, causal relationships can never be disentangled by 
mere statistical analysis, but in the process of disentangling them 
statistical methods can be either extremely useful or positively 
misleading. If we simply take the first statistic we obtain at its face 
value we can easily be misled. It is important to be sure that any 
connection we infer between objects, events or processes is real and 
true, and it is generally suggested that the acid test of a real relation-
ship is that it should not change regardless of the conditions under 
which it is observed ; in other words, does the relationship between 
two variables persist or disappear when we introduce a third ? 

The process of investigating relationships between variables un-
der a variety of different conditions is a very general and important 
one if valid inferences about those relationships are going to be 
made. We will see it recurring again and again. It is proposed to 
introduce the idea here, illustrating it by means of Yule's Q. We 
have seen how Q works in the simple 2x2 table case. The question 
now arises of what happens when we introduce a third variable, so 
that we have a 2 x 2 x 2 table. The various possibilities are best 
illustrated by means of examples. 

Table 7.6. Volume of grave cist tabulated 
against the sex of the individual buried. 

Volume of grave cist 
^1.5m3 >1.5m3 

M 22 47 
F 33 26 

The Q coefficient simply between two variables, as in table 7.6, 
where 

_ 572-1551 
Q = = - 0.461 * 572+1551 

is referred to as a zero-order coefficient ; it is not taking into account 
the effects of any other variables. In terms of some of the standard 
arguments about burial practice and social status we might conclude 
that we have evidence here for a lower status for women, less 
energy being put into digging their grave pits. What happens though 
if we take into account the height of the individuals in the graves, 
using estimates derived from long bone measurements ? If we want 
to introduce an extra variable like this we have to split our original 
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table into two (table 7.7). 

Table 7.7. Volume of grave cist tabulated against 
the sex of the individual buried and against the 
individual's estimated height. 

Volume of grave cist 
^1.5m3 >1.5m3 

Est. height M 18 4 
s: 155 cm F 30 6 
Est. height M 4 43 
> 155 cm F 3 20 

How do we analyse this new table ? What is of interest is what 
happens when we 'control for' the third variable. This is an impor-
tant concept which will recur frequently in what follows ( see especi-
ally chapter 11 ), but what does it mean ? The idea is that we look at 
the relationship between our original two variables while taking 
into account, or holding constant, the effect of the new one. We do 
this by looking, in this instance, at the sex/grave-volume relation-
ship for one height category, then for the other height category, and 
finally amalgamating the two. This is in contrast to the original 
zero-order coefficient, where we did not make any distinction in 
terms of the individuals' heights. The new coefficient is not a zero-
order coefficient but a partial coefficient ; it is a first-order partial 
because we are only 'controlling for' a single variable, height in this 
case. 

To understand the effect of the third variable on a relationship we 
compare the values of the zero-order and partial coefficients, be-
cause this gives the answer to the question, what happens to the 
relationship when this variable is controlled. There may be no 
change, it may get stronger, or it may become weaker. The first 
thing we need to do then is calculate the partial for the table in the 
example. Let us suppose a general table (table 7.8), where the 
zero-order coefficient between x and y is given simply by amal-
gamating the two tables. 

= [(a + e)(d + h)]-[(b+f)(c + g)] 
**y [(a + e)(d + h)] + [(b+f)(c + g)] 

The partial, controlling for t, is given by 
= (ad + eh)-(bc+fg) 
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Table 7.8. A general 2 x 2 x 2 contingency table. 

t 

not/ 

X 

notjc 

x 
not* 

y 

a 
c 

e 
g 

not y 

b 
d 

f 
h 

If we do this calculation for the table of numbers in the grave 
pit-size example we have 

_ 1 8 8 - 249 _ 
^ t i e d ' ~ 188 + 2 4 9 " 

It was indicated above that one of three options is possible when 
we compare the partial and the zero-order coefficient. 'No change' 
is when the partial is equal to the zero-order coefficient. It means 
that there is no difference in the relationship between x and y 
whether or not the third variable is controlled ; in other words, the 
third variable has no effect on the original two-variable relationship. 
In the example, however, we see that the partial is smaller than the 
zero-order, that is to say, the relationship between x and y becomes 
weaker when the third variable is controlled. The conclusion to be 
drawn in this case is that it is variation in the third variable which 
explains the existence of the xy relationship. Thus, with reference to 
the example, the relation between sex and grave pit volume largely 
disappears when the height of the individuals is controlled. The 
zero-order relationship between sex and grave volume may be said 
to be spurious : it results from the fact that there is a relationship 
between the height of individuals and the volume of their grave pit, 
and that women tend to be smaller than men. 

Let us now take another example, again based on analysing 
burials. Table 7.9, where Q = - 0.34, indicates that women tend to 

Table 7.9. Presence/absence of rings tabulated 
against the sex of the individuals buried with them 
for a hypothetical north German iron age cemetery. 

Rings in grave 
Present Absent 

M 42 66 
F 53 41 
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have rings more often than men. But let us also suppose that we 
have information which enables us to divide our cemetery into two 
phases: table 7.10, where Qxytiedt=-0.524. In other words, we 
have a case here where the partial is greater than the zero-order. 
The strength of association between x and y is being suppressed 
when the third variable is not taken into account ; when it is con-
trolled the association is improved. 

Table 7.10. Presence/absence of rings tabulated 
against the sex of the individuals buried with them, 
subdivided by phase. 

Early 

Late 

M 

F 

M 

F 

Rings ir 
Present 

31 
25 

11 
28 

igrave 
Absent 

27 
5 

39 
36 

We can actually gain some more insight by calculating Q for each 
of the two sub-tables separately. These two coefficients are known 
as conditional coefficients. One is the zero-order coefficient for 
those individuals characterised by one state of the third variable, 
the other is the zero-order for individuals characterised by the other 
state of the third variable. 

_ad — be 
Qxyt~^dVb~c 

o =eh~fg 

In the case of our example the conditional for the early phase is 
Q= -0.62 

For the later phase it is 
ρ = - 0 . 4 7 

The partial is actually the average of these two conditionals, taking 
into account the different size samples on which each is based. 

If we look at the sub-divided table for the example, we see that in 
the early phase the majority of women have rings whereas men are 
roughly equally divided into those with rings and those without. In 
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the later phase women are more or less equally divided while less 
men have rings than do not. Thus, taking time into account makes 
a big difference to interpretation. The two conditionals, and con-
sequently the partial, take the values they do because in the early 
phase there are very few females without rings, while in the late 
phase there are very few males with them. Both these situations 
have the same effect on the Q coefficient, of course, because the 
values of diagonally opposite cells are multiplied together. 

Table 7.11. Presence/absence of beads tabulated 
against the rank of the individuals buried with them. 

Beads in grave 
Present Absent 

Rank High 53 39 
Low 44 55 

One further important possibility remains to be illustrated and 
considered. Staying with the cemetery analysis theme, let us sup-
pose that on some reasonable criterion we have divided the burials 
into a 'high rank' and a 'low rank' group. The criterion did not 
involve consideration of presence or absence of beads in the grave 
and we now wish to see if this is related to rank. From table 7.11, 
where g = 0.25, there appears to be a suggestion that presence of 
beads is slightly associated with high rank. Let us now try control-
ling for sex : table 7.12, where Qxytiedt = 0-35. 

Table 7.12. Presence/absence of beads tabulated 
against the rank of the individuals buried with them, 
subdivided by sex. 

Beads in grave 
Present Absent 

Male High 9 33 
Low 15 28 

Female High 42 6 
Low 29 27 

Comparison of the partial and zero-order Q coefficients suggests 
at first that we are dealing with a case of slight suppression ; when 
we control for sex the strength of the relationship between beads 
and rank increases. But let us now calculate the conditionals for 
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each of the categories of the control variable, sex. 

a/rymales ~~ ^ U . J Z 

y^xy females ~" ^* ' ̂  

Clearly they differ enormously, so that the partial coefficient of 0.35 
obtained by averaging the two conditionals is completely mislead-
ing. There is obviously a very different relationship between rank 
and the presence of beads among males from that which exists for 
the females; few high-ranking males have beads, while most high-
ranking females do have them. This outcome is called specification 
or interaction ; the effect of the third variable is to specify which of 
two different relationships holds between the x and y variables. 
Further progress can only be made by dividing our sample into two 
groups on the basis of the specifying variable (here sex) and con-
tinuing the search for causal connections within each group sepa-
rately. 

So far, we have developed the techniques to examine relation-
ships and we have looked at the effect which a third variable, t, may 
have on the relationship between x and y ; thus, we can check, for 
instance, within the bounds of this three-variable system, whether 
or not a relationship is spurious. 

We may also wish to observe the effect of y on the xt relationship 
and x on the yt relationship, to complete our investigation into the 
connections between all three variables. This amounts to being able 
to define the true causal connections within the three-variable sys-
tem as opposed to the simple pairwise association. A moment's 
thought will show you that this is a complicated matter. For a start 
you have twelve different Q coefficients to cope with, and if you 
take into account the fact that relations may be positive or negative, 
dependence may be one way, the other way, or mutual, then you 
have an enormous number of different relationships. 

It is clearly most sensible to investigate them by using your a 
priori knowledge to predict certain relationships - to hypothesise a 
set of causal assertions - and proceed to test them. If we are wrong, 
we reconsider the assertions and test a new model. Obviously, to do 
this we need to be able to predict the behaviour of the coefficients 
of association under our a priori assumptions. If the coefficients do 
behave as we expect them then we may provisionally consider the 
assertions as valid ones. To summarise the appropriate procedure : 

1. Try to start with a well-thought-out hypothesis ; simply apply-
ing Q (or any other coefficient) to see what happens is often a 
substitute for actually thinking about cause and effect relations. 
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Start by defining the variable most in need of explanation and select 
its most likely explanation ; you can develop and expand the vari-
ables considered as you go on. 

2. It is most important to control for other variables even if the 
association between the initial two variables in the analysis is a 
strong one : it may be spurious. On the other hand, a relationship 
that initially appears weak may be masked by something else, so 
again introducing control variables is essential. 

3. When interaction, or specification, occurs, appropriate action 
must be taken. In general this means carrying out separate analyses 
of the relationship between the first two variables for each of the 
two categories of the third variable, and ensuring that it is clearly 
stated to which category any conclusions refer, since they will be 
different for each one. 

A MODERN APPROACH TO INVESTIGATING RELATIONSHIPS 

BETWEEN NOMINAL SCALE VARIABLES: 

ANELEMENTARY INTRODUCTION TO LOG-LINEAR MODELS 

In fact, analyses of the relations between nominal scale variables 
are rarely approached today by means of the Q coefficient, or any 
of the other association coefficients we have seen, but by means 
of log-linear modelling and the closely related method of logit re-
gression ( and potentially also by means of the technique known as 
correspondence analysis, discussed below in chapter 13 ). The appli-
cation of such models is a relatively recent development, depend-
ent, like so many others in statistics, on the availability of computer 
power. Because of their usefulness and gradually increasing use in 
archaeology (see e.g. Clark 1976, Spaulding 1977, Macintosh and 
Macintosh 1980) it is important to be aware of what they do and 
how they work. Lewis (1986) provides a more extended account 
than is given here. 

Conceptually what they involve is quite straightforward, al-
though the notation can be a bit off-putting and the calculations are 
so tedious that in practice they require the use of an appropriate 
computer program. 

The problems they solve are those that we have already seen in 
the previous section : how do we investigate the relations between 
more than two variables in a coherent fashion, within a single 
framework, so that we can assess which relations are the important 
ones, taking into account all the various possibilities and avoiding 
the kinds of situation illustrated earlier in this chapter, where the 
introduction of a third variable had varying but often disturbing 
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effects on relations between the other two. 

The modern approach takes us back to chi-squared. So far we 
have only seen this used to test a null hypothesis of no association 
between two variables, by looking at the discrepancy between the 
observed data values and those expected under the null hypothesis. 
In log-linear modelling we're not restricted to a null hypothesis. 
The essence of the technique is to build models of the possible 
relations between variables in the data set, to derive expected 
values for these different models, and to decide which model best 
fits the data by comparing the expected values produced by the 
models with the observed data values, with the stipulation that the 
model selected should be the simplest which shows a reasonable fit 
between observed and expected. 

The log-linear bit comes in to the building of the models ; the 
following discussion of what this involves is influenced by Lewis 
( 1986). The simplest possible model is the one we've already seen : 
the null hypothesis of independence. When we have two variables 
we saw that in order to find the expected value for a given cell of the 
table we multiplied the row sum for the cell by the column sum and 
divided by the total number of observations. 

( row sum ) ( column sum ) 
expected value = total number of observations 

We obtained the expected value by a process of multiplication and 
division. If, however, we wanted the log of the expected value we 
could change this as follows : 

log (expected value) = log (row sum) + log (column sum) -
log (total number of observations) 

Because with logarithms addition corresponds to normal multipli-
cation and subtraction to normal division, we now add and subtract 
instead of multiplying and dividing. As our expression for the 
expected value now only involves addition and subtraction it is said 
to be additive, or linear, in the logarithms of the original values. 

Why on earth should we want to do this ? As we will see when we 
come on to regression analysis, linear models are usually much 
easier to handle, and using them we can take our analysis of the 
relations between variables a lot further than simply testing for 
independence. Remember that the aim of log-linear modelling is to 
build models that fit the data, subject to the stipulation of parsi-
mony noted above. 

Suppose that having worked out the log of the expected value in 
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the way illustrated it is considerably different from the log of the 
observed value. What this means is that modelling (or describing) 
the expected value in terms of the row sum, the column sum and the 
total number of observations is insufficient. Something is missing. If 
we now postulate that our two variables are related and add an 
extra term to our equation to take account of this relationship then, 
if we're only dealing with two variables, we will find that our new 
model fits perfectly. If we're dealing with more than two variables 
we can successively add extra terms to the equation, trying to 
improve the fit between expected and observed. Our choice be-
tween the various possible models will be determined by the good-
ness of the fit and the criterion of simplicity. 

Table 7.13. The data of table 7.7 ; n = 128. 

Volume of grave cist 
^ 1 . 5 m 3 >1 .5m 3 

Est. height M 18 4 
^155 cm F 30 6 

Est. height M 4 43 
> 155 cm F 3 20 

As usual, what is involved is best illustrated by means of an 
example. Let us consider again one of the examples used to illus-
trate the use of the Q coefficient with three variables, from the 
previous section of this chapter: the example (table 7.7) in which 
we are trying to understand the relationship between the volume of 
the grave pits and the height and sex of the individuals buried in 
them, in an analysis of a hypothetical cemetery of single inhumation 
burials. The simplest model to test for this table is that the three 
variables are unrelated to one another ; the most basic null hypo-
thesis in other words, but now for three variables rather than two. 
We can write this model out as follows, for the top left cell in table 
7.13, using the approach described above : 

log (expected number of small males in small grave pits) = 
log ( total number of males ) + 
log (total number of small grave pits) + 
log (total number of small individuals) -
log (total number of observations) 

What it says is that the total number of small males in small grave 
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Table 7.14. Expected values added to 
the data in table 7.13. 

Volume of grave cist 
^1.5m3 >1.5m3 

Est. height 
^ 155 cm 

Est. height 
> 155 cm 

M 

F 

M 

F 

18(13.4) 
30(11.5) 

4(16.2) 
3(13.9) 

4(17.8) 
6(15.3) 

43(21.5) 
20(18.4) 

pits is simply a function of the total numbers of males, small grave 
pits and small individuals, taking into account the total number of 
observations. 

If this is a good model then the expected number of small males 
in small grave pits which it produces will be very close to the actual 
number. If it's not, then of course there will be a discrepancy. We 
can model the expected numbers of all the cells of the table in this 
way, and of course if there are a lot of discrepancies between 
observed and expected values we will end up with a significant 
chi-squared value. The expected and observed values for the ex-
ample are shown in table 7.14 and the test for the difference be-
tween them can now be carried out. In fact, for reasons which will 
become apparent below, the chi-squared statistic itself is not used, 
but a statistic which is equivalent to it, known as G2. 

^,ι ~ \ " Ί / i IM /observed\ G = 2 zL ( o b s e r v e d ) i o 8 4 i^^Jj 
where summation is over all the cells in the table. For the example 
considered here we have 

G2 = [181ofo( 18/13.4)] + [41o&(4/17.8)] + [301oge( 30/11.5)] 
+ [61ofo(6/15.3)] + [41ofo(4/16.2)] + [431og6(43/21.5)] 
+ [31ofo(3/13.9)] + [201ofo(20/18.4)] 

= 87.54 
The statistical significance of the G2 value may be obtained from 

the chi-squared table, but of course this requires us to know the 
correct number of degrees of freedom for our example : degrees of 
freedom = (number of cells) — (number of quantities estimated 
from the data). There are eight cells and we have had to obtain four 
quantities from the data (number of males, number of small grave 
pits, number of small individuals and the total number of observa-
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tions), so here the number of degrees of freedom is four. With four 
degrees of freedom the G2 value is very highly significant. The null 
hypothesis that the three variables are independent of one another 
must be rejected. 

The traditional use of chi-squared would leave the matter here, 
very much as we saw in chapter 6. What we want to do, however, is 
improve our model. Since independence doesn't hold there must be 
relationships between sex, grave-pit size and individual height of 
which we haven't taken account, and which we need to include in 
our model. The possibilities here are quite considerable. First any 
single pair of these variables may be related : 

sex and grave-pit size 
sex and individual height 
individual height and grave-pit size 

At a more complex level any two pairs may be related : 
sex and grave-pit size, and at the same time sex and height 
grave-pit size and sex, and grave-pit size and height 
height and sex, and at the same time height and grave-pit size 

More complex again : all three pairs may be related : 
sex and grave-pit size, and sex and height, and grave-pit size 
and height 

Finally, all three variables be simultaneously related to one an-
other : thus sex may be related to grave-pit size not just directly, or 
pairwise, but indirectly via height as well, and this may be true of all 
three variables. 

It is possible to see that as you work through the levels of com-
plexity, each one includes the one below: so that if two pairs of 
variables are related this obviously implies that one pair was related 
at the previous step ; similarly for three pairs to be related two pairs 
must be at the level before. 

The idea is to start at the simplest level and work up the hierarchy 
of complexity, stopping with the simplest model that fits the data. 
At each successive level of complexity a degree of freedom is lost, 
since the data are being used to estimate the association between 
each pair of variables. Thus, on our model of independence or no 
association that we started with there were four degrees of freedom. 
By the time we get to the highest level of complexity, where all 
three variables are simultaneously related to one another, there 
are no degrees of freedom left at all. The expected numbers would 
correspond to the observed numbers and we would simply be repro-
ducing the data we started with, so this final model, which is said in 
the jargon to be saturated, does not have much interest ! 
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The discussion above is summarised in table 7.15 (based on 

Fienberg 1980), which lists the various models, the number of 
degrees of freedom associated with them and their descriptions in 
terms of mathematical symbols, using Fienberg's notation. You 
should note that for models 2 and 3 only one of the three possible 
options is listed. 

Table 7.15. Possible log-linear models for the 
relationships between three variables. 

Model 

1. No association 
2. Association of 1 

pair of variables 
3. Association of 2 

pairs of variables 
4. Association of 3 

pairs of variables 
5. Interaction 

between all 3 

d.f. 

4 
3 

2 

1 

0 

Abbreviation 

[iPP] 
[12][3] 

[12][23] 

[12][23][13] 

[123] 

Symbolic description 

log Eijk = U + Wj + U2 + «3 
\ogEijk = u + ul + u2 + u3 + ul2 

log Ejjk = U + 11^+1*2 +U3 + Ux2 

+ "23 
log Eijk = u + ux + u2 + u3 + uX2 

+ «23 + "13 
\ogEijk = u + ux + u2 + u3 + uX2 

+ W23 + W13 + W123 

To illustrate how the equations are to be read let us take that for 
model 3 in relation to our example, assuming that as above when we 
were testing for independence, we want the expected value for the 
number of small males in small grave pits, but now postulating that 
there is a relationship between sex and grave-pit size, and between 
grave-pit size and height. 

log (expected number of small males in small grave pits) [ logis^] 
= log (total number of observations ) [u] + 

log ( total number of males ) [ u t ] + 
log (total number of small grave pits) [u2] + 
log (total number of small individuals) [u3] + 
log ( interaction between sex and grave-pit size ) [ u12 ] + 
log (interaction between grave-pit size and height) [u23] 

Having already rejected the model of no association for our 
example we can now set up and test the various possible level 2 
models, postulating an association between any one of the pairs : 

2a ) sex and grave-pit size 
2b) individual height and grave-pit size 
2c) sex and individual height 

Tables 7.16-7.18 show the observed values for the data, together 
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Table 7.16. Expected values for model 2a 
added to the data in table 7.13. 

Volume of grave cist 
^ 1 . 5 m 3 >1 .5m 3 

Est. height M 18(10.0) 4(21.3) 
^155cm F 30(15.0) 6(11.8) 

Est. height M 4(12.0) 43(25.7) 
>155cm F 3(18.0) 20(14.2) 

Table 7.17. Expected values for model 2b 
added to the data in table 7.13. 

Volume of grave cist 
^ 1 . 5 m 3 >1 .5m 3 

M ^155 cm 18(25.9) 4 (5.4) 
>155 4 (3.8) 43(34.0) 

F ^155 30(22.1) 6 (4.6) 
>155 3 (3.2) 20(29.0) 

Table 7.18. Expected values for model 2c 
added to the data in table 7.13. 

Sex 

^ 1 . 5 m 3 ^155cm 18 (9.5) 30(15.5) 
>155 4(20.2) 3 (9.9) 

>1 .5m 3 ^155 4(12.6) 6(20.5) 
>155 43(26.8) 20(13.1) 

Table 7.19. Summary of fit of log-linear models 
of relationships between sex, height and grave-pit 
volume. 

Model Abbreviation G2 d.f. 

1. No association [1][2][3] 87.54 4 
2. Association of 1 

pair of variables: 
a) [12][3] 79.70 3 
b) [1][23] 11.38 3 
c) [13][2] 76.17 3 

M F 
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with the expected values under each of these models. The G2 

(chi-squared equivalent) values for these different models, and for 
the initial test of independence, are shown in table 7.19, where 
variable 1 = sex, 2 = volume and 3 = height. 

All these G2 values are significant at least at the .01 level, which 
means that it is highly improbable that any of these models fit the 
data values : the differences between the observed values and the 
values expected under the model are too great. Nevertheless it is 
clear that model 2b, presupposing a relationship between height 
and volume, produces a marked drop in the G2 value and provides 
the best fit of any of the models tried so far. 

Let us move up to the next level, and models which presuppose 
relationships between two pairs of variables. 

3a) sex and height are related and so are height and grave-pit 
size ; sex and grave-pit site are not related 

3b) sex and height are related and so are sex and grave-pit 
volume ; height and grave-pit size are not related 

3c) sex and grave-pit volume are related, height and grave-pit 
size are related, but sex and height are not related 

Table 7.20. Expected values for model 3a 
added to the data in table 7.13. 

Volume of grave cist 
^1.5m3 >1.5m3 

Est. height 
^155 cm 

Est. height 
> 155 cm 

M 

F 

M 

F 

18(18.2) 
30(29.8) 

4 (4.7) 
3 (2.3) 

4 (3.8) 
6 (6.2) 

43(42.3) 
20(20.7) 

Table 7.21. Expected values for model 3b 
added to the data in table 7.13. 

Volume of grave cist 
^1.5m3 >1.5m3 

M ^155cm 18 (7.0) 4(15.0) 
>155 4(15.0) 43(32.0) 

F ^155 30(20.1) 6(15.9) 
>155 3(12.9) 20(10.1) 
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Table 7.22. Expected values for model 3c 
added to the data in table 7.13. 

Sex 
M F 

*£ 1.5 m3 

>1 .5m 3 

^155 cm 
>155 

^155 
>155 

18(19.2) 
4 (2.8) 

4 (6.5) 
43(40.5) 

30(28.8) 
3 (4.2) 

6 (3.5) 
20(22.5) 

Table 7.23. Summary of fit of log-linear models 
of relationship between sex, height and grave-pit 
volume. 

Model 

1. No association 
2. Association of 1 

pair of variables: 
a) 
b) 
c) 

3. Association of 2 
pairs of variables: 

a) 
b) 
c) 

Abbreviation 

[1][2][3] 

[12][3] 
[1][23] 
[13][2] 

[13][23] 
[12][13] 
[12][23] 

G2 

87.54* 

79.70* 
11.38* 
76.17* 

0.36 
69.17* 

3.98 

d.f. 

4 

3 
3 
3 

2 
2 
2 

Tables 7.20-7.22 show the observed values for the data again, but 
now with the expected values for each of the three level 3 models. 
A look at these indicates immediately that the fit of model 3a is 
excellent, that of 3b is very poor while that of 3c is also very good. 
The G2 goodness-of-fit values for these three models and all the 
others we have looked at are presented together in table 7.23, with 
all those marked which are statistically significant at the .05 level. 

It is when we come to comparing the results in a table such as this 
that the use of G2 rather than chi-squared becomes important. If we 
take, for example, the G2 value for a level 2 model, say model 2b, 
and subtract it from the G2 value for the level 1 model of indepen-
dence, the difference between them is a measure of the improve-
ment in goodness of fit. In this case 87.54-11.38 = 76.16. Such 
comparisons can be carried out between models at any two different 
levels. We could, for example, obtain the difference between the 



98 Quantifying Archaeology 
level 1 G2 and that for model 3a : 87.54 - 0.36 = 87.18, the improve-
ment obtained by predicting the cell values not on the assumption 
of independence but on the assumption of a relationship between 
variables 1 and 3 (sex and height) and 2 and 3 (height and grave 
volume). 

Furthermore, the differences may be tested for statistical signifi-
cance, using the number of degrees of freedom obtained by sub-
tracting the number of degrees of freedom for the higher level 
model from the number for the lower level. Thus, for our second 
example above, the number of degrees of freedom for the level 1 
model of no association is 4, the number for model 3a is 2, so we 
have a G2 difference of 87.18 with 2 degrees of freedom, which we 
can look up in the chi-squared table to establish its statistical signifi-
cance. If the more complex model produces a statistically significant 
decrease in G2 then we can adopt it. 

When we look at the results for the level 3 models we see that two 
of the three G2 values represent a considerable improvement over 
those for level 2. The one which does not, model 3b, has a worse fit 
than model 2b, and this occasions no surprise because it leaves out 
the relationship between variables 2 and 3, pit size and individual 
height, which model 2b established as very important. 

Clearly the best fitting model is model 3a, with a G2 value of 
almost zero, indicating a virtually perfect fit between the expecta-
tions of this model and the data values. Is it significantly better than 
2b? Let us compare the G2 values: 11.38-0.36=11.02 with one 
degree of freedom, which is highly significant. The appropriate 
model following the formulation of table 7.15 is : 

u + ux + u2 + u3 + w23 + u\3 

Again, if we want to relate this to the predicted value for a particular 
cell, and take as usual the cell representing small males in small 
grave pits, we have 

log (expected number of small males in small grave pits) = 
log (total number of observations) + 
log (total number of males) + 
log (total number of small grave pits) + 
log (total number of small individuals) + 
log (interaction between grave-pit size and height) + 
log (interaction between sex and height) 

In other words, the grave-pit size is related to the individual's 
height and the individual's height is related to their sex, but sex and 
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grave-pit size are not directly related. These relationships, which 
make intuitive sense, account for what is going on in the data, and 
there is no need to move to a higher level of complexity. 

As you will have gathered, the only really complex part of log-
linear modelling, the 'black box' in the account presented here, is 
the calculation of the expected values. That doesn't matter, how-
ever, because the calculations are not done by hand, but by com-
puter. A number of statistical computer packages include log-linear 
modelling methods (see appendix 2). 

The account presented here may be supplemented by reference 
to Fienberg ( 1980) and Lewis ( 1986), which is specifically archaeo-
logical in content. It also includes a description of the more re-
stricted case in which we can postulate that one of our variables is a 
dependent whose variation we are trying to understand in terms of 
the effects of a number of independents: the logit model. In fact 
log-linear modelling, and particularly the logit model, together 
with regression analysis (chapters 9-11) and analysis of variance 
(not covered here ; see, e.g., Blalock 1972) are all specific instances 
of what is known as the generalised linear model (Baker and Neider 
1978, Everitt and Dunn 1983), in which data values are accounted 
for in terms of the additive effects of a number of variables. 

EXERCISES 

7.1. Rim type and neck form were recorded for a group of sherds 
from a Mesopotamian settlement site, and the results are given 
below for both decorated and undecorated sherds. 

No. of 
sherds 

16 
9 
14 
32 
7 
14 
30 
18 

Rim 
type 

1 
1 
1 
1 
2 
2 
2 
2 

Neck 
form 

1 
2 
1 
2 
1 
2 
1 
2 

Dec/ 
undec 

dec 
dec 

undec 
undec 
dec 
dec 

undec 
undec 

a) How strong and of what form is the overall relationship between 
neck form and rim type ? Is this relationship significant ? b ) In what 
way does the introduction of the third variable, decoration, affect 
the relationship between rim type and neck form, both overall and 
conditionally? 
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7.2. An analysis is being carried out of the association between two 
different motifs occurring on a particular set of ceramic vessels from 
a central European iron age cemetery, based on the following data : 

Motif 1 
Present Absent 

Motif 2 Present 29 17 
Absent 23 32 

Do your conclusions about the relationship between the two motifs 
change when independent evidence of the chronology of the graves 
is used to divide the vessels into two phases ? 

Motif 1 
Present Absent 

Early phase 
Motif2 Present 15 7 

Absent 9 11 

Late phase 
Motif 2 Present 14 10 

Absent 14 21 
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Numeric Variables : 
The Normal Distribution 

The chapters immediately preceding this one have been concerned 
with nominal scale variables and in particular with ways in which 
relationships between them may be analysed. The chapters follow-
ing will deal with such relationships between numeric variables 
measured at an interval scale or above ; but before the necessary 
methods can be described it is necessary to go back to the topics, 
treated in chapters 3 and 4, concerned with describing the distribu-
tions of single variables, and to consider one distribution in particu-
lar, the normal or Gaussian distribution, already briefly mentioned 
in chapter 4. 

Even if you have no idea what a normal distribution is, the odds 
are that you believe it to be important. In this you would be largely 
correct, both because a large number of observed distributions are 
found to be approximately normal, and also because of the theo-
retical significance of this distribution, in inductive statistics and as 
the basis for many statistical methods. 

For these reasons many statistics textbooks give a central role to 
the theory of the normal distribution and its use as a basis for 
statistical inference, including significance testing. In this text it is 
played down, particularly its statistical inference role. There are a 
number of reasons for this. The tests based on it are conceptually 
difficult and they are not of central importance. As we have seen 
already, a great deal can be done without ever making use of the 
normal distribution, and even within the discipline of statistics 
generally its use is arguably becoming less important. When statis-
tics was developing, normal theory provided a theoretical sheet-
anchor for the development of statistical methods. With the in-
creased availability and capacity of computers it has now become 
possible to simulate statistical distributions directly using numerical 
techniques. Furthermore, advocates of the exploratory data ana-
lysis approach make the point that normal theory based methods 
are often very sensitive to irregularities in the data ; this point will 
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be considered again in the next chapter. 

Nevertheless, the normal distribution cannot be completely ig-
nored, and the reason for turning our attention to it here is that, for 
variables measured at an interval scale or above, the majority of 
the currently used methods for investigating relationships between 
them are actually based upon it. Furthermore, as we will see later 
in this chapter, action can often be taken to make data distributions 
correspond reasonably closely to normality even if they are not 
normal to start with. 

In what follows the intention is to look at the normal distribution 
purely from a descriptive point of view, and in particular to consider 
how the standard deviation (see chapter 4 for a description of the 
standard deviation) relates to it. 

THE NORMAL DISTRIBUTION 

In considering the use of bar charts to display the frequency distri-
butions of continuous numeric variables in chapter 3 it was noted 
that the width of the intervals is important. In particular, if the 
intervals of the distribution become narrower and narrower for a 
given sample size, the distribution eventually starts to look very 
irregular, with gaps and holes in it. If we increased the number of 
cases, however, and kept increasing it as we made our intervals 
narrower, then the distribution would become increasingly fine in 
its divisions but still retain the same shape. Thus, in figure 8.1, it 
would be possible to go from (a) to (b). 

(a) 

r— 

Figure 8.1. (a) Histogram with wide intervals ; (b) histo-
gram with very narrow intervals, based on a very large 
number of observations. 

Assuming that the distribution has the shape shown in figure 8.1, 
if we imagine the intervals becoming infinitely narrow and the 
number of observations correspondingly large, we end up with a 
smooth bell-shaped curve (figure 8.2). 

Just as the area within a bar chart can be calculated by summing 
the areas of the individual rectangles, so the area under the smooth 
curve can be calculated by summing the infinitely large number of 
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Figure 8.2. A normal distribution. 

rectangles under the smooth curve ; this is the calculus operation of 
integration. 

The normal curve is a symmetrical smooth bell-shaped curve 
defined by a particular equation ; one feature of it is that the two 
tails extend infinitely in either direction without reaching the hori-
zontal axis. At the level of this text the equation is not of any 
interest. What is important is that regardless of what particular 
mean and standard deviation a given normal curve may have, there 
will be a constant proportion of the area under the curve, or a 
constant proportion of the cases in a frequency distribution of this 
form, between the mean and a given distance from the mean, 
expressed in standard deviation units (figure 8.3). 

k 95.46% ? 

! *<r- 68.26% — î ! 

x— 2s x — s x x + s x+2s 

Figure 8.3. The percentage of the area under a normal 
curve within one and two standard deviations of the mean. 

It is worth giving several examples of this to make it clear. Thus, 
the area under the curve between the mean and a point one stan-
dard deviation either greater or smaller than the mean will be 
34.13% of the total area under the curve. Between one standard 
deviation less than the mean and one standard deviation more than 
the mean there will be twice 34.13 %, or 68.26 % of the area under 
the curve. The corresponding figures for two standard deviations 
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are 47.43 % and 95.46 %, and for three standard deviations 49.86 % 
and 99.73%. 

Although these figures are based on the theoretically defined 
normal curve, many empirically obtained frequency distributions 
of data are sufficiently close to it for these rules about the proportion 
of the distribution within particular standard deviation distances 
from the mean to be applicable. For this reason these constant 
proportionalities can be put to use. 

The fact that many real frequency distributions are quite close to 
normality, so that these theoretical results can be used, is not 
accidental. If the value of some variable is the result of the cumula-
tive effect of a large number of other variables which are indepen-
dent of one another, then it can be proved mathematically that the 
distribution of the values of that variable will be approximately 
normal. An example of such a variable in the field of biology, where 
the normal distribution saw early application, is body height. This 
is mainly determined by a large number of genetic factors, but also 
by such factors as nutrition and environment. These different fac-
tors will tend to act in different directions. The result is that the 
distribution of heights in a population will be a normal one, as 
indeed it is. There are many archaeological instances of ratio scale 
variables, particularly physical measurements such as lengths, 
breadths, weights, volumes and so on, which are likewise affected 
by a large number of different factors acting in different directions, 
with the result that the distribution of the variable values is a 
normal one, or at least not far from it. 

It is now necessary to show how these constant proportionalities 
characteristic of the normal distribution may be used and inter-
preted in a specific archaeological case. This will inevitably be 
somewhat artificial since they are generally used as a means to an 
end rather than being an end in themselves, which is how we will 
have to treat them here. Let us suppose then that we are dealing 
with a large set of projectile points from the south-western United 
States. Their lengths are normally distributed, with a mean of 110 
mm and a standard deviation of 20 mm ( see figure 8.4 ). Initially we 
want to find out the proportion of their lengths which lie between 
110 and 140 mm. 

It is first necessary to work out how many standard deviations 140 
is from 110 ; in millimetres it is 30 and the standard deviation is 20. 
If we divide the difference between the mean and the value in which 
we are interested by the standard deviation we obtain the figure we 
want: 30/20= 1.5. The value 140 is 1.5 standard deviations away 
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70 90 110 130 150 mm 
x-2s x — s x x + s x+2s 

Figure 8.4. The distribution of lengths of a large number of 
projectile points from the south-western United States. 

from the mean. When a quantity is presented in the form of a 
number of standard deviation units away from the mean of its 
distribution it is said to be in the form of a Z score (or standard 
score ), where Z represents the deviation from the mean in standard 
deviation units. The general expression is 

S 

where x is the mean, s is the value of the standard deviation, and x 
is the value of the boundary of the interval in which we are in-
terested. 

How do we get from a value for Z to a value for the proportion of 
cases within the interval in which we are interested ? The answer is 
that tables have been constructed to do this for what is known as the 
standard form of the normal curve, expressed in terms of Z scores 
( see appendix 1, table B ). The table assumes that the area under the 
normal curve sums to 1.0, with 0.5 to the left of the mean and 0.5 to 
the right. The values of Z are given down the margins of the table 
and along the top. The first two digits of Z are obtained by reading 
down and the third by reading across. The left-hand page of the 
table is for negative Z values, i.e. values less than the mean, and the 
right-hand page for positive Z values, values greater than the mean. 
In this case we are interested in a Z value of +1.50, so we look down 
the left-hand column of the right-hand page for Z = 1.5, and across 
to the first column right, corresponding to Z = 1.50. Figures within 
the body of the table indicate the proportion of the total area under 
the curve which lies between the Z value and the extreme right-
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hand end of the curve. In this case we see that the value is 0.06681, 
or 6.7%. But we want to find the area not between Z = 1.5 and 
the right-hand end of the curve, but between the mean and Z = 1.5. 
We know that the proportion between the mean and the right-hand 
end is 0.5, so the proportion between the mean and Z = 1.5 must be 
0.5-0.06681 = 0.43319. Rounding the last two figures we have 
0.433 or 43.3% of the curve lying between the mean and a line at 
Z = 1.5. Translating back into our example, we can say that 43.3 % 
of the projectile-point lengths will be between 110 and 140 mm (see 
figure 8.5). 

70 90 110 130 140 150 mm scale 
-2.0 -1.0 0 1.0 1.5 2.0 Z scale 

Figure 8.5. Distribution of projectile-point lengths with 
Z-scores corresponding to actual standard deviation values. 

If we had been asked to find the proportion of lengths between 
110 and 80 mm, or 1.5 standard deviations less than the mean, we 
would find the value in the table corresponding to Z = — 1.50, which 
is 0.93319 ; that is to say, 93.3 % of the total area under the curve is 
between a line at Z = -1.50 and the extreme right-hand end of the 
curve. We want the area between Z = —1.5 and the mean, so we 
have to subtract 0.5, to give 0.43319; unsurprisingly, exactly the 
same as between the mean and Z = + 1 . 5 0 . If the question had 
referred to the proportion of lengths between 80 and 140 mm, or 
within 1.5 standard deviations either side of the mean, we would 
simply double the answer for one half: 0.433 + 0.433 = 0.866. Ob-
viously, the proportion or percentage can easily be translated into 
real numbers if necessary so long as we know the total number of 
observations in our distribution. 

If we had been asked to find the proportion of projectile points 
with lengths greater than 140 mm then the problem would have 
been less complicated. We would simply need to know the area 
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between Z = +1.50 and the extreme right-hand end of the curve. 
We obtain this simply by reading off the value for Z = 1.50 in the 
table, as we already have done to work out the first question : 6.7 % 
of the area under the curve is between Z = 1.50 and the extreme 
right of the curve, so that 6.7% of the points have a length greater 
than 140 mm. 

For points less than 80 mm the procedure is similar to the first two 
cases we looked at. The area under the curve corresponding to 
Z = -1.50 is 0.93319, as we have seen already, so we have 1.0 — 
0.93319 = 0.06681, or 6.7%. 

Not all tables of the standardised normal distribution are set up 
precisely as table B of appendix 1 is, but they are all very similar and 
it shouldn't be difficult to work out what to do. 

The calculation of proportions of projectile-point lengths in spe-
cific intervals of the overall distribution of lengths might be of 
interest in itself if we had some specific hypothesis concerning the 
functional or cultural significance of projectile-point length, but the 
object here is to illustrate the way in which the standard normal 
distribution and real data relate to one another since an understand-
ing of this is important in the chapters that follow. 

In effect, what we are doing when we perform these operations is 
carrying out a standardisation of our original data. We start off with 
a particular normal distribution with a mean and standard deviation 
expressed in terms of the units in which the observations were 
made ; millimetres in the examples just given. We then re-express 
the observations in terms of standard deviation units either side of 
the mean. The mean becomes zero and observations less than the 
mean are negative quantities, those greater than the mean are 
positive, thus the new distribution has a mean of zero and a standard 
deviation of one. No matter what the original units of measurement 
we can convert any normal distribution to this standard deviation 
unit form and it will have the properties which we have seen to 
characterise the normal distribution, in terms of the proportion of 
the area under the curve, or cases within the distribution, within a 
given interval, the information given in the Z table. 

The most obvious way in which the normal distribution impinges 
on archaeology is in the presentation of radiocarbon dates, where 
the dates are given in the form of a mean and standard deviation 
(see Thomas 1976, Orton 1980 for a more extensive discussion of 
this matter). It is all too easy to forget that there is only a 68.26% 
probability of the date lying within one standard deviation of the 
mean. Conventional statistical practice indicates that we should not 
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normally be satisfied with less than a 90% or 95 % probability. The 
trouble is that time intervals of ± 2 standard deviations are gener-
ally so wide that, consciously or unconsciously, archaeologists pre-
fer to overlook them and go for spurious precision. 

WHAT DO WE DO IF THE DATA 

ARE NOT NORMALLY DISTRIBUTED? 

The question naturally arises how we know whether or not our data 
are normally distributed. There are a number of ways of finding this 
out ; one method is to plot the cumulative frequency distribution of 
the data on special graph paper known as arithmetic probability 
paper (see figure 8.6). As you can see, the horizontal scale is 
plotted in regular equal units for the range of the variable con-
cerned, but the vertical scale records the cumulative distribution of 
observations (divided into 1000 parts) on a variable scale so that, 
for instance, the vertical distance from 50-60% (500-600 on this 
scale) is similar to the vertical distance from 1-2%. Note that the 
vertical scale is drawn from 0.1 to 999.9. This is because the normal 
curve is asymptotic, as we have already noted : it approaches zero at 
either end without actually ever reaching it, thus 0% and 100% (0 
and 1000) are infinitely distant. The constant horizontal and vari-
able vertical scale have the effect of turning the cumulative curve of 
a normal distribution into a straight line. Alternatively, programs 
exist for doing precisely the same thing on a computer. 

Two other extremely useful methods of checking for normality 
have already been described in the exploratory data analysis section 
of chapter 4. Study of the intervals between the minimum value, the 
lower hinge, the median, the upper hinge and the maximum value 
will give a good idea of the overall symmetry and degree of concen-
tration of the central values of the distribution. Use of the box-and-
whisker plot brings out peculiarities in the distribution tails. This is 
particularly important because it may only be here that deviations 
from normality are obvious. 

What happens if the data are not normal and we want them to be 
so for some reason, such as the application of a method which 
presupposes normal distributions ? Can we and should we do any-
thing about it? There is no doubt about our ability to do so, by 
means of transformations. The Z standardisation has already been 
described in this chapter, but that simply changed the original scale 
into a new one, without affecting the shape of the distribution in any 
way. Other transformations can be applied to data to actually 
change the distribution shape, by changing the relative lengths of 
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Figure 8.6. An example of arithmetic probability paper. 
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different parts of the scale. 

In the past there has been a certain amount of debate about the 
utility and validity of transforming data, and some people have 
argued that it is simply 'fudging'. The view taken here is that 
transformations are a useful and valuable tool for data analysis, like 
any other; in fact, we have already seen their use in the previous 
chapter, where the log-linear modelling approach was based on the 
logarithms of the numbers in the tables, rather than the original 
values. The use of a transformation enabled us to go further with 
our understanding of the data than would otherwise have been 
possible. It is very often the case that patterns emerge more clearly 
in transformed than in untransformed data and the use of certain 
methods requires that the data be in a particular form. If a particular 
method that you wish to use presupposes a normal distribution then 
there is no reason not to transform it. Why should we privilege one 
form of numerical scale rather than another ? The only proviso here 
is that the transformation should be interprétable, and we tend to 
feel more at home with the scales of measurement which have 
reality to us in our daily lives. However, that is no reason to carry 
such restrictions into our data analysis. 

In practical archaeological situations one of the situations that 
arises most commonly is that distributions are positively skewed, 
with a long upper tail. In this case the possible transformations to 
normality are quite straightforward. What they need to do is 'pull 
in' the upper tail while leaving the rest of the observations largely 
unchanged. One way of doing this is to take the square root of each 
observation ; a more drastic effect is produced by taking logarithms. 
What is involved is best illustrated by means of an example. 

Let us suppose that we have been carrying out a field survey and 
have been collecting lithic artefacts over a wide area, using a grid 
system. As a result of this we have information on the number of 
lithic artefacts per square for each grid square. We want to carry out 
a correlation analysis on these data (see next chapter) and to do 
this it is preferable for the data to be normally distributed. We have 
plotted a histogram of the data and found that the distribution is 
positively skew so we want to carry out a transformation of the type 
just described. Rather than transform each observation we will 
transform the midpoint of each class interval ; this is less laborious 
and easier to demonstrate. The untransformed distribution is given 
in figure 8.7. 

If we try a square-root transformation we need a new horizontal 
scale in units of Vx. To obtain this we look at the value of the class 
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Figure 8.7. Distribution of numbers of grid squares con-
taining different numbers of lithic artefacts : data from a 
hypothetical field survey. 

midpoints in the original histogram, take their square roots and 
then put the cases from each original class into the correct square-
root class. As you can see from figure 8.8, the data now show a 
much closer approximation to normality. 
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Figure 8.8. Distribution of numbers of grid squares con-
taining different numbers of lithic artefacts : number of 
artefacts per square transformed to the square root of the 
original value. 
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If we were trying a log transformation we would need a new scale 

in units of log x (here log to the base 10). By analogy with the 
square-root example we take the log of each class midpoint, work 
out our scale and plot the histogram (figure 8.9). 
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Figure 8.9. Distribution of numbers of grid squares 
containing different numbers of lithic artefacts : number 
of artefacts per square transformed to the common 
logarithm of the original value. 

In fact, as you can see, in this case the result comes out very 
similar for both transformations, the square root and the log. This 
is so because the positive tail in this case is not very large. Suppose 
the highest observation had been 1,000,000. The square root of this 
number is 1,000, but its logarithm is 6, so in this case the difference 
between the two is considerable. As a general guide, logarithms are 
appropriate for inherently positive data in which the values go close 
to zero (e.g. densities), while square roots are often used to trans-
form frequency-count data. 

EXERCISES 

8.1. A group of pots is found to have a mean capacity of 950 ml with 
a standard deviation of 56 ml. The shape of the distribution of 
volumes is normal, (a) What proportion of the pots have a cubic 
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capacity greater than 1050 ml ? ( b ) What proportion have a capacity 
less than 800 ml? (c) What proportion of the capacities lie between 
900 and 1,000 ml? 

8.2. In the course of a study of a group of handaxes it is decided to 
investigate the relationship between handaxe weight and a number 
of other variables. The methods it is required to use presuppose 
that the handaxe weights are normally distributed. Compilation of 
a frequency distribution of weights produces the information be-
low. Check whether it is normal and if it is not take appropriate 
action to make it so. 

Interval No. of Interval No. of 
(g) handaxes (g) handaxes 

200-249 
250-299 
300-349 
350-399 
400-449 
450-499 
500-549 
550-599 
600-649 

5 
10 
13 
17 
13 
8 
5 
4 
4 

650-699 
700-749 
750-799 
800-849 
850-899 
900-949 
950-999 
1000-1049 

3 
3 
2 
2 
2 
1 
1 
1 
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Relationships between Two Numeric Variables : 
Correlation and Regression 

METHODS OF VISUAL DISPLAY! SCATTERGRAMS 

The investigation of relationships between two numeric variables 
has one great advantage over the study of relationships between 
nominal scale variables which we have seen in earlier chapters : the 
relationships can be presented in the form of a visual display, 
known as a scatter diagram or scattergram, where one variable is 
plotted against another. As always, such pictures can convey a 
great deal of information and prevent us from being misled, which 
can happen all too easily if we consider only numerical summaries 
of relationships. 

Table 9.1. Quantities of New Forest 
pottery recovered from sites at varying 
distances from the kilns. 

Site 

1 
2 
3 
4 
5 

Distance 
(km) 

4 
20 
32 
34 
24 

Quantity 
(sherds per 
m3 of earth) 

98 
60 
41 
47 
62 

For each observation we have a value for one variable and a value 
for another. Thus, suppose we are interested in the relationship 
between the quantity of pottery from the Romano-British kilns of 
the New Forest, in southern England, reaching sites at varying 
distances from the source. We might have the information shown in 
table 9.1. We can then produce a scattergram and plot in the points, 
with distance as the horizontal axis and pottery quantity as the 
vertical axis. Each site is placed at the appropriate point above the 
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horizontal axis and opposite the vertical axis corresponding to its 
values on the variables (figure 9.1 ). 
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Figure 9.1. Plot of the quantity of Romano-British pot-
tery from the New Forest kilns reaching various sites, in 
relation to the distance of the sites from the kilns. 

This scattergram simply as it stands is extremely informative. We 
can see that the quantity of pottery decreases as distance from the 
source increases. We can also see that the relationship is roughly in 
the form of a straight line : an appropriately positioned straight line 
would pass very close to all the points. In other words, for a given 
increase in distance, there is a given decrease in pottery quantity, 
all along the distance scale, and all the sites more or less follow this 
relationship. 

In this case we can say that one of these variables is an indepen-
dent and the other a dependent. We imagine that pottery quantity 
is in some way affected by distance and therefore dependent on it, 
but the converse, that distance is affected by pottery quantity, does 
not hold. In such circumstances it is conventional to make the 
independent variable the horizontal axis, or x axis, of the graph, 
and the dependent the vertical or y axis. 

It need not always be the case that we can specify dependent and 
independent variables. Suppose we are studying the dimensions of 
a group of neolithic beakers from Hungary and the relationships 
between them, in order to characterise the main aspects of variation 
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in their shape (cf. Whallon 1982, for a study of Swiss neolithic ves-
sels) ; we might plot height against rim diameter (figure 9.2). We 
can see that they match each other quite closely, so that the rim 
diameter and height are in fairly constant proportion to one an-
other. In this example we can still plot the scattergram and it plays 
the same kind of role as the previous one in showing us the relation-
ship between the two variables, but there is no intrinsic reason why 
one of them should be regarded as dependent on the other. 
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Figure 9.2. Rim diameter plotted against height for a 
hypothetical group of neolithic beakers from Hungary. 

Scattergrams are the most important means of studying the re-
lationships between pairs of variables. From them we can gain an 
idea first of the direction of a relationship : is it positive or negative ? 
The height v. rim diameter plot is an example of the first : as heights 
become larger rims become larger. The pottery and distance plot is 
an example of the second: as distance increases, pottery quantity 
decreases. 

The scattergram will also tell us about the shape of the relation-
ship. Both those illustrated have clearly been straight line or linear 
relationships. By no means all relations between variables are of 
this kind. In fact, graphs of the quantity of some commodity against 
distance from its source are more commonly of the type shown in 
figure 9.3. This relationship is curvilinear, but it is still monotonie, 
i.e. throughout its range as distance gets larger, quantity gets small-
er; it is not the case that for part of the distance scale pottery 
quantity decreases and then for the next part it starts to increase. 
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c 
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Distance 
Figure 9.3. Plot of hypothetical quantities of a commodity 
reaching certain sites against the distance of these sites 
from the source, showing a curvilinear relationship. 

An example of a non-monotonic relationship would be figure 9.4, 
which would be of interest to an archaeologist trying to estimate the 
ages at death of the animals whose bones he is studying. In this case 
the tooth increases in height as it grows after eruption and the 
animal's age increases, but as the tooth starts being used it gradually 
gets ground down and its height starts decreasing. 

X 

* v 
X X y 

Age of animal 
Figure 9.4. Plot of height of first molar against 
age at death for a number of sheep jawbones 
of known age at death. 

The scattergram will also give us an idea of the strength of the 
relationship. Compare the two scattergrams of the relationship 
between weight and number of flake scars for two hypothetical 
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groups of flint handaxes from the gravels of the Thames valley in 
southern England (figure 9.5). In one case the relationship is clear-
ly much stronger than in the other because the points are much 
more narrowly concentrated together in a long thin band : they are 
generally much closer to any straight line we might draw through 
the scatter of points. 

o 

(a) 

M 

o 
Z 

(b) 

Weight Weight 
Figure 9.5. Scattergram of weight against number 
of flake scars for two groups of handaxes. 

Scattergrams such as these, with two axes at right angles to each 
other, one for each variable, are by far the most common form of 
scattergram used in archaeology, as in other disciplines. Neverthe-
less, one other form does deserve mention, the tripolar graph, of 
which an example is illustrated in figure 9.6. As you can see, there 
are three axes at 60° to one another, forming a graph which is 
triangular in shape. Triangular or tripolar graphs can be used to 
plot not just two but three variables against one another in cases 
where the three variables make up a closed scale. By a closed scale 
we mean a scale with a fixed sum, like the percentage scale. Faunal 
assemblages from sites are often described in terms of the percent-
ages of bones belonging to different species. Very often in a Euro-
pean or Near Eastern agricultural context only three species are of 
interest: cow, pig and sheep/goat. For a particular assemblage, if 
cow makes up 20% and pig 30%, then sheep/goat must make up 
50%, otherwise the percentages will not sum to 100. 

Figure 9.6 shows a tripolar graph for the faunal assemblages from 
the successive phases of occupation at the Bronze Age site of 
Phylakopi on the Aegean island of Melos ( Gamble 1982). To show 
how to read it, let us take as an example phase o by weight. If we 
look along the sheep/goat scale we see that its value is about 76 %, 
on the pig scale about 17 % and on the cow scale about 7 %. For 
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0% 50% Ovicaprid 100% 

Figure9.6. Tripolar graph of faunal percentages from the 
five city phases at Phylakopi: phases o, i from the early 
bronze age; ii, in from the middle bronze age ; iv from 
the late bronze age (after Gamble 1982). 

phase in by weight we have 44,11 and 45 % respectively. By using 
the graph we have a ready means of tracing the temporal trends in 
faunal assemblage composition at Phylakopi. 

In any study of relationships between interval scale variables, it 
is always essential as a first step to plot the scattergram and see what 
it looks like. But we may want to do more than this. We may want 
to describe the relationship in the scattergram mathematically, 
perhaps for the purpose of comparison with other similar data sets. 
Similarly, we may well want to define the strength of relationship 
mathematically : how good is the fit of the data to the proposed 
relationship ? 

DESCRIBING RELATIONSHIPS BY NUMBERS 

a) The Form of the Relationship 
The process of describing the relationship is called regression and 
that of measuring how well the data fit the relation is correlation. 

Regression differs from other techniques we have looked at so far 
(with the exceptions of the methods described at the end of chapter 
7) in that it is concerned not just with whether or not a relationship 
exists, or the strength of that relationship, but with its nature. For 
this reason it is important not just in standard statistics but also in 
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model-building - it is concerned with prediction. We use an inde-
pendent variable to estimate the values of a dependent variable. 

The most general way of stating a hypothesised relationship 
mathematically is y =/(*)· This does not tell us a great deal : simply 
that the value of y (the dependent variable) at a particular point is 
a function of the value of x (the independent variable) there. It 
does not say anything about the specific nature of the relationship 
although it would be easy enough to put in some figures, e.g. 

y = x 
or y = 2x 
or y = x2 

(a) 
(b) 
(c) 

These may be worth spelling out. Thus, (a) tells us that the y value 
at a given point is the same as the x value of the point ; (b) tells us 
that the y value is twice the x value of the point ; (c) states that the 
y value of a given point is the square of the x value at that point. 
Such equations can be represented by lines on a graph ; those for 
(a), (b) and (c) are shown in figure 9.7. 

Figure 9.7. Graphs of the equations (a)y = x;(b)y = 2x; 
(c)y = x2. 

If our specification of the relationship between two variables by 
one of these functions was perfect, then from knowledge of x at a 
given point we could predict the value of y for that point with 
certainty. For example, if there was a perfect relationship in a 
particular case between the density of obsidian at a site and the 
distance of the site from the obsidian source, then from a knowledge 
of the distance of the site we could predict exactly its obsidian 
density; or, if there was a perfect relationship between height and 
rim diameter for a group of vessels, then from a knowledge of rim 
diameter we could predict height exactly (and vice versa in this 
case). 

Of course, in most cases, indeed all cases outside the hardest 
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natural sciences, things are never completely predictable. In some 
cases, again particularly in hard experimental sciences, this is sim-
ply because of imperfections in our measurement procedures ; in 
most cases it is because effects are usually the result of a variety of 
causes operating together, many of which are themselves subject to 
random influences. What we therefore have to do is look for general 
trends in our data, estimating the relationship between x and y and 
also the accuracy with which values of y can be derived from this 
estimated relationship. 

The situation where there is a relationship may be contrasted 
with that which obtains when x and y are statistically independent. 
In this case we cannot predict y from x, or, rather, knowledge of x 
does not improve our prediction of y ; the stronger the dependence 
the more accurate our prediction will be. 

As will appear more clearly below, the graph provides the link 
between the scattergrams we have seen already and the mathemati-
cal equations. 

If we think of the best known type of example of regression 
analysis in archaeology, fall-off in the quantities of a particular type 
of material being distributed from a source with distance from that 
source - let us say obsidian from Lipari in the west Mediterranean 
- we can imagine that for every fixed value of the independent 
variable, distance, there will be a distribution of quantities of the 
material ; not all sites at a given distance will have the same amount. 
But each of these quantity distributions (for each of the given 
values of the x variable, distance ) will have a mean, and we can plot 
the position of these means. The line traced out by these means of 
y's for fixed jt's is known as the regression equation of y on x. (In 
actual fact it is rarely the case in practice that there will be a number 
of y values for a given x value ; this generally only occurs in designed 
experiments where it can be arranged to do so. Nevertheless, the 
method does not depend on this ; the assumptions on which it does 
depend will be considered below. ) 

The line itself can take any form but we will only consider the 
simplest case, when the regression equation is a linear one and the 
relationship is a straight line. This is not such a restriction as might 
be imagined, because many empirical relationships do take this 
form and because it is often possible, as we will see, to transform 
variables so that the relationship between them becomes linear. 
Such linear relations have the virtue of being easier to understand 
at an intuitive level. We can write an equation for this linear 
relationship, as follows 
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y = a + bx 

where y is the dependent variable, x is the independent variable, 
and the coefficients a and b are constants, i.e. they are fixed for a 
given set of data. 

Figure 9.8. The slope and intercept (a and b coefficients) 
of a regression line. 

If x = 0 then the equation reduces to y = a, so a represents the 
point where the regression line crosses the y axis (see figure 9.8) ; 
this is generally known as the intercept. The b constant defines the 
slope of the regression line, the amount of change in a vertical 
direction (along the y axis) for a given horizontal distance (along 
the x axis). Thus, for the pottery quantity in relation to distance 
from source example illustrated above, the b value represents the 
amount of decrease in pottery quantity for a given increase in 
distance from the source (it is calculated below, p. 126); for the 
height and rim diameter example it is the amount of increase in rim 
diameter associated with a given increase in height. Figure 9.8 
illustrates what is involved. 

As the slope becomes steeper so the amount of change in y for a 
given change in x becomes greater. When the line is horizontal, on 
the other hand, b is obviously zero and there is no change in y for 
any amount of change in x. It is clear that this means that there is no 
relationship between the two variables concerned; or, looked at 
from another point of view, knowing the x values of a set of 
observations does not help to predict their y values. But we have to 
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qualify this. If b is zero it means that there is no linear relationship 
between the two variables ; certain forms of nonlinear relationship 
could produce a b value of zero. Finally, it should be noted that if y 
decreases as x increases, in other words the relation between the 
two is an inverse one, then the sign of the b coefficient will be 
negative. How all this works out we will now see with out pottery 
example. 

Having produced the scattergram of the relationship between 
pottery quantity and distance from the source (figure 9.1) on the 
basis of the information in table 9.1, we now want to describe the 
relationship mathematically. This means finding the appropriate 
intercept and slope values {a and b coefficients) for this particular 
set of data, to put in the equation y = a + bx. However, a glance at 
the scattergram (figure 9.1) will soon show that the relationship is 
not a perfect one : there is no straight line which will go exactly 
through all the data points. What we want to do is find the straight 
line which gives the best fit to the data points. How do we do this? 

One intuitively appealing way is to plot the scattergram of the 
observations and then simply draw in by eye a best-fitting straight 
line through the dots ; we could then work out the slope and inter-
cept values for the line. Unsurprisingly perhaps, this is not entirely 
satisfactory. The usual method of fitting a line through the data 
points is by means of least squares. For each data point we can note 
the actual y value. It is obvious that the y value predicted by the 
regression for that point will almost certainly not correspond exact-
ly to the real y value : there will be a discrepancy. What is involved 
for a particular data point is illustrated in figure 9.9, which looks at 
one particular segment of a regression line. 

y-y 

actual y 
value 

y value predicted 
for this point by 
the regression line (y) 

Figure 9.9. The difference between the actual y value of a 
data point and the value predicted by a regression. 
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The least-squares method finds the straight line which minimises 

,£(*-A·)2 

where n = the number of data points, yt = the actual y value of point 
/, and y— the value of point / predicted by the regression. Let's go 
through what this means in words. 

For each data point we can obtain the difference between its 
actual and predicted y values (in our example the difference be-
tween the actual quantity of New Forest pottery at a site and the 
quantity predicted by the regression line) ; this is the ()>/ — &■) term. 
We are then told to square this difference, to repeat the whole 
operation for each of our data points, then add up all the resulting 
quantities. This total must be minimised. In other words, we must 
'juggle around' the exact position of the regression line until we find 
the line which produces the smallest possible sum of squared differ-
ences between actual and predicted values. 

We use the squared deviations for the same reason as we use 
squared differences from the mean to define dispersion in calculat-
ing the variance and standard deviation of a single variable : if we 
simply took the differences without squaring them they would sum 
to zero. Inevitably, however, the result of the procedure is that the 
slope and position of the regression line are most influenced by the 
points with the largest deviations from the mean, and this is one of 
the sources of weakness of least-squares regression, because one or 
two extreme values can have a big effect on the results. 

It is worth noting here that it is the sum of the squared vertical 
distances which are being minimised, since we are interested in the 
regression of y on x, or the effect of x on y. If we wanted to regress 
x on y we would use the horizontal distances. In later chapters we 
will see some methods which involve using the distances perpen-
dicular to a best-fit line. 

In fact, we don't actually need to do any juggling round to find 
the position of the best fit regression line satisfying the least squares 
criterion. Equations have been obtained which enable the appro-
priate a and b coefficients for any given set of data to be calculated : 

tx(xi-x)(yi-y) 

!u-*)2 

In words, starting with the top line: we take the x value of a 
particular data point and subtract the mean of the xs. We then take 
the y value of that data point and subtract the mean of the ys. 
Having done that we multiply the two x and y quantities together. 
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We carry out this operation for each of our data points and add up 
all the results. This quantity, known as the covariation between x 
and y, is then divided by the denominator. For the latter we take the 
x value of each data point in turn, subtract the mean of the jt's from 
it, square the resulting difference, repeat the operation for all data 
points, and again add up all the results. This sum is used to divide 
the sum on the top line to give the b value, the slope of the 
regression line. 

For the a coefficient we have 

Site 

1 
2 
3 
4 
5 

Distance 
(x) in km 

4 
20 
32 
34 
24 

Quantity (y) 
(sherds per 
m3 of earth) 

98 
60 
41 
47 
62 

We can now calculate the actual a and b values to describe the 
relationship between pottery quantity and distance from the kilns 
in our example. The figures are reproduced in table 9.2 for con-
venience. Using the computing formula above for b, the various 
quantities relevant to its calculation are as follows : n = 5 ; Σyi = 308 ; 

As you can see, this is much more straightforward. 
For b there is also another version of the formula which is in 

general less laborious from the point of view of hand calculation, 
although this is a consideration fast declining in importance : 

where n is the number of data points ; ΣΛ^· means for each data 
point multiply the x value by the y value and add them all up; 
(Σ*,·) (%yd means sum all the x values of the data points, then sum 
all the y values and multiply the two totals. There is a similar 
distinction in the denominator between %x? and (Jj*,·)2· 

Table 9.2. Quantities of New Forest 
pottery recovered from sites at varying 
distances from the kilns. 
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Σ*,· = 114 ; ΣΛ^,· = 5990 ; and Σ*? = 3172. Then 

(5X5990)-(114x308) 
(5X3172)-12996 

2864 

Having obtained the b coefficient we need the intercept value : 

Σ^ - οΣχι 
a = 

3 0 8 - ( - 1 . 8 x l l 4 ) 

^ = 1 0 2 . 6 4 

On the basis of this information we can now write the regression 
equation as 

y = 102.64 - 1.8* 
which says that at the source there should be 102.64 sherds of the 
pottery type/m3 of earth according to the regression line, and that 
this quantity declines by 1.8 sherds/m3 for every kilometer of dis-
tance from the source. The resulting line is shown in figure 9.10. 

(b) The Strength of the Relationship : Correlation 
So far we have seen how to establish the two parameters of a 
regression equation, a and b, and thus indicate the form of the 
relationship between x and y. But this does not tell us anything 
about the accuracy of the estimates of y that are given by the 
regression line. To find out how good the line is we need to use the 
correlation coefficient, which measures the strength of the relation-
ship between two variables. Strength of a relationship is a topic with 
which we are already familiar, having looked at it in relation to 
nominal scale variables in chapter 7. With interval scale variables 
the general idea of measuring the strength of a relationship is the 
same but the specific details of going about it are different. 

The correlation coefficient has been of absolutely central impor-
tance in the applications of quantitative techniques to archaeology 
which have occurred in the last 25 years. As we saw in chapter 1, 
one of the most important themes which emerged in processual 
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Figure9.10. Graph of the regression equation y = 102.64- 1.8*. 

archaeology was the study of the way things vary in relation to one 
another. The correlation coefficient has probably been the most 
important single mathematical tool for investigating patterns of 
covariation in archaeological data. It is important both for its own 
sake and as a basis for more complex methods such as principal 
components and factor analysis (see chapter 12). 

Considered in graphical terms, the correlation coefficient is a 
measure of the extent to which data points are scattered around the 
regression line. When they are close to it, it means that correlation 
is strong and that a prediction of the value of y at a given point based 
on the x values will be very good. If the points are widely scattered 
around the line, it means that correlation is weak and prediction of 
y based on x will be poor. This point may be clearly demonstrated 
with reference to figure 9.5. The correlation coefficient would be 
higher for the scattergram on the left than that on the right : the data 
points in (a) are are obviously much more closely bunched around 
the regression line which would go through this point scatter. It is 
also obvious from these scattergrams that predictions of y based on 
x will be much better for (a ) . If we look at (b) we can see that for 
a given x value there is a wide range of possible y values. If the 
scatter of points is circular, correlation will be zero and knowledge 
of x will be no help in predicting y. Thus, the correlation coefficient 
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is a measure of the extent to which two variables covary, although 
it is important to remember that it is a measure of linear correlation 
and that certain kinds of curvilinear relationship could produce a 
correlation value of zero even for perfect relationships (a point 
which demonstrates again the importance of looking at the scatter-
gram; cf. figure 9.4). 

All this discussion is very similar to that for the b coefficient, 
which is no surprise when we look at the formula for the correlation 
coefficient (r) : 

Σ(*,—*)(?,—y ) 
V[l(Xi-x)2Z(yi-y)2] 

A hand computation version is : 
ηΣχΜ-(Σχ,)(Σγ,) 

ν{[ηΣ*2-(Σ*,)2][ηΣ>>2-(Σ*)2]} 
As you can see, the numerator of the expressions for r and b is the 
same, the covariation between x and y. 

The difference between the two lies in the denominator : for the 
correlation coefficient the covariation is standardised in terms of 
the variation in both x and y. The maximum possible value that the 
covariation can reach is equal to the denominator, the square root 
of the product of the variation in x and y. Thus, the maximum value 
that r can take is 1.0, which will be positive when the covariation 
term is positive and negative when it is negative. The maximum 
value will be reached when all points are on the straight line (figure 
9.11). As we have already noted in passing, when x and y are 
independent of one another the correlation coefficient, like the 
slope (because it has the same numerator), will be zero. 

Figure 9.11. Scattergram and regression line for which 
there is (a) perfect positive correlation, (b) perfect 
negative correlation. 
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There are, however, two important differences between r and b 

which arise from the difference in their denominator. First, because 
the correlation coefficient is standardised in terms of the variation 
in both the variables it is symmetrical : it does not matter which of 
the variables is taken to be independent, nor indeed if neither of 
them is ; the correlation between x and y is the same as that between 
y and x. The slope of the regression of y on x, however, is not the 
same as the slope of the regression of x on y, unless the angle of the 
regression line is 45°. You can see this by looking at figure 9.10, 
which shows the regression line for the regression of pottery quan-
tity on distance from the source. If you turn it on its side for a 
moment and imagine that pottery quantity is the horizontal axis you 
can see that the slope with reference to this axis is much steeper 
than the slope in relation to the real x axis. In addition, it is obvious 
that a rate of change in pottery quantity per kilometre increase in 
distance from source, is something different from a rate of change 
in distance per sherd decrease in pottery quantity. Secondly, where-
as a slope is measured in the units of the original variables (for 
example, the amount of change in pottery quantity for a given 
increase in distance) correlation is a unitless quantity which can 
thus be used as a basis for comparison in a wide variety of different 
circumstances. 

Before we leave the correlation coefficient we need to consider 
its squared value (r2). This is known as the coefficient of determina-
tion and has its own interesting properties, which must now be 
examined. 

We saw above that one way of looking at a regression analysis is 
to see the regression as improving our estimates of the y value of 
particular points by using information we have about their x values. 
If knowledge of x does improve our predictions of y it means that 
the two variables are in some way related, although we have to bear 
in mind the caveats from previous chapters that association does not 
necessarily, or even very often, mean explanation of one in terms of 
the other. 

If knowledge of x does not help us to predict y then our best 
estimate of any particular y value is the mean of y {y). As we saw in 
chapter 4, how far this is a typical value depends on the degree of 
dispersion of the distribution around the mean ( assuming for the 
moment that the distribution is symmetrical and not skewed). Thus 
one way of assessing how good our prediction of y based on y is 
likely to be is to note the dispersion around the mean, given by 
Σ^ί — $)2. This, of course, is the sum of squares, or variation, iny, 



130 Quantifying Archaeology 
the first stage of calculating the variance or standard deviation. 

If we then carry out the regression of y on x to improve our 
prediction of y, we can assess the general quality of our predictions 
by looking at the dispersion of the observations not around the 
mean of y now but around the regression line, given by Σ(>>/-)>/)2. 
This is the quantity already referred to earlier in this chapter as that 
which least squares regression tries to minimise. It is known as the 
residual variation around the regression line. Σ()>£·-j),·)2 cannot be 
any greater than Σ(^ - y )2. To the extent that it is smaller we have 
achieved an improvement in prediction by using the regression line 
(i.e. our knowledge of the x values of the data points ) as a basis for 
prediction rather than the mean of the y values. Thus the amount of 
improvement = ^{yi-y)2 - E(y /-j) /)2. Or alternatively, in 
words : variation accounted for by the regression equals the original 
variation minus the residual variation. This 'improvement' quan-
tity, the amount of variation 'accounted for' by the regression is 
sometimes referred to as the 'explained' variation, but it is really 
rather misleading to use such a word in this context. 

If we divide the variation accounted for by the regression by the 
original variation, we obtain the proportion of the original variation 
accounted for by the regression and it is this which is known as r2, 
the coefficient of determination, the square of the correlation coef-
ficient; in many ways it is more intuitively meaningful than the 
latter quantity. Its value is often multiplied by 100 to put it on a 
percentage scale and it is then sometimes known as the 'percentage 
level of explanation'. 

It is now time to illustrate these two coefficients with reference to 
the pottery and distance example for which the regression equation 
was obtained above. Using the computation formula for r, 

(5x5990)-(114x308) 
Y~ V{[5x3172)- 12996][(5-20938)-94864]} 

V( 2864x9826) 
This tells us that the relationship between pottery quantity and 
distance from the source is a virtually perfect negative linear one, as 
we would indeed expect from the scattergram. If we now square 
this value to obtain the coefficient of determination we have 

μ= -0.972 = 0.94(or94%) 
This tells us that by using distance to estimate pottery quantity at 
our sites we reduce the original variation in the data (the variation 
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around the mean value of quantity ) by nearly 95 %, i.e. nearly 95 % 
of the variation in pottery quantity is related to distance ; only 5 % 
or so is left over as variation around the regression line. Whether 
distance itself 'explains' the variation in pottery quantity is another 
matter, but any explanation must obviously take this strong re-
lationship into account. 

To be told that 95 % of the variation in quantity of this New 
Forest pottery at different sites relates to the distance of the site 
from the source kilns may seem to be attaching an unnecessary 
number to something which was already obvious from the scatter-
gram with its regression line, since it is clear from this that the 
relationship between quantity and distance is very close. To some 
extent such a comment would be justified at this point ! The pay-off 
comes in two areas. First, if we are making comparisons, for ex-
ample of the relationship between quantity of a commodity and 
distance from source for a range of different commodities, compar-
ing a series of definite numbers is much more satisfactory than 
comparing one's visual impressions of a series of scattergrams. 
Second, once we get on to investigating the relationships between 
larger numbers of variables than two we again need numbers, both 
to compare and to manipulate further, as we will see. 

We can finish this section by noting that r2 generally provides a 
more realistic assessment of the strength of a relationship than r 
when we come to considering what the numbers mean for inter-
pretation purposes. Thus, an r value of 0.4 suggests at least a 
moderate relationship between two variables. When we square it, 
however, we see that it means that only 0.16 (or 16.0%) of the 
variation in the one variable is related to the other, not a very high 
proportion. 

CONCLUSION 

We have now seen the basics of investigating a relationship between 
two variables when they are measured at an interval scale or above. 
The most important aspect of the whole process is producing and 
examining the scattergram, but we can go further than this in two 
respects. We can obtain the equation of the regression line which 
best fits the scatter of points, thus specifying the way in which the 
dependent variable changes in relation to changes in the indepen-
dent. We can also obtain a measure of the goodness-of-fit of the 
data to the regression line by means of the correlation coefficient 
and coefficient of determination. 

A great many uses exist in archaeology for these techniques since 
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archaeologists regularly want to investigate relationships between 
pairs of numeric variables. The methods may be used both as an 
end in themselves, as in the various examples referred to in this 
chapter, or as the basis for more complex and advanced techniques 
described in chapters 11 and 13. 

Before we look at some of the more complicated aspects of 
correlation and regression on interval scale variables, in the next 
chapter, it is worth saying a brief word about rank-order correlation, 
so that you are aware of the possibilities. 

Chapter 7 looked at ways of examining relations between nomi-
nal scale variables and this chapter has examined relations between 
interval scale variables, but methods also exist that are appropriate 
for ordinal scale, or rank-order, data. As you might expect by now, 
such rank-order correlation methods are more powerful than those 
for nominal scales but not as powerful as interval scale ones. Prob-
ably the best known of these is Spearman's coefficient of rank 
correlation, but Kendall's tau b and tau c are better if there are 
large numbers of ties, that is to say if large numbers of observations 
have the same rank. Details of the techniques may be found in such 
texts as Blalock (1972) or Norusis (1983). 

An example of the use of rank correlation is given in Shennan 
( 1985). As part of a study of field survey methods an investigation 
was made of the abilities of the different fieldwalkers to spot differ-
ent kinds of material on the field surface. By a rather complex series 
of methods it was possible to rank each walker in terms of their 
abilities at picking up pottery and lithics. The rank order of ability 
at picking up pottery could then be compared with that of picking 
up lithic artefacts, to see if, in general, high or low ability on one 
was related to high or low ability on the other. In fact they weren't : 
someone who is good at seeing pottery on the surface won't neces-
sarily be especially good with lithic artefacts. 

In this example there were no tied ranks, i.e. no ties between 
several people for, say, third place in the rank order. In other cases 
there often are. Let us suppose, again on the basis of survey data, 
that we can divide the sites of a particular period in an area into the 
rough size categories large, medium and small ; as in the example of 
the Mann-Whitney and runs tests this is something we might feel 
able to do even if we don't feel justified in estimating exact site 
sizes. Let us suppose also that a categorisation of the soils in the 
region exists in terms of whether they are excellent, average or poor 
for the purposes of arable agriculture, and that we know which sites 
are on which of these soil categories. All the sites in a particular 
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rank category, whether for size or soil quality, may be said to be 
tied for that category. To what extent is site size related to soil 
quality ? 

Table 9.3. Site size category tabulated against 
soil quality category. 

Large 
Medium 
Small 

Total 

Excellent 

15 
6 
7 

28 

Soil quality 
Average 

7 
11 
7 

25 

Poor 

2 
4 
8 

14 

Total 

24 
21 
22 

67 

We can construct a table of our observations (table 9.3). Ken-
dall's tau (not to be confused with Goodman and Kruskal's tau, 
referred to in chapter 7) can then be calculated to find out whether 
there is indeed any correlation between the size category of the site 
and the arable agricultural potential of the soil on which it is 
located. 

EXERCISES 

9.1. As part of an investigation of palaeolithic stone tool technology 
and its complexity a study is being carried out of the factors affecting 
the number of flake scars on hand-axes. One suggestion is that it is 
simply a result of overall hand-axe size, which can be measured in 
terms of weight. Given the information below, what is the relation-
ship between weight and number of flake scars ? Is it a good one ? 

No. of 
flake scars 

18 
19 
33 
28 
24 
36 
45 
56 
47 

Weight (g) 

210 
300 
195 
285 
410 
375 
295 
415 
500 

No. of 
flake scars 

37 
72 
57 
53 
46 
78 
68 
63 
82 

Weight (g) 

620 
510 
565 
650 
740 
690 
710 
840 
900 
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9.2. An archaeological survey has been carried out in southern 
England. Its approach has not been to look for sites but to collect 
information on artefact densities in terms of one-hectare quadrats. 
Below are the iron age and Romano-British pottery densities for a 
series of quadrats. Investigate the relationship between them. 

Iron Age Roman Iron Age Roman 

4 
3 
7 
6 
6 
9 

5 
20 
20 
33 
46 
45 

12 
9 
7 
13 
9 
14 

55 
61 
62 
79 
81 
98 
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When the Regression Doesn't Fit 

In the previous chapter we saw the basics of regression and corre-
lation analysis but were very careful to avoid any complications. It 
was noted, however, that we were only concerned with straight line 
regression and that we should always look at the scattergram to 
check whether the scatter of data points really does show a linear 
trend, rather than some kind of non-linear pattern. This point leads 
on to the general question of the assumptions required to carry out 
a valid regression analysis ; obviously a very important topic which 
we have not yet examined. 

Problems about the relationship between the data and the as-
sumptions required by regression analysis can be seen particularly 
clearly in the residuals from the regression : where the regression 
doesn't fit, the difference between the actual y values and those 
predicted by the regression. But the residuals are also important 
from another point of view. In fact, they may be more interesting 
archaeologically than the regression itself, but it requires the re-
gression analysis for the interest to emerge. 

As an example, let us suppose again that we are dealing with the 
fall-off in quantity of a material with increasing distance from its 
source. We might note that at a particular distance the majority of 
sites have only a small quantity of the commodity, but a small 
number have much more. The question naturally arises why this 
should be the case. We can then find out which sites these are and 
see what features they share, not shared with the others, which 
could explain the phenomenon. They might all be close to a par-
ticular main transport route for example. Hodder and Orton ( 1976, 
115-17), in an analysis of the distribution of Romano-British pot-
tery from the Oxfordshire kilns were able to show that the sites 
which had more of this pottery than expected given their distance 
from the source were those where water transport could have 
been involved. In another study Shennan (1985) used regression 
methods to pick out flint scatters with exceptionally large and small 
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numbers of retouched pieces. Plotting the distribution of these on 
the map it was apparent that they were characteristic of certain 
specific types of location. 

For both substantive and methodological reasons then, it is 
necessary to look at the residuals from a regression, even though in 
one or two places the topic involves an increase in the level of 
difficulty over earlier chapters. 

RESIDUALS 

In the same way as we use Σ(γί — γ)2 in the calculation of the 
variance or the standard deviation of a single variable, so we can 
use Σ(γί-$ί)

2 to calculate the variance or the standard deviation 
around the regression line :t 

2 Σ(κ-&)2 

y-* n 

where s2_$ is the variance of the distribution around the regression 
line, yt is the actual y value at the ith point, yt is the estimated y of 
the ith point according to the regression, and n is the number of 
observations. 

Table 10.1. Information for calculating the standard 
error of the regression for the Romano-British pottery 
quantity data from table 9.1. 

y» 

98 
60 
41 
47 
62 

Ä* 
95.44 
66.64 
45.04 
41.44 
59.44 

(y.-A·)2 

6.55 
44.09 
16.32 
30.91 
6.55 

104.42 

* Calculated from y = 102.64 - 1.8* 

The square root of this is the standard deviation of the distribu-
tion, known as the standard error of the regression. For the pottery 

t The denominator in this version of the formula is n, which pre-
supposes that we are only interested in the variation around the 
regression for the particular data set analysed. If we wanted to esti-
mate the variation around the line for a population of which this was 
a sample, the divisor would be n - 2, since two degrees of freedom are 
lost in calculating the regression. M IN IT AB uses this divisor in its 
regression procedure. 
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quantity example we have the information in table 10.1. Applying 
the formula above we have 

ή_,-!ψ- 20.88 

Sy_9 = V20.88 = 4.57 
The standard error of the regression of pottery quantity against 
distance is 4.57. 

As we will see shortly below, one of the stipulations of the 
regression model is that the distribution of the residuals around the 
line should be normal. This being so, we can note that if we put 
standard error bands around the regression line, then these bands 
will include approximately 68 % of all the observations, while bands 
at ± 2 standard errors will include 95 % of all observations ; the 
point is illustrated in figure 10.1. 

+ ls.e. 

Figure 10.1. One-standard-error band 
around a regression line. 

In fact, as well as using r or r2 as a general indication of the fit of 
the regression, we can also use the standard error of the regression 
as an indication of the precision of the estimates, in the same way as 
we use the standard deviation for the dispersion of a single variable 
normal distribution. We can put an extra term in the regression 
equation to recognise this : 

yt = a + bxt ± sy_9 

where yt is the estimated value of yh a and b are the intercept and 
slope, Xi is the x value of the relevant point, and sy_$ is the standard 
error of thé regression. In the pottery quantity example the specific 
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figures in the formula are : 

£·= 102.64- 1.8xz±4.57 
When the distribution of residuals is normal then we can say that 
about 68% of the residuals will fall within this range. Assuming a 
normal distribution for the pottery example, approximately 68 % of 
them will fall within the ±4.57; or, alternatively, an estimate that 
any given quantity value is in the range ±4.57 around the regression 
line will have about a 68 % probability of being correct. An estimate 
such as this is known as an interval estimate, since we are specifying 
the interval within which some quantity should lie with some speci-
fied degree of probability ; we will return to these again when we 
look at sampling (see chapter 14). In actual fact for these particular 
data 3/5 of the observations (60% ) fall within one standard error of 
the regression line and all of them within two standard errors ; given 
the very small number of observations the correspondence with the 
expected values is about as close as it could be. 

One other useful property follows from the normal distribution 
of residuals. We saw in chapter 8 that any observation in a distribu-
tion could be transformed into a Z score by expressing the observa-
tion in terms of standard deviation units away from the mean, where 

s 

For a normal distribution the score can then be looked up in the 
normal table to find the proportion of the distribution which lies 
between the mean and a point that distance away from it. 

In the same way, if we take any given residual term (yt — yt) from 
the regression and divide it by the standard deviation (error) of the 
distribution of residuals around the regression, we produce a quan-
tity analogous to the Z score called the standardised residual : 

v.—y. 

standardised residual = — 
sy-y 

The standardised residual from the regression has the same proper-
ties as the Z score and can be linked to the standard normal 
distribution in the same way using the normal table (assuming, of 
course, that the residuals are normally distributed). 

For the second observation in the pottery quantity and distance 
example we have 

60-66.64 standardised residual = ———— = — 1.45 
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This y value is 1.45 standard errors less than the value estimated by 
the regression. 

As we will see in the following section, the standardised residual, 
with its link to the normal distribution, has properties which make 
it extremely useful for investigating whether the regression assump-
tions really are met or not, and indeed more generally for picking 
out interesting patterns in regression results.* 

THE REGRESSION MODEL 

Everything we have done so far in relation to regression is valid 
only insofar as certain assumptions concerning the residual terms in 
the model are satisfied. These assumptions are of a variety of types 
but failure to meet them, of whatever type, is always reflected in the 
residuals. For this reason it is very important to use graphs, not just 
to look at the original data but also to look at the structure of the 
residuals. Analyses based simply on an examination of summary 
statistics are insufficient. Least-squares regression is quite robust 
with regard to minor violations of the assumptions but gross viola-
tions can seriously distort conclusions. What I want to do is go 
through the assumptions, then indicate how violations of them can 
be detected and what can be done about them. 

Assumptions 
1. In the version of regression considered here it is presupposed 
that the independent variable as well as the dependent are mea-
sured at an interval scale or above. 

2. It has been noted already that we are concerned only with 
simple linear regression, where the relationship between the two 
variables takes the form of a straight line. Obviously, if the trend is 
not a linear then an analysis which assumes that it is will not be very 
satisfactory ; an example is shown in figure 10.2. 

In this example y does increase with increasing x but at different 
rates in different parts of the x scale. Simply calculating the linear 
regression and its associated correlation coefficient would in fact 
suggest that there was a strong linear trend. It is examination of the 
graph which shows that the straight line represents an unsatisfactory 

* Recently the trend has been towards using not the standardised but 
the studentised residual in this way. In this case the value of each 
residual is standardised not by dividing by the standard error of the 
regression as a whole but the standard error calculated without includ-
ing the value of that particular data point ; in effect the values are 
individually standardised. 
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Figure 10.2. Scattergram of a non-linear relationship 
between x and y. 

description of the relationship since it underpredicts at the begin-
ning and end of the line and overpredicts in the middle. 

3. The distribution of the residuals around the regression line 
must be normal. This is particularly important if we want to use the 
regression to obtain interval estimates for y in the way discussed in 
the previous section, or if we want to carry out significance tests; 
see figure 10.3 for exaggerated examples of normal and non-normal 
distributions of residuals. 

4. The mean of the distribution of residuals must be zero for 

skew distribution of residuals 

normal distribution of residuals 

Figure 10.3. Distribution of residuals 
around a regression line. 

140 
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every x value ; in other words, the distributions of residuals must be 
centred on the regression line. If they are not it usually comes down 
either to a violation of the linearity assumption (see above), or to 
the presence of autocorrelation (see below). 

5. One of the most important assumptions of regression analysis 
is that variation around the line is homoscedastic. In other words, 
the amount of variation around the line is the same at all points 
along it. If it is not then the variation is said to be heteroscedastic. 
There is a variety of ways in which heteroscedasticity can arise. Two 
of the most common ones are illustrated in figure 10.4. In figure 
10.4(a) observations with small x and y values tend to be fairly 
close to the line while those with large x and y values are more 
dispersed. In (b) there is only a small number of cases with large 
values of x and v, the bulk of the values being small. 

Figure 10.4. Heteroscedastic distribution of residuals. 

6. Autocorrelation. One of the main assumptions of regression 
analysis is that the error terms associated with particular observa-
tions are uncorrelated. In other words, the residual in y for one 
value of x should not be related to that for other x values. An 
example of what this may look like is shown in figure 10.5. 

Here numbers of positive residuals are grouped together and 
followed by numbers of negative residuals grouped together, a 
pattern which repeats itself along the line resulting in a nonlinear 
relationship. As with the other regression assumptions, failure to 
take autocorrelation into account is likely to produce misleading 
results. In the case illustrated above the value of the correlation 
coefficient for a linear relationship would in fact be very high, 
implying that for any given increase in x there is a corresponding 
increase in y ; in fact, depending on precisely where we are on the x 
axis, the increase in y for a given increase in x will vary considerably. 

Autocorrelation can arise for a variety of reasons, which will be 
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Figure 10.5. An example of autocorrelation 
in the residuals from a regression. 

discussed below. 
The regression model is fairly robust with regard to minor viola-

tions of the assumptions. The most important ones are those of 
linearity (which as we have seen subsumes several of the others), 
homoscedasticity and uncorrelated errors. 

Detection and Remedy of 
Violations of the Regression Assumptions 
As has already been suggested, one of the best and simplest ways of 
detecting discrepancies between model and data is through exami-
nation of the regression residuals. We have already defined the 
residual value of y as the difference between the actual and esti-
mated values of y : 

resyi = yi-$i 

We have also defined the standardised residual for each y : 

st. res. y = ^ ^ 
sy-y 

where 

y~* V n 
As we said earlier, the standardised residuals are like Z scores in 
that they have zero mean and unit standard deviation. With a 
moderately large sample these residuals should be distributed ap-
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proximately normally. Graphing the residuals will reveal whether 
or not this is the case. If it is not, then problems of some sort exist. 

The most commonly used plots are those in which the standar-
dised residuals are plotted as the ordinate (or y axis) against either 
(a) the estimated value of y, i.e. % or (b) the independent variable 
x. Examples of both are illustrated in figure 10.6. There is really 
nothing to choose between them for bivariate regression although 
the first plot, against the independent variable, probably makes 
interpretation rather more straightforward. As we will see in the 
next chapter, however, in multiple regression there is no option but 
to plot the residuals against y. 
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Figure 10.6. Examples of standardised residual values 
of data points (vertical axis) plotted against (a) their 
x values, (b) the y values predicted for them by 
the regression. 

If the model is correct, the standardised residuals tend to fall 
between + 2 and - 2 in value and are randomly distributed (see 
figure 10.6) ; they should not show a distinct pattern of variation. 
When the assumptions do not hold, there is patterning; not only 
does this tell us that we have to take action to make the data fit the 
assumptions if we are going to use the technique, it also often has 
substantive insights to give us, in terms of revealing unsuspected 
structures in the data. As we have seen above, the residuals can 
often be more interesting than the regression itself since frequently 
the regression line only systématises what we thought we knew 
already. It is when that systématisation reveals that the patterning 
in the data is more complex than we thought that new knowledge 
may potentially be gained. In such cases the mathematically defined 
regression provides a secure baseline for comparison and the detec-
tion of irregularities. A good example of the patterning which can 
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emerge has also been referred to above: Hodder and Orton's 
demonstration that in a regression analysis of the quantity of 
a certain type of Romano-British pottery against distance from 
source, high positive residuals were obtained in areas accessible to 
water transport (Hodder and Orton 1976). It is always possible in 
bivariate regression to obtain an idea whether problems exist simply 
by looking at the scattergram of the raw data, but the residual plots 
are much more effective - they act like a magnifying glass on the 
errors. When we come on to multiple regression in the next chapter, 
dealing with more than two variables, then residual plots are the 
only available option. 

We can now turn to the detection and remedying of failure to 
meet assumptions of the linear regression model. 
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Figure 10.7. Plot of the standardised residuals from the 
regression line of figure 10.2 against their x values. 

1. Non-linearity. It has already been noted that non-linearity in 
the relationship between two variables can arise in a number of 
different ways. An example has been shown in figure 10.2, and 
although the lack of linearity emerges clearly enough from the 
scattergram, figure 10.7 shows how the problems are magnified in 
the corresponding residual plot, which certainly does not show a 
random scatter of points. 
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There are several commonly met non-linear relationships be-
tween y and x which can be made linear by means of transforma-
tions. We may detect this non-linearity through looking at the data, 
as here, or we may have theoretical reasons for postulating a par-
ticular form of non-linear but 'linearisable' curve to which we want 
to see if our data will fit ; such fitting is generally more straight-
forward if the relationship is in a linear form. In archaeological 
applications the most likely context in which we will have theo-
retical reasons for postulating a particular form of curvilinear re-
lationship is in distance decay studies of the type already illustrated, 
in which we are looking at the relationship between the changing 
value of some variable and distance from some point. A consider-
able amount of work has been carried out on the forms such curves 
are likely to take (see Hodder and Orton 1976, Renfrew 1977).* 

0 2 4 6 8 10 

Figure 10.8. Graph of the Pareto relationship y = 5x2. 

One common form of curvilinear relation is the double-log or 
Pareto relationship, where the equation of the regression line (see 
figure 10.8) takes the form 

y = axb 

* In cases where we do not have the theoretical basis for postulating 
particular curves but do have a non-linear relationship it is possible 
to allow the data to determine the choice of the appropriate transfor-
mation, but the techniques involved are beyond a text such as this ; for 
an example see McDonald and Snooks (1985). 
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To make this linear the appropriate transformation is 

log y = log a + b log x 

What this means is that we have to take the logarithms of both the 
x and the y values of our data and use these, first as the axes of a new 
scattergram, and second for calculating a regression equation and 
correlation coefficient. In fact, the scattergram of a non-linear 
relationship in figure 10.2 is of this form. What happens when the x 
and y axes are logged is shown in figure 10.9. 
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Figure 10.9. Data from figure 10.2 with the x and y values 
transformed to the logarithms of their original values. 

The other common form of non-linear relationship is the expo-
nential curve (figure 10.10) with the equation 

y = abx 

The linear version of this curve is given by the formula 

log y = log a + log bx 

This involves taking logarithms of the y values of our data and using 
these we can produce a scattergram with a new vertical axis in units 
of logy. It is the fact that the y axis is logged that results in the 
logged exponents, a and b, because both of these are expressed in 
terms of y : a is the point where the regression line cuts the y axis, 
and b is the amount of change in y for a given change in x. In this 
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Figure 10.10. Graph of the exponential relationship y = 5(2*). 

case the x axis stays the same. 
The cases we have looked at are some of the most common 

non-linear but linearisable situations which are likely to arise in 
archaeological contexts because they frequently occur in spatial 
fall-off studies, although it is important to remember that it is the 
negative versions of these curves which will be relevant in fall-off 
studies rather than the positive versions illustrated above. If non-
linearity is present it will show up in plots of the data and the 
standardised residuals. If the plot corresponds to one of the graphs 
we have just looked at then you should carry out the appropriate 
data transformation and try the linear regression again, remember-
ing to check it as before by plotting the residuals. 

The preceding discussion of non-linear functions and ways to 
turn them into linear ones has been very abstract and at this point it 
may help to present a worked example ; once again a hypothetical 
distance decay study, this time of the quantity of a certain type 
of Mesoamerican obsidian at sites at various distances from the 
source, based on weight (g)/m3 of excavated earth. The figures are 
shown in table 10.2. The first stage of the analysis will be to calculate 
the regression and correlation for these data: 
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Table 10.2. Density of a certain type of Mesoamerican 
obsidian for sites at varying distances from the source. 

Distance Density Distance Density 
(km) (g/m3) (km) (g/m3) 

5 5.01 44 0.447 
12 1.91 49 0.347 
17 1.91 56 0.239 
25 2.24 63 0.186 
31 1.20 75 0.126 
36 1.10 

« = 11 Σχ#,, = 284.463 
Σ*, = 413 Ey,= 14.715 
(Σ*,·)2 = 170569 (Σ)>,)2 = 216.531 
Σ*2 = 20407 Ί,γ] = 40.492 

b = 
(11 x 284.463) - (413 x 14.715) 

(11x20407)-170569 

-2948.202 
53908 

= -0.055 

14 .715- ( -0 .055x413) „ ΛΜ 
a = *— '- = 3.403 

Thus the regression equation is : 

S = 3.403 - 0.055* 

(11 x 284.463) - (413 x 14.715) 
r = V{[(11 x 20407) - 170569] [(11 X 40.492) - 216.531]} 

-2948.202 nnnn 

V(53908x 228.881) 

^ = - 0 . 8 3 9 2 = 0.704 

The correlation coefficient has the value of - 0.839 and the r2 value 
of 0.704 indicates that just over 70% of the variation in lithic 
quantity is related to distance from the source. 

These values indicate a strong linear relationship between the 
two variables and if we simply examined the numbers calculated 
above we might take the investigation no further. If we look at the 
scattergram (figure 10.11(a)), however, we see that the distribu-
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Figure 10.11. (a) Plot of obsidian densities against 
distance from source with the regression line 
y = 3.403 - 0.055JC superimposed, (b) Plot of the 
standardised residual obsidian densities against 
distance from source. 

tion of points is not in a straight line, so that the linear regression 
underpredicts at the beginning and end of the line and overpredicts 
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in the middle. The standardised residual plot (figure 10.11(b)) 
brings this out even more clearly. 

Since the regression does not fit some action must be taken. 
Inspection of the raw data scattergram suggests that a linear re-
lationship would fit all the data points except the first one quite 
well. This first point could therefore be regarded as an 'outlier' and 
excluded from consideration, and the analysis re-run without it. It 
may be legitimate to exclude observations in this way but the 
procedure obviously has considerable dangers; at the worst any 
data points which do not fit the analyst's model could simply be 
thrown out. There must therefore be a good reason for doing it ; for 
example, reasons why this particular observation may not be a valid 
one, perhaps poor excavation procedure or a very small excavated 
sample. 

In this case we will suppose that there is no reason to reject the 
first data point ; it is therefore necessary to find a model which fits 
all the data, obviously in this case some sort of curvilinear relation-
ship. Examination of the original scattergram and knowledge of 
other similar cases (cf. Hodder and Orton 1976, Renfrew 1977) 
suggests that an exponential curve might be appropriate. As we 
have said, it is much more straightforward to fit the regression in a 
linear form than in the original curvilinear one, so a transformation 
must be carried out. Reference to the account given above indicates 
that an exponential curve may be linearised by logging the y axis, in 
other words by working with the logarithms of the original y values 
(see table 10.3). 

Table 10.3. Density and logged density of a certain type 
of Mesoamerican obsidian for sites at varying distances 
from the source. 

Density 

ω 
5.01 
1.91 
1.91 
2.24 
1.20 
1.10 

Logged 
density 
(log}0 

0.6998 
0.2810 
0.2810 
0.3502 
0.0792 
0.0414 

Density 

ω 
0.447 
0.347 
0.239 
0.186 
0.126 

Logged 
density 
(logy) 

-0.3497 
-0.4597 
-0.6216 
-0.7305 
-0.8996 

We can now calculate the regression using the transformed y 
values : 
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n = \\ Σχ#έ=-161.865 
Σχ, = 413 Sy,= -1.3285 
(Σχ,)2 = 170569 (Xy,)2 = 1.7649 
Σχ2 = 20407 1y2i = 2.8412 

_ [(11 X ( - 161.865)] - [413 X ( - 1.3285)] 
(11x20407)-170569 

-1231.6795 
53908 = -0.0229 

-1.3285-(-0.0229X413) 
a = — = U.739 

Thus the regression equation is : 

logy = 0.739 = 0.0229* 

[11 x ( - 161.865)] - [413 x ( - 1.3285)] 
r ~ V { [ ( l l x 20407)-170569] [(11x2.8412)-1.7649]} 

-1231.6795 
V(53908x 29.488) 

r2=-0.97692 = 0.9543 

= -0.9769 

It is obvious that an exponential relationship fits the data far better 
than a simple linear one. The r2 value indicates that over 95 % of the 
variation in logged obsidian density is related to distance from the 
source when the fall-off is postulated to be an exponential one ; in 
fact, no other fall-off function fits as well. Obviously though we 
should now look at the scattergram for the transformed relationship 
and the associated residual plot (see figures 10.12 and 13). 

It is clear from examination of these plots that the fit of the line 
to the data along its length is much better. The previous under- and 
overprediction have been removed and the distribution of the re-
siduals is much closer to the amorphous scatter to be expected when 
the regression assumptions are met. There remains, however, a 
slight suggestion of heteroscedasticity and autocorrelation in the 
residuals ; they would probably deserve further investigation in a 
real study. It is worth noting that this slight indication was com-
pletely swamped in the first version of the regression by the non-
linearity. 

The main potential problem with this or any other transformation 
is in interpretation. The regression equation logy = 0.739 - 0.0229* 
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Figure 10.12. Plot of logged obsidian densities 
against distance from source with the regression line 
logy = 0.739 - 0.0229* superimposed. 
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means that there is a decrease of 0.0229 in logy for a unit increase 
in x. It is all too easy to forget that the transformation has been 
carried out and to discuss the results as if it had not. By taking 
antilogs it is possible to put the regression line back on the original 
scattergram as the appropriate exponential curve (see figure 10.14). 
But although this may be intuitively helpful - it puts you back in 
touch with the 'real' data - it tends to emphasise the point that 
straight-line relationships are easier to understand and it is easier to 
pick up deviations from them. 
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Figure 10.14. Plot of obsidian density against distance 
from source with the anti-logged version of the regression 
line logy = 0.739 - 0.0229* superimposed. 

2. Heteroscedasticity. It is now necessary to turn to the question 
of heteroscedasticity and methods of stabilising the error variance 
to make it homoscedastic. As with other violations of the regression 
assumptions, heteroscedasticity will emerge clearly from examina-
tion of raw data scattergrams and residual plots. There are two 
rather different ways in which it often arises, those illustrated above 
in figure 10.4. In figure 10.4(a) dispersion of the observations 
around the line increases as the value of the independent variable 
increases. This is the type of situation which often arises in studies 
of the relationship between settlement size and population size ; for 
settlements with larger populations there is much greater variation 
in their surface area than for those with small populations (see for 
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example Carothers and McDonald 1979). In 10.4(b) dispersion 
around the line decreases for higher valued observations, essen-
tially because there are very few data points with high values. This 
might occur, for example, in studies involving the sizes of sites at 
the top of a settlement hierarchy, where the small number of sites 
at the very top may well have sizes very markedly larger than the 
rest. 

In this second case we might again want to consider the question 
of whether any of the larger observations are 'outliers' which it 
might be appropriate to remove from the analysis. If not, then 
logging one or both variables will have the effect of 'pulling back' 
the extreme observations so that they are closer to the rest, and as 
a result it is very likely that the variances along the line will be 
equalised. 

More generally, if the dispersion along the line is proportional to 
x we can use weighted least-squares regression techniques, varying 
the weight or influence of particular data points on the regression 
results. This topic is outside the scope of this text, but weighted 
regression techniques are now available on the MINITAB package 
and are described in the MINITAB Student Handbook (Ryan et al 
1985). 

3. Autocorrelation. The presence of correlation between the re-
siduals from a regression should emerge quite clearly from study of 
the relevant scattergram and residual plot, but a test for it may also 
be carried out, using the Durbin-Watson statistic (see, for ex-
ample, Chatterjee and Price 1977). Consideration of this statistic is 
probably only sensible if the data are collected in the sequential 
numerical order of the JCS, for example in a time sequence. 

Often the presence of correlated errors suggests that there is 
some other variable having an effect on the dependent, y, as well as 
the x variable already in the model. If this is the case it will be 
necessary to try adding other explanatory variables to the model 
which your knowledge of the situation suggests might be relevant to 
the apparent autocorrelation ; the regression will then be a multiple 
one (see next chapter). 

Very often autocorrelation is related to the distribution in time or 
across space of the observations: adjacent observations in time or 
space tend to have similar residuals. In these circumstances the 
inclusion in the analysis of a further independent variable which 
seems substantive to the problem and which varies in relation to 
time or space may well remove the autocorrelation effect. 

Often, however, the autocorrelation is intrinsic to the spatial or 
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temporal trend and it is then necessary to devise an appropriate 
transformation to take it into account. Let us consider an example. 
An intensive investigation of an area of the south western United 
States has produced information on the density of settlement sites 
per km2 for a succession of chronological phases (table 10.4). The 
questions that arise are how does site density change with time and 
how good is the fit of the data to this proposed relationship ? 

Table 10.4. Number of settlement sites per square kilometre 
for a succession of chronological phases in an area of the 
south-western United States (data from Plog 1974). 

Time 
period 
(years) 

0-50 
50-100 
100-150 
150-200 
200-250 
250-300 

Sites 
per km2 

0.25 
0.25 
0.55 
0.60 
0.95 
1.00 

Time 
period 
(years) 

300-350 
350-400 
400-450 
450-500 
500-550 

Sites 
per km2 

1.05 
1.00 
1.15 
1.30 
1.65 

Before starting the analysis it should be noted that our chron-
ology variable is in terms of intervals rather than fixed points so that 
we have some measurement error in this variable. For the purpose 
of this example I propose to assume that all the sites of a given 
phase were in occupation at the midpoint of that phase so that we 
can take the midpoint as a fixed value. 

The scattergram of these data with the regression line super-
imposed is shown in figure 10.15. The equation for the line is 

y = 0.191 + 0.0025* 

It tells us that the site density increases by 0.25 sites/km2 every 100 
years. The coefficient of determination, or r2, value is 0.932, indi-
cating that 93.2% of the variation in site density is associated with 
the time trend, and thus that the fit of the data to the regression 
relationship is extremely close. 

But can we accept this at its face value, or is it misleading? The 
distribution of the points around the regression line suggests the 
possibility of autocorrelation in the residuals, although it is not 
great enough to produce a significant value for the Durbin-Watson 
statistic. It does, however, point towards a substantive problem 
with the analysis since a glance at the relation between the points 
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and the line suggests that there is some variation in the difference 
between adjacent points, despite the extremely high r2 value and its 
indication of a very close fit between regression and data. How does 
this arise ? 
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Figure 10.15. Scattergram of site densities against date. 

It is highly likely that in cases such as this one many of the sites 
occupied in one period will also be occupied in the subsequent one, 
and quite probably the one after as well. Thus, the observations are 
not independent of one another because that for one period will be 
related to that for the previous one. The result of this process of 
accumulation is that when the regression tells us that there is a 
constant rate of increase of 0.25 sites/km2 every 100 years, with an 
r2 value of 93.2 %, it may be giving a very misleading impression of 
the rate of change over time, how constant it is and the goodness-of-
fit of the data to it. 

To remove this accumulation effect, instead of regressing the 
original density values against the time sequence we can calculate 
the difference between the density of a given phase and that of the 
preceding one, for all phases, and plot this against the time se-
quence ; in other words, our new definition of density change is not 
the original yt values of the observations but the yif — y^x values of 
them (resulting in the loss of the first observation from considera-
tion). The resulting scattergram is shown in figure 10.16. It is not, 
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Figure 10.16. Plot of density differences between 
successive phases against the chronological sequence. 

of course, a regression like others we have seen since the vertical 
axis is in terms of increments of change between one phase and the 
next and we are expecting the line to be a horizontal one. That is to 
say, if there really was a constant rate of change through time with 
a close fit to the data, as the original regression and r2 imply, then 
the difference between each phase and the preceding one should be 
virtually constant throughout the period : it will be represented by 
the mean of the y,· —y,·-! differences and there should be negligible 
variation around this value. In fact, as the scattergram shows, there 
is a great deal of variation, demonstrating how much the rate of 
change in site density from phase to phase varies during the course 
of the period. Thus, it appears that the original regression does 
indeed give a totally misleading impression of the way in which site 
density changes with time and the closeness with which the relation-
ship defined fits the data. 

Looking at the changes between adjacent points in this way 
shows clearly the variation in rates of change but it does not give us 
a new overall picture of the relationship between site density and 
time or the extent to which it is almost constant, as the original 
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regression implies. One way of looking at the overall relationship 
between the two is to use not the original density and time mea-
sures, nor just the difference between adjacent points, but to look 
at the differences between all points ; that is to say, we measure the 
time difference and the site density difference between all possible 
pairs of data points and plot one against the other. The scattergram 
is shown in figure 10.17 with the regression line superimposed. 
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Figure 10.17. Settlement density differences between 
all pairs of phases plotted against the time difference 
between the two phases. 

The slope is almost identical to that of the original regression, as 
indeed it should be, but we now have a much less misleading picture 
of the goodness-of-fit of the data to the relationship. The variation 
in density between adjacent phases illustrated in the previous scat-
tergram is shown in the range of y values for x = 50 ; the range of 
variation in density differences for phases 150 years apart is even 
greater. All this is reflected in an r2 value of 78.9 % compared with 
the 93.2% of the original regression. 

Thus it appears that the rate of change in settlement density in 
this area varied considerably during the period in question and was 
not the constant that it first appeared. This result raises a further set 
of archaeological questions concerning the reasons behind these 
varying growth rates. Even here care is necessary, however; there 
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are signs of heteroscedasticity in the variances and there is still a 
tendency for adjacent density difference residuals to be correlated 
with one another, as witnessed in this case by the fact that the value 
of the Durbin-Watson autocorrelation statistic for these data is 
statistically significant at the 5 % level. 

Finally, it should be mentioned that the procedure of taking 
differences in this way is illuminating in the context of this particular 
problem, but it should not be taken as a universally appropriate 
recipe for overcoming problems of this kind. 

The preceding discussion of some of the problems which can arise 
with least-squares regression analysis and the methods which may 
be employed to try and overcome them has introduced some of the 
complexities of the method, although even so it has barely scratched 
the surface. The aim has been to show that the object of using the 
technique is not to calculate mechanically two or three coefficients 
which simply put a number on what we knew already, but to obtain 
information about patterning in our data which would not otherwise 
be apparent. In this modern approaches to normal-theory based 
regression are similar to the exploratory data analysis approach, 
with its emphasis on distinguishing the 'rough' from the 'smooth' in 
a relationship. Before turning to the EDA approach to regression, 
however, it is necessary to comment briefly on one aspect of least-
squares regression which has not so far been mentioned. 

Statistical Inference 
In our account of regression and correlation we have only been 
concerned with analysing the data at hand and describing the form 
and strength of the relationship between the two variables of inter-
est in a particular data set. It is, of course, possible to use statistical 
inference in a regression context, when our data are a genuine 
random sample of some population or can be conceived of as a 
random sample of some hypothetical population. It may then be 
meaningful to make statements to the effect, for example, that a 
particular value for the correlation coefficient is statistically signifi-
cant at some given level, i.e. that it differs significantly from a 
correlation value of zero. 

More often than not in archaeological cases we are not interested 
in such questions but simply in the data at hand, or in making 
comparisons with other data sets, which may or may not benefit 
from testing for statistical significance. Furthermore, it is arguable 
how often archaeological regression data meet the necessary re-
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quirements for statistical inference. For these reasons regression 
and correlation significance tests are not included here ; they may 
be found in any of the standard textbooks (e.g. Blalock 1972). 

ROBUST REGRESSION: 
THE EXPLORATORY DATA ANALYSIS APPROACH 

The ED A approach rejects the standard forms of regression for the 
same reason as it rejects the use of the mean and standard deviation 
in describing the distribution of single variables: they are both 
unduly affected by the values of extreme cases in the data set. The 
argument is that the description of the relationship between two 
variables should be robust and not influenced by extremes, which, 
as we have noted before, are almost bound to be atypical. This is a 
good argument as far as it goes but it is worth noting that the various 
transformations discussed above can reduce the influence of ex-
treme observations in least-squares regression and also make the 
data conform more closely to the specifications of the regression 
model. To resort to the use of ED A methods at the first sign that the 
data do not meet the assumptions of standard regression analysis 
may actually result in a loss of information ; or rather, not all the 
information present in the data may emerge. In the autocorrelation 
case-study described above it would actually have been positively 
misleading not to consider the substantive implications of the 
suggestion of autocorrelation which emerged from the first analysis. 

Nevertheless, where robust description of a relationship is re-
quired, as it often will be, then the EDA alternative to least-squares 
regression known as the Tukey line may be used. Like the EDA 
approach to single variable description it is based on the median 
rather than the mean because the median is a resistant measure ; 
compared with least-squares regression it also has the virtue of 
simplicity. 

The first step is to divide the observations into three roughly 
equal sized groups, based on their values on the x axis; in effect, 
those with small, medium and large x values. Once this has been 
done the median of the x values and the median of the y values in 
the first and last groups are obtained. From this point on there are 
two different ways of arriving at the Tukey line. 

The first method is a direct graphical one and involves establish-
ing the position of the median x and y values of the first and last 
groups of observations on the scattergram, joining them up with a 
straightedge, and then moving the straightedge up or down parallel 
to this line until half the data points are above the line and half 
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below (Hartwig and Dearing 1979, 35). 

The alternative is to use arithmetical methods to calculate the 
slope and intercept of the line, where the equation for the line is the 
same as in least-squares regression, y = a + bx, but the basis of 
calculating the coefficients is different : 

_ ( median >>3 - median y t ) 
(medianx3 - medianx} ) 

where median y3 means the median y value in the third group of 
observations, that with the largest x values; median yx means the 
median y value in the first group of observations, that with the 
smallest x values ; median x3 means the median x value in the third 
group of observations ; median χλ means the median x value in the 
first group of observations. 

a = the median of the values dh where dt — yt — bxt 

Once the coefficients have been calculated the equation can be 
written and the line plotted in the usual way. 

It is helpful to illustrate the procedure with an example (see 
figure 10.18), a hypothetical study from Mesoamerica of the rela-
tion between settlement sizes and the quantity of imported obsidian 
found at those settlements. It is fairly characteristic of the type of 
situation in which a Tukey line might be employed, in that the data 
do not appear to meet the requirements of least-squares regression 
especially well ; in particular, there are a couple of outlying observa-
tions, only to be expected in a study involving settlement sizes, 
which would be likely to have an excessive influence on the coeffi-
cients of an ordinary regression; in other words, the regression 
relationship defined would not really be relevant to the bulk of the 
observations. 

The application of the graphical method of obtaining the Tukey 
line is illustrated on the scattergram (figure 10.18). There are five 
data points in each of the three groups ; in the third group the same 
point has both the median x and median y value, in the first group 
this is not the case. In this particular example the line joining the 
two medians does itself have half the data points below it and half 
above it so there is no need to move the straightedge to any other 
position; the line joining the two medians is the Tukey line re-
quired. 

For the arithmetic method we have 
(73.0-32.0)^ 41 _ 
(42.5-7.0) 35.5 ' 
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median y3 

x = Site size (ha) 

Figure 10.18. Calculation of a Tukey line for a scatterplot 
of densities of imported lithics at a series of sites in Meso-
america, against the size of the sites where they occur. 

Finding the intercept value is more tedious, since we must use the 
formula 

di = y i - 1.15A;, 

to obtain the d values of all the points before we can find the median 
d value. As an example, for the point with the lowest y value 

d = 7 - ( l . 15x6.5) = -0 .48 

For that with the highest y value 

d= 104 - ( 1 . 1 5 x 5 9 ) = 36.15 

The median d value is 23.9, and a glance at the scattergram confirms 
the correctness of this as the intercept value. Thus the equation for 
the Tukey line is 

jp, = 23.9+ 1.15*,-
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X >>RL1 

30 
Site size (ha) 

Figure 10.19. Comparison of Tukey lines and least-
squares regression lines for all the data and with large 
observations deleted : TL1 is the Tukey line for all data ; 
TL2 is the Tukey line for data with the 3 largest observa-
tions deleted ; RL1 is the least-squares regression line for 
all data ; RL2 is the least-squares regression line with the 
2 largest observations deleted ; and RL3 is the least-
squares regression line with the 3 largest observations 
deleted. 

This tells us that from a starting point of 23.9 there is an increase in 
lithic density of 1.15 g/m3 of earth for each one-hectare increase in 
site size. 

This line will be considerably more robust than the corresponding 
least-squares regression in that removal of the top two or three 
cases from consideration will have a much less drastic effect on the 
form of the relationship for the data set as a whole. That is to say, 
in the case under consideration the rate of increase in lithic density 
indicated by the Tukey line equation applies to the bulk of the cases 
and is not just a result of the difference between the biggest sites 
and the rest. Even if the largest sites are removed it has little effect 
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on the rate of increase in lithic density with increasing site size 
indicated by the Tukey line, whereas the effect on the correspond-
ing least-squares line is considerable (see figure 10.19). 

As Hartwig and Dearing ( 1979, 35) point out, in many cases the 
basic idea of carrying out such forms of analysis as fitting a line is to 
define general patterns (the smooth) and distinguish them from 
deviations from the patterns (the rough) ; a resistant characterisa-
tion of the smooth is likely to keep the distinction between the 
smooth and the rough as clear as possible. 

EXERCISES 

10.1. Investigate the relationship between obsidian percentage and 
distance from source for the following lithic assemblages using 
regression techniques to specify its form and strength. 

o/ o/ o/ 
/o /o /o 

Distance Obsidian Distance Obsidian Distance Obsidian 
12 
25 
67 
30 
42 

98 
92 
77 
67 
39 

85 
82 
112 
150 
154 

21 
44 
56 
33 
15 

210 
233 
300 
329 
381 

8 
16 
10 
5 
8 

10.2. Many recent processual studies in archaeology have con-
sidered changing population to be a crucial variable. Population is 
often inferred on the basis of settlement size. In this case the 
relationship between settlement area and population has been in-
vestigated in modern villages in the research area as a basis for 
making population estimates for the past. The data (from Carothers 
and McDonald 1979) are as follows : 

Settlement Settlement 
size (ha) Population size (ha) Population 
0.6 
1.0 
1.1 
1.2 
1.6 
1.9 
2.3 
3.0 
3.1 
3.3 

20 
70 
100 
130 
120 
170 
195 
190 
210 
360 

3.7 
4.0 
4.5 
5.4 
5.9 
6.1 
6.4 
8.9 
10.0 
12.0 

300 
250 
500 
270 
190 
630 
650 
310 
730 
850 
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What is the relationship between settlement size and population ? 
How good is it ? Do the data present any problems for this kind of 
analysis ? If so, is there anything to be inferred from them ? 

10.3. Shaft length and the number of tooth marks are recorded on 
a set of ten animal bones from a palaeolithic cave : 

Shaft length (cm) 4 4 5 6 7 8 9 1 1 13 14 
No. of tooth marks 0 0 1 2 0 5 0 2 7 0 

( a ) Plot the data, and fit a Tukey line, superimposing it on the plot. 
( b ) Calculate the regression line for these data. Explain your choice 
of dependent variable. Plot the regression line on the graph from 
part (a). Are the regression assumptions satisfied? (c) Briefly 
comment on the interpretation of the two lines drawn in parts (a) 
and(b). 



Eleven 

Facing Up to Complexity : 
Multiple Correlation and Regression 

By the end of chapter 10 considerable complexities had been intro-
duced into the basic concepts of regression and correlation with 
which we began. Nevertheless, the treatment considered only the 
relationship between two variables, in general one dependent and 
one independent variable. 

As we saw in chapter 7, it is very often necessary to deal with 
more variables than this if we wish to obtain any real understanding 
of a given situation. Thus, to take a topic from the previous chapter, 
we may be interested in why the quantities of some imported 
material vary between a number of different settlements. There 
most of the examples concerned themselves only with distance 
from the source as the reason for the variation. The last example, 
however, was a hypothetical investigation of the way in which 
imported material quantity on a settlement might relate to the 
settlement's size. Any real study, of course, would want to take into 
account the effect of both distance from source and settlement size 
on the density of imported material (cf. Sidrys 1977). As we will 
see, this cannot be done by simply carrying out two separate bi-
variate regression analyses ; all three variables must be included in 
a multiple regression analysis, in which there will be a single depen-
dent - material quantity - and two independents. In general in 
multiple regression analysis there will always be a single dependent 
variable but there may be any number of independents - variables 
which we think may have some effect on variation in the dependent, 
on the basis of some hypothesis we have developed. 

This added complexity has an effect on the practicalities of the 
way we go about our analyses. Whereas virtually all the techniques 
which have been presented up to now can be carried out quite 
straightforwardly with a simple calculator, multiple regression and 
the majority of the other techniques to be described in the next few 
chapters require the use of a computer to carry them out, except in 
the simplest and most trivial cases, because of the complexity of the 

166 
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calculations involved. This complexity is associated with a signifi-
cantly higher order of mathematical difficulty, in particular involv-
ing the use of matrix algebra. 

It seemed inappropriate in a text such as this to present an 
introduction to matrix algebra and then to go through the mathe-
matics of the techniques in detail. It would have taken up a large 
amount of space and moved the text up to a level of mathematical 
sophistication unsuitable for most of the intended audience. Never-
theless, there is a price to be paid for this. Whereas, up to now, we 
have seen the detailed workings of virtually all the methods de-
scribed, in much of what follows the detailed workings will remain 
a 'black box'. This obviously has its dangers and pitfalls, into which 
many archaeologists have fallen in the past (cf. Thomas 1978) ; for 
those who intend to be serious practitioners of these techniques 
there is no alternative to acquiring the detailed knowledge and 
(rather than 'or') seeking advice from professional statisticians. 
However, the view taken here is that it is possible to obtain an 
understanding of the theoretical structure of the techniques without 
a detailed knowledge of the mathematics involved, and thus to gain 
a valid intuitive insight into them and their role. 

The chapter begins with a brief introduction to the basics of the 
multiple regression model. A more detailed examination of various 
aspects of multiple regression and correlation then follows ; this is 
done with reference to an archaeological example, so that the 
discussion does not become too theoretical and the implications of 
the techniques for archaeological data analysis become apparent. 

THE MULTIPLE REGRESSION MODEL 

The principles of multiple regression are the same as for simple 
regression. In general, we want to estimate a regression equation 
by fitting it to some empirical data. It will be assumed that the 
relationship is linear and we will be using the least-squares criterion 
to obtain the best fit of the regression to the data. Whereas in the 
simple regression case the equation was y = a + bx, now it is 

y = a + bxxx + ft2*2 + · · · + ^k^k 

In the simple regression case we were fitting a line to our two-
dimensional scatter of points (figure 11.1). If, for the sake of 
visualisation, we take the simplest multiple regression case, when 
we have two independent variables, we can see that what we are 
trying to fit is a plane rather than a line (figure 11.2). Once we move 
beyond three variables the situation becomes very difficult to 
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visualise but the principle remains the same : we will be trying to fit 
a plane not of two dimensions, as in the case illustrated, but of as 
many dimensions are there are independent variables. 

Figure 11.1 (left) Scattergram of the relationship be-
tween a dependent variable (y) and an independent (x) 
with the regression line drawn in. 
Figure 11.2 (right) Scattergram of the relationship be-
tween a dependent variable (y) and two independents 
(x] and x2) : the regression line has become a regression 
plane, which is drawn in. (After Blalock 1972.) 
( After Blalock 1972.) 

To return to our three-variable case. Where x2 =x2 = 0 we have 
y = a, which is the height at which the regression plane crosses the y 
axis. The b coefficients work as follows. Imagine a vertical plane 
perpendicular to the x2 axis, projected so that it intersects the 
regression plane (figure 11.3). At the point of intersection with the 

Figure 11.3. A vertical plane at right angles to x2 pro-
jected upwards until it intersects the regression plane : 
the line of intersection represents the regression of y on x 



Multiple Correlation and Regression 169 
regression plane this vertical plane is simply a straight line on the 
regression surface. Because the vertical plane, and therefore the 
line of intersection, is perpendicular to the x2 axis, all the points on 
it have the same value for the x2 variable. The slope of this line is bx 

in the multiple regression equation ; that is to say, it is the slope of 
the regression of y on xx, since for this particular line all the x2 

values are constant. In the same way, if we construct a vertical 
plane perpendicular to the xx axis, then the line along which it 
intersects the regression plane will have slope b2 and will represent 
the regression of y on x2 with χλ held constant. In multiple regres-
sion the aim is to find the a, bx and b2 coefficients which produce the 
regression plane giving the best fit to our data on the least-squares 
criterion. We will see below the way in which the overall goodness-
of-fit of this plane to the data may be measured using the multiple 
correlation coefficient. 

But multiple regression and correlation are not just about finding 
the overall effect of a set of variables on a dependent variable. As 
has been implied already, we are also interested in the effect of our 
independent variables one at a time, with the others held constant. 
The laboratory experimenter can achieve this situation in reality by 
manipulating the conditions of his experiment. Archaeologists ob-
viously cannot do this ; we have to control our experiments, insofar 
as this is possible, during the analysis phase. To control in this way 
we have to use partial coefficients, as we did in the case of dichotom-
ous variables, but here we are using partial correlation and partial 
regression coefficients. 

PARTIAL CORRELATION 

We will start with partial correlation, which is the more important 
of the two, and illustrate what is involved with an example. We will 
suppose that a programme of survey and excavation has given us 
information on the sizes (in terms of area) of a number of settle-
ments in a region of Mexico. We are interested in the reasons for 
the variation and suspect that they may have something to do with 
the available agricultural resources in the vicinity (cf. Brumfiel 
1976). Information is therefore collected on the area of available 
agricultural land around each of the sites, and on the productivity 
of the land ( see table 11.1). 

In terms of a regression analysis : 
Dependent (y) variable = site size 
First independent (xx ) variable = area of available 

agricultural land 
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Table 11.1. Information about site size, area 
of available agricultural land and land pro-
ductivity (in arbitrary units) for 28 hypo-
thetical Formative Period sites in Mexico. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

Site 
size 
(ha) 

30.0 
33.0 
37.0 
42.0 
42.0 
44.9 
47.0 
53.2 
55.0 
55.0 
55.2 
60.0 
62.0 
63.1 
64.5 
65.0 
67.7 
69.7 
74.0 
75.0 
76.0 
77.0 
80.5 
86.0 
88.0 
90.0 
95.3 
99.0 

Available 
agricultural 
land (km2) 

17.9 
12.7 
17.6 
6.0 

21.6 
29.4 
19.6 
29.0 
21.4 
50.8 
31.8 
24.8 
26.4 
34.0 
39.1 
35.4 
34.8 
53.0 
54.2 
73.3 
95.9 
66.8 
51.0 
61.2 
72.5 
54.7 
89.9 
89.9 

Relative 
productive 

index 

0.75 
0.87 
0.71 
0.85 
0.83 
0.73 
0.89 
0.87 
0.72 
0.89 
0.90 
0.81 
0.92 
0.94 
0.99 
0.82 
0.96 
0.91 
0.94 
1.01 
1.09 
1.05 
1.23 
1.06 
1.29 
1.22 
1.00 
1.26 

Second independent (x2) variable = relative productivity 
of land 

We can start by carrying out a simple regression of site size on 
available agricultural land, and obtain the following results 

y = 35.4 + 0.656*! 
ryXi = 0.864 
ήΧί = 0.746 

The corresponding scattergram is shown in figure 11.4. In words 
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Figure 11.4. Scattergram of site size against area of 
available land, from the data in table 11.1. 

100 

this result states that where there is no available land, site size is 
estimated to be 35.4 ha; and that for every increase in available 
land of 1 km2, site size increases by 0.656 ha. The correlation 
between the two variables is 0.864. Given that available land is the 
independent variable and site size the dependent, we can say that 
variation in the area of available agricultural land accounts for 
74.6% of the variation in site size. 

Similarly, if we carry out a regression of site size on land produc-
tivity we have : 

y= -28 .9 + 97.9x2 

ryXi = 0.832 
r*X2 = 0.693 

The scattergram is shown in figure 11.5, and the result suggests that 
for every increase in the productivity index of 1.0 there is an 
increase of 97.9 ha in site size. Correlation is 0.832 and variation in 
productivity accounts for 69.3 % of the variation in site size. 

Together the two r2 figures we have just seen appear to suggest 
that our two independents - area of available land and land produc-
tivity - account for 74.6 + 69.3 = 143.9% of the variation in site 
size. Clearly this gives us grounds for suspicion ! But what is actually 
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Figure 11.5. Scattergram of site size against productivity 
index of available land, from the data in table 11.1. 

wrong with the procedure ? 
Suppose we ask whether land productivity and available land 

area are related to each other. They might be, if, for example, the 
geomorphological conditions in which larger areas of soil were 
produced were different from those in which smaller areas ori-
ginated ; the contrast between large alluvial plans and small col-
luvium-filled basins might be an instance of this. The point may be 
investigated by regressing x2 (productivity) on xx (available land 
area): 

jt2 = 0.74 + 0.0048*! 
rx~ =0.738 
rix =0.545 

A scattergram (with productivity as the vertical axis) is shown in 
figure 11.6, and it appears from this result that 54.5% of the 
variation in productivity is in fact accounted for by variation in the 
area of the land concerned. 

This poses problems for the initial two regressions we carried out 
since it means that they were not independent of each other. The 
second regression, y on x2, was partly also a regression of y on χλ, 
because x2 and xx are both related to each other. This situation 
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Figure 11.6. Scattergram of area of available land against 
productivity index of land, from the data in table 11.1. 

raises two difficulties. First, we cannot tell how much of the varia-
tion in site size is related to available land area, how much to land 
productivity, and how much to the two of them together. Secondly, 
it means that, as we suspected, the conclusion that the two indepen-
dents together account for about 144% of the variation in site size 
was indeed incorrect : because it included an element of double 
counting. We cannot simply add the two separate r2 values together 
because the two overlap with one another as a result of the relation-
ship between xl (available land area) andx2 (land productivity). It 
is in the solution of these problems that partial and multiple corre-
lation have their role. 

It is convenient here to make a slight change in notation and to 
designate our dependent variable, y, as x0. Our partial correlation 
coefficient can then be expressed as e.g. r0l23 which reads as the 
correlation between variables 0 and 1 with the effects of variables 2 
and 3 being controlled. This is much neater than having to include 
JCS and vs in the subscript. Of the two variables before the point, the 
first is usually the dependent and the second the independent vari-
able currently of interest. Any number of independent variables 
can be controlled ; the number being controlled is known as the 
order of correlation, so that with two controls it is a second-order 
correlation coefficient, with no controls it is a zero-order coefficient. 
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It is important to note that with the partial correlation coefficient 

e-g- roi.2 w e remove the effect not just of the relation between x0 

and x2, but also of the relationship between χλ and x2. 
The first-order partial correlation coefficients, i.e. those holding 

only one other variable under control, can be obtained by means of 
the following formula : 

Tii L· = 
rij-(nk)(nk) 

** V(1-4)V(1-^) 

roi - ( '02) (^12) 
e-g'r01-2"V(l-4)V(l-r?2) 
If we want to obtain second-order partials the procedure is essen-
tially the same : 

=
 rij.k~(ril.k)(rjl.k) 

r'J-"> V(l-rjLk)V(l-^.k) 
It is easily possible to see that computation of these becomes very 
tedious if you have to do it by hand because of the large numbers of 
coefficients which have to be calculated. In fact, they are easily 
available from computer packages such as s p s s-x ( see appendix 2 ). 

At this point, now that we have seen in the abstract what a partial 
correlation coefficient is and how it may be calculated, it is impor-
tant to return to the example with which we started, to see how the 
partial coefficients may be obtained in practice and how they differ 
from the zero-order coefficients seen above. 

We need to investigate the relationship between site size and 
area of available agricultural land, holding land productivity con-
stant ; and between site size and land productivity holding area of 
available agricultural land constant. To do this we simply put the 
relevant numbers in the expression for the first-order partial : 

r r0l-(r02)(rl2) 
r 0 1 2"V(l-4)V(l-r?2) 

0.864- (0.832)(0.738) 
V(l-0.8322)V(l-0.7382) 

= 0.6678 
rg12 = 0.66782 = 0.446 

This figure of just over 44% of the remaining variation in site size 
accounted for by variation in the area of available land, once 
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variation in productivity has been taken into account, compares 
with the figure of nearly 75 % accounted for by area of available 
land when productivity was not controlled, in the zero-order corre-
lation analysis. 

The corresponding procedure is now carried out for the relation-
ship between site size and productivity with available land area held 
constant. From the usual expression for first-order partials we have 

r r02-{rm){r2X) 
r°21 Vd-rgOVil-rà) 

0.832- (0.864)(0.738) 
" V(l-0.8642)V(l-0.7382) 

= 0.572 

4 . 1 = 0.5722 = 0.327 

Thus, it can be seen that just over 32% of the remaining variation 
in site size is accounted for by variation in land productivity when 
area of available land is held constant, i.e. when the effect of area 
of available land on the other two variables is taken into account. 
This compares with over 69 % accounted for by productivity when 
area of available land was not controlled. 

It should be obvious from this example that any serious investiga-
tion of the relationships between variables cannot simply be left at 
the level of zero-order coefficients. Nevertheless, the analysis and 
understanding of the relations between large numbers of zero-order 
and partial correlation coefficients is a complex business ; the pro-
cedures involved are the same as those shown in the examination of 
the Q coefficient. It is necessary to examine the differences in sign 
and magnitude between partials and zero-orders, to see whether 
the control variable(s) is suppressing, explaining or having no 
effect on the relations between the variables of interest. As before, 
it is clearly helpful to have definite hypotheses about relationships 
to investigate. 

MULTIPLE CORRELATION 

The previous section of this chapter concentrated on how to isolate 
the effect of individual variables in the context of a regression 
analysis with a number of independent variables. What we have not 
yet considered, however, is how we assess the overall effect of all 
the independents taken together on variation in the dependent. 
The multiple correlation coefficient (R) measures the goodness of 
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fit of the least-squares regression surface as a whole to the de-
pendent variable values. The square of the multiple correlation 
coefficient (R2) indicates the percentage of the variation in the 
dependent variable accounted for by the least-squares surface. 

This is all very well as a matter of definition, but how is the 
quantity, or its square, actually found, in the light of the problems 
we saw in the preceding section about adding together zero-order 
coefficients and the need to calculate partials. Clearly, as our 
example showed, the percentage of variation in the dependent 
accounted for by the regression overall cannot be simply the sum of 
the zero-order r2 values, for the same reason - that of double 
counting. 

At this point the obvious answer would seem to be that we sum 
the partials we have obtained to find the overall effect. But this too 
is incorrect. Whereas summing the zero-order values involves 
double counting, summing the partials has the converse problem 
that it is not sufficient. This is because each partial only gives us the 
effect of an individual variable by itself, with no influence from the 
other independent variables ; so summing them only gives the total 
effect of all the individual variables taken alone on that part of the 
variation in the dependent which doesn't relate to any of the other 
independent variables. What is missing is that when independents 
are correlated with one another they will not only each have an 
individual effect on the dependent ; there will also be an effect of the 
joint action of the relevant variables. 

If we take the case of two independent variables, r01 2 is con-
cerned with the variation in x0 not associated with x2, and r02A is 
concerned with the variation in x0 not associated with xx ; however, 
because the two independents are intercorrelated, some of the 
variation in x0 is accounted for by the joint variation of xx and x2, 
and therefore is-not included in the partials (cf. Johnston 1978, 
chapter 3). Accordingly, we need something different from any of 
the coefficients we have seen so far. 

The formula for multiple R2 for the three-variable case is : 

^0.12 = r 0 1 + / 0 2 . l ( l ~ r 0 l ) 

where RQA2 is the multiple coefficient of determination between x0 

and both xx and x2. It is the proportion of the variation in x0 

accounted for by the two independents both separately and to-
gether. 

To obtain it we first let one of the independents do all the 
'explaining' it can. This is the meaning of the r$x term: it is the 
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proportion of the variation in the dependent accounted for by the 
first independent. If the total variation in the dependent is defined 
as 1.0 then after the first independent has accounted for its share of 
the variation, the proportion remaining to be accounted for is 
( 1 - Aoi ). Now we see how much of the remaining variation in the 
dependent can be accounted for by the second independent and 
add this to the variation accounted for by the first, to obtain the 
overall effect of the two together. Why then is the second part of the 
formula r^2.i ( 1 — >oi ) a nd n o t simply AQ2( 1 - >oi ) ? 

It is because by including the term τ^λ we already have in the 
equation all the effect of the first variable. If χλ and JC2, our indepen-
dents, are correlated then there will be some effect of χλ expressed 
in /Q2, SO if we used this in the equation we would again be making 
the mistake of double counting. We must remove any effect of χλ on 
ro2 and we do this, of course, by controlling for it, and taking the 
partial Γο2.ι· 

To make the argument more concrete it will be helpful at this 
point to return to our example and obtain the multiple R2 value, i.e. 
establish the proportion of the variation in site size accounted for by 
the overall effect of area of available land and land productivity, 
acting both separately and together. In the course of this chapter we 
have already calculated the relevant quantities : 

rix = 0.746 
l - i & = 0.254 
4 .1 = 0.327 
RlX2 = 0.746 + (0.327)(0.254) 

= 0.746 + 0.083 = 0.829 
That is to say, area of available land and land productivity alto-
gether account for 82.9% of the variation in site size for this set of 
data, made up by letting area of available land account for all the 
variation it can - 74.6% - and letting land productivity 'explain' 
what it can of the remainder - 8.3 %. 

But we can break this down further, since as it stands we do not 
yet know how much of the 74.6% is the effect of area of available 
land alone and how much is the joint effect of this and land produc-
tivity together. The partial riX2 = 0.446 tells us that 44.6% of the 
variation in site size (x0) not accounted for by land productivity 
(x2) is accounted for by variation in available land area alone, i.e. 
44.6% of the (I-A02) value of 30.7%. To find out what proportion 
of the total variation in site size is accounted for by variation in 
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available land alone we therefore calculate : 

^ i . 2 ( l - 4 ) = (0.446)(l-0.693) = 0.137 
That is to say, 13.7 % of the variation in site size is accounted for by 
variation in available land alone. 

The corresponding quantity for land productivity has already 
been calculated in the course of obtaining the multiple R2 value. 

4 .1 ( l -^oi ) = (0.327)( 1-0.746) = 0.083 
Thus 8.3 % of the variation in site size is accounted for by producti-
vity alone. 

Given that overall multiple R2 was 82.9 %, and only 8.3 + 13.7 = 
22 % is attributable to the separate effects of area of available land 
and land productivity, it appears that 60.9 % of the variation in site 
size is accounted for by the joint effect of the two independent 
variables, in that larger areas of available land tend to have greater 
fertility. 

In this case then, as in many empirical situations, there is a not 
inconsiderable degree of overlap in the effects of the two variables, 
so that the multiple R2 is not very much larger than the largest single 
r2 value. The opposite extreme, of course, is when the independent 
variables are actually uncorrelated with one another and then the 
R2 formula reduces to 

^01.2 = 'Ol + >02 

i.e. the variance accounted for is simply the sum of the two zero-
order r2 values. R2 is obviously at its maximum in this situation, 
which is clearly preferable since it means that the two independents 
are each accounting for different parts of the variation in the depen-
dent. When they are correlated, on the other hand, they are ex-
plaining the same variation and thus introduce ambiguity into our 
interpretations. This problem, which can have complex technical 
ramifications in regression analysis (see e.g. Chatterjee and Price 
1977), is known as collinearity or multicollinearity. 

One obvious way of recognising collinearity is by means of com-
paring the simple and multiple correlation coefficients. Suppose we 
have two independent variables, xx and x2, and one dependent, x0. 
If we work out first the zero-order ^ and then the multiple RoA2, 
the difference is the improvement in statistical explanation achieved 
by adding in the second independent variable. If this is very small it 
suggests that the second variable is strongly correlated with the 
first, or that it is simply having no effect on the dependent. Which 



Multiple Correlation and Regression 179 
of these two possibilities is the case may be established by looking 
at the value of r?2, the coefficient of determination between the two 
independents themselves ; if this is large it confirms that collinearity 
exists. 

One way of getting round this problem is simply to drop one of 
the independent variables from the analysis; another way is to 
make the independent variables uncorrelated, for example, by 
means of principal components analysis, and then to regress the 
dependent variable against the principal components; principal 
components will be examined below in chapter 13. On the other 
hand, we do not necessarily want to neglect or re-define the various 
relationships out of existence since they may themselves be quite 
informative, as in our site-size example. 

THE MULTIPLE REGRESSION COEFFICIENT 

It remains to look in a bit more detail at the multiple regression 
equation itself, a task postponed until now because of the greater 
importance of multiple and partial correlation. 

It was stated at the beginning of the chapter, when the multiple 
regression model was introduced, that the slope coefficients (the 
bs) referred to the amount of change in the dependent for a given 
change in a specific independent, with the other independents held 
constant. In the light of our discussion of partial correlation it is 
clear that these slope coefficients represent something very similar. 
In fact, they are known as partial regression coefficients. The nota-
tion in the equation is also very similar, so that we have 

*0.1...k = a0.l...k + ^01.2...Jfc*l + ^02.1,3..Jfc*2 + · · · + b0k.l...k-lxk 

or in the two-variable case 

*0.12 = aQ.\2 + ^01.2*1 + ^02.1*2 

a represents the intercept value, when the values of all the indepen-
dent variables are zero. 

The formulae for the a and b coefficients are : 

a0.\2 — *0 ~~ ^01.2*1 "" ̂ 02.1*2 

. _bo\-{bo2){b2\) 
1 - bub2l 

It is easy to see that the formula for b is really very similar to that 
for partial r. 

We now have a partial regression coefficient which indicates the 
absolute increase in our dependent variable associated with a unit 
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increase in our first independent variable, the other independents 
being held constant, and, of course, we can do the same for all our 
independents. 

In general, we will not actually have to do the calculation to 
obtain the quantities required above since multiple regression is 
usually a computer-based procedure. The multiple regression equa-
tion produced by the MIN IT AB program package (see below) for 
our example of site size regressed on area of available land and land 
productivity is 

i 0 = - 1.87 + 0.416*! + 50.3*2 
If, for illustrative purposes, we calculate the coefficient for χλ using 
the formula given above and the results of the bivariate regressions 
calculated earlier in this chapter for these variables, we have 

0.656-(97.9) (0.0048) 
0 1 2 ~ 1-(114.0)(0.0048) 

0.1861 
0.4528 = 0.411 

Rounding error is responsible for the slight difference between this 
and the coefficient of 0.416 above. 

The equation tells us that the value of site size is best predicted by 
assuming that when available land and land productivity are zero, 
site size is -1.87 ha, and that it increases thereafter by 0.416 ha for 
each 1 km2 increase in available land and by another 50.3 ha for 
each unit increase in the productivity index. 

Suppose, however, that we want to compare our slope coeffi-
cients so that we have a measure of the amount of increase/decrease 
in the dependent associated with a unit increase in each indepen-
dent variable, in terms which are comparable from one variable to 
the next. This is likely to cause problems because the independent 
variables will almost certainly be measured on different scales ; in 
the example given above, for instance, of the relationship between 
site size and land, available land was measured in square kilometres 
and productivity on an arbitrary scale with a much smaller range. In 
these circumstances it is meaningless to compare a unit change in 
one variable with a unit change in another. 

If we are interested in such relative rates of change what we have 
to do is transform our b coefficients into what are known as beta 
coefficients, or beta weights, standardised partial regression coeffi-
cients. To do this we standardise each variable by dividing it by its 
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standard deviation, in other words we obtain its Z score, and on the 
basis of these scores we obtain adjusted slopes which are compar-
able from one variable to the next. In mathematical symbols we 
obtain 

_ (Xj-Xj) 
x ~ s 

xi 

This, of course, gives us a variable with mean jt, = 0 and sx = 1.0. 
We then have a transformed regression equation, which for the two 
variable case is 

^ 0 . 1 2 = ß o i . 2 ^ , + ßo2.lZ*2 

As we are dealing with Z scores, the mean of every variable is zero, 
so that the a coefficient is also zero and therefore drops out of the 
equation. 

Our standardised partial regression coefficients, or beta weights, 
thus indicate relative changes in variables on a standard scale. They 
are actually obtained through standardising the b coefficient by the 
ratio of the standard deviation of the two variables : 

βθ1.2 = ^01.2 "Γ1 

xi) 

or, more generally, 

This formula tells us the amount of change in the dependent pro-
duced by in this case a standardised change in one of the indepen-
dents, when the others are controlled. Clearly, whether you use the 
ordinary b coefficient or the beta weight depends on whether you 
are interested in relative or absolute changes. 

We can complete this section by calculating the multiple regres-
sion equation for our example using beta weights (not output by 
MI NIT AB but given by many other programs). 

_0.864-(0.832)(0.738) 
ß o i 2 ~ 1-0.545 

= 0.549 
_ 0.832-(0.864)(0.738) 

ß o 2 1 ~ 1-0.545 
= 0.427 
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Thus we have 

tx = 0.549Z, + 0.427Z, 

That is to say, according to the equation, for each increase of one 
standard deviation in area of available land there is a corresponding 
increase of 0.549 standard deviations in site size ; and for each one 
standard deviation increase in productivity there is an increase of 
0.427 standard deviations in site size. The sum of these two effects 
gives our best prediction of site size, measured in terms of standard 
deviations from its mean, on the basis of the least-squares criterion. 
Comparison of the coefficients of each of the two independent 
variables indicates that a given increase in area of available agricul-
tural land has a greater effect on site size than a given increase in 
land productivity, a comparison which may now be made in a valid 
fashion because the scales of the two variables have both been 
converted into the same units - units of standard deviation from the 
mean of their distribution. 

An interesting recent example of an analysis using such multiple 
regression techniques models the income of English manors given 
in Domesday Book in terms of the various resources of the manors 
for which data are also given (McDonald and Snooks 1985). 

INTERPRETING MULTIPLE REGRESSION 

COMPUTER OUTPUT 

In the preceding sections of this chapter much reference has been 
made to the fact that multiple regression is normally carried out by 
means of a computer, and virtually all the results for the example 
followed through in the course of the chapter were obtained by this 
means, which is why few calculations were presented. An enormous 
number of multiple regression programs is now available, all differ-
ing slightly from each other with regard to what is included in their 
output. The aim of the present section is to go through as an 
example the output from the multiple regression analysis of our 
example produced by the MI NIT AB multiple regression program, to 
briefly elucidate its various sections, relating them to the points 
which have been covered in the chapter. The output is shown in 
table 11.2. Much of it relates to questions of statistical inference, 
which, as we saw in the previous chapter, are not relevant to most 
archaeological uses of regression analysis. 

The regression equation ( 1 ) we have already seen and it requires 
no further comment. The next section (2) repeats the values of the 
regression coefficients but gives further information about them. 
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Table 11.2. MINITAB computer print-out for regression 
of site size against area of available land and productivity, 
from the data in table 11.1. Numbers in parentheses refer 
to references in the text. 

THE REGRESSION EQUATION IS 
Y = - 1.87 + 0.416 XI + 50.3 X2 

XI 
X2 

COLUMN 

— 
C2 
C3 

COEFFICIENT 
-1.87 

0.41596 
50.33 

ST. DEV. 
OF COEF. 

11.10 
0.09286 

14.39 

T-RATIÜ : 
COEF/S.D 

-0.17 
4.48 
3.50 

THE ST. DEV. OF Y ABOUT REGRESSION LINE IS 
S = 8.107 
WITH ( 28- 3) = 25 DEGREES OF FREEDOM 

R-SQUARED = 83.0 PERCENT 
R-SQUARED =81.6 PERCENT, ADJUSTED FOR D.F. 

ANALYSIS OF VARIANCE 

DUE TO 
REGRESSION 
RESIDUAL 
TOTAL 

DF 
2 

25 
27 

SS 
7998.80 
1643.21 
9642.01 

MS=SS/DF 
3999.40 
65.73 

(1) 

(2) 

(3) 

(4) 
(5) 
(6) 

(7) 

FURTHER ANALYSIS OF VARIANCE 
SS EXPLAINED BY EACH VARIABLE WHEN ENTERED IN THE ORDER GIVEN 

DUE TO DF 
REGRESSION 2 
C2 
C3 

ROW 
21 
23 
25 
27 

1 
1 

XI 
C2 

95.9 
51.0 
72.5 
89.9 

7998. 
7194. 
804. 

Y 
Cl 

76.00 
80.50 
88.00 
95.30 

SS 
80 
53 
27 

PRED. Y 
VALUE 
92.87 
81.24 
93.21 
85.85 

ST.DEV. 
PRED. Y 

3.94 
3.90 
3.79 
4.09 

RESIDUAL 
-16.87 
-0.74 
-5.21 
9.45 

(8) 

(9) 
ST.RES. 
-2.38RX 
-0.10 X 
-0.73 X 
1.35 X 

R DENOTES AN OBS. 
X DENOTES AN OBS. 

WITH A LARGE ST. RES. 
WHOSE X VALUE GIVES IT LARGE INFLUENCE. 

First of all the standard deviations of the coefficients ; these would 
enable us to construct a confidence interval for an estimate of their 
value in the population from which the sample used in this particu-
lar analysis was drawn, if it were appropriate for us to do this (for 
the procedure involved see e.g. Blalock 1972, chapter 18; Ryan et 
al. 1985, 161-2). 

Similarly, the next column, T-RATIO = COEF. /S .D . , taken to-
gether with the figure for the number of degrees of freedom two 
lines below, gives us the information to find out whether the various 
coefficients are significantly different from zero (see again Blalock 
1972, chapter 18; Ryan etal 161-2). 
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The next line, (3), the standard deviation of y (or x0) about the 

regression line, refers to the variation of the actual y values round 
the regression line, (see chapter 9). The standard deviation of this 
distribution of points around the line is 8.107 in this case. Assuming 
a normal distribution of residuals around the regression (see chap-
ter 10 ) this tells us that about 68 % of them lie within 8.107 ha either 
side of their predicted value. 

Any estimate of a population quantity in regression must be 
based not on the size of the sample, but on the number of degrees 
of freedom associated with it (4), or the estimate will be biased. 
One degree of freedom is lost in estimating the mean y value, and 
one each for every independent variable used as a predictor of the 
y value. In our site size example there were 28 observations and 
three degrees of freedom are lost : one each for the two independent 
variables and one for the estimate of the mean. 

The R2 value (5) has already been discussed at length; the 
adjusted version (6) takes into account the fact that the value is 
obtained from a sample of a given size, and that degrees of freedom 
are lost in the process of analysis, as described in the previous 
paragraph. 

The next section (7), headed analysis of variance, provides the 
information to carry out an F test of the significance of the regres-
sion (Blalock 1972, chapter 18). Degrees of freedom have already 
been discussed. The meaning of the quantities in the sum of squares 
column has been outlined in the previous chapter, but is worth 
repetition in relation to this example. The total sum of squares is the 
sum of the squared deviations around the mean value of the depen-
dent variable: E(yz-y)2 . In this case it has a value of 9642.01 
around the mean value of site size. The regression sum of squares is 
the amount of this total accounted for by the regression overall, 
using both independent variables - in this case 7998.8. The R2 

value, of course, is obtained by dividing this quantity by the total 
sum of squares. The residual sum of squares is the sum of the 
squared residuals around the regression line (or plane in this case) : 
Σ(^ - yi)2. This is the variation not accounted for by the regression. 

The final column, MS = SS/DF, is self-explanatory and provides 
the two quantities whose ratio is the F statistic. 

The next section (8), further analysis of variance, gives a break-
down of the variation actually accounted for by the regression, in 
terms of the amount accounted for by each of the independents. 
The top line repeats the total regression sum of squares from the 
previous section. The next line tells us that C2 is associated with a 
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sum of 7194.53. Higher up in the print-out it tells us that C2 is the 
column in MINITAB'S working memory which contains the variable 
JC1? in this case area of available land. As we saw earlier in the 
chapter, the first variable in the regression accounts for as much of 
the variation as it can, and which will include not only its own direct 
effect, but any joint effect it may have with others; again in terms 
which we have seen above, this is the sum of squares used in the 
calculation of AQI . 

The sum of squares associated with C3 is that accounted for by 
the x2 variable, land productivity, alone, after all joint effects of x2 

and χλ have been removed ; in other words, the value of 804.27 is 
the sum of squares from which r^2A is obtained. 

The last main section of the print-out (9) provides information 
about those data items which are in some way unusual, either 
because they have large residual values from the regression or 
because their x values are such that they have a major influence on 
the slope of the regression line. We saw in the discussion of robust 
regression at the end of the previous chapter that it is possible for a 
small number of data points with large values to have a major 
impact on the slope of a regression line, so that if they are deleted 
the slope of the line changes considerably (see figure 10.19). As we 
also saw then, it is inevitable that points with y values a long way 
from the mean of y will have this effect since regression is based on 
minimising squared differences. Accordingly, in interpreting a re-
gression it is important to appreciate how much reliance may be 
placed on the validity of disproportionately few observations, and 
to note which those are. It is in fact possible to obtain the informa-
tion given here for all data items rather than just the extreme ones 
if that is required; it simply needs the appropriate MINITAB com-
mand. 

The information given is the χλ value of each case listed, its actual 
y value, the y value it is predicted to have according to the regres-
sion (PRED. Y VALUE) , the difference between the observed and 
predicted value (residual), and the value of the residual expressed 
as a number of standard deviations of the residual distribution (ST. 
RES. ) . 

Standard deviation of predicted Y value (ST. DEV. PRED. Y) 

requires a little more comment since we have not previously seen it, 
and it is once again associated with statistical inference from the 
regression. The predicted y value for a particular x is the mean 
value of the ys at that particular point for that particular sample, 
given that the regression assumptions outlined in the previous 
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chapter have been met. It is also the best single estimate (or point 
estimate) of the mean y value for that x value in the population as 
a whole. If, on the other hand, we want to specify an interval within 
which the population mean y should lie with some given probability 
(an interval estimate) then we need to know the standard devia-
tion, or standard error, of the prediction, so that we can calculate 
the interval, on the basis of an assumption that the sampling distri-
bution of predicted y values for the population is normal (see 
Blalock 1972, 404-5). 

ASSUMPTIONS 

The previous section has referred in passing to the question of the 
regression assumptions and it may be appropriate to complete this 
chapter with a comment on these in relation to multiple regression. 

The first point to emphasise is that all the assumptions outlined in 
the previous chapter for simple regression also hold for multiple 
regression, with the extra ramification that in the latter they must 
hold for the relationship between the dependent and each of the 
independents. Furthermore, as we have seen already, the indepen-
dent variables themselves should not be intercorrelated. 

It will be obvious from this that the process of investigating 
whether the assumptions do indeed hold for a particular multiple 
regression analysis can be a complex one if there are many indepen-
dent variables. Moreover, it is quite likely that for at least one or 
two of the relationships the assumptions will not be perfectly met, 
and the question then arises of the extent to which they may be 
ignored before the analysis becomes a meaningless one, a question 
to which there is not a straightforward answer. 

The previous chapter provided guidance on the detection of 
problems and the solution of them and what was said there applies 
equally to multiple regression. It is worth reiterating, however, that 
it is never satisfactory simply to store data on a computer and then 
carry out multiple regression analyses related to some problem of 
interest. The first step should always be to study the distributions of 
the individual variables to see that they are approximately normal ; 
then to investigate the scattergrams of the various bivariate re-
lationships to see that they are linear. Finally, the residuals from 
the multiple regression itself should be examined for patterning in 
their distribution. 

Again to reiterate what was stated in the previous chapter, if the 
assumptions are not met it does not mean that a regression analysis 
cannot be carried out, but that appropriate action must be taken 
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first. Very often this will raise complexities which require the in-
volvement of a professional statistician. 
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Figure 11.7. Scattergram of standardised residuals from 
multiple regression of site size on area of available land 
and land productivity, plotted against the site size values 
predicted by the multiple regression, from the data in 
table 11.1. 

As far as the example followed through in this chapter is con-
cerned, it was noted above that some coUinearity is present, leading 
to ambiguity in assessing the separate effects of area of available 
land and land productivity, but the extent of it is not so great as to 
cause the drastic problems illustrated by Johnston (1978, 74-7). 
The variables for our example were constructed so as to have 
reasonably normal distributions, while the scattergrams shown 
earlier in this chapter (figures 11.4-11.6) indicate that the various 
bivariate relationships are approximately linear. Finally, the scat-
terplot of the standardised residuals from the multiple regression 
against the y values predicted by it (figure 11.7) shows no very 
obvious patterning to indicate that the assumptions are violated. 

EXERCISES 

11.1. In an archaeological study of factors affecting the density of 
obsidian at a series of large early classic sites in Mesoamerica it is 
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hypothesised that distance from the source and site size, reflecting 
functional importance, are the important variables. Given the in-
formation below (data from Sidrys 1977), is this the case? Use 
multiple regression and multiple and partial correlation methods to 
assist you in drawing your conclusion. 

Obsidian Distance 
density from source Site size 

(g/m3 earth) (km) (ha) 

38 70 32 
32 105 16 
35 110 24 
23 110 14 
18 145 33 
23 160 30 
27 150 29 
30 165 40 
14 195 65 
22 205 44 
16 240 37 
21 260 48 
7 280 59 

11.2. In a study of the faunal remains from a number of Pleistocene 
cave sites it is decided to investigate the relationship between the 
number of wolf bone fragments and the number of bovid fragments 
(data from Boyle 1983). Is there any relation between the two, 
bearing in mind that the overall size of the assemblage must be 
taken into account? 

Total no. of 
Bovid Wolf fragments in 

Assemblage fragments fragments assemblage 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

31 
0 

1622 
150 
13 
12 
0 
33 
58 
107 

1 
111 
278 
63 
48 
161 
24 
0 
0 
18 

1211 
618 
4260 
820 
137 
2916 
249 
128 
505 
998 
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11.3. In a study of the relationship between the economies of 
Roman villas and adjacent towns, the proportions of cattle in the 
faunal assemblages at a number of villas are noted, together with 
the distances of the villas from the nearest town and the dates at 
which they were occupied. The correlations are as follows : 

Distance from town-proportion of cattle r = 0.72 
Date-proportion of cattle r = 0.55 
Date-distance from town r = 0.60 

Discuss the relationship between these variables. 
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Numerical Classification in Archaeology 

HISTORICAL INTRODUCTION 

Since the discipline's inception classification has had a central role 
in archaeology. In Europe, for example, much of the most impor-
tant work of the nineteenth century, from Thomsen's Three Age 
system to Montelius, was concerned with grouping and ordering 
archaeological material in such a way that the ordering would have 
chronological significance. With the development of the concept of 
the archaeological culture at the beginning of the twentieth century 
the spatial dimension too became of importance, and a key aspect 
of archaeological work became the definition of coherent temporal 
and spatial units, a task which continues to be of significance. 

The basis of defining these units was an assessment of similarities 
and differences in archaeological material. This assessment had two 
aspects. On the one hand there was the search for groupings and 
discontinuities within particular classes of material, such as pottery. 
On the other, once groupings within individual classes of material 
had been obtained, there was the question of the association be-
tween groupings of material of different kinds ; for example, were 
particular types of pottery usually found together with particular 
types of stone tool in the context of similar houses or forms of 
burial? 

The basis of the decisions to group the archaeological material in 
certain ways and not in others was the expertise of the archae-
ologists involved in making them. Their training steeped them in 
the handling of archaeological material that was accessible to them 
and in the examination of corpora of material from elsewhere. 
Travel was important because it made possible a first-hand acquain-
tance with material in foreign museums and thus provided a wider 
knowledge base for individuals in their handling and assessment of 
differences and similarities. Among his many other achievements 
Childe was the classic exponent in the field of European prehistory 
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of this kind of approach, which remains of great importance in 
everyday archaeological practice today. 

It was in the 1950s that approaches began to change, with the first 
application of quantitative techniques to the problems of defining 
and ordering the similarities and differences in archaeological mate-
rial. One of these approaches was that of Spaulding (1953), who 
proposed that artefact types could be defined in terms of patterns of 
association between the different variables or attributes describing 
the artefacts in question, and that these associations could be 
assessed for significance by means of the chi-squared test (see 
chapter 6). 

The other problem that led to the use of quantitative methods 
was not the definition of types but the ordering of assemblages in a 
chronological sequence. In fact, a problem of this type had already 
been tackled in a quantitative fashion in a famous study by the 
Egyptologist Sir Flinders Pétrie (1901), in an examination of 
burials of the predynastic period in Egypt. What Pétrie had was 
information on grave goods found in a large number of graves and 
what he was interested in finding out was the chronological order in 
which the burials were deposited, given the assumption that one of 
the most important factors affecting the goods deposited in a par-
ticular grave would have been variation in the types which were in 
fashion at any given time. As Kemp (1982) describes, Petrie's 
conclusion was that the ordering of the graves which would best 
approximate their chronological sequence would be one in which 
the life-spans of the individual types would be the shortest possible ; 
the idea being that a type comes into fashion, has a period of 
increasing popularity, is widely used for a time, then declines in 
popularity and disappears from use. Petrie's practical solution to 
the problem involved writing out the contents of each grave on a 
strip of cardboard, laying all the strips in a line and then shuffling 
them around to try and get all occurrences of a given type bunched 
together. This is by no means a straightforward procedure since the 
life-spans of different types overlap, so that grouping together the 
occurrences of one type may have the effect of dispersing those of 
another, but eventually Pétrie achieved an ordering with which he 
was satisfied. Kemp (1982) describes an analysis of Egyptian pre-
dynastic cemetery material using modern techniques which broadly 
confirms Petrie's result. 

At the beginning of the 1950s Brainerd and Robinson (Brainerd 
1951, Robinson 1951) wished to order pottery assemblages. They 
made the same assumption as Pétrie about the way in which types 



192 Quantifying Archaeology 
come into fashion and go out again, but rather than working with 
strips of cardboard they took their assemblages and on the basis of 
a comparison of the relative proportions of different pottery types 
in each pair of assemblages, they calculated a measure of similarity 
between each assemblage and every other (see below p. 208). They 
produced a table, or matrix, of these similarities and then shuffled 
around the order of the assemblages in the table with the aim of 
grouping all the highest similarities together to produce a sequence 
(see Doran and Hodson 1975,272-4, for a more detailed account). 

The process of seriation itself will be examined below (pp. 208-
12, but for the moment we may note, from a historical point of 
view, that there was a period from the 1950s up to the mid-1960s 
when seriation studies were at the forefront of quantitative archaeo-
logical research. It was in the early to mid-1960s that an impetus 
came from a different source to develop quantitative approaches to 
the assessment of similarity and relationships in archaeology. This 
source was biology, and specifically biological taxonomy. 

Traditional classifications of plants and animals in biology were 
not based on large numbers of characteristics of the items being 
studied. As in archaeology, the taxonomist, with his experienced 
eye, selected a small number of key attributes which seemed to vary 
significantly between the items and based his classification on these. 
It came to be felt by some of those involved in the discipline that 
more satisfactory classifications, specifically classifications which 
would have greater phylogenetic significance, would be produced if 
large numbers of the attributes of the plants or animals under study 
could be used, and it was felt that the classification would also be 
more satisfactory if no a priori differential weighting was attached 
to the significance of particular characteristics of the items being 
classified. The result of such an approach, it was argued, would be 
'natural' groups. 

Since it is impossible for any human taxonomist to consider 
simultaneously a large number of characteristics of a large number 
of items and to weight them all equally, some form of automated 
procedure becomes essential, hence the rise of numerical taxonomy 
(Sokal and Sneath 1963, Sneath and Sokal 1973). 

Numerical taxonomy was really introduced to archaeology by 
David Clarke (1962, 1970) in his so-called 'matrix analysis' of 
British Bell Beakers. What Clarke wanted to do was to produce a 
'natural' classification of his Beaker pots, using all their attri-
butes and not weighting them differentially, in the belief that such 
'natural' groups would relate to human group social traditions 
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(Clarke 1966), although in fact the actual methods he used were an 
adaptation of the Robinson-Brainerd approach to seriation. 

Since that time the dubious theoretical baggage concerned with 
'natural' groups has been jettisoned for the much more tenable 
approach which lays emphasis on classification for a purpose, but 
the methods of numerical taxonomy have come to play an increas-
ing role in archaeological classification, despite the undeniable 
problems inherent in them (see, for example, Doran and Hodson 
1975, Whallon and Brown 1982). 

The technical details of the various procedures involved will be 
described in the following sections of this chapter and in the next, 
but here it is appropriate to comment briefly on certain aspects of 
their use in archaeology in the last two decades, a period in which 
there has actually been relatively little change in the essentials of 
the way in which the methods are employed, although some tech-
nical improvement has taken place. 

On the whole, the methods of numerical taxonomy have been 
used to group together items in terms of the values of the variables, 
or states of the attributes, which characterise them, rather than to 
group variables or attributes in terms of their patterns of associa-
tion. This is because it is the former process which has been re-
garded as corresponding to the traditional intuitive approach to 
defining artefact types in archaeology - the grouping together of 
some actual physical items, or descriptions of them. One result of 
this has been that to an extent numerical classification has simply 
been traditional archaeology with a computer, and the classifica-
tions produced have themselves been evaluated in terms of the 
success with which they approximate traditional classifications 
made by 'experts'. This hardly seems a justification for the elabo-
rate methodology employed and has been one of the reasons why 
this area of archaeology tends to be regarded by students (and 
others) as extremely boring and even pointless. 

Spaulding (e.g. 1977) has in fact taken the view that this ap-
proach to the definition of types is misconceived, arguing, as we 
have seen above, that types are defined in terms of statistically 
significant associations of attributes, while the proponents of group-
ing together items in their turn have questioned the validity of 
Spaulding's approach (e.g. Doran and Hodson 1975). The latest 
expression of this disagreement may be seen in the book Essays in 
Archaeological Typology (Whallon and Brown 1982, chapters 1, 2, 
3 and 6), but some recent methodological developments (see chap-
ter 13) mean that the dispute is no longer as relevant as it was. 
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It remains to consider why numerical taxonomy has become so 

popular, even among traditional archaeologists who have generally 
been sceptical about many of the innovations in archaeological 
method and theory of the last two decades. There are a number of 
answers to this question, some hinted at above, but I believe the 
most important has been that the methods are regarded as in some 
sense 'objective'. This is a highly dangerous notion which we must 
briefly subject to examination. 

As we will see in subsequent sections of this chapter, the use of 
numerical taxonomy involves the definition of a measure of similar-
ity between the items or variables we wish to group together, and 
then definition of a procedure for carrying out the grouping on the 
basis of the similarities. These measures and procedures have differ-
ent properties which produce different results. They are Objective' 
in the sense that once the choices are made they can be carried 
through consistently and mechanically by means of a computer. 
Nevertheless, the choices must be made in the light of the particular 
data and problem in question : they should not be arbitrary, nor can 
they be regarded as 'objective', but they should be reasoned, on 
both archaeological and methodological grounds. 

Even prior to the definition of similarity, however, the very 
possibility of defining any such measure presupposes the existence 
of a description of the objects of interest from which the measure 
may be derived. As we have said already, the idea that we can and 
should describe every aspect we can think of concerning our objects 
of interest, as a basis for numerical taxonomy, has long been aban-
doned. Since then Gardin (1980) has been at pains to emphasise 
the problematical nature of archaeological description. We de-
scribe with a purpose in mind, implicit or explicit, and it is far better 
that it should be explicit so that we give active thought to the 
descriptive variables we select, and the way in which we construct 
them, in relation to the purpose which we have, whether that be the 
definition of spatial and chronological variation or any other (see 
e.g. Gardin 1980, Whallon 1982, Vierra 1982). Decisions taken at 
this point largely determine the results of subsequent analysis. 

This discussion does not mean that in our description of our data 
and our use of analytical methods upon them we are simply impos-
ing order on the world. The view taken here is that structure and 
order in our data may or may not exist, but their existence and 
form, if any, are waiting to be discovered. Any structure will be with 
respect to our description, and our methods of analysis may hide it, 
distort it or reveal it, but the very possibility of these alternatives 
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indicates the contingent reality of its existence. 

We have digressed slightly from the question of 'objectivity' as a 
basis for using numerical classification, albeit to make what is an 
important point. But if objectivity is a chimera, and numerical 
classification studies are often justified in terms of their approxima-
tion to traditional typologies, what do constitute valid reasons for 
using such methods? First, their use helps us to make the bases of 
our classification decisions more explicit. Second, given the fre-
quent need to seek order in large numbers of items described in 
terms of large numbers of variables (or in large numbers of vari-
ables in relation to their occurrence on large numbers of items), 
they make the grouping process consistent (not 'objective'), and 
more importantly, they can reveal patterning present in the mate-
rial which would otherwise fail to emerge from the complexities of 
the raw data. In this last respect the various methods described in 
this and the following chapter have a role which is indispensable. 

NUMERICAL CLASSIFICATION! 

SOME PRELIMINARY DEFINITIONS 

From this point on the chapter will be concerned with describing 
the technical details of various aspects of numerical classification, 
and the archaeological issues raised by their use on the whole will 
be considered only in passing; you are referred to Doran and 
Hodson ( 1975 ) and Whallon and Brown ( 1982), and the references 
therein, for more detailed discussion of these questions. Before 
going any further, however, it is necessary to clarify some terms. 

Classification is essentially concerned with the identification of 
groups of similar objects within the set of objects under study (the 
Objects' may be items or variables). It can be seen as a process of 
simplification, so that generalisations may be made and used on the 
basis of within and between group similarities and differences. Such 
generalisations can be purely descriptive or they can form the basis 
of hypotheses which can be tested by other means ; in these respects 
it can be seen as an extension of the exploratory data analysis 
approach discussed in earlier chapters. 

It is helpful to distinguish now between what is meant here by 
classification proper and certain rather similar procedures. Broadly 
speaking, classification is concerned with the definition of groupings 
in a set of data, based on some idea that the members of a group 
should be more similar to one another than they are to non-mem-
bers ; within-group similarity should be in some sense greater than 
between-group similarity; alternatively expressed, groups (or 
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clusters as they are usually known) should exhibit internal cohesion 
and external isolation (Cormack 1971). The aim in classification 
studies is generally to discover the pattern of groupings in a set of 
data, with as few assumptions as possible about the nature of the 
groupings (cf. Gordon 1981, 5). The process is usually referred to 
as cluster analysis. 

This may be contrasted with the procedure of discrimination, 
which presupposes the existence of a given number of known 
groups and is concerned with the allocation of individual items to 
those groups to which they belong most appropriately. It might be 
used, for example, to allocate a new find to the most appropriate of 
the categories in an existing classification. Alternatively, it can be 
employed to investigate the way in which a categorisation relates to 
another set of variables. For example, we may have a number of 
ceramic vessels from different sites and the vessels may be charac-
terised in terms of a number of measurements describing their 
shape; do the vessel shapes differ from site to site? The problem 
becomes : given the division of vessels between sites, is that division 
reproduced when we attempt to divide up the vessels on the basis of 
the variables defining their shape (cf. Shennan 1977, Read 1982)? 
Answering such a question involves discrimination and not classifi-
cation. 

Another procedure again is dissection. In some cases we may 
know that our data are not divisible into groups which exhibit 
internal cohesion and external isolation : there is simply a continu-
ous scatter of points in which no natural division can be made. 
Nevertheless, it may be that for some purpose we wish to divide 
them up ; such a more or less arbitrary division would be a dissection 
(cf. Gordon 1981, 5). Dissection is not really very important, but a 
class of procedures which will concern us a great deal, and which 
are mainly discussed in the next chapter, goes under the heading of 
ordination. 

We saw in chapter 9 on regression analysis that if we have infor-
mation about a number of items in terms of their values on two 
variables we can represent the relations between the items by 
means of a scattergram, the axes of which are defined by the two 
variables in question. In the chapter on multiple regression we saw 
that such a representation is problematical with three variables and 
impossible with any more. Clearly then, looking visually for groups 
of similar items when they are described in terms of a large number 
of variables is impossible : there are too many dimensions. The aim 
of ordination methods is to represent and display the relationships 
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between items in a low-dimensional space - generally of two or at 
most three dimensions - while still retaining as much as possible of 
the information contained in all the descriptive variables. Points, 
representing objects, are close together if their mutual similarity is 
high and far apart if it is low. A visual check of the scattergram will 
indicate whether groups - defined as areas of relatively high point 
density - are present. As a further stage in the operation grouping 
(classification proper) methods can be applied to the distribution 
of points in the scattergram. 

We have now distinguished classification proper from discrimina-
tion, dissection and ordination. Within classification proper we can 
usefully make some further distinctions, in terms of the different 
ways in which it is possible to go about group formation, or cluster-
ing. 

One category is known as partitioning methods (Gordon 1981, 
9-10). The use of these involves making a decision about the 
number of groups in which we are interested (this point will be 
qualified below), but unlike discrimination does not require any 
specification of the sizes of the different groups. Individuals are 
grouped together with those with which they are in some defined 
sense most similar, so that the specified number of groups is formed. 

The other main category is that of hierarchical methods, which 
can themselves be subdivided into agglomerative and divisive 
groups. Hierarchical agglomerative methods start with all the items 
under consideration separate and then build up groups from these, 
starting by grouping the most similar items together, then grouping 
the groups at increasingly low levels of similarity until finally all the 
items are linked together in one large group, usually at a very low 
level of similarity. Divisive methods start with all the items in a 
single group and then proceed to divide the groups up successively 
according to some criterion. In both types of hierarchical method 
the relationships between the items and groups may be represented 
in the form of a tree diagram or dendrogram. 

All these cluster analysis methods, but perhaps particularly the 
divisive ones, to some extent impose their own patterning on the 
data, as we will see. A divisive method, for example, will impose a 
series of divisions on a set of data, regardless of whether the result-
ing groups represent genuine distinctions or an arbitrary dissection. 
For this reason the process of validation of the results is important 
and has been unjustifiably neglected in archaeology (see Alden-
derfer 1982). The topic is considered later in this chapter (pp. 228-
32) but it may be noted here that the results of a single cluster 
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analysis method should never be taken at face value. Results of 
different methods should be compared with one another and other 
validation methods also employed. 

SIMILARITY AND DISTANCE MEASURES 

It has already been said that prior to the use of any cluster analysis 
method it is necessary to have some measure which expresses the 
relationships between the individuals in the analysis. We have 
generally talked about assessing the similarity between items but 
we can also talk about distances rather than similarities and in 
general terms one can be regarded as the converse of the other (cf. 
Späth 1980,15-16). 

Table 12.1. Matrix of similarities between four 
hypothetical ceramic assemblages, using the 
Robinson coefficient of agreement. 

1 
2 
3 
4 

1 

200 
14 
11 
9 

2 

14 
200 
147 
163 

3 

11 
147 
200 
157 

4 

9 
163 
157 
200 

Methods of numerical classification then are based on an n x n 
matrix of similarities or distances between the n objects being 
studied, so the first step in an analysis will be to compute this 
matrix. An example of such a matrix of the similarities between 
four items, in this case hypothetical ceramic assemblages, is shown 
in table 12.1. Down the principal diagonal of the matrix run the 
similarities of each object with itself, obviously the maximum poss-
ible value, in this case 200. In fact, of course, we don't need all of 
this matrix because the two halves, above and below the principal 
diagonal, are mirror images of one another. Thus s12, the similarity 
between items 1 and 2, is the same as s2i> in this case 14. A matrix 
such as this is said to be a symmetric matrix and only one or other 
half is needed for analysis. Most distance or similarity matrices are 
symmetric in this way although we will have occasion later on to 
note an example which is not. 

The similarity or distance coefficients which it is possible to enter 
into such a matrix are many and varied (see e.g. Sneath and Sokal 
1973, Wishart 1978). They have different properties and some are 
appropriate for quantitative numeric data while others are based on 
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qualitative presence/absence data; choices should not be made 
without thought. Here it will only be possible to examine a few of 
the most important ones. 
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Figure 12.1. Scattergram of height against rim diameter 
for four ceramic vessels, showing the definition of 
Euclidean distance between vessels i and j. 

The measure most commonly used with interval or ratio scale 
data is the Euclidean distance coefficient. Given two individuals i 
and j , measured in terms of a number of variables p, the Euclidean 
distance coefficient dn is defined as 

ά^(Σ(χίΓχβ)ψ 

This is simply the straight-line distance between two points and 
what its calculation involves, of course, is Pythagoras' theorem. It 
is best illustrated with a two-dimensional example. Suppose we 
want to measure the straight-line distance between a number of 
vessels described in terms of their height and rim diameter (figure 
12.1). We take the distance between each pair of objects,/and/, on 
the x axis (χι — Xj), that between them on they axis (y,· — yy), square 
these two distances, add them together and take the square root. 
Thus, in this case 

d^dxi-XjY+iyi-yj)2)* 

( Remember that raising a number to the power V2 is another way of 
symbolising taking the square root). Carrying out this operation for 
every pair of points gives us the matrix of distances between them. 
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If there are more than two variables then we have to add in extra 

(Xik-Xjk)2 terms so that there is one for every descriptive variable, 
before taking the square root, and that is what the general formula 
tells us to do. 

When two points are in the same place - the items are identical, 
in other words - d^ is zero ; the opposite possible extreme value of 
dij is infinity - the two points are infinitely far apart and there is total 
dissimilarity. 

A problem arises with this measure concerning the scale of the 
axes. This is particularly the case when the measurements of the 
items under study are all to the same scale but range within quite 
different limits. Such a problem would arise if, for example, we 
were interested in classifying bronze swords in terms of measure-
ments of their length, breadth and thickness. Clearly length is likely 
to vary over a much greater range than thickness and accordingly 
will have a much greater effect on the classification. If we want to 
counteract effects of this kind it is necessary to standardise the 
measurement scales and the convention most commonly used is to 
give each variable equal weight by transforming the observed values 
into standard scores. 

There is, however, another problem in the use of the Euclidean 
distance measure since it presupposes that the axes of the space 
defined by the variables in the analysis are at right angles to one 
another, so that we have a rectangular coordinate system. This 
point will become clearer to you when you have read the next 
chapter, but we can say now that the axes will only be at right angles 
to one another (or orthogonal to use the jargon term) when the 
variables are completely independent of one another, which in 
practice will never be the case. If the variables are intercorrelated 
and therefore the axes are not at right angles, then the d^s will be 
over- or under-estimated by an amount depending on the size of the 
correlation and whether it is positive or negative. 

The most common solution to this problem is to make sure the 
axes are at right angles by defining the distance measure not on the 
original variables but on the axes defined by the principal compo-
nents derived from the variables, which are at right angles to one 
another by definition, as we will see in the following chapter; but 
alternative methods are also available (see, e.g., Johnston 1978, 
217-19; Mather 1976, 313-14; Everitt 1980, 57). 

Although a variety of other similarity/distance measures in addi-
tion to Euclidean distance are available for use with interval and 
ratio scale data (see Sneath and Sokal 1973), only one more will be 
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mentioned here, a measure based on summing the absolute differ-
ences rather than the squared differences between the points, for 
each variable, thus: 

P . 

dij =k2(\xik — Xjk\ 

This tells us to take the difference between points i and/ in terms of 
their values on each variable in turn, for as many variables as there 
are in the analysis, and to add the differences together, without 
squaring them and without regard to whether they are positive or 
negative (the modulus symbol | tells us to ignore the sign of the 
differences). This distance measure is known as a city-block metric ; 
why this is so may be shown by a two-dimensional example, illus-
trated in figure 12.2. The formula in this case requires one to take 
the difference between / and j on the first variable | xt - Xj | and the 
difference between them on the second variable !)>/ —)>7·| and add 
the two together. This gives us a distance measure made up of two 
straight lines turning a corner. 
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Figure 12.2. Scattergram of height against rim diameter 
for two ceramic vessels (i and;), showing the definition of 
city-block distance between the two. 

If we now turn to appropriate measures of similarity between 
items for use with presence/absence (or dichotomous) data we find 
an enormous variety of coefficients, all of which do slightly different 
things. The major difference among them is on the question of 
whether or not they take negative matches into account, a negative 
match being the situation when neither of the units or individuals 
under consideration possess the attribute in question. The point 
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may be illustrated by means of an example. Suppose we have two 
graves scored in terms of whether or not they possess certain grave 
goods types, as in table 12.2. 

Table 12.2. Two graves scored in terms of the presence/ 
absence of ten different grave-goods types. 

Grave 1 
Grave 2 

1 

1 
1 

2 

0 
0 

3 

1 
0 

Goods types 
4 5 6 7 

1 0 0 0 
1 1 0 0 

8 

1 
1 

9 

1 
0 

10 

0 
0 

In this example we have assumed that there are ten different 
grave good types present in our data set as a whole, but that types 
2, 6, 7 and 10 are not actually present in either of these two 
hypothetical graves. It is arguable that in a case such as this absence 
of a particular type does not have the same status as its presence, 
and that in particular one would not wish to give joint absence of a 
type from a pair of graves the same weight as joint presence. This 
would be especially the case if some of the types occurred only very 
infrequently. Such a situation, where zero and one have a different 
status may be contrasted with that which would arise if, for ex-
ample, we were coding the sex of the individuals in the graves as 
zero for male and one for female, where the two values have the 
same status and are simply labelled arbitrarily. 

An enormous range of coefficients appropriate for binary (pre-
sence/absence) data is available, but only two of the most impor-
tant ones are described here. These take contrasting positions with 
regard to their treatment of negative matches. What sort of treat-
ment is appropriate in a given case should be considered carefully 
at the beginning of an analysis. 

The Simple Matching Coefficient 
For each pair of items their scores for each attribute are compared 
and it is noted whether they match (i.e. are the same) or not. The 
number of matches is then expressed as a proportion of the total 
number of attributes. What this involves can usefully be illustrated 
by looking at the comparison between any two individuals in the 
form of a 2 x 2 table (table 12.3). For each pair of individuals we 
count the number of attributes present in both (a), the number 
present in ; but not i (b), the number present in / but not; (c) , and 
the number absent from both (d). Putting in the data for our 
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Table 12.3. General table for the comparison of two 
items in terms of the presence /absence of a series of 
attributes. 

Individual i 
Attribute Attribute 

+ 

Attribute + a b 
Individual; 

Attribute — c d 

Table 12.4. Comparison of graves coded 
in table 12.2 with regard to presence/ 
absence of the ten coded attributes. 

Grave 1 
+ 

+ 3 1 
Grave 2 

2 4 

example of the two graves from table 12.2 gives us table 12.4. 
For the simple matching coefficient then 

a + d 
S = 

a+b+c+d 

In words: positive matches plus negative matches, divided by the 
total number of attributes. In the case of our two graves 

3 + 4 7 _ 
S = = — = 0.7 

3 + 1 + 2 + 4 10 

The Jaccard Coefficient 
This takes the opposing principle with regard to negative matches : 
they are disregarded altogether. If two items are the same in the 
sense of not possessing some attribute this is not counted either as 
a match or in the total number of attributes which forms the divisor 
for the coefficient ; for any given pair of items the divisor is the 
number of attributes actually present in one or other of the items in 
the pair. In terms of our general 2 x 2 table (table 12.3) 

fl + 6 + c 
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With regard to our example we have 

3 3 

As we have noted above, it would obviously be preferable to use 
the Jaccard coefficient if you had a data set in which there was a 
large number of variables which only occurred rarely, so that a 
given individual or case possessed only a small proportion of the 
total range. In this situation, if the simple matching coefficient was 
used all the cases would be defined as more or less identical to one 
another. 

So long as they are chosen appropriately, these coefficients and the 
many others available will provide a satisfactory definition of the 
similarity between the two items, but suppose we want a measure of 
association between presence/absence variables in the same way as 
the correlation coefficient provides such a measure for continuous 
variables. This presents some problems. Measures based on the 
2x2 contingency table are likely to be unsatisfactory because they 
are bound to depend on the value in the d cell of the table, the sum 
of those cases where neither of the two attributes under considera-
tion occurs; in other words, they will be strongly affected by the 
negative matches ; and for the strength of association between two 
attributes to be in effect determined by the number of cases in 
which neither of the attributes occurs seems unsatisfactory, especi-
ally if the numbers of occurrences of some attributes are low relative 
to the total number of cases (cf. Speth and Johnson 1976). One 
solution would appear to be to use the Jaccard coefficient again. Let 
us take an example. 

We can suppose that in a study of a cemetery we may be inter-
ested not simply in the similarities between the graves but in the 
patterns of association between the different types of grave goods 
occurring in them ; details of the occurrence of two hypothetical 
grave goods types are shown in table 12.5. For this example, using 
the Jaccard coefficient,5 = 3/6 = 0.5. 

But there are two ways of looking at this question, of which the 
Jaccard coefficient represents only one. It tells us that half the 
occurrences of type 1 are associated with type 2. However, if we 
look at this from the point of view of the less common attribute 2, 
we can think of it in a different way : we could say that it has a 
perfect association with attribute 1 since every time it occurs attri-
bute 1 is present as well. 
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Table 12.5. Two grave-good types scored in terms of 
whether or not they are present in a series of graves. 

Grave goods type 1 
Grave goods type 2 

1 

1 
1 

2 

1 
0 

Grave numbers 
3 4 5 6 7 

0 1 0 0 1 
0 0 0 0 1 

8 

1 
0 

9 

1 
1 

Doran and Hodson (1975) see this asymmetry as a reason for 
more or less rejecting altogether the study of this type of associa-
tion, but such a view seems excessively drastic because the associa-
tion of presence/absence variables can certainly provide us with 
useful information. Their scepticism fits in with their general prefer-
ence for studying similarity between individuals or cases rather 
than association between variables, and their rejection of a contin-
gency table type approach to typology and classification. Their 
recommendation to those who do want to study association be-
tween presence/absence variables is, in effect, to use the Jaccard 
coefficient and accept its limitations ; this is what Hodson does in his 
analysis of the Hallstatt cemetery (Hodson 1977). An alternative 
solution, however, especially if the attributes occur with widely 
differing frequencies is to use the following coefficient : 

s _ ' ( _ i _ + _£_ 
2\a + c a + b] 

where the letters refer to the general 2x2 table presented in table 
12.3. 

This coefficient takes the positive matches as a proportion of the 
total occurrences of the first attribute (here grave goods type) 
under consideration, then as a proportion of the second attribute, 
and finally averages the two. It is clear that with this coefficient the 
less frequent attribute receives much more weight than with the 
Jaccard coefficient, although it might still be argued that the average 
is rather spurious. 

The matrix of association coefficients produced by this technique, 
like all the coefficient matrices we have seen so far, is symmetric : 
the half below the principal diagonal is a mirror image of that above 
the diagonal. Another approach to the problem posed by such cases 
as that just outlined is to produce an asymmetric matrix in which the 
two halves are different from one another; thus, one half of the 
matrix will be made up of terms of the form a/(a-\-c) and the other 
half of terms a/(a + b). Methods of analysing such matrices have 
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been proposed (Gower 1977, Constantine and Gower 1978) but 
they seem to have found very little, if any, use in archaeology. 

Up to now the contrast has been drawn between numeric vari-
ables on the one hand and binary variables on the other, but 
archaeological data are sometimes characterised by neither of 
these ; multistate attributes occur very frequently. An example from 
the field of pottery studies might be rim type. This is the attribute or 
variable and it will have a series of attribute states; for example, 
simple rim, notched rim, rolled rim, everted rim, etc., which are 
mutually exclusive - only one state can occur on any one vessel -
and exhaustive - they cover all the different varieties of rim form 
which occur in the data set under consideration. 

Such variables can in fact be recorded as a series of binary 
variables. To take our rim form example, we can have four vari-
ables, one for each rim type ; the one occurring in any given case is 
coded as present and the other three as absent. Nevertheless, it is 
important to be careful over the choice of similarity coefficient in 
these circumstances: ones which exclude negative matches from 
consideration are satisfactory but those which include them are not, 
because the variables are logically interconnected so that a certain 
number of negative matches will occur simply because of the way 
they are defined. 

Often a given archaeological data set may be described in terms 
of both quantitative, presence/absence and multistate variables. 
The desire to use all of these in a single analysis of a given data set 
has been a strong one among archaeologists, which they have been 
able to realise thanks to the development of Gower's general coeffi-
cient of similarity (Gower 1971 ). The formula is 

S = îsijk/îwijk 

Here two individuals, / and;, are being compared over a series of 
variables in turn, the similarity sijk being evaluated for each variable 
in turn and all the sijks being summed at the end. The sum of all 
these values, however, is standardised by division by the sum of the 
'weights' wijk associated with each variable in the comparison of any 
particular pair of individuals i and y. 

The idea of weights is one we have referred to above only in 
passing, but the notion is the intuitive one of using some means of 
varying the importance attached to particular variables in a given 
analysis. In the context of Gower's general coefficient the weights 
are generally used in a very simple manner. Thus, the weight is set 
at 1 when comparison between objects / and; for the &th variable is 
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possible, and 0 when the value of variable k is unknown for either 
or both objects i and;. 

When presence/absence variables are involved sijk is set to 1 for 
a positive match and 0 for a mismatch. Since in these circumstances 
the weight attached to the variable in question will be 1, the result 
of this comparison will be fully taken into account in the evaluation 
of the final similarity coefficient. If the match is negative, i.e. both / 
and j do not possess the particular attribute in question, then we 
have to again make the choice whether we want to count it in or not. 
If we do not, the weight for that particular variable is set at zero, so 
that the treatment corresponds to the Jaccard coefficient ; otherwise 
the weight is set at 1. 

For qualitative or multistate variables sijk = 1 if the attribute 
states for the two units / and; are the same, and 0 if they differ ; wijk 

is generally set at 1 unless the attribute is non-applicable, although 
again there is no reason in principle why it should not be varied to 
reflect any ideas the analyst may have about the relative importance 
of the different states. 

For quantitative variables 

I Xik ~~ xjk I 
s ' * = 1 —ΈΓ 

where Rk is the range for variable k. In words, we take the value of 
variable k for object / and subtract it from the value of object i> 
ignoring the sign of the result. We then divide the result by the 
range of the variable, i.e. the difference between its lowest and 
highest values, before subtracting the result from 1. Obviously, in 
the specific case where objects / and/ are those with the highest and 
lowest values, then the result of evaluating this |JC£/ — xjk\IRk term 
will be 1, which when subtracted from 1 will produce a similarity of 
0 for the comparison on this particular variable. 

Gower's coefficient is discussed by Doran and Hodson (1975, 
142-3 ) and in recent years has found fairly extensive archaeological 
use, as we noted above. This is, I think, at least partly due to a 
tendency on the part of archaeologists to want to throw all the 
information on a particular set of items into some form of cluster 
analysis or ordination procedure and see what comes out. This can 
be dangerous to the extent that it serves as an excuse for not giving 
serious thought to the variables in the analysis and what they are 
supposed to represent - the underlying dimensions, as Whallon 
( 1982) calls them. For many purposes it may not be either relevant 
or appropriate to include in an analysis all the variables which have 
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been recorded for a particular set of data. In other cases more may 
be gained by analysing subsets of the variables separately, selected 
on carefully thought-out grounds, and then comparing the results 
for the different subsets with one another. 

To complete this discussion of measuring similarity, a final coeffi-
cient worth examining, despite its undoubted drawbacks (Doran 
and Hodson 1975), is the Robinson coefficient of agreement ( Rob-
inson 1951), specifically devised for the archaeological purpose of 
measuring similarity between pottery assemblages described in 
terms of percentages of different types. This coefficient is one kind 
of city-block metric. It totals the percentage differences between 
defined categories for pairs of archaeological assemblages. The 
maximal difference between any two units is 200 %. By subtracting 
any calculated difference from 200 an equivalent measure of simi-
larity or agreement is obtained. The formula is : 

S = 20Q-ä\Ptk-Pik\ 

where P is the percentage representation of attribute or type k in 
assemblages i and /. 

It may be useful to demonstrate the two extreme possibilities 
with simple examples : 

a) Typel Type2 
Assemblage 1 50% 50% 
Assemblage 2 50% 50% 
^\Pik-Pjk\ = |50-50| + 150 — 501 = 0 
S = 200 - 0 = 200 

b) Typel Type2 
Assemblage 1 100 % 0 % 
Assemblage 2 0% 100% 
2\Pik-PJk\ = 1100-01 + | 0 - 1001 = 200 
S = 200 - 200 = 0 

SEARCHING FOR PATTERNING 

IN SIMILARITY ( A N D DISTANCE) MATRICES 

Once the matrix of similarity coefficients has been obtained, what 
do you do with it? In general you want to look for patterning in it 
which will be interprétable in an archaeologically meaningful way. 



Numerical Classification 209 
How you go about looking for that patterning depends both on 
what you are trying to do and on what patterning you actually 
expect to exist. 

As we have seen already, the patterning which initially interes-
ted archaeologists experimenting with quantitative methods was 
chronological patterning, particularly the establishing of sequences 
of archaeological units solely on the basis of comparison between 
them, in a situation in which external dating evidence is either 
unavailable or put to one side. There is now an extensive archaeo-
logical literature on this subject of seriation (e.g. Cowgill 1972, 
Doran and Hodson 1975, Marquardt 1978, Ester 1981) and no 
attempt is made here to deal with the topic since it is already so well 
covered. 

Nevertheless, one particular seriation technique will be pre-
sented here because it provides a useful introductory insight of a 
practical nature into the process of investigating the patterning in 
matrices of similarity coefficients. The method is known as close-
proximity analysis (Renfrew and Sterud 1969), a rapid pencil and 
paper method of seriation which does not, however, force the data 
into a linear ordering. 

The basic idea is that you select any of the units to be seriated, 
find the unit most similar to it and place this beside the first, thus 
beginning a chain. You then find the unused unit most similar to 
either end of the chain and add it on, until in the ideal case all the 
units are linked in a continuous sequence. The detailed procedure 
is given below (Renfrew and Sterud 1969, 266-8) and an example 
follows : 

1. Mark the two highest similarity coefficients in each column of 
the complete matrix (excluding the values along the diagonal). 

2. Take any unit as a starting point and note the two closest 
neighbours to it, i.e. select a column of the matrix and note the two 
marked coefficients in it. Link the starting unit and its neighbours 
with lines marked with arrows showing the direction of the simi-
larity ; indicate the value of the coefficients on the lines. 

3. Take one of the units with only one neighbour ( at one or other 
end of the line), note its two closest neighbours and repeat the 
procedure of step 2. If it is already linked to one of these as a result 
of being a mutual nearest neighbour with one of the units already in 
the diagram then the mutual nature of the link should be shown by 
arrows in both directions. 

4. Carry on this procedure for each unit in turn until it can go no 
further. If not all the units in the matrix have been linked together 
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at this point then a separate set of links should be started with one 
of the items not yet linked with the others. Repeat this procedure 
until all units are included. 

5. Where there are loops in the resulting diagram the link with 
the lowest coefficient should be cut, subject to the stipulation that 
chains may not be broken into separate blocks. Usually it is one-way 
links which are cut in this way and single bonds should be broken in 
preference to double ones if both have the same value. When this 
has been done the final order has been achieved. 

It should be noted that while the method forces the breaking of 
loops it does not prevent branching : side chains are not forced into 
a linear order where this is inappropriate. 

6. If at the end of stage 4 entirely separate clusters have emerged 
with no links between them, then at this point they are linked 
together in the most appropriate fashion, i.e. by finding the two 
highest similarity coefficients which will link members of the given 
cluster with the others. Each separate cluster should be treated in 
this way. The links between the separate groups of already linked 
units may be marked by dotted rather than solid lines to indicate 
their relative weakness. 

It was noted above that this method does not force the units into 
a linear chain but allows the possibility of branching if in fact the 
patterning in the data is not linear. Renfrew and Sterud ( 1969,267) 
also suggested a means of assessing the degree of clusteredness as 
opposed to one-dimensional linear ordering in the data. This de-
pends on the fact that if a perfect sedation can be achieved there 
will be two marked coefficients in each row of the matrix, except for 
two rows, corresponding to the ends of the linear ordering, which 
will have three. The formula is : 

Ê7VZ>2 - 2 
clustering coefficient = -J— — x 100 

In- 3 
where Ni>2 is the number of ringed coefficients in row / beyond 2. 
The clustering coefficient has a value of zero for perfect sedation 
and of 100 for maximal clustering. 

The whole procedure may be illustrated by means of an example 
(figure 12.3) using the Robinson coefficient of agreement to repre-
sent the similarities between four ceramic assemblages. For this 
case the clustering coefficient is (0+ l + l + 0 - 2 ) / ( 8 - 3 ) = 0. In 
other words we have a perfectly 'seriatable' matrix. 

The method of close-proximity analysis is very good when a 
linear chain type of ordering exists in the data, but when the 
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Figure 12.3. Close-proximity analysis. 

relations between the units are more complex or the number of 
units is large then it is not very satisfactory. Furthermore, its use 
presupposes that a matrix of similarity coefficients already exists. 
To obtain such a matrix is really only practicable with a computer 
and once the data are held in a computer file it is just as easy to use 
computer-based techniques to search for patterning in the matrix as 
it is to use close-proximity analysis. The latter technique then is 
more a helpful way of illustrating how similarity matrices are ana-
lysed than of real practical use. Nowadays seriation studies are 
usually carried out by means of the sort of ordination method 
discussed in the next chapter (e.g. Kemp 1982). In this chapter, 
however, we are concerned with examining patterning in the matrix 
from the point of view of classification proper, defined above as 
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concerned with the definition of groupings in a set of data, based on 
some idea that the members of the group should be more similar to 
one another than they are to non-members. This involves the use of 
cluster analysis. 

CLUSTER ANALYSIS METHODS 

It was noted above that these can be divided into two categories, 
partitioning methods and hierarchical methods, and that within the 
latter agglomerative and divisive techniques may be distinguished. 

1. Hierarchical Methods 
We have already seen that behind this group of techniques lies the 
idea that objects can be similar to one another at different levels, so 
that the results can be represented in the form of a dendrogram : a 
tree diagram representing the relationships between individuals 
and groups. 

These techniques, like those of numerical taxonomy generally, 
came to archaeology, as we have seen, from biological classification 
studies. Within this field the hierarchy of relations between indi-
vidual organisms and groups of them representing their similarities 
to one another was seen as relating to their phylogenetic connec-
tions - their evolutionary tree. In archaeological data there is no 
such obvious hierarchy of interrelationships between items and 
groups to which a hierarchical representation of similarities corre-
sponds and this has occasionally been seen as a reason for rejecting 
the use of such hierarchical techniques in archaeology. Clarke 
(1968) argued that in fact it was possible to define a hierarchy of 
archaeological entities, in terms of which relationships could be 
described and which had a substantive significance for the history 
and nature of individual examples of the entities involved - assem-
blages, cultures, culture groups and techno-complexes. The view 
taken here is that the notion of similarity in some respects and not 
in others, and of greater and lesser similarity, is an entirely familiar 
one in archaeology which it is often both helpful and legitimate to 
conceptualise and represent in a hierarchical fashion. 

i ) Agglomerative Techniques 
As we have seen, these start with a series of individuals and then 
build up groups from these. First the most similar items are grouped 
together, then individuals are added to these groups and the groups 
themselves are linked together, at decreasing levels of similarity, 
until finally they are all joined in a single group. 
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The task which the agglomerative methods perform is to carry 

out the operation in the best possible way, according to some 
defined criterion. A variety of such methods exist because a variety 
of criteria exist in terms of which the similarity between a given 
individual and a group, or between two groups, may be evaluated. 

a) Nearest Neighbour or Single Link Cluster Analysis. This is 
probably the simplest clustering method and for that reason is very 
useful for illustrating what procedures are actually involved in 
cluster analysis. The criterion of linkage in this case is that to join a 
group a given individual must have a specified level of similarity 
with any member of the group ; for two groups to join any member 
of the one group must have a specified level of similarity with any 
member of the other. In other words, similarities or distances 
between individuals and groups, or between groups and other 
groups, are defined as those between their nearest neighbours. 

Table 12.6. Matrix of similarities between five ceramic vessels, 
on the basis of their decorative motifs (after Everitt 1980). 

1 
2 
3 
4 
5 

1 

1.0 
0.8 
0.4 
0.0 
0.1 

2 

0.8 
1.0 
0.5 
0.1 
0.2 

3 

0.4 
0.5 
1.0 
0.6 
0.5 

4 

0.0 
0.1 
0.6 
1.0 
0.7 

5 

0.1 
0.2 
0.5 
0.7 
1.0 

The procedure is best illustrated by actually carrying out analysis 
of a small similarity matrix of the relationships between five ceramic 
vessels on the basis of their decorative motifs (see table 12.6; cf. 
Everitt 1980, 9-10). The highest similarity is that between vessels 
1 and 2 so the first step in the procedure is to join these two 
together. These no longer have separate identities in the matrix; 
they are a group and the similarities between this group and the 
other individuals in the matrix must be evaluated according to the 
nearest neighbour criterion, as the basis for producing a revised 
similarity matrix. 

As an example, to find the similarity between the group and 
vessel 3, you look at the similarity between vessels 1 and 3, and 
between 2 and 3, and whichever is the larger counts as the similarity 
between the group, of vessels 1 and 2, and vessel 3. Here the 
similarity between 1 and 3 is 0.4 and between 2 and 3 it is 0.5, so the 
latter is chosen. The same procedure is carried out for the group 
and vessels 4 and 5, and the matrix produced is shown in table 12.7. 
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Table 12.7. Reduced matrix of similarities between five 
ceramic vessels, after first stage of nearest-neighbour 
cluster analysis which has grouped vessels 1 and 2 
together (after Everitt 1980). 

(12) 
3 
4 
5 

(12) 

1.0 
0.5 
0.1 
0.2 

3 

0.5 
1.0 
0.6 
0.5 

4 

0.1 
0.6 
1.0 
0.7 

5 

0.2 
0.5 
0.7 
1.0 

This matrix in turn is examined for its largest value, the similarity 
between vessels 4 and 5 of 0.7, so these two now become another 
group, whose similarity with the first group and the remaining 
individual vessel must be established so that a third matrix may be 
produced. The procedure is as before. The similarity between the 
first group (vessels 1 and 2) and vessel 3 is unchanged at 0.5. To find 
the similarity between the first group and the second group on our 
nearest neighbour criterion we look for the larger of the two simi-
larities between group 1 and vessel 4 and group 1 and vessel 5, and 
see that it is 0.2 for the latter. The remaining entry for the matrix is 
found in similar fashion to give table 12.8. 

Table 12.8. Reduced matrix of similarities between five 
ceramic vessels, after second stage of nearest-neighbour 
cluster analysis which has grouped together vessels 4 and 
5, in addition to 1 and 2 (after Everitt 1980). 

(12) 
3 
(45) 

(12) 

1.0 
0.5 
0.2 

3 

0.5 
1.0 
0.6 

(45) 

0.2 
0.6 
1.0 

The next stage is for vessel 3 to join the second group at a 
similarity level of 0.6, while the final step is to join the two groups 
together, on the same criterion, at a similarity level of 0.5. The 
sequence of links may now be represented as a dendrogram, with a 
similarity scale down the side (figure 12.4). 

b) Furthest Neighbour or Complete Linkage Cluster Analysis. 
The criterion specified by this method is that to join a group a given 
individual must have a specified degree of similarity with the mem-
ber of the group from which it is most dissimilar ; for two groups to 
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Figure 12.4. Dendrogram of results of single-link cluster 
analysis of the matrix of similarities between 5 ceramic 
vessels shown in table 12.6 (after Everitt 1980). 

join, the two individuals, one from each group, which are most 
dissimilar from one another must have a specified degree of simi-
larity. Once again then we are looking for the highest similarity 
values in the succession of matrices, but defined on the basis of 
furthest rather than nearest neighbours. 

The dendrogram resulting from furthest neighbour cluster ana-
lysis of the matrix used in the nearest neighbour example is shown 
in figure 12.5. In this case the relative similarities have changed but 
the actual configuration of the dendrogram is identical to that for 
single linkage. This is unusual ; more often than not the configura-
tions are very different. 

c) Group Average or Average-Link Cluster Analysis.This is also 
sometimes known as the unweighted pair group method. Here the 
similarity or dissimilarity between groups is defined as the arith-
metic average of the similarities between pairs of members, i.e. as 

ΣΣ5« 
nftj 

where S^ is the similarity between a member of group i and a 
member of group j , nt is the number of individuals in group i, and nj 
is the number of individuals in group /. The formula tells us to take 
the first individual of group i, obtain the similarity between it and 
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Figure 12.5. Dendrogram of results of furthest-neighbour 
cluster analysis of the matrix of similarities between 
5 ceramic vessels shown in table 12.6 ( after Everitt 1980 ). 

all members of group /, sum these similarities, then go on to the 
second member of group / and repeat the process, and so on until 
all members of group / have been accounted for. The resulting 
overall sum of similarities is then divided by the product of the 
number of individuals in each of the two groups. What this involves 
may be illustrated diagrammatically (figure 12.6). 

Group 1 Group 2 

Figure 12.6. Diagram illustrating the calculation of 
average similarity between two groups. 

Here there are two existing groups, 1 and 2. The lines linking the 
members of the two groups are the S,yS (or άφ in this case), of 
which there are 12. These are summed and then divided by ηλ x n2, 
the number of items in each of the two groups ; here 4 x 3 = 12. At 
each stage of the average-link cluster analysis the similarities/dis-
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tances between the groups and /or individuals are calculated, fol-
lowing the group average criterion where groups are involved, and 
the pair of groups and/or individuals with the greatest similarity or 
smallest distance at each step are linked together. 

d) Ward's Method. There is a variety of other hierarchical ag-
glomerative techniques (see e.g. Sneath and Sokal 1973, Everitt 
1980), although a number of them can be shown to be variations of 
a more general procedure (Everitt 1980, 16-17; Gordon 1981, 
46-9). Only one more will be described here, Ward's method, 
which has had a considerable amount of use within archaeology for 
the analysis of continuous numeric data such as the results of trace 
element analyses, and recently by Whallon ( 1984) in the context of 
an interesting approach to intra-site spatial analysis. 

The idea behind this is that satisfactory clusters should be as 
homogeneous as possible. One way to define homogeneity is in 
terms of the distance of the members of a cluster from the mean of 
that cluster. In Ward's method the distance is the error sum of 
squares (ESS) : the total sum of squared deviations or distances of 
all points from the means of the clusters to which they belong. The 
aim of the method is to join individuals and groups successively in 
such a way that at each step in the fusion process the error sum of 
squares is the minimum possible; in other words, the clusters re-
main as homogeneous as possible. The method is best understood 
by means of an example (cf. Everitt 1980, 16-17). 

Table 12.9. Matrix of squared Euclidean distances 
between five projectile points, based on measurements 
describing their shape. 

1 
2 
3 
4 
5 

1 

0.0 
1.0 

36.0 
64.0 

121.0 

2 

1.0 
0.0 

25.0 
49.0 

100.0 

3 

36.0 
25.0 

0.0 
4.0 

25.0 

4 

64.0 
49.0 

4.0 
0.0 
9.0 

5 

121.0 
100.0 
25.0 

9.0 
0.0 

A matrix of squared distances between five projectile points 
based on quantitative measurements of variables describing their 
shape is shown in table 12.9. At the beginning, when all the indi-
viduals are separate from one another, the total ESS has a value of 
zero. Then those two individuals with the smallest distance between 
them, i.e. those whose fusion will produce the minimum increase in 
ESS, are linked, here individuals 1 and 2, separated by a squared 
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distance of 1.0. In the case when we are dealing with only two 
individuals the increase in ESS is given (Gordon 1981, 42) by 

Here 

As with our single-link cluster analysis example we now need to 
calculate a new reduced matrix, giving the distances between the 
group mean and the other items in the analysis. A general formula 
for obtaining the new distances is given by Gordon ( 1981, 42) : 

where dk(ij) is the distance between group or items k and the new 
group made up of groups or items / and;, n( is the number of items 
in group /, rij is the number of items in group j , nk is the number of 
items in group k, dki is the distance between group/item k and 
group/item i, dkj is the distance between group/item k and group/ 
item y, and d^ is the distance between group /item / and group/item 
y. In the present example the calculations are as follows (in practice, 
of course, such calculations are always carried out by computer) : 

The other distances in the new matrix are as before, so the result is 
table 12.10. 

The smallest distance is now that between individuals 3 and 4, a 
distance of 4.0. Again we need to find the increase in ESS resulting 
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Table 12.10. Reduced distance matrix between 
five projectile points after the first stage of a Ward's 
method cluster analysis which has linked together 
items 1 and 2. 

(12) 
3 
4 
5 

(12) 

0.0 
40.333 
75.0 
147.0 

3 

40.333 
0.0 
4.0 
25.0 

4 

75.0 
4.0 
0.0 
9.0 

5 

147.0 
25.0 
9.0 
0.0 

from the formation of the new group, in the same way as above : 

/(34) = '/2(4) = 2.0 

and once more we need to produce a new matrix (table 12.11) : 

2 + 1 24-1 2 
<*02)(34) = =—Λ—7 40.333 + — - — - 7 5 . 0 - - — — - 4 (i2)(34) 2 + 1 + 1 2 + 1 + 1 2 + 1 + 1 

= 30.25 + 5 6 . 2 5 - 2 = 84.5 

</5(34) = 16.666 + 6 - 1.333 = 21.333 

Table 12.11. Reduced distance matrix between five 
proj ectile points after the second stage of a Ward's 
method cluster analysis which has linked items 3 
and 4, in addition to 1 and 2. 

(12) 

(12) 0.0 84.5 147.0 
(34) 84.5 0.0 21.333 
5 147.0 21.333 0.0 

Looking at the new matrix we can see that the smallest distance 
is that between the group of 3 and 4 and individual 5 of 21.333. As 
before, the increase in E s s resulting from including a new individual 
in a group is equal to half the distance between them. In this case 
21.333/2=10.666. 

It remains to evaluate the single entry in the final matrix (table 
12.12), the distance between group (12) and group (345) : 

2 + 2 2 + 1 2 
4i2)(345) = ^—-z—r 84.5 + - — — - 147.0 - ———- 21.333 (i2)(34^ 2 + 2 + 1 2 + 2 + 1 2 + 2 + 1 

= 67.6 + 88.2 - 8.532 = 147.268 

219 

5 (34) 
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Table 12.12. Reduced distance matrix between five 
projectile points at the final stage of a Ward's 
method cluster analysis. 

(12) (345) 

(12) 0.0 147.268 
(345) 147.268 0.0 

Again, the increase in ESS is half the distance, giving a value of 
73.65. The results may be summarised in the form of a table ( 12.13) 
and the links represented in the form of a dendrogram ( figure 12.7 ). 

Table 12.13. Increase in error sum of squares (ESS) 
associated with successive linkages in the Ward's method 
cluster analysis of the matrix in table 12.9. 

Fusion 

1 2 
3 4 
(34)5 
(12)(345) 

ESS 
increase 

0.5 
2.0 

10.7 
73.7 

Cumulative 
ESS 

0.5 
2.5 

13.2 
86.9 

ii) Divisive Techniques 
Divisive methods of cluster analysis start off with all the individuals 
or units together in a single group which is then successively sub-
divided. There are two main groups of divisive methods, polythetic 
and monothetic ; the former are based on the consideration of the 
values of all the variables in the analysis at any given division step, 
the latter on the values of a single variable (cf. Everitt 1980, 18). 
Only the monothetic approach is considered here since it is the 
only one which has had any impact on archaeology (Tainter 1975, 
Peebles 1972). 

Its use in practice has largely been restricted to cases where the 
data are of presence/absence type, so that division is in terms of the 
presence or absence, or 1/0 value, of a particular attribute: all 
items with a 1 value go in one group, all those with a zero value in 
the other. When there is a series of successive division steps, pro-
ducing smaller and smaller subdivisions, the result once again is a 
hierarchy. 

Divisive methods have been particularly used by ecologists, for 
classifying areas of land by the species present, or species in terms 
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Figure 12.7. Dendrogram resulting from analysis by 
Ward's method of the distance matrix in table 12.9. 

of their presence in particular areas, and the main method is gener-
ally known as association analysis; this corresponds to the DIVIDE 
program in the well-known c LUST AN cluster analysis computer 
package (see appendix 2). 

Having said that the series of divisions is made in terms of the 
presence or absence, or 1/0 value, of a single attribute at any given 
time, the question arises as to the means of selecting the best 
attribute for making such a division : what is meant by 'best' ? The 
basic idea is that the two groups produced at any given division step 
should be as dissimilar as possible from each other, not just in terms 
of their value on the variable used to make the division, but overall, 
in terms of all the variables in the analysis. In other words, 
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presence/absence of the attribute used for division should be re-
lated to the presence /absence values of the other attributes; the 
attribute whose presence/absence is most closely related to the 
values of the other variables in the data set being split will be the 
one to choose. Even so, there is still a variety of ways in which this 
general criterion may be defined. The one chosen to illustrate the 
method is widely used although not particularly satisfactory, as we 
will see below. Nevertheless, it provides a straightforward example. 

Table 12.14. Data matrix for ten graves scored in terms of 
the presence /absence of four grave-goods types. 

Grave 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 

0 
0 
1 
1 
0 
1 
1 
1 
0 
0 

Grave goods types 
2 

0 
0 

0 
0 
0 

3 

0 
1 
0 
0 
0 

4 

1 
1 
0 
0 
1 
0 
1 
0 
1 
1 

Suppose we have ten graves scored in terms of the presence/ 
absence of four grave-goods types (table 12.14). One way of seeing 
whether the values on one variable are related to the values on 
another is to calculate the chi-squared statistic for the association 
between those two variables. The idea behind the approach is that 
the chi-squared values actually measure strength of association in 
this context, because sample size is a constant for all the compari-
sons. If a particular variable is strongly related to other variables, it 
means that for a given case its value on the first variable will be a 
good predictor of its value on the others. The result is that a group 
defined on the basis of presence or absence of the one variable will 
be relatively homogeneous since the state of that variable will 
specify the particular states taken by the other attributes, for the 
members of that group. The variable most closely related to the 
others, and therefore most appropriate for making a division, will 
be the one with the highest chi-squared values for its relations with 
the others. Thus we have to calculate the chi-squared value for each 
attribute's association with every other and then sum the results for 
each variable to see which is the highest, as shown in table 12.15. 

0 1 
0 ! 
î 0 
1 1 
0 0 
0 0 
0 0 

î î 



We now sum the chi-squared values for each variable : 

Goods type 1 = χ\2 + χ2
13 + χ2

14 

= 3.6 + 0.0 + 6.666 = 10.266 
Goods type 2 = χ\λ + χ13 + χ\Α 

= 3.6+ 1.666+ 1.666 = 6.932 
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Table 12.15. Contingency tables showing associations 
between each pair of grave-goods types for the data 
presented in table 12.14. 

(a) Typel 

Type 2 

(b) Typel 

Type 3 

(c) Typel 

Type 4 

(d) Type 2 

Type 3 

(e) Type 2 

Type 4 

(f) Type 3 

Type 4 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

4 
1 

5 

+ 

3 
2 

5 

+ 

1 
4 

5 

+ 

4 
1 

5 

+ 

2 
3 

5 

+ 

4 
2 

6 

-

1 
4 

5 

-

3 
2 

5 

-

5 
0 

5 

-

2 
3 

5 

-

4 
1 

5 

-

2 
2 

4 

5 
5 

10 

6 
4 

10 

6 
4 

10 

6 
4 

10 

6 
4 

10 

6 
4 

10 

Xi2 = 3.6 

X?3 = 0 

X?4 = 6.666 

X23 = 1.666 

X24= 1.666 

X34 = 0.278 
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Goods type 3 = χΐι + X32 + X34 
= 0.0+ 1.666 + 0.278 = 1.944 

Goods type 4 = χ^ + χ2
42 + xj3 

= 6.666 + 1.666 + 0.278 = 8.61 

It appears from this that variable 1 is overall more closely associated 
with the other variables ; that is to say, presence or absence of the 
other grave-goods types is most closely related to the presence or 
absence of grave goods type 1. The result of this is that the best 
division of the graves is into those where type 1 is present and those 
where it is absent. It is not possible to obtain two more dissimilar 
groups on the criterion we have used. In table 12.16 the graves are 
arranged in their two groups. It can be seen that types 2 and 4 are 
markedly differently distributed in the two subdivisions, although 
type 3 is identically distributed in both and its presence/absence is 
obviously not related to that of type 1, as the relevant chi-squared 
statistic indicated. 

Table 12.16. Graves listed in table 12.14 sorted so that all 
those in which goods type 1 is present and all those in 
which it is absent are grouped together. 

Typel 
present 

Grave 

3 
4 
6 
7 
8 

Grave goods types 
2 3 4 

1 0 
1 0 
0 0 
1 1 
0 0 

Typel 
absent 

1 
2 
5 
9 

10 

0 
0 
1 
0 
0 

1 1 
1 1 
1 1 
0 1 
0 1 

Only one division step has been illustrated in this example but in 
association analysis a succession of subdivisions of this type is 
carried out. 

There are undeniable problems in using chi-squared in this way 
(see Cormack 1971); one obvious one is the question already 
discussed above of how seriously one takes the d cell of the contin-
gency table, the joint absences or negative matches. The chi-
squared method has been presented here for illustrative purposes 

î 
î 
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rather than as a recommendation of its suitability. Other division 
criteria are available, in particular one known as the information 
statistic. The use of the information statistic in classification arises 
from the concept of entropy, or disorder. It gives a measure of the 
disorder in a group. Thus, it has a value of zero when all members 
of a cluster are identical, and increases as the group becomes more 
diverse (see Sneath and Sokal 1973, 141-4, 241-4). This statistic, 
which is available on CLUSTAN, is favoured by Peebles ( 1972) and 
by Tainter (1975), while Doran and Hodson (1975, 180) also 
appear to find it satisfactory. 

2. Partitioning Methods 
All the cluster analysis methods we have seen so far have been 
hierarchical, but it is now time to turn to the partitioning methods, 
to which reference has already been made. Instead of there being 
multiple levels of grouping at different levels of similarity a decision 
is made as to an appropriate number of clusters and then individuals 
are assigned to the one to which they are closest. This process of 
assignment is not a trivial one because as new individuals are added 
to a cluster the definition of the cluster changes. The methods which 
have been devised to carry out this task are not analytical tech-
niques which can produce a single correct answer, since the number 
of possible variations in the assignment of items to groups quickly 
becomes enormously large as the number of items in the analysis 
increases ; they are techniques which use the great speed of the 
computer in carrying out large numbers of calculations to search 
through the data, assigning individuals to groups according to a set 
of rules based on some criterion. The assignment that results should 
be as close as possible to an optimum but this cannot be guaranteed. 

The first decision that has to be made then concerns the number 
of clusters to be started, although, as we shall note, in practice it is 
possible to operate in a more or less hierarchical manner, succes-
sively reducing the number of clusters of interest. Once the initial 
number has been decided then it is necessary to provide a basis for 
starting the clusters. Procedures suggested for defining the starting 
points include random selection of a specified number of individual 
cases, corresponding to the number of clusters required, and the 
use of the results of some other clustering method for the relevant 
number of groups. When the starting cluster centres have been 
chosen individuals are allocated to the cluster to whose centre they 
are nearest. 

This idea of allocating individuals to the groups to whose centre 
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they are nearest is clearly the same as that in Ward's method, and 
very often an error sum of squares based on squared Euclidean 
distance is used in partitioning methods as well. In Ward's method 
the best fusion of individuals into groups is achieved by the hier-
archical pattern of linkage, but as with all hierarchical methods of 
cluster analysis a cluster, once formed, can never be broken and its 
members redistributed to another group or group. This can lead to 
anomalous situations, in that an individual's membership of a group 
may be appropriate when it joins, but as other items join the group 
and its definition changes the initial item may become peripheral to 
it, to such an extent that it should really now join a different group 
with which initially it did not have much in common. The idea of 
reassessing a classification at any stage, and if appropriate, re-allo-
cating individuals to other groups, is intuitively attractive (Doran 
and Hodson 1975,180). 

This is precisely what the partitioning methods known as iterative 
relocation (or sometimes k-means) techniques do. As individuals 
are added to the clusters the centre of each cluster is recalculated, 
either every time a new individual is added to it or at the end of the 
process of allocating items to clusters. At this point the question 
arises of whether all items are in the most appropriate cluster, so 
each item is considered in turn to see if it should be re-assigned to 
another cluster. A variety of criteria have been proposed for mak-
ing these decisions but the basic idea of them all is that the disper-
sion of the different clusters should be reduced and the distinctions 
between them maximised, again a concept similar to the idea of 
minimising ESS in Ward's method. 

Of course, once one item is moved then the centre of the cluster 
it comes from and the one it has moved to both need recalculating 
so the process of relocation is a laborious one for which efficient 
computer algorithms are required. It continues until any further 
moves fail to cause an improvement in the criterion being used. A 
very much simplified version of the procedure is illustrated in figure 
12.8, in which only two clusters are considered. 

The solution achieved at the end of the relocation process may or 
may not represent the best possible overall allocation (or global 
optimum as it is sometimes known in the jargon). One way of 
checking on this is to repeat the process using a different set of 
starting points for the clusters, again perhaps either randomly 
chosen or arising from the results of another clustering technique. 

As noted already, although the procedure is carried out for a 
specific number of clusters, it can also be carried out in a quasi-
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1. Two individuals are selected as starting points for 
the two clusters ; a third individual is introduced and 
allocated to its nearest cluster : 

2. The position of the centre of cluster 2 is recal-
culated ; another case is introduced and allocated : 

227 

3. Position of centre of cluster 1 is recalculated ; 
another case is introduced and allocated : 

4. Position of centre of cluster 2 is recalculated ; 
another case is introduced and allocated : 

5. Position of centre of cluster 1 is recalculated ; 
another case is introduced and allocated : 

6. Position of centre of cluster 2 is recalculated ; 
another case is introduced and allocated : 

7. Position of centre of cluster 1 is recalculated ; 
left-most individual of cluster 2 is now closer to the 
centre of cluster 1, so is allocated to it : 

8. Centres of both clusters finally recalculated ; 

Figure 12.8. Successive stages of an iterative relocation 
partitioning procedure for two clusters. 
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hierarchical fashion. Thus, once the best-fit solution for a given 
number of clusters is found the two nearest ones can be joined and 
the relocation procedure repeated. When this has been done the 
number of clusters may be reduced again and the whole process 
repeated for as many clusters as are required. It is important to note 
that this process is not hierarchical in the sense of the hierarchical 
methods we've seen above. They produced clusters whose members 
were unchanging except that new members were added as the num-
ber of clusters decreased. With the iterative relocation methods 
described in this section clusters can also change their membership 
as well as gain new members as their number is reduced. 

As for all the procedures we have described, a program for 
iterative relocation is available in the c LUST AN suite of programs 
for cluster analysis. 

CLUSTER ANALYSIS EVALUATION 

It was pointed out earlier in this chapter that cluster analysis 
methods impose their own patterning on the data to a greater or 
lesser extent. It will also have become clear in the course of the 
presentation of the various techniques which have been described 
that they embody very different ideas of the way in which clusters 
should be defined. Inevitably this means that they will very often 
produce different results when used to analyse the same set of data. 
Two important questions therefore arise. How do we know then 
whether our clusters represent some kind of genuine distinctions in 
our data rather than being merely a product of the method used ? 
And what basis have we for preferring the results of one clustering 
method to another? A subsidiary question related in some ways to 
the first is how do we decide on the number of clusters we should be 
taking seriously ? 

The answers to these questions are by no means unequivocal, 
because it is not simply a matter of distinguishing between right and 
wrong methods but of considering the criteria in terms of which a 
particular technique defines good clustering and whether these are 
appropriate to the structure of the data at hand. However, cluster 
analysis is generally used in precisely those situations where we 
know very little about the structure of our data, while the theo-
retical foundation of many of the methods is itself uncertain. A 
great deal of literature has been generated by these problems which 
it is impossible to go into here ; they are discussed among others by 
Doran and Hodson (1975), Everitt (1980) and Gordon (1981), 
who give references to further studies. 
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In early work on these techniques in archaeology much emphasis 

was placed on the extent to which the results of numerical classifi-
cation studies matched those produced by traditional typological 
methods. This was important at the stage when a case was being 
made for the respectability of the new methods. Furthermore, such 
comparisons can provide useful information, as can the comparison 
of results with external information not actually used in the cluster 
analysis. Nevertheless, they cannot be regarded as validating or 
otherwise the results of cluster analyses. Moreover, as we have 
noted already, if the touchstone of numerical classification methods 
is the extent to which the results match traditional typologies there 
is in any case no point in using them. 

Recently a paper by Aldenderfer (1982) has reviewed some of 
the most important ways in which the results of cluster analyses can 
be evaluated, suggesting that it is unsatisfactory to use any of them 
in isolation ; they are listed below. 

1. The use of a stopping rule - a means of testing for a significant 
number of clusters in a hierarchical sequence (Mojena 1977); 
available through c LUST AN. 

2. The use of Wilk's lambda statistic, a measure based on the 
ratio of within-group variation to overall variation in the data, 
tested by means of a randomisation procedure (see below for what 
this involves). 

3. The use of scatterplots of the data, pairs of variables at a time, 
to see whether there are any indications of clustering and the form 
any clusters may take. 

4. By means of discriminant analysis, which attempts to maximise 
the separation between existing groups and provides an indication 
of the extent to which this is possible (see chapter 13 and cf. Everitt 
and Dunn 1983,106-9). 

5. By means of plotting the distribution of the data not in terms 
of their values on the original variables but on their scores on a 
series of transformed axes produced by some form of data reduction 
technique such as principal components analysis. These are the 
ordination methods referred to earlier in this chapter; they are 
described in chapter 13. 

Another way of trying to ensure the validity of clustering results 
on a particular data set is to analyse it by a variety, of different 
methods. If they all give very similar answers in terms of strongly 
overlapping cluster membership then it suggests that the patterning 
is genuine ; ways of systematising this idea are discussed by Gordon 
( 1981,132-6). On the other hand, if different methods do not give 
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the same result it does not necessarily mean that there is not real 
patterning to be found, or that one of them is not representing it 
correctly. It may be that the cluster structure is successfully identi-
fied by one method based on one set of assumptions but not on 
another based on a different set. 

A number of variations on the theme of randomisation may also 
be used in the evaluation process. For example, a data set may be 
randomly divided into two subsets and analyses carried out on each 
of these to see if they match each other. A more radical approach is 
randomly to permute the values of the variables across the different 
cases, thus destroying any structure of association or similarity 
which may exist, and to compare the results with those of the real 
data, either visually and intuitively, for example in terms of dendro-
gram structure, or perhaps using the measures for measuring over-
lapping membership of clusters discussed by Gordon (1981, 132-
6). Aldenderfer (1982, 66) uses a randomisation procedure to 
generate a distribution of Wilk's lambda with which to compare the 
observed one since the standard significance test is inappropriate. 
He randomly assigned his data items to clusters and calculated the 
resulting lambda value. The procedure was repeated ten times and 
a mean value obtained with which to compare the observed result. 

Finally, another approach to validation considers the extent to 
which the grouping of the individual items into clusters distorts the 
patterning of similarities or distances between the individual items ; 
it can also be used to compare the amount of distortion between 
different clustering methods. The c LUST AN suite of programs has 
two such measures: Jardine and Sibson's Δ (Jardine and Sibson 
1968) and the so-called cophenetic correlation coefficient. The 
second of these will be illustrated with an example to show what is 
involved ; the similarity matrix used in the single-link cluster ana-
lysis example presented above will be compared with the grouping 
of similarities resulting from that analysis. 

The original similarity matrix (table 12.6) is reproduced below 
for ease of reference (table 12.17) ; these similarities will be desig-
nated Sij. The next stage is to derive the patterning of similarities 
produced by the cluster analysis ; these similarities will be desig-
nated s*j. The s*j values between each pair of units may be read 
from the single-link dendrogram (reproduced as figure 12.9) by 
noting the coefficient value at which the units become linked. Thus, 
units 1 and 2 become linked at 0.8,4 and 5 at 0.7,3 to 4 and 5 at 0.6, 
1 and 2 to 3, 4 and 5 at 0.5. From these figures we can produce the 
new matrix s*j (table 12.18), and we can plot corresponding ele-
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Table 12.17. Matrix of similarities (jfy) between five 
ceramic vessels, on the basis of their decorative motifs. 

1 
2 
3 
4 
5 

1 

1.0 
0.8 
0.4 
0.0 
0.1 

2 

0.8 
1.0 
0.5 
0.1 
0.2 

3 

0.4 
0.5 
1.0 
0.6 
0.5 

4 

0.0 
0.1 
0.6 
1.0 
0.7 

5 

0.1 
0.2 
0.5 
0.7 
1.0 

0.6 H 

.~ °·7 1 

£ 0.8 4 

Figure 12.9. Dendrogram of results of single-link cluster 
analysis of the matrix of similarities between 5 ceramic 
vessels shown in table 12.17. 

merits of these two matrices against one another on a scattergram 
(figure 12.10). 

We can also obtain the correlation coefficient between the mat-
rices on the basis of their corresponding elements ; it is calculated in 
exactly the same way as a normal correlation coefficient and is 
known in this context as the cophenetic correlation coefficient. In 
this case its value is 0.44. As noted already, the technique can also 
be used to compare the s*j matrices resulting from different cluster-
ing methods. 

This example completes our treatment of the evaluation of the 
results of cluster analysis but it is important to be aware that 
decisions made before the choice of clustering technique, concern-
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Table 12.18. Matrix of similarities (s*y) between five 
ceramic vessels derived from the dendrogram linkages in 
figure 12.9. 

1 
2 
3 
4 
5 

1 

1.0 
0.8 
0.5 
0.5 
0.5 

2 

0.8 
1.0 
0.5 
0.5 
0.5 

3 

0.5 
0.5 
1.0 
0.6 
0.6 

4 

0.5 
0.5 
0.6 
1.0 
0.7 

5 

0.5 
0.5 
0.6 
0.7 
1.0 

Figure 12.10. Scattergram of s*j similarities against s,·,· 
similarities, based on the matrices in tables 12.18 and 
12.17 respectively. 

ing the variables used and the similarity or distance measure selec-
ted, will also have an effect on the results. In numerical classifica-
tion, perhaps even more than in other areas of the application of 
quantitative methods in archaeology, clear thought about aims, the 
nature of the data, the properties of the numerical description and 
its analysis, and the appropriate means of evaluating the results are 
essential. 
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EXERCISES 

12.1. Carry out a close-proximity analysis in an attempt to seriate 
the following matrix of similarity scores between ten Upper Palaeo-
lithic artefact assemblages. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1 

200 
142 
124 
135 
90 
78 
69 
73 
70 
52 

2 

142 
200 
122 
131 
92 
89 
79 
82 
81 
63 

3 

124 
122 
200 
117 
95 
87 
83 
85 
86 
69 

4 

135 
131 
117 
200 
98 
110 
92 
98 
75 
58 

5 

90 
92 
95 
98 
200 
94 
95 
95 
102 
77 

6 

78 
89 
87 
110 
94 
200 
134 
132 
122 
95 

7 

69 
79 
83 
92 
95 
134 
200 
119 
129 
125 

8 

73 
82 
85 
98 
95 
132 
119 
200 
125 
103 

9 

70 
81 
86 
75 
102 
122 
129 
125 
200 
146 

10 

52 
63 
69 
58 
77 
95 
125 
103 
146 
200 

12.2. Because of a lack of vertical stratigraphy an attempt is being 
made to understand the chronology of a site by seriating the pits 
present on the basis of their ceramic contents. Below is a matrix of 
similarities between 10 pits, based on the pottery in the pits. 
Attempt to seriate the pits using close-proximity analysis. Does the 
sedation seem to you a good one or is the sedation too complex to 
be arranged in a good linear sequence ? 

Pits 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1 

100 
36 
6 
69 
48 
50 
58 
83 
87 
38 

2 

36 
100 
74 
38 
48 
93 
42 
52 
62 
30 

3 

6 
74 
100 
38 
99 
22 
28 
15 
7 
75 

4 

69 
38 
38 
100 
36 
15 
19 
90 
73 
27 

5 

48 
48 
99 
36 
100 
57 
17 
86 
57 
62 

6 

50 
93 
22 
15 
57 
100 
93 
71 
61 
68 

7 

58 
42 
28 
19 
17 
93 
100 
32 
88 
65 

8 

83 
52 
15 
90 
86 
71 
32 
100 
92 
5 

9 

87 
62 
7 
73 
57 
61 
88 
92 
100 
95 

10 

38 
30 
75 
27 
62 
68 
65 
5 
95 
100 
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12.3. Carry out a close-proximity analysis of the following matrix of 
Robinson-Brainerd coefficients, representing the degree of simi-
larity between the ceramic assemblages from fifteen sites. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

1 

181 
179 
182 
162 
164 
154 
144 
148 
146 
143 
147 
150 
147 
132 

2 

181 
— 
181 
186 
156 
157 
147 
141 
146 
145 
149 
146 
148 
146 
127 

3 

179 
181 
— 
184 
153 
157 
155 
146 
151 
147 
150 
151 
153 
145 
130 

4 

182 
186 
184 
— 
153 
157 
150 
144 
149 
145 
148 
147 
152 
148 
130 

5 

162 
156 
153 
153 
— 
173 
151 
145 
143 
137 
133 
142 
134 
160 
135 

6 

164 
157 
157 
157 
173 
— 
159 
165 
160 
155 
147 
159 
152 
155 
132 

7 

154 
147 
155 
150 
151 
159 
— 
148 
149 
141 
137 
155 
140 
148 
144 

8 

144 
141 
146 
144 
145 
165 
148 
— 
181 
175 
167 
172 
168 
137 
121 

9 

148 
146 
151 
149 
143 
160 
149 
181 
— 
178 
173 
177 
177 
139 
121 

10 

146 
145 
147 
145 
137 
155 
141 
175 
178 
— 
185 
175 
176 
127 
123 

11 

143 
149 
150 
148 
133 
147 
137 
167 
173 
185 
— 
173 
179 
122 
118 

12 

147 
146 
151 
147 
142 
159 
155 
172 
177 
175 
173 
— 
177 
135 
132 

13 

150 
148 
153 
152 
134 
152 
140 
168 
177 
176 
179 
177 
— 
128 
120 

14 

147 
146 
145 
148 
160 
155 
148 
137 
139 
127 
122 
135 
128 
— 
128 

15 

132 
127 
130 
130 
135 
132 
144 
121 
121 
123 
118 
132 
120 
128 
— 
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12.4. On p. 236 is a series of measurements describing the shape of 
a number of Bevel Rim Bowls of the Uruk period in Mesopotamia. 
The diagram below shows what the different measurements refer to 
(information from Johnson 1973). Carry out a cluster analysis of 
these data to try and establish groupings within it. Remember that 
simply carrying out a single analysis and interpreting the results is 
insufficient. You should compare different methods and use valida-
tion techniques. Can you see any problems with this analysis? 

Key : 1 Base angle ; 2 Rim diameter (estimated to 0.5 cm) ; 
3 Interior rim diameter (to 0.5 cm); 4 Base diameter 
(to 0.5 cm) ; 5 Interior base diameter (to 0.5 cm) ; 6 Side 
height (measured to 0.1 cm); 7 Interior side height (to 
0.1 cm ) ; 8 Side thickness ; 9 Rim thickness ; 10 Rim angle. 
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Exercise 12.4 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

1 

58 
57 
55 
58 
62 
60 
53 
68 
48 
58 
47 
60 
55 
65 
63 
67 
44 
63 
52 
62 
41 
47 
50 
55 
49 
58 
62 
55 
53 
60 
52 
59 
61 
56 
60 
53 
49 
60 
59 
57 
55 

2 

160 
140 
175 
180 
195 
165 
180 
130 
150 
200 
210 
160 
180 
190 
190 
220 
170 
185 
160 
215 
175 
190 
185 
195 
195 
140 
170 
135 
170 
175 
140 
150 
140 
145 
175 
165 
165 
160 
170 
165 
170 

3 

150 
130 
155 
170 
180 
160 
170 
120 
140 
190 
200 
150 
170 
165 
170 
210 
150 
170 
150 
200 
160 
170 
160 
180 
180 
120 
160 
120 
160 
160 
120 
140 
130 
130 
160 
160 
150 
140 
160 
160 
160 

4 

80 
70 
70 
70 
80 
70 
80 
60 
70 
80 
85 
80 
80 
80 
75 
80 
80 
75 
60 
90 
65 
75 
70 
70 
70 
65 
65 
70 
70 
70 
70 
75 
70 
65 
75 
70 
80 
70 
70 
80 
80 

5 

70 
65 
70 
65 
70 
65 
65 
50 
60 
75 
75 
70 
80 
75 
70 
75 
70 
80 
55 
85 
60 
80 
65 
65 
65 
60 
60 
65 
65 
60 
65 
70 
60 
60 
65 
60 
75 
65 
60 
63 
65 

6 

73 
67 
71 
84 
86 
85 
85 
71 
70 
96 
79 
87 
88 
91 
89 
118 
58 
80 
75 
97 
70 
69 
94 
85 
77 
66 
90 
73 
78 
83 
73 
88 
92 
72 
93 
74 
75 
78 
91 
77 
70 

7 

65 
62 
61 
80 
72 
78 
75 
65 
55 
84 
74 
80 
83 
79 
85 
105 
44 
74 
69 
81 
62 
58 
80 
80 
69 
54 
70 
64 
64 
70 
62 
76 
85 
65 
78 
65 
62 
66 
77 
60 
66 

8 

108 
94 
107 
106 
108 
111 
120 
108 
133 
159 
114 
110 
109 
132 
137 
145 
103 
117 
109 
138 
110 
120 
126 
130 
124 
113 
94 
109 
123 
112 
116 
101 
116 
125 
111 
111 
129 
114 
138 
91 
140 

9 

145 
111 
110 
121 
135 
130 
123 
104 
129 
141 
135 
121 
118 
169 
129 
138 
123 
139 
126 
128 
137 
129 
143 
129 
102 
143 
131 
102 
124 
142 
126 
126 
103 
134 
160 
62 
147 
146 
119 
124 
121 

10 

128 
137 
137 
154 
150 
159 
148 
150 
165 
147 
163 
136 
160 
150 
155 
170 
154 
148 
148 
133 
151 
148 
152 
151 
148 
130 
137 
136 
135 
155 
145 
135 
152 
136 
130 
160 
154 
143 
146 
170 
149 
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12.5 Below is information about a number of hoards from period π 
of the Danish Bronze Age (information from Levy 1982). Carry 
out a cluster analysis of the hoards to find out whether there are any 
clear groupings of hoards of particular types. Use only the informa-
tion on the content of the hoards at this stage and give careful 
thought to the problem of coding the data for the cluster analysis. 

Again remember to use more than one clustering method, to-
gether with validation techniques, involving the use of stopping 
rules where appropriate. 

Look at the relationship between the clustering results and (i) 
the region where the hoards were found (Zealand, Funen, Jut-
land), (ii) the find circumstances, and (Hi) Levy's categorisation of 
the hoards as ritual or non-ritual. 

Zealand 
1. Two beltplates, two neckcollars, four spiral fingerrings, 33 tutuli 

[a type of small bronze ornament], 113 tubes for cord skirt. Found in 
a meadow in damp, peaty soil, during deep ploughing. Weight = 1986 
g. Ritual hoard. 

2. Two neckcollars, two armrings, three spiral armrings, 13 tutuli, 
one belt hook. Found in a bog. Estimated weight = 735 g. 

3. One weapon palstave, one spearpoint. Found in a bog. Estimated 
weight = 750 g. Ritual hoard. 

4. Two beltplates, two neckcollars, several armrings, one sickle. 
Found in a bog. Weight = 868 g. Ritual hoard. 

5. Two plain palstaves, one knife, one beltplate, one unique bronze 
plate (pre-deposition fragmentation). Found on a field. Weight = 
1211 g. Non-ritual hoard. 

6. One neckcollar, one spiral armring, two armrings, pin to a fibula. 
Found in a bog. Weight = 160 g. Ritual hoard. 

7. Three spearheads, one plain palstave, one sickle. Found in a 
field. Estimated weight = 955 g. Non-ritual hoard. 

8. Three beltplates, four large tutuli, 27 small tutuli, four spiral 
armrings, one neckcollar. Bone fragments and a stone maul are now 
missing. Found in a bog, circa .5 metre deep. Weight = 1530 g (par-
tially estimated due to fragmentation). Ritual hoard. 

9. Ninety-four palstaves (many unfinished), celts, sword hilt, knife 
blade, sixty spearheads, lump of raw metal (most objects now miss-
ing). Found in a blue clay layer in peat. Weight not estimated. 
Non-ritual hoard. 

10. Two neckcollars, spiral armring fragments. Found together in a 
field. Weight = 400 g (partially estimated due to post-deposition frag-
mentation). Ritual hoard. 

11. Three spearheads, fragments of sword blade, chisel, unidenti-
fiable tool with flat pointed blade and socket. Found in an irrigation 
ditch. Weight = 853 g. Non-ritual hoard ( ? ). 
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12. Two matching armrings. Found together. Weight = 51 g. Ritual 

hoard. 
13. One celt, two plain palstaves. Found in a field. Estimated 

weight = 900 g. Non-ritual hoard. 
14. Fragment of a sword hilt, fragment of an armring (probably N. 

German), six plain palstaves, fragments of palstaves, belthook, raw 
metal (pre-deposition fragmentation). Found in a field. Weight = 
4530 g. Non-ritual hoard. 

15. Two spearheads. Found in a bog. Weight = 227 g. Ritual hoard. 
16. Two swords with metal hilts. Found together in a field. Weight 

= 2446g. Ritual hoard. 
17. Two neckcollars, one beltplate, one armring, spiral armring 

fragments, one rounded tutulus, two sickles, one plain palstave, three 
awls. Found on a heath with the neckcollars encircling the smaller 
objects and the beltplate covering all of them. Weight = 1150 g (par-
tially estimated due to post-deposition fragmentation ). Ritual hoard. 

18. One beltplate, two spiral armrings, one knife. Found in a bog. 
Weight = 1189 g. Ritual hoard. 

19. One sword with metal hilt, one sword blade and related hilt 
button. Found in a bog (slight possibility not a closed find). Weight 
= 1169 g. Ritual hoard. 

20. Two plain palstaves. Found in a peat bog, 1.26 metres deep. 
Weight = 760 g. Ritual hoard. 

21. One spearpoint and one beltplate. Found in a bog at bottom of 
thin peat layer (slight doubt about association). Weight = 310 g. 
Ritual hoard. 

22. Three neckcollars, three beltplates, 21 tutuli, 7-8 spiral finger-
rings, 3 -4 spiral armbands, one sawblade, one sickle. Found in a field 
lying above a gravel layer. Weight = 1760 g (partially estimated due to 
post-deposition fragmentation). Ritual hoard. 

22a. A hollow-cast, model horse attached to a disc covered with 
gold on one side ; both are set on a model cart resting on six wheels. 
Found in a bog, apparently dismantled before deposition. Weight = 
4190 g (from literature ; an estimated 15 g of weight is of gold). Ritual 
hoard. 

23. One sword with metal hilt, two sword blades, one hilt button. 
Found next to an ancient watercourse, lying horizontal with points to 
southwest. Weight = 1457 g. Ritual hoard. 

24. Four spearpoints and six sickles (or sawblades). Found in a 
bog, 1.25 metres deep, far from dry land. Weight = 365 g. Ritual 
hoard. 

25. Two beltplates, one fishhook. Found together in a bog, 2 metres 
deep. Weight = 229 g. Ritual hoard. 

26. One sword with metal hilt, two plain palstaves, one spearpoint, 
one arm- or anklering. Found together in a bog. Weight = 1888 g. 
Ritual hoard. 

27. Three swords with metal hilts, three sword blades, two hilt 
buttons. Found together, horizontal, hilts to east, at bottom of an 
ochre layer just above a chalk layer ; this is evidence of the former 
presence of a spring. Weight = 4157 g. Ritual hoard. 
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28. Two neckcollars. Found in a bog. Weight = 322 g. Ritual hoard. 
29. Two beltplates, one neckcollar, two tutuli, two saw or sickle 

blades, one knife blade. Found in limey, water-bearing soil, two 
metres deep. Weight = 694 g. Ritual hoard. 

30. One weapon palstave, one large celt. Found in a wet field, 
during draining work, 1.25 metres deep. Ritual hoard. Weight = 1122 
g· 

31. Three belt plates, 17 tutuli, one celt, one sickle, at least four saw 
or sickle blades. Found at bottom of peat layer, on clay. Weight = 838 
g. Ritual hoard. 

32. Five plain palstaves. Found in a garden, edges to north. Weight 
= 2233 g. Non-ritual hoard. 

Funen 
33. Sixteen spearpoints, 15 sickles, two plain palstaves, two frag-

ments of sword blade, two knives, one metal rod. Found by machine 
digging in sandy subsoil of a field. Weight not estimated. Non-ritual 
hoard. 

34. Five spearpoints, eight saws or sickles, one weapon palstave, 
one knife, one chisel. Found in a bog. Estimated weight =1600 g. 
Ritual hoard ( ? ) . 

35. Two massive swords with metal hilts, one dagger blade. Found 
in a bog. Weight = 2398 g. Ritual hoard. 

36. Three beltplates, one armring, one spearpoint, two plain pal-
staves, one chisel, four saw or sickle blades. Found in a boggy 
meadow. Weight = 1575 g. Ritual hoard. 

37. Three beltplates, seven tutuli, one neckcollar. Found in a bog. 
Estimated weight = 759 g. Ritual hoard. 

38. Two twisted neckrings. Found in a ditch. Weight = 77 g. Ritual 
hoard. 

39. Three massive swords with metal hilts. Found in a depression by 
edge of a watercourse. Weight = 2818 g (weight of one sword esti-
mated). Ritual hoard. 

40. Three spearpoints, two saws or sickles. Found in a bog. Esti-
mated weight = 450 g. Ritual hoard. 

41. Seven spearpoints. Found at edge of bog. Weight = 1200 g 
(partially estimated due to post-deposition fragmentation). Ritual 
hoard. 

Jutland 
42. One plain palstave, two sickles. Found on a field. Weight = 513 

g (partially estimated, palstave missing). Non-ritual hoard. 
43. One neckcollar, four varying armrings. Found in a bog. Weight 

= 96 g. Ritual hoard. 
44. Two dagger blades, one beltplate, one celt (some fragmenta-

tion, apparently modern). Found in a field. Weight = 327 g. Ritual 
hoard ( ? ) . 

45. Seventeen tutuli, one pin, one awl, amber beads. Found in a 
bog. Weight = 148 g. Ritual hoard. 

46. Two plain palstaves, one socketed hammer. Found among 
stones. Weight not estimated. Non-ritual hoard. 
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47. Marstrup. Two plain palstaves, never used. Found in a field. 

Weight = 425 g. Non-ritual hoard. 
48. One neckcollar, one beltplate, six tutuli, tubes for cord skirt. 

Found in a bog. Estimated weight = 416 g. Ritual hoard. 
49. One beltplate, four tutuli. Found by a cliff. Weight = 200 g 

(partially estimated due to post-deposition fragmentation). Ritual 
hoard. 

50. Two spiral armrings. Found in a ditch. Weight = 129 g. Ritual 
hoard. 

51. One massive sword with metal hilt, massive shaft-hole axe. 
Found in a bog, one metre deep. Weight = 2735 g. Ritual hoard. 

52. One celt, seven sickles, fragment of sword blade (broken in 
antiquity). Found beside a big stone. Weight = 804 g. Non-ritual 
hoard. 

53. Two fragmented neckcollars and approximately two kilograms 
of un worked amber in numerous chunks. Found in a small natural 
mound. Metal weight = 88 g. Non-ritual hoard. 

54. Four unused plain palstaves. Found on a hill under a stone. 
Weight = 1403 g. Non-ritual hoard ( ?). 

55. Seven plain palstaves, one weapon palstave. Found in a bog. 
Weight = 2970 g. Ritual hoard. 

56. Five tutuli, five varied armrings, one twisted neckring, one awl. 
Found in a field. Estimated weight = 342 g. Ritual hoard. 

57. Two plain palstaves, one celt, one socketed chisel, hilt button to 
a sword. Found near the surface of a field near the remains of a firepit ; 
no clear evidence that the bronzes and firepit were associated. Weight 
= 1596 g. Non-ritual hoard ( ?). 

58. Massive celt, weapon palstave. Found under a big stone in 
marly soil. Estimated weight = 1000 g. Ritual hoard. 

59. Four plain palstaves, one celt, chisel, sickles, dagger blade, two 
neckcollars, two beltplates, 18 tutuli, spiral armrings, three spear-
points. Found at edge of a bog. Weight = 3331 g. Ritual hoard. 

60. Nineteen plain palstaves, two spearpoints, fragments of other 
spearpoints. Found close to the surface on a field. Weight = 7911 g 
(partially estimated). Non-ritual hoard. 

61. One beltplate, two spearpoints. Found in a bog. Estimated 
weight = 475 g (some objects now missing). Ritual hoard. 

62. One sword, one shafthole axe, six spearpoints, celt, palstave. 
Found at the side of a grave mound, the spearpoints thrust vertically 
into the ground. Weight = 3280 g. Ritual hoard. 

63. Four plain palstaves, two sickles. Found in a field. Weight = 
1677 g. Non-ritual hoard. 

12.6. Turn the hoard analysis around and instead of clustering the 
hoards themselves carry out a cluster analysis of the artefacts, 
coded in terms of the hoards they occur in. Are there any particu-
larly marked groupings of associated artefacts ? 



Thirteen 

Simplifying Complex Spaces : 
The Role of Multivariate Analysis 

The previous chapter introduced us to the idea of describing objects 
of interest to us in terms of a number of variables and then seeking 
patterning in the similarities or distances between the objects with 
respect to their values on the variables used to describe them. The 
approach taken was to use methods of cluster analysis to place 
similar objects together in the same group and we saw that different 
methods represented different ideas of how a group should be 
defined. At the same time it was noted that to some extent these 
methods tended to impose their own structure on the data and that 
this was a problem which could not be neglected. 

The methods to be described in this chapter follow a different line 
of approach, already referred to in passing in the previous chapter, 
known as ordination. They involve many of the concepts we have 
seen in our discussion of cluster analysis and also ideas from re-
gression analysis. 

In the context of simple bivariate regression we used scattergrams 
to see if any trends were present in the distribution of the observa-
tions, but we could also have used them to see which points were 
similar to one another and which were not by looking at the dis-
tances between them ; at the same time we could, if we had wished, 
have noted whether or not there was any indication that the obser-
vations fell into distinct groups. The axes of the scattergrams were 
formed by the variables. Our examination of multiple regression 
showed, among other things, that with any more than three vari-
ables, at most, representing our data by means of scattergrams in 
this way is simply impossible. If we want to do this we have to plot 
them two or at most three at a time. This is certainly worth doing 
for its own sake but obviously does not give us an overall picture : 
we cannot look visually for overall trends for multiple regression 
purposes, or at inter-point distances for classification or grouping 
purposes. 

The aim of ordination methods is to compress the information 
241 
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contained in a large number of variables into a much smaller num-
ber of new variables, ideally only two or three. We can then produce 
scattergrams of our data expressed in terms of these new variables 
which will allow visual appreciation of a large amount of informa-
tion. By examining these scattergrams we can see whether or not 
there are any groups or clusters in the data; the objects are not 
forced into a particular grouping pattern simply as a result of the 
adoption of a particular clustering technique. Furthermore, as we 
shall see, the process of obtaining the new variables to create the 
scattergrams itself produces interesting information, and in some 
cases forms the main object of the exercise. 

An archaeological example of the general ideas involved may be 
helpful at this juncture. Let us suppose that we are analysing the 
graves from a cemetery and in the course of this we have decided 
to calculate a matrix of similarities between the graves by some 
method such as those described in the last chapter, on the basis of 
some set of descriptive variables which we believe to be relevant to 
the question we are investigating. We now want to investigate the 
patterning in the matrix. Cluster analysis is likely to be relevant, but 
if the number of graves is large then any dendrogram resulting from 
it is likely to be rather confusing; furthermore, we still have the 
problem that the method may be imposing its own structure on that 
of the data. An ordination approach would be as follows. 

We can imagine trying to represent the graves under study as 
points in a space, such that the similarities between the graves are 
represented by the distances between the points. In order to repre-
sent the relationships accurately we would need a space of many 
dimensions. We can further imagine that within this space the 
points will not necessarily be equally scattered in all directions ; 
they may be distributed over a relatively short distance in some 
directions and a considerably longer one in others. It is possible to 
define the orientation of these different directions or axes and also 
the lengths over which the points are distributed along them. Once 
we have established the orientation of the longest axis and its length 
we can then define the axis which goes through the next longest part 
of the point scatter, subject to the proviso that it must be at right 
angles to the first, and we can obtain its length too. It is possible to 
go on doing this for as many independent dimensions of our space 
as exist. These axes often have a substantive interpretation in terms 
of the data from which they were derived. In the case of our graves, 
for example, it may be that the axis along which our graves are most 
widely scattered, i.e. in terms of which the variation in distances 
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between the graves in our space is greatest, is one relating to 
chronological differences between the graves, so that early graves 
(as suggested by independent evidence) are very much different 
from late ones (also independently attested). We can establish a set 
of coordinates for the points (here graves) in relation to these axes 
and use these new coordinates to produce scattergrams, which may 
be interpreted in terms of both the clustering of graves, which are 
closest to which, and also in terms of the nature of the axes, referred 
to above. Rather than relying on a visual assessment of the scatter-
grams a cluster analysis could if necessary be carried out using the 
coordinates of the objects on the new axes as input, rather than the 
original raw data. 

The application of procedures such as this to the analysis of 
cemeteries (e.g. Shennan 1983) and many other types of archaeo-
logical data has proved helpful in a large number of cases because it 
is a way of disentangling complex patterns of variation which are 
not otherwise easily assimilated. 

This example brings out the twin aspects of ordination. The 
concern with similarities or distances and patterning within them is 
common to cluster analysis. The idea of looking for trends in the 
variation is something we have already seen in regression. Never-
theless, there are some major differences between ordination and 
regression and it is worth drawing attention here to one in particu-
lar. In regression analysis the aim is to model and account for the 
variation in a dependent variable in terms of the effect of one or 
more independents. In the example of the graves above the original 
variables did not come into the analysis once the similarities had 
been calculated. However, as we shall see, in the case of those 
ordination methods which do analyse the original variables directly, 
we do not make any assumptions about which variables are depen-
dent or independent. We simply obtain a measure of correlation or 
covariation between each variable and every other and analyse the 
matrix which results. 

There has been a pronounced tendency within archaeology for 
the ordination methods to be preferred to multiple regression, for 
two reasons at least. First, many archaeological data are highly 
complex and it is by no means obvious in many cases which variables 
should be regarded as dependent and which as independent. This is 
the case, for example, when we are dealing with quantitative de-
scriptions of ceramic vessel or projectile-point shape. There may 
well be correlations between the different measurements and an 
understanding of them will be extremely helpful to grouping the 
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objects in question and vital to accounting for why they vary in the 
way they do. On the other hand, to treat one of the variables as the 
dependent does not correspond to the realities of the situation ; 
they are interrelated with one another. 

A second, and perhaps less creditable, reason why archaeologists 
have preferred ordination methods is precisely that it is possible to 
analyse the data and see what patterns emerge without much prior 
thought as to relevant models and hypotheses. Such an approach 
corresponds to the exploratory data analysis philosophy which has 
been emphasised throughout this book but it undoubtedly has its 
dangers (cf. Speth and Johnson 1976) ; it seems to reflect a deeply 
ingrained tendency among archaeologists to prefer to interpret 
patterns rather than develop and test hypotheses. 

MULTIVARIATE ANALYSIS 

So far we have only talked in very general terms about ordination 
and the process of simplifying complex spaces, without any attempt 
to make distinctions between different methods. It is now necessary 
to be a bit more specific and to give an indication of the different 
techniques involved and the way in which they will be covered in 
this chapter. For the most part they come within an area of statistics 
known as multivanate analysis. They differ from the techniques 
used in cluster analysis in that whereas the latter is in many respects 
a group of ad hoc heuristic techniques without a secure theoretical 
foundation, multivariate analysis has a secure basis in mathematics 
and statistical theory. As we have had occasion to remark already 
(chapter 11 ), the mathematics behind these methods is often com-
plex and for this reason they have been regarded as very deep and 
mysterious. While care, knowledge and expert advice are essential 
for their use, the aim of this chapter is to show that in essence they 
are readily comprehensible, certainly to the extent that it should be 
possible for anybody to understand and evaluate (properly) pub-
lished analyses. To achieve an understanding of them is important 
because they have been so widely used and because some major 
recent debates have revolved around particular examples of such 
analyses. 

In what follows there will be a detailed account of the method of 
principal components analysis, and to a lesser extent of the related 
method of factor analysis. Once these have been described and 
explained we will be in a position to present briefer and much more 
generalised accounts of principal coordinates analysis, non-metric 
multidimensional scaling and correspondence analysis. 
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Principal Components and Factor Analysis 
Factor analysis was developed in the field of psychology in the 1930s 
and its original aim was to extract fundamental measures of intellect 
from scores on intelligence tests. The belief was that any single test 
does not really provide an adequate measure of intelligence. The 
scores of individuals are related to their mental ability but are also 
affected by differences between them in terms of education, cultural 
background and the circumstances of the test. Psychologists be-
lieved that factor analysis was capable of extracting the common 
intelligence factor from the score of individuals on several tests 
even though no single test was capable of measuring intelligence 
directly. Nowadays principal components and factor analysis are 
used in a great variety of different disciplines involved in data 
analysis. 

The general idea is to pull out something in common from a 
number of different variables. If we can isolate such a common 
underlying dimension behind our initial variables we may be able to 
suggest that it means something in terms of our problem, as the 
psychologists did with the factor behind their intelligence test 
scores. Further, if there is a common factor underlying the variation 
in a whole set of variables, we can forget about the variation 
between the original variables and just look at what they have in 
common. If we then look at the scores of our cases on the small 
number of common factors underlying the original data values we 
can use these as the basis for our ordination in a small number of 
dimensions. In fact, all the methods not only allow us to pull out 
separate dimensions of variation, they also tell us how important 
they are. 

The above discussion mainly refers to factor analysis. The distinc-
tion between this and principal components analysis is explained 
below. The emphasis in what follows is on principal components 
analysis, as the more straightforward technique. 

An Introduction to Principal Components Analysis 
It has already been stated that the mathematics involved are too 
complex for this to be an appropriate place to present a mathemati-
cally rigorous account of principal components analysis (see, for 
example, Morrison 1967). In these circumstances the best way of 
presenting an intuitively comprehensible account is by means of 
pictures and geometry. That which follows relies heavily on the 
very lucid presentation of Johnston (1978), designed for a fairly 
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similar level of readership ; a very good alternative is presented by 
Davis (1973). 

In the case of principal components (and factor) analysis the 
starting point is the covariation between the variables. If a set of 
variables possesses some underlying common factor the implication 
is that their values are correlated with one another - they are closely 
related to one another. The common factor can be seen as in some 
sense the average of the group of variables ; the more closely related 
they are the stronger the common factor will be and the more 
meaningful on its own as a substitute for the original variables. 

To see how principal components arise we need to look again at 
how the covariation between variables is measured. We saw in 
chapter 9 that covariation in its technical sense was given by 
Σ(χ — χ)(γ — y) ; this can be divided by the sample size to give an 
average covariation or covariance. If the variables we are dealing 
with have been standardised, i.e. transformed to Z scores in which 
the values are expressed in numbers of standard deviation units 
from the mean (see chapter 8), then the value of the covariance 
between any two variables will also be automatically standardised 
and will correspond to the correlation coefficient between the two 
variables ; it follows from this transformation that the variances of 
the individual variables are also standardised, to a value of 1.0. In 
what follows we will assume that the relationships between vari-
ables are expressed as correlation coefficients (rather than co-
variances), although such a standardisation is not necessarily some-
thing which we would wish to adopt in a real analysis (this point is 
discussed further below, p. 262; see also Davis 1973, Everitt and 
Dunn 1983, 42 and 47). 

To develop a geometrical presentation of principal components 
then we first need a geometrical method of representing correla-
tions . If we imagine our variables as vectors of equal length emanat-
ing from a common origin then one way of representing their 
relations with one another is in terms of the angular distance be-
tween them. This is best illustrated visually (figure 13.1). Here we 
have four variables each represented as a line with a direction 
starting from a common origin. In terms of our pictorial representa-
tion and our convention for its interpretation χλ and x2 are closely 
interrelated, neither is very closely related to x3 although x2 is closer 
to it than χλ ; finally, x4 is more or less diametrically opposed to xx 

and x2 and very little related to x3. 
The reason that this is a very useful representation is that the 

sizes of the angles can be directly related to the values of the 
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Figure 13.1. Geometric representation of the 
correlations between four variables. 

X\,X2 

Figure 13.2. Geometric representation of 
two perfectly correlated variables. 

* 2 < -

180° 

- > Xi 

Figure 13.3. Geometric representation of two variables 
showing perfect inverse correlation between them. 

-> x\ 
Figure 13.4. Geometric representation of 
two uncorrelated variables. 

correlation coefficients, since these correspond to the cosines of the 
angles concerned. Thus, in our pictorial convention, when two 
variables are perfectly correlated the angle between them is zero : 
they are superimposed (figure 13.2). Obviously in such a case the 
value of the correlation coefficient is 1.0 ; similarly, the cosine of an 
angle of zero degrees is 1.0. 

Again, when two variables are diametrically opposed we repre-
sent the angle between them as 180° (figure 13.3). The value of the 
correlation coefficient here would be —1.0; the cosine of an angle 
of 180° i s - 1 . 

Unsurprisingly, an angle of 90° has a cosine of 0.0 (figure 13.4). 
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X2 Λ 

> X\ 

Figure 13.5. Two uncorrelated variables. 

* x2 

* 3 « " - > AC! 

Figure 13.6. A failed attempt to represent a third 
uncorrelated variable on a two-dimensional surface. 

In these circumstances the correlation between x1 and x2 is also 
zero, so we can represent two variables which are completely unre-
lated to one another by two vectors at right angles ; in statistical 
jargon the two variables are orthogonal. 

When dealing with two variables we can always represent the 
correlation between them in terms of angular distance correctly on 
a flat piece of paper, i.e. in two dimensions. Above, we also saw a 
diagram which represented the correlations between four variables 
in two dimensions but this is by no means always possible. Imagine 
a case in which the four variables were uncorrelated with one 
another; in other words, each has a correlation of zero with every 
other. We can draw the first two correctly (figure 13.5), but try 
putting in the third (figure 13.6): This is obviously incorrect; al-
though x3 has a correlation of zero and angle of 90° with x2, it is at 
180° to xx, with a perfect negative correlation of — 1.0. The only way 
to put in the third vector correctly is to have it coming up out of the 
paper, although a distorted representation can be given (figure 
13.7 ) : If we add in the fourth orthogonal variable even this becomes 
impossible; the relations between all the variables can only be 
represented correctly in a four-dimensional space. 

In general, the maximum number of dimensions required to 
represent the correlations between a specified number of variables 
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*3 t 

S ^ * X\ 

Xi 1/ 

Figure 13.7. Geometric representation of 
three uncorrelated variables. 

is given by the number of variables, but it may be less. In the 
extreme case that all of them were perfectly correlated with each 
other than only one dimension would be required. 

In principal components analysis we start with the matrix of 
correlation coefficients (or covariances) between our variables and 
the aim is to produce from these a new set of variables which are 
uncorrelated with one another. Precisely how this relates to our aim 
of defining underlying dimensions of variation in our data, and thus 
being able to present scattergrams of two dimensions which sum-
marise the information from ten variables, will probably only be 
fully clear when we examine an archaeological example in detail. 
Nevertheless, we can note here that if it is possible to represent the 
relations between ten variables correctly in two dimensions then we 
can replace the ten by two new ones at right angles which contain all 
the original information. 

The idea is not dissimilar from the kinds of statistical summary 
which we have already seen. We may have a large number of values 
of some variable, which together make up a normal distribution. 
Given its shape, once we know its mean and its standard deviation 
there is an enormous amount we can say about it just on the basis of 
the two summary numbers, without needing to worry about the 
original data values. 

In the present case, rather than obtaining a mean number we 
want to start by obtaining a mean variable. This will be a new, 
synthetic variable, in the same way that a mean rarely coincides 
exactly with any of the numbers in a distribution. It will also be the 
variable which is overall closest to all the original variables in the 
analysis, again a similar concept to that behind the mean of a 
distribution. In the present context we can define closeness in terms 
of angular distance. The variable which is overall closest to all the 
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original ones will be in such a position that the sum of the angles 
between it and each of them will be the smallest possible. 

^r— > *> 

\ *3 

x4 
Figure 13.8. Geometric representation of the 
correlations between four variables. 

Let's look at this by means of a simple example (figure 13.8). 
Here we have a diagram representing the relations between four 
variables whose correlations are represented by the angle between 
them. Obviously, the average variable summarising these four will 
be somewhere between x2 and x3. How good such averages are at 
representing the original variables is a relevant question which may 
strike you here. We'll see how this may be assessed later but for the 
moment the immediate question is how do we find out precisely 
where the average is. 

Table 13.1. Angles between variables 
shown in figure 13.8. 

X\ 

x? 
*i 

x4 

X\ 

0 
22 
61 
84 

xi 

22 
0 
40 
62 

*3 

61 
40 
0 
24 

x4 

84 
62 
24 
0 

The first thing to do is note the exact values of all the angles and 
then the corresponding correlations/cosines (tables 13.1-2). Hav-
ing done this we can obtain the total sum of correlations for each 
variable (table 13.2), remembering that the largest sum of correla-
tions corresponds to the smallest sum of angles. We can see that as 
expected x2 and x3 have the largest sum of correlations and are 
therefore closest to the average, but we still haven't obtained the 
position of the average itself. This requires several more steps. 

The total number of entries in this matrix is 16, the square of the 
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number of variables. If each correlation value were 1.0 then the 
total sum of correlations in the table would be 16.0. In the present 
case, of course, it isn't: the total sum of correlations is found by 
adding the separate sums for each variable : 2.517 + 3.162 + 3.165 + 
2.488=11.332. 

Table 13.2. Correlations between variables 
shown in figure 13.8. 

x\ x2 x3 x4 

1.000 0.927 0.485 0.105 
0.927 1.000 0.766 0.469 
0.485 0.766 1.000 0.914 
0.105 0.469 0.914 1.000 
2.517 3.162 3.165 2.488 

Going back to our hypothetical example for a moment, if the 
total sum of correlations in the table was 16.0 then the maximum 
possible for any single variable would be 4.0, the square root of 
16.0. Similarly here, the total sum of correlations is 11.332; the 
total sum possible for any single variable is V l 1.332, which is 
3.366. This is the variable with the largest possible overall correla-
tion with all the other variables, or the one which is overall closest 
to the other variables in terms of angular distance. In other words, 
it is the average variable we are looking for, otherwise known as the 
first principal component. What we still do not know though is 
where this component lies in relation to the other variables. 

Let us suppose that one of the original variables in this case 
coincided with the average variable or first principal component, 
i.e. the angle between them was zero degrees. It too would have a 
sum of correlations of 3.366 and its correlation /cosine with the 
component would be 1.0 ; that is to say it would be the ratio of the 
sum of correlations for the original variable to the sum of correla-
tions for the principal component; here 3.366/3.366=1.0, corre-
sponding to zero degrees. 

The same rationale applies, of course, whether or not any of the 
original variables coincides with the component : if we divide the 
sum of correlations for a variable by the sum of correlations for the 
component, the result is the correlation between the two, which can 
then be turned into an angle via the cosine. Let us carry out this 
operation for our example (table 13.3), and put the component on 
our original diagram of the relations between the variables (figure 

χ\ 
χ2 
χ3 
X4 

Sum 
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Table 13.3. Correlations and angles between the four 
original variables and the first principal component. 
Total sum of correlations (TS) = 11.332, VTS = 3.366. 

Sum 
Sum/Vis 
Angle 

x\ 

2.517 
0.748 
42° 

*2 

3.162 
0.939 
20° 

*3 

3.165 
0.940 
20° 

x4 

2.488 
0.739 
42° 

13.9). By finding this component we have obtained a single variable 
averaging the four original ones, whether or not for the moment we 
think it's a good summary or average and would be prepared to use 
it in some analysis instead of the original variables. 

x4 

Figure 13.9. Geometric representation of the 
correlations between four variables, with 
the first principal component added. 

The method works in exactly the same way in the case where 
there are strong negative correlations, as we may briefly illustrate 
with the following example, in which x1 and x2 are highly correlated 
with each other and both strongly negatively correlated with x3 

(figure 13.10). 

x3< < C ^ 

Figure 13.10. Geometric representation of the 
correlations between three variables. 

The actual angles are shown in table 13.4, and the correlations/ 
cosines in table 13.5. Putting in the component results in figure 
13.11. In this instance, then, x1 and x2 have strong positive correla-
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Table 13.4. Angles between variables 
shown in figure 13.10. 

*1 

x? 
*3 

X\ 

0 
34 
164 

*2 

34 
0 

162 

*3 

164 
162 
0 

Table 13.5. Correlations between 
variables shown in figure 13.10. 
TS = 0.884, VTS = 0.913. 

* 1 * 2 x3 

xx 1.000 0.829 -0.961 
x2 0.829 1.000 -0.951 
x3 -0.961 -0.951 1.000 
Sum 0.868 0.878 -0.912 
Sum/Vis 0.950 0.962 -0.999 
Angle 18° 16° 177° 

Figure 13.11. Geometrie representation of the 
correlations between three variables, with the 
first principal component added. 

tions with the principal component and x3 a strong negative one. 
These examples should have given you a feel for what a principal 

component is since they show one way in which they may be 
derived. It may be worth adding that this is not how they are 
actually calculated by the computer programs which carry out prin-
cipal components analyses; nevertheless, these arrive at the same 
end by a different means. 

At this point I want to look again at the results of the first 
example to see what more may be said now that the first component 
has been located. As we saw, the angle between the component and 
the original variables was obtained by dividing the sum of correla-
tions for a given variable by the square root of the total sum of 
correlations, to give a value for the correlation of the variable with 

253 
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the component, corresponding to the cosine of the angle between 
them. 

It is these correlations with the variables which actually define 
the component ; they are known as the component loadings and 
they have exactly the same interpretation as ordinary correlation 
coefficients. In particular, we can use them now to get an answer to 
the question of how representative our new average variable is of 
those already present, for the squared values of the correlations 
between the variables and the component (of the component load-
ings in other words) correspond precisely to the r2 coefficient of 
determination values which we have seen in our discussion of re-
gression. That is to say, by squaring the component loading of a 
variable we can find out the percentage of the variation in that 
variable that is accounted for by the new component (but see the 
footnote for eigenvalue below). The figures for our example are 
presented in table 13.6. In this case it appears that the new compo-
nent accounts for 56 % of the variation in variable χλ, 88.2 % of the 
variation in x2, and so on. If we sum all these values we have the sum 
total of all the variation accounted for by the component. For 
reasons arising from the matrix algebra derivation of the quantity 
this sum total is usually known as the eigenvalue (or latent root) of 
the matrix, the matrix in question being the original matrix of 
correlations/cosines describing the relations between our four vari-
ables.* The formula for the eigenvalue is 

where λ, is the eigenvalue for component /, L^ is the loading of 
variable / on component /, and the summation is over all variables 
from 1 to n. In this case we have 

λ, = 0.56 + 0.882 + 0.884 4- 0.546 = 2.872 

As it stands it is difficult to attribute much meaning to this 
quantity of the sum of the squared loadings. It is more helpful from 
the point of view of interpretation of a component to relate its 
eigenvalue to the total variation in the variables. Because we are 

* Some computer programs normalise the component loadings so that 
their squared values sum to 1.0 rather than to the eigenvalue ; in these 
circumstances the squared loadings do not correspond to r2 values or 
the loadings themselves to correlation coefficients. To produce this cor-
respondence the normalised loadings should be squared and then mul-
tiplied by the eigenvalue for the component. This gives the corrected 
squared loading corresponding to an r2 value ; the square root of this 
in turn gives a loading corresponding to a correlation coefficient. 
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Table 13.6. Correlations and squared correlations 
of four variables with the first principal component, 
from the data in table 13.3 and figure 13.9. 

Component Squared 
Variable loading loading (r2) 

xx 0.748 0.560 
x2 0.939 0.882 
x3 0.940 0.884 
x4 0.739 0.546 

dealing with a matrix of correlation coefficients in which the vari-
ance in each variable has been standardised to 1.0, the sum total of 
the variation in the data is given by the number of variables in the 
analysis. To find the percentage of the variation in all the variables 
taken together accounted for by the component, we divide the 
eigenvalue for the component by the number of variables and 
multiply by 100 : 

percentage accounted for = — x 100 
n 

Here 
2 872 

percentage accounted for = -1-— x 100 = 71.8 % 

We can see that our new variable or principal component accounts 
for 71.8% of the variation in the original four variables. Toreiterate 
the point, the idea here is exactly analogous to that we have already 
seen in regression analysis. In multiple regression we were using a 
number of independent variables to account for variation in a 
dependent ; here we are using a new variable we have defined to 
account for variation in the set of variables with which we started. 
In terms of our aim of trying to reduce the complexity in our data 
by reducing the number of variables with which we have to deal, we 
are already doing quite well in this case ; we have replaced just over 
70% of the variation in four variables by a single new one. In the 
case of two of our original variables the component accounts for 
88 % of the variation, for the other two, χλ and x4, it is not so high, 
at around 55 %. 

The next question is whether we cannot account for at least some 
of the balance, both in the individual variables and overall, by 
obtaining a second component. To relate what is involved to the 
topic of regression again, we can say that the variation unaccounted 
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for by the first component is the residual variation from it - the 
variation which has zero correlation with it. Accordingly, the best 
way of accounting for this variation will be in terms of a component 
which is uncorrelated with the first, that is to say at right angles, or 
orthogonal, to it. 

Table 13.7. Correlations and angles between the four 
variables represented in figure 13.8 and tables 13.1-2, 
with the second principal component derived from them. 

Variable 

x\ 
*2 

*3 
X4 

Loading on 
second component 

-0.661 
-0.336 

0.335 
0.676 

Angle between 
variables and 

second component 

131° 
110° 
70° 
47° 

The loadings of the four variables on the second component, 
together with their conversion into angles, are shown in table 13.7. 
If we now draw in the second component on our original diagram of 
the relations among our four variables and between them and the 
first component, we can see that the second one is indeed at right 
angles to the first (figure 13.12). 

^ 9 XX 

Λ 
/ 

/ 
/ 

/ 
/ 

/ 
PC II 

Figure 13.12. Geometric representation of the 
correlations between four variables, with the first 
two principal components added. 

We can also go on, as with the first component, to calculate the 
amount of variation in each of the individual variables, and the sum 
overall, accounted for by the second component, by simply squar-
ing the component loadings. Likewise, these squared loadings can 
be summed to give the eigenvalue for the second component. The 
results of this operation are presented in table 13.8, together with 

> *2 

^ PC I 
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the results for component 1 already given, for reasons which will 
become clear in a moment. 

Table 13.8. Squared correlations of four variables with 
principal components 1 and 2, from figure 13.12. 

Squared loading Squared loading 
Variable on component 2 on component 1 

JC, 0.437 0.560 
x2 0.113 0.882 
x3 0.112 0.884 
x4 0.457 0.546 

Sum 1.118 2.872 

From this we can see that component 2 accounts for 43.7 % of the 
variation in variable xl9 11.3% in x2, and so on. Overall the eigen-
value of the component is 1.118; to find the percentage of the 
variation in all the variables taken together accounted for by the 
second component we carry out the same calculation as for the first : 

percentage accounted for 

Here 

percentage accounted for 

At this point we can start looking at the results for the two 
components together. The first component accounted for 71.8 % of 
the variation ; the two together account for 99,8 %, or 100 % within 
the limits of rounding error. Similarly, if we look directly at the 
eigenvalues we see that they sum to 3.99, while the sum total of 
variation in the correlation matrix from which the components 
were derived was 4.0, the number of variables. Likewise, if we look 
at the results for the individual variables and sum the squared 
loadings for each, they all come to more or less 1.0, or 100 %, again 
within the limits of rounding error. 

In other words, our two new components have accounted for 
100% of the variation in the original four variables. This tells us 
that we can describe the variation in four variables in terms of two 
new ones without losing any of the information originally present. 
This is satisfactory in itself since it means that our data are immedi-
ately simplified and we are therefore more likely to be successful 
in detecting and understanding patterning within them. In visual 

= ^ x l 0 0 
n 

1.118 
X 100 = 28.0% 
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terms, instead of looking at a series of scattergrams of the relation-
ships between our four variables two at a time, we can simply look 
at one scattergram in two dimensions. In fact, we can note in this 
case that if we had not been able to account for all the variation with 
two components then it would have been impossible to represent 
the relationships between the original four variables correctly on a 
flat piece of paper. Conversely, if we could draw a diagram of the 
correct relations between 100 variables on a sheet of paper, we 
would know in advance that they could be reduced to two compo-
nents. 

Nevertheless, as we've noted already, our new variables may not 
only give us a simplification, useful in itself, they may also define 
underlying dimensions of variation, substantively interesting to us, 
affecting the values of the variables we have measured. In order to 
see how this might work we first need to switch our perspective. 

So far we have only looked at components in connection with a 
series of abstract variables arbitrarily defined to have certain re-
lationships. When dealing with real data we start off with cases 
which have values on a set of variables and it is in terms of the^e 
values and their relationships that we arrive at the correlations 
between the variables. Presumably then, if we can replace a set of 
correlated variables with new uncorrelated ones then we can re-
place the values of our cases on the original variables with their 
values on the new ones and it is these new values with which we 
construct our now simplified scattergrams ; these new values are 
known as component scores. As usual, how they are obtained is best 
illustrated graphically with a two-variable example. 

Figure 13.13. Scattergram of data points 
with values on two variables, χλ and x2-

When the observations on two variables are correlated, the scat-
tergram will appear as in figure 13.13, with the centre of gravity of 
the distribution at the intersection of the two means. Where are the 
axes of the space defining this scatter of points ? They are the axes 
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of the ellipse enclosing the scatter of points and the angle between 
them is given by the correlation between the two variables con-
cerned ; the origin is at the intersection of the two means. What is 
involved is shown in figure 13.14. 

Figure 13.14. Axes of the ellipse defining the scatter of 
data points in figure 13.13. The angle between the axes 
corresponds to the correlation between the variables. 

When we find the principal components we are defining different 
axes for this scatter. The first principal component corresponds to 
the long axis of the ellipse and the second component to the short 
axis, at right sngles to the first. The lengths of the new axes or 
components correspond to their eigenvalues. The result is shown in 
figure 13.15. 

Figure 13.15. The principal components of 
the scatter of data points on figure 13.13. 

When we are simply moving from one pair of dimensions to 
another pair, as in this example, we are not perhaps doing a great 
deal, but as we've seen already it is the possibilities of space reduc-
tion which are particularly attractive. 

You may wonder what all this has to do with the topic of compo-
nent scores, for we seem to have done little more than repeat our 
derivation of principal components from a slightly different point of 
view. The component scores come in when we focus on what 
happens to a particular point when the axes are transformed in the 
way we have seen: How do we get from its values on the two 
original variables to its values on the new components ? Again the 
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Figure 13.16. The relationship between the value of a 
data point on the original variables χλ and x2, and its 
score on the components PC i and PC n. 

matter is best illustrated by a diagram (figure 13.16). 
The position of point P is initially defined by its value on variables 

χλ and x2 ; the dashed lines projected down from the point to meet 
these two axes at right angles show the values of point P on these 
two variables. When we find the principal components we don't 
actually do anything to point P - it stays where it is - but we now 
have a new coordinate system in terms of which to describe its 
position. Its position in terms of the new axes is given by the solid 
lines projected from point P to meet the component axes at right 
angles. The point's position on each of these new axes is known as 
its component score for that axis, and just as we plotted scatter-
grams of our data points in terms of their values on the original 
variables so we can plot scattergrams of our data points in terms of 
their component scores ; we will see below ways in which this can be 
helpful to us. 

Component scores are obtained from the formula 

where Sik is the score of observation i on component k, xtJ is the 
standardised value for observation i on variable j , Ljk is the loading 
of variable j on component k, and n is the number of variables. In 
words, we start by taking the standard score for observation i on 
variable j ; we noted at the beginning of our account of principal 
components that we would be describing it in terms of a matrix of 
correlation coefficients, which therefore implied that we were deal-
ing with standardised values for our variables. We then multiply 
this standardised value by the loading ofthat variable on the compo-
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nent of interest, i.e. by the correlation of the variable with the 
component, which in turn gives us the angle between the variable 
and the component. It is obviously necessary to know this angle if 
we are to change from one set of coordinates to another. In fact, of 
course, we need to know the relationship between every variable 
used in the analysis and the component currently of interest to 
make the transformation of coordinates successfully. We have to 
note each loading and the value of our data point on each variable, 
multiply them together and then sum all the results, for as many 
variables as we have. 

At the end of the process of calculating component scores -
which does not have to be done by hand but is available in standard 
principal components analysis computer programs - we have a 
table of the scores of our individual cases on each of the compo-
nents, in the same way as initially we had a table of their scores on 
the variables we'd measured. 

Summary of Principal Components Analysis. In summary, PCA is 
extremely versatile and does a number of very useful things all at 
the same time (Doran and Hodson 1975,196) : 

1. It gives a helpful indication of the relationships between vari-
ables. 

2. It also provides information about the relationships between 
units. 

3. It suggests whether there are any major trends behind the raw 
data, and which variables are mainly involved in the trends. 

4. It provides a transformation of the data in which in general a 
very large percentage of the variation in a large number of variables 
is compressed into a smaller number of variables. 

5. The transformation effected is such that the new variables are 
uncorrelated with one another. 

It is this last property which, as we have seen, makes principal 
components so suitable as a method for overcoming the problem of 
collinearity in multiple regression. It is possible to use as input data 
for the regression not the scores of the individuals on the original 
variables but their component scores. Use of the components as 
independent variables removes the possibility of bias or ambiguity 
in the regression coefficients. The only problem about this is that 
the components are not always easy to interpret so that it may not 
be altogether clear what is going on in the regression. 

Finally, it is appropriate to say something about the assumptions 
involved in PCA. PCA itself is simply a mathematical method for 
extracting the principal axes from matrices and may be applied to 
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any symmetric matrix of coefficients defining relations between 
variables. It is usually applied to matrices of correlation coefficients 
and it is therefore important to be satisfied that the linear correla-
tion coefficient, r, does provide a satisfactory picture of the relations 
between the variables. This point may be investigated by examining 
the bivariate scattergrams of relations between pairs of variables. 
Alternatively, if the individual variable distributions are normal 
it is likely that use of the correlation coefficient will be satisfactory. 

If the matrix analysed is not a correlation matrix it is generally a 
matrix of variances and covariances. The correlation coefficient, of 
course, as we saw above, is the covariance between two variables 
which have been transformed into standardised (Z score) form. 
Consequently, the comments relevant to correlation coefficients 
also apply to covariances. 

In fact, probably the majority of statisticians are extremely cau-
tious about using the correlation matrix rather than the covariance 
matrix for principal components analysis, on the grounds that it 
tends to destroy the validity of available statistical distributional 
theory ; it can make the results difficult to interpret ; and it allows 
the dubious possibility of combining different types of measure-
ments (Fieller, pers. comm. ). 

As noted already then, the decision to analyse the covariance or 
the correlation matrix should not be made without thought in the 
case of principal components analysis. In addition to what has just 
been said, you should note that analysis of the two different mat-
rices may give very different results - unsurprising if you think what 
is involved in variable standardisation. 

A further point to be borne in mind is that since principal compo-
nents analysis is designed to extract axes from matrices, it will do 
this regardless of any substantive meaning they may or may not 
have. In any matrix of correlations between even a moderate num-
ber of variables there will be a large number of values. Some of 
these will be quite large and statistically significant purely by 
chance, even if the raw data are simply a set of computer-generated 
random numbers. On the basis of these chance large values appar-
ently significant components may result from a PCA, which may 
even be apparently interprétable in substantive terms to the archae-
ologist eagerly searching for patterns. This problem is discussed in 
an archaeological context by Vierra and Carlson (1981), who sug-
gest testing the correlation matrix prior to PCA to see if there is a 
significantly large number of significant correlations. By this means 
illusory results may be avoided. 
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10 
Figure 13.17. The measurements used to describe the 
shape of a number of late neolithic ceramic vessels from 
Central Europe. 

An Archaeological Example. At this point we are badly in need of 
an archaeological example to bring together all the strands of our 
methodological account in a concrete substantively comprehensible 
fashion. The analysis to be described is concerned with the problem 
of understanding variation in the shape of 65 ceramic vessels dating 
to the end of the neolithic period in Central Europe. The shapes of 
the vessels are described in terms of twelve measurements, shown 
in figure 13.17.* Ten measurements were taken at intervals from 
the top to the bottom of the vessel ( cf. Shennan and Wilcock 1975 ) ; 
the measurements were taken from, and at right angles to, the 
centre line of the vessel drawing to the nearest point on the exterior 
surface of the vessel. Two further measurements were also taken: 
the height of the belly of the pot and the height of the bottom of the 
neck. In order that vessel size, as measured by overall vessel height, 
should not be a major factor behind the variation, all the measure-
ments were standardised by division by overall vessel height. The 
correlations between the resulting ratios were then obtained and a 
principal components analysis was carried out on the matrix of 
correlation coefficients of each variable with every other variable. 
The eigenvalues and the variance accounted for by the components 

* More sophisticated methods of vessel shape description are now 
available ; see, for example, the use of contour codes by Kampffmeyer 
and Teegen (1986). 
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Table 13.9. Eigenvalues and variance accounted for 
by 12 principal components resulting from the analysis 
of a group of vessels described in terms of shape. 

Percentage Cumulative 
Component Eigenvalue 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

7.30 
2.05 
1.41 
0.58 
0.45 
0.08 
0.06 
0.04 
0.02 
0.01 
0.01 
0.00 

variance 

60.87 
17.07 
11.77 
4.85 
3.74 
0.64 
0.48 
0.30 
0.16 
0.09 
0.06 
0.05 

variance 

60.87 
77.93 
89.69 
94.54 
98.27 
98.91 
99.38 
99.68 
99.82 
99.90 
99.96 

100.00 

are shown in table 13.9. 
As you can see, we started with twelve variables and there are 

twelve components, but the majority of them only account for 
minute proportions of the variance. The question obviously arises 
here, as in many other cases, how many of the components should 
be taken seriously. There is no fixed rule for this but the guideline 
most often adopted is to take seriously only those components with 
an eigenvalue of 1.0 or more. The reasoning behind this is that 1.0 
represents the variance of a single variable in the correlation matrix 
so that if a component has an eigenvalue of less than this it actually 
accounts for less of the variation in the data than any one of the 
original variables (Johnston 1978, 146). An alternative is to plot 
the eigenvalues as the vertical axis against the components as the 
horizontal axis and to look for a kink in the curve of declining 
eigenvalues. 

If we adopt the first approach in this case we see that we only have 
to deal with three components, all together accounting for 90% of 
the variation in the data. Thus, in terms of one of the main aims of 
principal components analysis, data reduction and simplification, 
we have achieved a reduction from twelve variables to three new 
ones while still retaining the vast majority of the original informa-
tion. Of these three, of course, the first is by far the most important. 

It appears then that there are some major trends behind the 
initially confusing variation in the raw data, and the next step is to 
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see which variables are involved in these trends. To do this we need 
to look at the loadings of the variables on the components, and also 
at their squared values, to see the percentage of the variation in the 
variables accounted for by the components. These are shown in 
table 13.10. 

Table 13.10. Loadings and squared loadings of 12 
variables defining vessel shape on the first three principal 
components arising from a principal components analysis 
of the matrix of correlations between the 12 shape-
defining variables. 

Component i Component 11 Component 111 
Squared Squared Squared 

Variable loading loading loading loading loading loading 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

0.730 
0.811 
0.897 
0.924 
0.911 
0.919 
0.929 
0.894 
0.794 
0.576 
0.349 
0.184 

0.532 
0.657 
0.805 
0.854 
0.829 
0.844 
0.864 
0.800 
0.631 
0.331 
0.121 
0.034 

-0.460 
-0.395 
-0.235 

0.229 
0.384 
0.322 
0.132 

-0.064 
-0.241 
-0.435 

0.727 
0.726 

0.211 
0.156 
0.055 
0.052 
0.147 
0.104 
0.017 
0.004 
0.058 
0.189 
0.529 
0.527 

-0.437 
-0.393 
-0.331 
-0.216 
-0.014 

0.076 
0.223 
0.384 
0.521 
0.215 

-0.454 
0.297 

0.191 
0.154 
0.110 
0.048 
0.0002 
0.006 
0.050 
0.147 
0.272 
0.046 
0.206 
0.085 

If we look first at component i we can see that the vast majority 
of the variables have high positive correlations with it ; it accounts 
for more than 50 % of the variance for variables 1 to 9. Component 
i defines a pattern of variation common to all these. On the basis of 
the series of high correlations we can say that when a case has high 
values on one of these it will have high values on the others, and 
when it has low values on one it will have low values on the others. 
This pattern is condensed to a single trend defined by component i 
and, as we have seen, accounting for 60% of the variance in the 
data. Precisely what that trend is will become clearer when we 
examine the score of our individual cases on component i, because 
that is where the abstractions of the analysis can be directly related 
to the raw archaeological data. For the moment, however, we will 
continue with our examination of the component loadings. 

A glance at these for component n shows immediately that in 
general this is much less important than the first - it accounts for 
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only very small proportions of the variation in most of the variables. 
The exceptions are variables 11 and 12 and it is clear that it is with 
these that component n is associated, accounting for more than 
50% of the variance in each case. It appears that these two have a 
common pattern of variation defined by this component: when 
height of belly is high then so is height of neck ; when one is low the 
other is low. 

Component in, of course, is even less significant, in no case 
accounting for more than just over 25% of the variation in a 
variable. If we look at the loadings we see that variables 1 and 2 
have moderate negative correlations with the component, as does 
variable 11 ; variable 9, on the other hand, has a moderate positive 
correlation. This would seem to suggest that in terms of this compo-
nent high values on 9 tend to be associated with low values on 1, 2 
and 11, but what this actually means in terms of vessel shape is not 
clear. In order to make more progress we need to look at the 
component scores. 

Table 13.11. Scores of 22 vessels on the first three principal 
components derived from a matrix of correlations 
between 12 variables describing vessel shape. 

Case 
no. 

1 
4 
4 

10 
13 
16 
19 
22 
25 
28 
31 

Component scores 
I 

2.426 
-2.546 
-0.362 

0.871 
3.296 

-1.517 
-4.392 
-2.891 
-3.672 
-3.886 
-1.544 

II 

-1.403 
0.586 
0.184 

-0.282 
-0.573 
-0.051 
-0.061 

0.496 
-1.238 
-0.627 

4.143 

III 

-1.550 
-0.460 

0.926 
2.436 
0.676 

-1.001 
-0.351 
-0.257 
-3.329 

0.401 
-0.350 

Case 
no. 

34 
37 
40 
43 
46 
49 
52 
55 
58 
61 
64 

Component scores 
I 

-1.801 
4.555 

-2.593 
-1.657 

1.505 
0.819 

-1.759 
-0.544 
-3.352 

3.771 
4.185 

II 

3.318 
2.965 
1.214 
0.500 
1.878 
0.338 

-2.298 
-0.786 

0.131 
0.292 

-2.577 

III 

-0.501 
-1.075 
-0.974 

1.281 
2.178 
0.468 

-0.696 
-0.426 

0.445 
0.557 

-2.139 

In table 13.11 the scores of the cases on the first three principal 
components are listed ; only every third case out of the 65 is included 
as the information is merely required for illustrative purposes. 
These scores provide us with a means of obtaining a direct insight 
into the archaeological meaning of the components. If we note 
which cases have the highest negative values on the component and 
which have the highest positive values we can refer to our measure-
ments or drawings of the individual vessels and see what it is that 
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the vessels at each end have in common and what differentiates 
those at one end from those at the other. The component will then 
represent a trend from one to the other of these extreme types. 

If we look at component i we see that cases 19,25,28 and 58 have 
large negative values and 13, 37, 61 and 64 have large positive 
values. For component n cases 1, 25, 52 and 64 have large negative 
values, 31, 34 and 37 have high positive ones. Finally, for compo-
nent in cases 1, 25 and 64 are at the negative end and 10, 43 and 46 
at the opposite end. 

The raw data values for all the cases whose component scores are 
given - measurements expressed as percentages of vessel height -
are presented in table 13.12. If we look at the cases which have high 
negative values on component i we see that they all have generally 
low values on the first nine variables, while those cases at the 
opposite end have high values for these variables. Remembering 
that all these values are width measurements in relation to height 
we can see that all those with low values are slim vessels, all those 
with high values fat or squat ones. In other words, component i 
represents a trend from slim to squat in vessel shape, a trend 
summarising the majority of the covariation between these width 
measurements; obviously, in general if one of them tends to be 
either large or small then the others will tend to follow suit, hence 
the values of the loadings which we have already seen. Referring 
back to the loadings, the only width measurement which does not 
fit this pattern so strongly is the base. 

We can now turn to component n. As we'd expect from the 
loadings, the distinctions here concern the height of the belly and 
neck (variables 11 and 12). For those vessels at one end the belly 
and neck are relatively low in relation to the overall height, for 
those at the other end they are relatively high. Component n 
represents a trend from one to the other. By definition this trend in 
variation is independent of that defined by the first component. 

For component in the pattern is more complex and difficult to 
discern, unsurprising in view of the generally weak loadings and the 
relatively complex pattern they indicate, with variables 1, 2 and 11 
showing weak to moderate negative correlations with the compo-
nent and variable 9 a moderate positive one. 

Examination of the values of these variables for the cases at 
either end of component in shows that those at the negative end 
have relatively wide rim and next-to-rim measurements while those 
at the positive end have relatively narrow ones ; it also reveals a 
contrast between the two ends in the relation between variables 9 
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Table 13.12. Raw data values for the 22 vessels 
whose component scores are given in table 13.11. 

and 11. At the negative end next-to-base width (9) and height of 
belly ( 11 ) are relatively similar, but at the positive end next-to-base 
width tends to be large and height of belly to be small. 

Examination of the component scores then is important for un-
derstanding precisely what the principal components analysis is 
telling us about our data. It is, as we have seen, where the abstract 
analysis and the archaeological evidence confront each other di-
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rectly. Component scores are much more immediate in this respect 
than component loadings. But the identification of the individual 
cases in relation to the components is important in another respect. 
In this example we have simply defined the archaeological meaning 
of the components in terms of variation in vessel shape. It might 
easily be, however, that these trends in shape relate for example to 
change through time, so that the vessels at one end of a component 
are early and those at the other end are late. By being able to 
consider the individual vessels, or whatever our cases might be, we 
have access to information which may exist about other aspects of 
their archaeological context : are they associated, for example, with 
other items for whose dating we have independent evidence. If we 
simply look at the overall correlations or loadings this information 
is not available to us. 

So far, however, we have only looked at the scores of the cases 
on each individual component taken separately. This is obviously 
essential if we're trying to define what the components mean in 
archaeological terms. Nevertheless, the possibility clearly arises of 
producing scattergrams of the scores of the cases on two compo-
nents together. In the example of our vessels a scattergram just 
using the first two components includes 78 % of the variation in the 
data, while if we use different symbols for the cases according to 
their scores on component ni a further 12% is included, bringing 
the total to 90 %. The possibilities of visual assessment of patterns 
in these circumstances, as compared with dealing with the original 
twelve variables are certainly far greater. 

But what patterns are we likely to be looking for ? First, it may be 
that such patterns as chronological trends in the variation in our 
data will not be apparent in terms of a single dimension but will 
become clear when we are dealing with two. Second, as was noted 
already in the previous chapter, such scattergrams can provide a 
supplement or alternative to cluster analysis. They provide an ordi-
nation of the data in very few dimensions containing a large amount 
of information. We can tell, for example, whether genuine clusters 
of data items exist, or whether clusters would represent a relatively 
arbitrary division of a continuum ; or which points are outliers and 
do not really belong with any others. Again, as with the results of 
the cluster analysis of data items, we can see, for example, whether 
all the cases in a particular part of the scattergram come from a 
particular site. 

A scattergram of the cases whose component scores were listed 
above is shown in figure 13.18. It is based on the first two compo-
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Figure 13.18. Scattergram of ceramic vessel scores on the 
first two principal components. Data from table 13.11. 

nents. It is clear from this that while there are marked trends in the 
data and some of the vessels are distinctly unusual, lying well to the 
fringes of the main distribution, there is little evidence for any 
discrete clustering. This is not to say that we might not want to 
break up the continuum for some purpose, but if we are going to do 
that we should be aware that we are breaking up a continuum and 
not picking out clearly defined discrete clusters. 

This consideration of component scores completes our illustration 
of principal components analysis. It should be clear that so long as 
it is used on data for which it is appropriate it can provide a great 
deal of archaeologically relevant information about a given data set 
which would not necessarily be accessible or apparent to an intuitive 
approach to the same data, especially if the number of cases was 
large. The eye and the brain are excellent for providing an overall 
feel for what is going on in a particular set of aretfacts (if it is 
artefacts that are being studied), in terms of morphological vari-
ation between them. Separating out that overall variation into 
different aspects, analysing it, is better done by appropriate 
methods and can provide new insights ; after the analysis process 
visual assessment can again play an important role. 
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Factor Analysis 
Now that we have outlined principal components analysis it is 
necessary to consider factor analysis, since it has been very widely 
used in archaeology and understanding a not inconsiderable num-
ber of papers depends on a knowledge of it. It is a topic which has 
generated a considerable amount of discussion both among pro-
fessional statisticians and among users of the technique in various 
disciplines, and it would probably be true to say that opinions are 
still divided on the subject of its usefulness. The fact that this is so 
should certainly be taken as a warning to the innocent archae-
ologist. What follows again makes much use of Johnston's (1978) 
approach ; a rather more technical account is Dunn and Everitt 
(1983, chapter 1). 

The essential difference between factor analysis and principal 
components analysis may seem fairly minor but it does have quite 
important consequences. Principal components analysis extracts 
components from all the variance in the data. Factor analysis works 
on a different principle. It assumes that the variance in a variable 
can be divided into two segments, one segment which it has in 
common with other variables and reflects its relations with them, 
and another part which is unique to itself and does not relate to 
anything else; these two parts are referred to as the common 
variance and the unique variance. The argument is that as factor 
analysis is concerned with defining underlying patterns of variation 
common to several variables then it should only operate on the 
common variance and leave the unique variance out of account : to 
include all the variance in the analysis is to confuse the issue. The 
first question which arises then is how to estimate the unique vari-
ance of the variables in the analysis so that it may be removed from 
consideration; the remaining common variance of a variable is 
often referred to as its communality in the jargon of factor analysis. 

What is involved in technical terms in the factor analysis case is 
best illustrated by a comparison with principal components. We 
saw above that when components were extracted from a correlation 
matrix the entries down the principal diagonal of the matrix were all 
1.0, the standardised variance of each variable. In factor analysis 
the value along the diagonal are not 1.0, but are the communality 
estimates for the different variables. These are usually the multiple 
R2 values of the individual variables and will, of course, vary from 
one variable to another. You will remember from chapter 11 on 
multiple regression that the multiple R2 value gives the proportion 
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of the variation in a dependent variable accounted for by the effect 
of all the independents acting together and separately. Thus, to 
obtain the communalities each variable in turn is treated as depen-
dent on all the others. The argument is that the amount of variance 
accounted for by the other variables is a measure of what a given 
variable has in common with them ; whatever the source of the rest 
of the variance it is not relevant to the point at issue. The sum of the 
communalities is the total amount of variation in the analysis. If a 
given variable has only a small communality - in other words, the 
way in which it varies has little in common with the others - then it 
will play only a small role in the analysis. 

In terms of our graphical illustration of the extraction of principal 
components, there the lines or vectors representing the individual 
variables were of equal length and each variable played an equal 
role in defining the position of the first component ; in factor ana-
lysis the vectors corresponding to the variables would be of different 
lengths, the lengths corresponding to the communality value, and 
the position of the first average variable, or factor in this case, 
would be more strongly affected by those with the larger commun-
alities ; a variable with twice the communality of another would 
have twice the influence on the position of the factor. 

As with principal components analysis, but using this different 
matrix, we obtain the loadings of each of the variables on the factor. 
Correspondingly, the squared factor loadings give us the proportion 
of the variance in the variables accounted for by the factor. At this 
point, however, we come to another major difference between the 
two. In a principal components analysis of a given matrix the 
components are obtained successively according to a fixed mathe-
matical procedure and that is the end of the matter. Factor analysis, 
on the other hand, with its emphasis on finding the underlying 
pattern of variation behind groups of variables takes things a step 
further. 

The point is best illustrated with reference to figure 13.19, in 
which all the vectors are drawn of equal length to simplify presenta-
tion. Here we have four variables, together with the two factors 
accounting for all the variation within them. As with principal 
components analysis, the first represents the average pattern of the 
four variables, based now on their communalities, and the second 
the average of the remainder, by definition at right angles to the 
first. But do these really represent the underlying dimensions of 
variation behind what are clearly two pairs of variables ? We tend to 
feel intuitively that if the factors could somehow be moved round, 
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so that one corresponded to one pair of variables and the other to 
the other then we would have a better representation of the re-
lations between the variables in the simplified space defined by 
these new underlying dimensions. 

* i 
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\ 
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Figure 13.19. Geometric representation of the corre-
lations between four variables, and the two factors 
accounting for all the variation between them 
(after Johnston 1978). 

This is precisely the step which factor analysis takes : the axes are 
rotated in order to achieve this kind of correspondence. The rules 
which have been devised and implemented for carrying out this 
procedure are many and varied. Some of them even drop the 
stipulation that the new axes should be at right angles to one 
another, but these are not considered here and the most commonly 
used ones keep this constraint ; they are therefore known as ortho-
gonal rotations. The idea is to rotate the axes to a position which is 
as close as possible to an ideal referred to as simple structure. This 
ideal is that each variable should be completely identified with one 
single factor and no other : all its variance should be accounted for 
by a single factor, not split between several as we saw with principal 
components analysis. In numerical terms the aim is that each vari-
able should have a loading of 1.0 on one factor and 0.0 on all the 
others. Obviously it is impossible to achieve this ideal with any real 
data set in practice, but computer methods are available which 
approximate it as closely as possible for any given case. As far as 
our example in figure 13.19 is concerned we can simply do the 
rotation visually (figure 13.20) but this again will be impossible in 
real examples. 

As you can see, once rotation has taken place we have not only 
reduced the variation in the data to a smaller number of dimensions, 
we have identified the new dimensions as far as possible with 
specific sets of variables, which can potentially be very helpful in 
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F2 xx 

Figure 13.20. The two factors from figure 13.19 after 
orthogonal rotation as near as possible to simple structure 
(after Johnston 1978). 

understanding what is behind the variation in our data. 
But rotation brings its own set of problems, since the decision 

about the number of factors to be rotated in effect determines the 
number of underlying dimensions supposedly behind the variation 
in the variables and also the way in which the dimensions are 
defined: rotating two will give two groups of variables, rotating 
three will give three. Furthermore, the introduction of the third will 
not simply add a dimension associated with a group of variables to 
the first two groups; it will change the definition of the first two. 
This is intuitively obvious if you think about what is involved in 
rotating a fixed set of axes at right angles to one another through a 
cloud of data points : the best position for three axes in terms of the 
criterion specified above is most unlikely to be the same as that for 
two. When not only the number but the nature of what are in some 
sense supposed to be Objectively existing' underlying dimensions 
of the data can be affected, or even determined, by relatively 
arbitrary choices about the number of axes to be rotated, then one 
quite rightly feels that caution is required unless there are very good 
reasons for the number of axes chosen. If the data are multivariate 
normally distributed then maximum likelihood factor analysis pro-
vides a statistically rigorous method for deciding on an appropriate 
number of factors for rotation (see e.g. Everitt and Dunn 1983, 
200). 

Factor Scores. When we come to look at the scores of the indi-
vidual observations on the new axes then factor analysis presents 
further problems. We saw that with principal components analysis 
individual scores on the principal components could be obtained, 
and that they could provide us with much useful information. Un-
fortunately, precise factor scores for individual observations cannot 
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be obtained in the same way, because, as we have seen, factor 
analysis does not use all the variation in the data, only the common 
variance, 'whereas the observed values on the original variables 
combine common and unique elements in unknown proportions' 
(Johnston 1978, 173). Because of this discrepancy between the 
basis of the analysis and the nature of the individual observations 
factor scores can only be estimated, by a form of regression pro-
cedure. Consequently, although most factor analysis programs 
have options for the production of factor scores, and in essence they 
are the same kind of thing as component scores, whose derivation 
we have outlined at length above, it is important when interpreting 
them to bear in mind that they are only estimates, which may be 
better for some observations than others, and not fixed scores. 

An Archaeological Example. As an archaeological example of 
factor analysis we will take that described by Bettinger (1979). 
Bettinger was concerned with understanding the subsistence-settle-
ment system of Owens Valley, in California. He had carried out a 
surface survey of the area and had information on over 100 sites in 
terms of the frequency of occurrence of nine different categories of 
features and artefacts. On the basis of this information he was 
interested in making inferences about the functions of the different 
sites. 

Bettinger specifically addressed the factor analysis versus princi-
pal components analysis issue and the question of whether or not it 
was meaningful in his particular case to make a distinction between 
common and unique variance. He argued that as far as the regional 
distribution of features and tools was concerned idiosyncratic vari-
ation in variables from site to site would result from such factors as 
differential curation or differential access to raw materials. Com-
mon variance, on the other hand, patterns of variation which the 
different variables had in common with each other in a systematic 
kind of way, 'would most likely result from their use in complemen-
tary activities synchronised by the aboriginal economic schedule' 
(Bettinger 1979, 457). Since it was the economic schedule which 
interested Bettinger, his argument ran, an analytical method which 
considered only common variance would be the most appropriate 
one, hence factor rather than principal components analysis. 

His starting point was a correlation matrix obtained from the 
frequencies of the different types of artefact and feature of interest 
to him at the individual sites; it is reproduced as table 13.13. As 
Bettinger himself remarks, the distributions of these frequencies 
are extremely skew, a common occurrence with distributions of 
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Table 13.13. Correlation matrix for settlement variables 
(after Bettinger 1979). 

Floor 
Milling stone 
Ceramic 
Projectile point 
Biface 
Roughout 
Uniface 
Core 
Debitage 

Fl 

— 
0.80 
0.02 
0.51 
0.40 
0.06 
0.13 
0.16 
0.08 

Ms 

0.39 
0.61 
0.62 
0.21 
0.21 
0.29 
0.19 

Cer 

0.50 
0.51 
0.44 
0.17 
0.16 
0.29 

Pp 

0.83 
0.59 
0.40 
0.24 
0.35 

Bi 

0.58 
0.33 
0.26 
0.31 

R 

0.60 
0.36 
0.48 

Uni 

0.82 
0.84 

Core Deb 

— 
0.82 — 

frequencies of this type, and in these circumstances the product 
moment correlation coefficient, r, is unlikely to provide a very good 
description of the covariation between the variables. Nevertheless, 
he uses it, on the argument that in general such data will tend to 
produce correlation values lower than they really are, consequently 
his analysis will err on the conservative side. Although this may be 
true to a degree it is also likely that the description of the relation-
ships by this means will be misleading to some extent since at many 
points along the implied linear regression line the relationships will 
be misspecified by the line - there will be marked patterning in the 
residuals. A more appropriate technique than factor analysis would 
probably have been correspondence analysis (see below p.283), 
which does not require the same assumptions, although this would 
almost certainly have been unknown and unavailable to the author 
at the time he carried out his study. Despite these doubts about the 
appropriateness of the use of the correlation coefficient, the analysis 
remains an interesting one, and particularly useful from the point of 
view of illustrating a substantive interpretation of factor analysis 
results. 

Examination of the correlation matrix suggests that occurrences 
of milling stones and floors are strongly related to one another, that 
this is also true of bifaces and projectile points, and that frequencies 
of occurrence of cores, debitage and unifaces are also highly inter-
correlated. 

The procedure adopted by Bettinger to analyse this matrix was 
first to carry out a principal components analysis to find the number 
of components with eigenvalues greater than 1.0, and then to obtain 
and rotate this number of factors using a matrix containing com-
munal! ty estimates along the principal diagonal. Three components 
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had eigenvalues greater than 1.0 so three factors were obtained 
from the matrix based on communalities and then rotated. The 
loadings of the variables on the rotated factors are shown in table 
13.14, together with the variable communalities. We can note from 
the latter that the occurrence of ceramics does not appear to be 
closely related to the other variables, and the same is true to a lesser 
extent of the occurrence of roughouts. 

Table 13.14. Varimax rotation of factor matrix 
(after Bettinger 1979). Factor definers are 
indicated by parentheses. 

Variable 

Floor 
Milling stone 
Ceramic 
Projectile point 
Biface 
Roughout 
Uniface 
Core 
Debitage 

% variance 

Factor i 

0.05 
0.11 
0.10 
0.17 
0.14 
0.40 

(0.91) 
(0.89) 
(0.88) 
59.6 

Factor 11 

0.07 
0.37 

(0.61) 
(0.79) 
(0.80) 
(0.67) 
0.25 
0.07 
0.24 

26.5 

Factor in 

(0.95) 
(0.81) 
0.06 
0.43 
0.37 

-0.05 
0.05 
0.15 
0.02 

14.0 

Communalities 

0.91 
0.80 
0.38 
0.84 
0.80 
0.61 
0.89 
0.82 
0.83 

If we now look at the loadings we see that three variables are very 
closely associated with factor i: unifaces, cores and debitage. Bet-
tinger states that unifaces represent woodworking and the cores 
stone-working, while debitage results from stone tool manufacture 
and repair. His conclusion therefore is that factor i 'reflects the 
heavy-duty manufacturing of wood and stone tools' ( 1979, 466). 

Factor n is identified with projectile points, bifaces, roughouts 
and ceramics. This obviously represents a range of different activi-
ties and Bettinger concludes that it indicates 'the basic assemblage 
needed to engage in and sustain procurement at camps occupied for 
more than a few days at a time, i.e. base camps' (1979, 466). 

The final factor is obviously defined by the co-occurrence of 
floors and millingstones. 'Denoting dwellings, storage features and 
food preparation equipment, these categories leave little doubt 
that factor in is a complex of domestic facilities that would be 
employed year-round at occupation sites and seasonally, fall and 
winter, at pinyon camps' ( 1979, 466). 

At this point it is necessary to note that Bettinger's factor analysis 
was part of a larger study and that he had already defined a set of 
three different site functional categories: occupation sites, tern-
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porary camps and pinyon camps, the latter being small camps 
occupied in late autumn and winter primarily serving as bases for 
obtaining pine nuts. 

0.93 

0.78 

V. 

0.27 

21 

0.11 

Vy 

0.25 

I 

( 3.56 

i Temporary 
camps 

m 

-0.11 
II III 

Occupation 
sites 

m 

Pinyon 
camps -0.18 i 

-0 .30 
Figure 13.21. Mean factor scores for each settle-
ment category : i, factor 1 ; n, factor 2 ; in, factor 3 
(after Bettinger 1979). 

To investigate the relationship between these already defined 
site categories and the results of the factor analysis Bettinger made 
use of the factor scores of his sites, computing mean factor scores 
for each site category on each of the three factors (figure 13.21 ) and 
drawing a number of conclusions from the results : 

i ) 'Heavy-duty manufacturing tools and by-products, camp main-
tenance and resource procurement tools, and domestic facilities are 
all prominently represented at occupation sites but virtually non-
existent at temporary camps' (1979, 467). 

ii) Tinyon camps are characterised by camp maintenance and 
resource procurement tools and domestic facilities, which is consis-
tent with their function as fall and winter base camps' ( 1979, 467). 

iii) 'Both are somewhat less strongly represented at pinyon 
camps than at occupation sites, probably because use of pinyon 
camps is more seasonally restricted.' 

iv) 'Heavy-duty manufacturing tools and by-products are rela-
tively insignificant at pinyon camps. Unlike occupation sites, both 
pinyon camps and temporary camps were primarily places for re-
source procurement, so much so that manufacturing activities . . . 
were systematically excluded' (1979, 468). 
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Bettinger's analysis provides a good example of the way factor 

analysis can be used in the context of a larger study to provide 
substantively useful and interprétable results. Sets of interrelated 
variables are defined and connected to the archaeological problem 
in terms of a clearly formulated model. However, to show the care 
with which all results of complex multivariate methods should be 
treated when it comes to substantive interpretation, the loadings of 
the variables on a set of unrotated principal components derived by 
this author from Bettinger's correlation matrix are presented, to-
gether with the relevant eigenvalues, in table 13.15. 

Table 13.15. Summary of results of principal components 
analysis : eigenvalues of components, and loadings of 
variables on first three principal components, derived 
from the matrix of correlations between artefact types 
presented in table 13.13. N.B. These loadings are nor-
malised so that their squared values sum to 1.0. See 
footnote on p.254 for the method of converting them so 
that they correspond to correlation coefficients. 

Variable 

Floor 
Milling stone 
Ceramic 
Projectile point 
Biface 
Roughout 
Uniface 
Core 
Debitage 

Component i 

-0.230 
-0.323 
-0.267 
-0.394 
-0.381 
-0.346 
-0.358 
-0.322 
-0.345 

Component 11 

0.413 
0.402 
0.123 
0.262 
0.261 

-0.122 
-0.409 
-0.397 
-0.419 

Component in 

0.539 
0.299 

-0.519 
-0.149 
-0.211 
-0.389 

0.147 
0.314 
0.112 

Both sets of results are perfectly correct but they are not the 
same, and which set one uses depends on one's interest. Bettinger 
was interested in defining groups of related variables rather than in 
just summarising the main dimensions of variation in the data, 
hence the choice he makes. Another archaeologically based dis-
cussion of this issue may be found in Forsberg's (1985) analysis of 
hunter-gatherer subsistence settlement patterns in Sweden. 

These relatively detailed descriptions and examples of principal 
components and factor analysis should have given you a feel for 
what is involved in multivariate analysis and the kinds of useful task 
it can be used to carry out. The remaining multivariate methods 

Component 
Eigenvalue 

1 
4.319 

2 
1.980 

3 
1.228 

4 
0.627 

5 
0.305 

6 
0.233 

7 
0.134 

8 
0.101 

9 
0.074 
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referred to at the beginning of this chapter will be treated much 
more briefly, for several reasons. In the light of the account of 
principal components and factor analysis much less space is re-
quired to give an idea of what they involve ; space is simply not 
available to provide detailed examples of all of them ; and archaeo-
logically oriented accounts already exist (Doran and Hodson 1975 ; 
B0lviken et al. 1982). 

i) Principal Coordinates Analysis 
In many cases when we are dealing with qualitative and multistate 
variables we will have a matrix of similarities between a large 
number of items, of the type discussed in the previous chapter. The 
similarities may in fact be based on variables of a variety of different 
types put together using Gower's general coefficient of similarity. 
This is the type of example referred to at the beginning of this 
chapter to give you an indication of what ordination procedures 
involved. The process described in an intuitive fashion in that 
example concerning burials, to which you are referred again (p. 
242), is in fact the process of principal coordinates analysis. In 
other words, in order to create a low-dimensional space for the 
purpose of understanding patterning in data we don't need to 
define the space in terms of variables ; we can do so in terms of the 
space defined by the similarities between the units. In the same way 
as we could define principal components and their associated eigen-
values for the space created by the variables, we can define principal 
axes and eigenvalues for the space created by the similarities, that 
is to say, for the similarity matrix. The size of the eigenvalue gives 
the importance of a given dimension in accounting for variation in 
inter-point distances and can be converted in the same way as 
before into a figure for the percentage of the inter-point distance in 
the data accounted for by that particular dimension. Again, the first 
two or three dimensions often account for the major part of it. The 
principal axes of the space enable us to obtain the equivalent of a 
component score for each of our cases on each of the orthogonal 
axes of the space. Thus, we move from a relative representation of 
the cases or data points in relation to one another, to their represen-
tation in terms of their positions on the new axes. Again we can use 
these axes to produce scattergrams of our data points which we can 
examine for trends and clusters as we did with our scattergram of 
component scores. 

However, the consequence of the fact that principal coordinates 
analysis works on similarities between cases rather than correla-
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tions between variables is that there are no loadings of variables on 
components to be considered and to be used as a basis for the 
interpretation of the results. It is only the equivalent of the compo-
nent scores which principal coordinates analysis produces and it is 
these which must be interpreted to arrive at the substantive mean-
ing of the new axes. Nevertheless, as we saw with the component 
scores this is not a problem. One has to note which cases are at one 
end of a given axis, which at the other, and then go back to the raw 
data on which the coordinates were based to see what it is that 
differentiates these from one another. Thus, if we were dealing with 
the results of a principal coordinates analysis of a matrix of similari-
ties between graves then we could refer back to our initial listing of 
the values of the variables which were used to characterise the 
graves, different grave goods types for example. By this means we 
would obtain a substantive archaeological knowledge of the main 
factors behind the variation in the burials. 

ii) Non-Metric Multidimensional Scaling 
This technique approaches essentially the same problem as princi-
pal coordinates analysis from a rather different angle ; for a given 
set of data it should produce very similar results, in terms of the 
relationships between points in the low-dimensional space which 
the method tries to achieve. 

The conceptual basis of the technique is straightforward. The 
starting point is the same as for principal coordinates analysis : a 
measure of similarity or dissimilarity between our n cases, and a 
representation of the relationships between the cases in a multi-
dimensional space, the number of dimensions being one less than 
the number of cases. From this starting point the method succes-
sively reduces the number of dimensions in which the points are 
represented, at the same time trying to keep to a minimum the 
distortion in the relations between the points which begins to arise 
as the number of dimensions is reduced. The specific feature of the 
method is that in contrast to principal coordinates analysis it is 
'non-metric' : it works not on the actual numerical values of the 
similarities/distances between the cases, but on their rank-order-
ing. That is to say, it is the rank-ordering of the distances/similari-
ties between the points which the method tries to preserve as the 
dimensions are reduced. Thus, if the distance between point (case) 
xt and point (case) jcy is the tenth smallest distance in the original 
distance matrix, it should remain the tenth smallest as the number 
of dimensions of the multidimensional representation is reduced. 
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Of course, the method has to do this not just for one pair of 
distances but for all of them at the same time : the rank-ordering of 
all the distances in the reduced space should correspond to the 
original ordering of all of them. It goes without saying that the 
relevant juggling is difficult - in fact, for large numbers of cases it is 
quite time-consuming even for a computer - and that it is almost 
impossible for the original arrangement of the points in terms of the 
rank-order of their distances to be perfectly preserved in a space of 
few dimensions. A key part of the method of non-metric multi-
dimensional scaling is that it provides a measure of the success with 
which the ordering is maintained as the number of dimensions is 
reduced. The measure is known as 'stress' (perhaps a reflection of 
the psychological circles in which the method has much of its use ? ), 
an indicator of the extent to which the ordering in the reduced 
number of dimensions departs from the original ordering. 

In the same way as the eigenvalues associated with axes in princi-
pal components or coordinates analysis indicate the importance of 
those axes in accounting for variation in the data, so stress gives a 
measure of the number of dimensions important in representing the 
data in non-metric multidimensional scaling. Stress is calculated for 
each successively decreasing number of dimensions and the idea is 
to look for the number of dimensions at which a large increase in 
stress suddenly occurs: this indicates a sudden increase in the 
amount of distortion in the data, which would arise when a dimen-
sion important in accounting for the variation in the data is re-
moved ; some multidimensional scaling computer programs have 
an option to carry out a significance test for the correct number of 
dimensions. 

The idea, as with principal components and coordinates analysis, 
is that if the variation in a set of data is reducible to a small number 
of major trends or patterns (as in the case of our vessel shape 
measurements above ) then the stress at the appropriate small num-
ber of dimensions will be lower than for comparable data where the 
variation is not reducible in this way. A low stress value would 
correspond to the case in principal coordinates analysis where the 
same number of dimensions accounts for a high percentage of the 
variance. Furthermore, the substantive archaeological meaning of 
the dimensions can be established in the same way as for principal 
coordinates analysis, by looking at which cases lie where on the 
various axes or dimensions. 

Non-metric multidimensional scaling has been used extensively 
in archaeology. Kemp's (1982) analysis of Egyptian predynastic 
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cemeteries is one example while Cherry and others have used it to 
construct maps of Aegean Bronze Age states (e.g. Cherry 1977, 
Kendall 1977). A number of other examples are cited by Doran and 
Hodson (1975), who also discuss the technique at some length. A 
full account of it, still essentially at an introductory level, is given by 
Kruskal and Wish ( 1978 ). Much discussion of the technique centres 
on its various advantages and disadvantages relative to other tech-
niques such as those with which we have been comparing it. It is not 
possible to go in to these here but Doran and Hodson (1975, 
214-17) provide a good account of the issues, as does Gordon 
(1981,91-101). 

iii) Correspondence Analysis 
This technique is a relatively recent introduction to archaeology, a 
fact reflected by the lack of discussion by Doran and Hodson. In 
fact, it was only really developed in the late 1960s and much of the 
development took place in France (although see Hill 1973). To a 
degree the relative slowness of its adoption by Anglo-American 
quantitative archaeologists must be ascribed to a certain lack of 
communication between them and the rather different French 
archaeological world ; the contrasting speed with which the poten-
tial of the technique was appreciated in French archaeology is 
indicated by Djindjian ( 1980). 

The method has now been very well described for English-speak-
ing archaeological audiences by B0lviken et al. (1982) and thus 
does not require detailed treatment here, for which in any event 
space is not available. The main purpose of including it at all is to 
draw attention to it as an important technique and to note the 
special features which make it particularly useful. 

Of the techniques which we have examined so far correspon-
dence analysis is most like principal components analysis, with 
which it shares the same general principles. But as we have seen 
already, the latter generally involves the analysis of a matrix of 
correlations, or the covariances or sums of squares and products 
from which correlations are derived, and these are only satisfactory 
measures of association when data are numeric and the distribu-
tions of the individual variables are not too far from normality. 

Correspondence analysis does not have this constraint in that it is 
designed to analyse data which consist of frequencies, such as the 
frequency of occurrence of the various artefact types analysed by 
Bettinger in the example described above. In fact, as we have seen, 
principal coordinates analysis can be used to get round some of the 
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problems which arise when the variables in an analysis are not 
normally distributed numeric ones. However, principal coordinates 
analysis, like non-metric multidimensional scaling, involves the 
prior calculation of similarity coefficients rather than working on 
the raw data directly as principal components analysis does, and the 
calculation of similarity coefficients involves a loss of information. 
We may have a certain value for, say, the Jaccard coefficient of 
similarity between two particular cases but we do not know pre-
cisely what it is the two have in common and what distinguishes 
them. Correspondence analysis does not require this intervening 
step ; like principal components analysis it starts from the values of 
the variables for the particular cases. 

It does, however, have a further property which principal compo-
nents analysis does not possess (although a related technique, 
known as the biplot, does (see Gabriel 1981)). As we saw, with 
principal components analysis it is possible to study the distribution 
of the component scores on a scattergram and see which cases are 
similar to which. Likewise, we saw that the relationships between 
variables, and between variables and components, can also be re-
presented graphically. With correspondence analysis the relation-
ships between cases, those between variables, and those between 
variables and cases, may all be analysed together and represented 
in the same scattergram or series of scattergrams produced by the 
plotting of pairs of orthogonal axes. The ability to link relations 
between particular variables directly with similarities between par-
ticular cases is very significant from the point of view of interpreta-
tion, and to some extent undercuts the arguments which have raged 
in the archaeological literature on this subject, particularly as it 
relates to the definition of archaeological types and whether they 
should be treated in terms of correlations between variables or 
similarities between cases (see the papers in Whallon and Brown 
1982). 

It may be helpful to indicate what is involved in correspondence 
analysis by briefly summarising one of the examples presented by 
B0lviken et al. ( 1982). Information was available from the excava-
tion of a late stone age site on the frequencies of 37 lithic types from 
14 house sites. After a preliminary analysis it was decided to group 
the 37 types into only 9 categories on the basis of assumptions as to 
their function. The aim of the study was to see which houses were 
similar to one another, which functional categories were related in 
terms of associational patterning on deposition, and the way in 
which the similarities between the houses related to the functional 
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categories. Accordingly, a correspondence analysis was carried out 
with the 14 houses as the cases and the frequencies of the 9 func-
tional tool categories as the variables. 

ιο· 1.0 η Axis 2 

11 · 

Slate fragments 
X 

3 · 

• 9 

Points 0.5 -| 
X 

Tool 
manufacture 

—i 

-1.0 

X Core tools 

6φ Scrapers/burins Axis 1 

• x #4 · 
14 7 

Utilised 
flakes 

-1.5 2 · -0.5 

Net sinkers 
X 

X Perforated stone 

1 · 

Knives 
X 

5 · 

-0.5 A 

13 1.0 

-1.0 
Figure 13.22. Correspondence analysis plot of the 
functional categories and house site units from the 
Iversfjord locality (after B0lviken et al. 1979). 

The scattergram based on the first two axes, together accounting 
for 73% of the variation, is shown in figure 13.22. It will be seen 
that both the houses and the variables are represented on it. The 
first axis, accounting for 53% of the variation, opposes scrapers, 
burins and utilised flakes on the one hand to net sinkers and per-
forated stones on the other, and is interpreted by the authors as a 
contrast between maintenance activities and fishing. The second 
axis, accounting for 20% of the variation, has projectile points and 
slate fragments at one end and slate knives, net sinkers and per-
forated stones at the other. The authors regard this as representing 
a contrast between hunting and fishing. 

The investigators were particularly interested in the question of 
whether groups of houses such as that excavated were winter fishing 
villages. They argued that if this was indeed the case then all the 
houses ought to fall in a single cluster based on artefacts indicative 
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of winter fishing activities. As they point out, there is no indication 
from the scattergram that this is the case: on the contrary, there 
appear to be three clusters of houses. Moreover, since we are 
dealing with the results of a correspondence analysis, we can look 
at the scattergram further to see which cases are associated with 
which variables. Houses 4, 5, 6, 7, 8, 12, 13 and 14 are in the same 
area of the scattergram as scrapers, burins and utilised flakes, and 
were thus associated with maintenance activities. Houses 9, 10 and 
11 lie near slate fragments and points, interpreted by the authors as 
hunting related tool categories, while houses 1, 2 and 3 were more 
associated with fishing. They conclude that, The present analysis 
indicates a greater diversity in economic orientation (hunting, fish-
ing and maintenance) as well as different degrees of settlement 
permanence (long-term diversified activity patterning vs. short-
term specific activities) than previously believed possible for Stone 
Age coastal sites' (B0lviken etal 1982, 47). 

It may be possible to argue with the author's interpretation of the 
results in terms of their model of the relationship between activity 
patterns and archaeological deposition (cf. Binford 1981, 1983), 
but the usefulness of the technique in making explicit the relation-
ships among the cases and the variables, and between the two, 
seems undeniable. 

Discriminant Analysis 
Before finally leaving multivariate analysis there is one more tech-
nique that must be mentioned, albeit only briefly, even though it is 
rather different in nature from any we have looked at so far. All 
these have been concerned with looking for patterning in a set of 
data, with very little in the way of prior assumptions as to what that 
patterning will be like, except to a degree for the case of factor 
analysis. The technique of discriminant analysis presupposes that 
we can divide our observations into groups on the basis of some 
criterion and then attempts to find a way of distinguishing those 
same groups on the basis of some independent criterion derived 
from the data. 

In fact, the procedure has already been refered to early in chapter 
12, where we distinguished classification from discrimination and 
gave an example of the latter. We may have a number of undecor-
ated ceramic vessels of a particular type which were found at differ-
ent sites. Do the vessel shapes, described in terms of a series of ratio 
measurements, differ from site to site? In discriminant analysis we 
tell the program which vessels come from which sites and the 
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analysis then attempts to reproduce correctly the assignment of the 
vessels to the sites, but based solely on the measurements describing 
the vessel shape. If it is successful at doing this it means that the 
vessels from the different site do differ from one another ; if it isn't, 
it means they do not. This can be a very useful thing to do. One area 
of archaeological research in which it has found a lot of use is 
artefact characterisation studies, where quantities of trace elements 
in lithic artefacts or pottery are used to try to discriminate materials 
from different sources. 

Discriminant analysis comes into this chapter rather than the 
previous one because the methods used are those of multivariate 
analysis. It involves constructing a set of variables from the original 
variables, rather like principal components, but with the criterion 
that these variables must maximise the differences between the 
different groups, the different sites in the example outlined above. 

What is involved is, as usual, best indicated by a diagram of the 
two-variable case (figure 13.23). Suppose we have groups of flint 
flakes from two distinct phases at the same site and have described 
the size and shape of the flakes in terms of measurements of length 
and breadth. Do the sizes or shapes of the flakes in the two phases 
differ? 
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Length 

Figure 13.23. Discriminating between two groups of 
lithic debitage on the basis of the length and breadth of 
the individual pieces. 

Clearly we can see in this particular two-dimensional case that 
they do (of course, in a real multivariate case we would not be able 
to see this). On the other hand, neither of our original variables, 
length and breadth, distinguishes the two groups. There is an over-
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lap between them, as the histograms of the two groups projected 
onto each of these axes show. However, a single axis does exist that 
would distinguish the two groups perfectly - the line a-b in the 
diagram, which is a composite of both length and breadth. This is 
the discriminant function in this case ; a line bisecting it at right 
angles between the two groups divides them with complete success. 

Discriminant analysis programs carry out this operation for the 
multivariate case and in the same way as for principal components 
we are told the eigenvalue of each function and the contribution of 
each of the original variables to it. 

The above account is intended to do no more than give you an 
idea of what is involved in the technique, which is too important to 
omit altogether. It is described more fully in a number of texts (e.g. 
Davis 1971, Norusis 1985) and is widely available in the computer 
statistical packages listed in appendix 2. As already indicated, it is 
not an exploratory technique in the same way as cluster analysis or 
principal components analysis, but it can be extremely useful when 
it comes to testing archaeological hypotheses. 

This account of discriminant analysis completes our introduction to 
multivariate analysis in archaeology. It should be obvious that it is 
a complex topic of which we have only just begun to scratch the 
surface. Doran and Hodson (1975) take the subject much further, 
as does Johnston ( 1978) from a geographical point of view. On the 
basis of this chapter you shouldn't attempt to embark on your own 
multivariate data analysis projects unless you have expert advice 
and assistance, but you should now have some idea of why people 
have made use of the techniques and a basis for understanding 
published archaeological examples. 

EXERCISES 

13.1. Carry out a principal components analysis of the data on Uruk 
bevel rim bowls provided for exercise 12.4. Comment on all aspects 
of the results which you consider to be relevant, giving special 
attention to the archaeological interpretation of the components 
and their significance. 

13.2. Carry out a factor analysis on the same data, distinguishing 
between common and unique variance. Rotate an appropriate 
number of factors and again interpret the results. 
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13.3. In a study of spatial and temporal variation in prehistoric rock 
art 83 art sites in Australia were examined (Morwood 1980). For 
each site the colour of the design elements of the art was recorded. 
Each site was then coded for the number of occurrences of design 
elements of a particular colour, and for the relative percentage 
occurrence of the different colour categories. 

The colours are as follows : 
l.Red 5. White 
2. Purple 6. Black 
3. Orange 7. Brown 
4. Yellow 8. Pink 

A principal components analysis was carried out on the two sets of 
data. Figure 13.24 shows the scattergrams of the variables in re-
lation to the principal components, and relevant data pertaining to 
these scattergrams. Discuss the results given from a statistical and 
an archaeological point of view. 

13.4. Tables 13.16 and 13.17 are the results of a principal compo-
nents analysis of 15 stone tool assemblages from southern Africa 
described in terms of the percentage composition of different tool 
types (Cable 1984). Discuss these results from a statistical and an 
archaeological point of view, giving particular attention to (a) 
indicating what you regard as the main patterns of variation in the 
assemblage, and (b) describing and explaining the relationship 
between the data in the correlation matrix and that in the factor 
matrix. 

13.5. The data involved are again the 15 stone tool assemblages 
from southern Africa. Figure 13.25 shows a tripolar graph of the 
relations between the 15 assemblages, based on the data concerning 
three tool types in the attached key. 

Figure 13.26 shows the results of a cluster analysis of these 
assemblages based on the complete list of tool types given above for 
exercise 13.4, using Ward's Method. Figure 13.27 shows the same 
assemblages as figure 13.26, again based on the full list of tool 
types, plotted against the first two principal components as given in 
the data for exercise 13.4. 

Note that assemblages B and D are not present in figures 13.26 
and 13.27, only the amalgamated version, assemblage x, is present. 
Assemblages L and M are also deleted from these latter two 
analyses. 
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Discuss the relationship between the results presented in these 

three figures, referring where necessary to your answer to exercise 
13.4. What archaeological conclusions, in particular concerning the 
reasons behind the assemblage variation, is it possible to draw? 

13.6. Excavation of a settlement midden in northern Norway pro-
duced large numbers of animal bones from the fourteen layers 
(layer 1 being the most recent and layer 14 the oldest). The bone 
frequencies are presented in table 13.18. In order to investigate 
patterning in the composition of the bone assemblage through time 
a correspondence analysis was carried out. The scattergram of the 
layers and species against the first two axes is given in figure 13.28. 
The first axis accounts for 68.8% of the variation, the second for 
29.54%. Discuss the results for the layers and for the species and 
the relation between them. (Data from Mathiesen et al. 1981 ). 
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Table 13.16. Tool counts from 15 Natal sites, and their 
correlation coefficients (after Cable 1984). 
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Table 13.17. Tool counts from 15 Natal sites : 
the factor matrix (after Cable 1984). 
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Figure 13.27. The stone tool assemblages plotted against 
the first two principal components (after Cable 1984). 

295 

Figure 13.26. Cluster analysis of the stone tool 
assemblages by Ward's method (after Cable 1984). 
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Table 13.18. Osteological material from layers 1-14 
of trench 1 of the farm mound of the island of Helg0y 
(see key to figure 13.28 for details of assemblage). 
( After Mathiesen e/a/. 1981.) 
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Layers 1-14 
A 
B 

c 
D 

E 
F 

G 
H 
I 

J 
K 

L 
M 
N 

P 

Q 

Cattle 
Sheep/goat 
Pig 
Reindeer 
Seal 
Grouse 
Cod 
Haddock 
Coalfish 
Ling 

Halibut 

Auk 
Hen 

Bos taurus 
Ovis arieslCarpa hircus 
Sus scrofa dorn. 
Rangif er tarandus 
Phocidae 
Lagopus 
Gadus morrhua 
Melanogrammus aeglefinus 
Pollachius virens 
Molva molva 
Brosme brosme 
Hippoglossus hippoglossus 
Sebastes marinus 
Anarchichas lupus 
Alcidae 
Gallus gallusf. dorn. 

Figure 13.28. Correspondence analysis of the data 
from table 13.18 (after Mathiesen etal. 1981). 



Fourteen 

Probabilistic Sampling in Archaeology 

'Sampling' has been an important part of new approaches to archae-
ology for more than two decades (Vescelius 1960). It has been 
singled out in the literature by both advocates and opponents of 
modern approaches as a key part of a new methodology of archae-
ology (Binford 1964, Hole 1980). When a method becomes part of 
the ideology of an approach the results are likely to be unsatisfac-
tory and sampling in archaeology has been no exception to this (cf. 
Wobst 1983 ), often accepted or rejected on principle rather than on 
the basis of reasoned argument or appropriateness. What is in-
volved in 'sampling' and why has it had this importance? 

In its most general sense it embodies the idea of using information 
from a part of something to make inferences about the whole. Since 
archaeologists have always been acutely aware of the partial nature 
of the evidence they recover - they only ever recover a 'sample' -
the idea of a methodology which could help to solve the problems 
posed by this situation has an almost mystical attraction. Some 
decidedly sophisticated mathematically based models are now 
being developed to tackle this question (e.g. Orton 1982), but 
'sampling' is certainly not the answer. Unfortunately, misconcep-
tions resulting from the belief that it is have been rife, leading to 
overoptimism on the one hand and the rejection of what are be-
lieved to be unrealistic claims for the potential of 'sampling' in 
archaeology on the other. 

It is important to be clear from the start that 'sampling' is con-
cerned with the making of inferences about some defined piece of 
the extant archaeological record on the basis of a study of some part 
of that piece of the record. It is not concerned with making infer-
ences from the extant record (or physical finds populations as 
Cowgill (1970) has called them) to the material results of human 
behaviour in the past (Cowgill's physical consequences popula-
tions), still less to the nature of the behaviour which produced 
them. 

298 
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Of course, in this sense archaeologists have always practised 

sampling. They have selected sites to excavate in regions, and 
places to put trenches within sites, and they have not restricted their 
conclusions to those specific trenches or sites. The change which 
occurred 25 years ago was the introduction and advocacy of proba-
bilistic sampling: the selection of the part of the archaeological 
record to be investigated in such a way that probability theory can 
be used to evaluate the inferences made from that part to the whole 
from which it was selected, in terms of the probability that the 
inferences are correct. The idea then is to ensure that the sample 
selected is representative of the whole. Probability theory provides 
the rules for both making the selection and making the inferences 
from it. 

But what inferences can be made in this way and are they ones in 
which we are really interested ? This brings us onto the question of 
the aims we have in carrying out any particular project and the 
research design appropriate for their realisation. Unfortunately, 
this part of the research process has not always been given the 
attention it deserves. More often than not the extent of an investiga-
tion is determined by financial constraints in one form or another 
and there has been a tendency to move directly from the realisation, 
for example, that the excavation of a threatened site can only be 
partial, to a consideration of statistically based sampling schemes, 
with a consequent lack of clarity over objectives. The investigator 
has no idea of what statements may be made on the basis of the 
sample but simply feels that if the sample selected is statistically 
based it must in some sense be better. Such an approach may not be 
harmful and the distribution of excavation or survey units which 
stems from it may produce interesting results, but they will not have 
much to do with statistical inference. 

Statistical sampling theory becomes relevant when the aim of the 
study is to use the sample selected to make estimates of characteris-
tics of the population from which it was drawn. The aim in these 
circumstances is to draw a sample which is an 'honest representa-
tion' of the population and which leads to estimates of population 
characteristics with as great a precision as we can reasonably expect 
for the cost or effort expended (cf. Barnett 1974). 

It is now well established that the 'pragmatic' approaches to 
sampling which have been followed in archaeology are not very 
satisfactory in this regard, although in fairness to early investigators 
it should be pointed out that they rarely had the goal of achieving 
an honest representation of a population in mind. Two types of 
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'pragmatic' sampling which have been important in archaeology 
are worth distinguishing : 

1. Accessibility sampling: In this approach the key factor is the 
ease of access of the observations ; the most easily obtainable ones 
are chosen. An archaeological example might be surveys looking 
for settlements in the Near East which consist of driving along roads 
and looking out for mounds visible from them. A converse version 
of this might be called inaccessibility sampling, as practised by some 
archaeologists in the Mediterranean area, who look for all the 
prominent hills in an area and then climb them to see if there are 
early settlements on top ! There is nothing necessarily wrong with 
such an approach so long as it is not thought that it provides 
representative information about the density or relative propor-
tions of different types of site in an area. 

2. Judgemental or purposive sampling: This involves investi-
gators making their own choice about which part of a site to exca-
vate or of a region to survey. The aim may or may not be to obtain a 
representative sample. If it is, and the investigator possesses a great 
deal of relevant subject matter knowledge, then the sample may 
indeed be an excellent representation of the population. The main 
problem with this approach to sampling, if the aim is to achieve 
representativeness, is not that the estimates resulting from it may 
be distorted, but that we have no means of evaluating the represen-
tativeness of the sample selected other than through an evaluation 
of the selector and our own knowledge of the substantive situation. 

If we use a probabilistic sampling scheme, on the other hand, it 
means that we consider, notionally at least, all possible samples of 
a given size from the population, we assign a probability to each 
sample on the basis of the sampling scheme chosen, and then go on 
to select one particular sample in accordance with the scheme. The 
result will be an estimate whose reliability and precision may be 
quantified; in other words, one for which we can supply a con-
fidence interval. In specifying a confidence interval we are saying 
that in a given percentage of the samples generated by this means 
the population characteristic (or parameter) concerned will fall 
within some specified interval estimated from the sample. In fact, 
as we shall see, we can use our theoretical knowledge either after 
the event, when our data have been collected, to obtain a con-
fidence interval for the estimate in which we are interested ; or to 
obtain an estimate, before starting the investigation, of the sample 
size required to obtain a confidence interval of a desired width. It is 
obviously better, of course, to follow the latter procedure rather 



Probabilistic Sampling 301 
than finding out late in the day that from the data collected we can 
only specify an unhelpfully wide interval within which our popula-
tion characteristic should lie. It may be worth emphasising again 
here that all such estimates are based on the archaeological record 
as recovered and refer to the record as potentially recoverable : we 
are making inferences about a 'physical finds population' from a 
sample of it. 

To summarise. It should be clear from this that the point of using 
probability sampling methods is to obtain estimates of some aggre-
gate quantity whose reliability and precision we can assess. At the 
regional level, for example, it may be of interest to estimate the 
mean density of neolithic sites in an area, or their total ; at the site 
level we may wish to estimate the proportion of flakes which are 
retouched, or of rim sherds of a certain type. Whether such aggre-
gate measures are of interest to us in any given study depends on 
our aims. For example, if we are comparing them from site to site 
or area to area in some macro-scale analysis they will be highly 
relevant. 

In the following section the technicalities of obtaining such mea-
sures by means of simple random sampling will be described, then 
some more complex procedures will be outlined in general terms. 
Finally, some of the problems posed will be discussed and it will be 
argued that there are many archaeological questions to which the 
standard techniques of probability sampling are not relevant, even 
in those cases, the vast majority, where our archaeological informa-
tion is only partial. 

CALCULATING CONFIDENCE INTERVALS 

AND SAMPLE SIZES 

Here we need to recall some points made in earlier chapters. First 
of all, a reminder of the distinction made in chapter 5 between 
characteristics of populations and characteristics of samples : para-
meters and statistics. For a given population any parameter value 
will be fixed but unknown. In probability sampling the aim is to use 
statistics calculated from a sample to estimate the population para-
meters. Since we do not know the population parameters, and 
would not need to take a sample if we did, we can never know how 
close our estimates are to the parameter value. Our rationale for 
having some confidence in the estimates therefore has to be based 
on a method of sample selection which has secure theoretical foun-
dations to justify the claims we make. 

In this chapter we will look at the estimation of three population 
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characteristics: the population mean (e.g. the mean density of sites 
in an area) ; the population total (e.g. the total number of sites in 
an area); the proportion of values in a population which satisfy 
some condition of interest (e.g. the proportion of sites in an area 
which are fortified). In fact, all these three different measures are 
closely related and in the following preliminary discussion of the 
concepts which it is necessary to understand before the description 
of the estimation methods, it will be assumed that we are interested 
in the population mean. 

If we want an estimate of a population mean for a simple random 
sample (to be defined below), the sample mean will be perfectly 
satisfactory since it is unbiased. Unfortunately, but unsurprisingly, 
this does not mean that any simple random sample mean will always 
correspond to the mean of the population from which it is drawn. 
Rather, if we take a series of simple random samples from a popula-
tion and obtain the mean of each of those samples then each of 
those means will be slightly different - there will be a distribution of 
means. It is the mean of the distribution of sample means which will 
correspond to the population parameter. 

The upshot of all this is that while obtaining a specific sample 
mean is fine as far as it goes, we have no basis for knowing whether 
the particular one we have obtained from a given sample is a good 
estimate or not. If we are dealing with the mean of a continuous 
variable - for example, the mean length in millimetres of a sample 
of projectile points, calculated to three places of decimals - then the 
probability that this corresponds exactly to the population mean is 
almost infinitely small. 

If we want to have some given degree of confidence in our 
estimate of the population mean we must take into account the 
dispersion of the distribution of sample means to which we have 
referred above. But how do we do this when in at least 9 cases out 
of 10 all we will have is a single sample ? 

The answer is that we start from the dispersion of the sample 
itself - its standard deviation. We are not interested in this estimate 
of the dispersion of the population for its own sake, however, but in 
the dispersion of the distribution of sample means. Nevertheless, 
the more variable the population is, the more variable are likely to 
be the means of a series of samples drawn from it. Statistical theory 
which it is not possible to go into here enables us to go from the 
sample-based estimate of the population standard deviation to an 
estimate of the standard deviation of the notional distribution of 
sample means - known as the standard error of the mean. The 
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formula is 

_ s 
S*~Vn 

In words, we can obtain an estimate of the standard error of the 
mean by dividing an estimate of the population standard deviation 
by the square root of the number of observations in the sample. It 
makes sense intuitively that the dispersion of a distribution of 
means will not be as great as the dispersion of the individual popu-
lation values, and that as the sample gets larger and therefore in-
creasingly representative of the range of population variability, the 
standard error should decrease. 

But there is another aspect of sample size which also makes a 
difference to our estimates of the standard error of the mean. If our 
sample was so large that it included the entire population of interest 
we would know the population mean and our estimate would have 
no error at all. By extension of this, as our sample becomes an 
increasingly large fraction of our population, our estimate of the 
standard error can be narrowed down. This is done by adding to the 
formula which we have just seen something called the finite popula-
tion correlation factor. Now we have 

*-(4V('-S) 
where n is sample size and N is population size. 

But having seen how to calculate an estimate for the standard 
error of the mean, how does this help us to arrive at an estimate of 
the population mean in which we can have some specified degree 
of confidence ? The answer to this is that it depends on some proper-
ties of the normal distribution, which we have seen in an earlier 
chapter. 

Recapitulating the ground just covered we can say that the distri-
bution of interest to us if we are to obtain the estimate we want is 
the notional distribution of sample means, whose standard devia-
tion, the standard error of the mean, we have just seen how to 
calculate. It can be shown, again by means of statistical theory 
which we cannot go into, that so long as the sample size is reason-
ably large, greater than, say, 30 or so, the shape of this distribution 
of means will be normal, even when the shape of the population is 
not normal but is quite skew. As we saw earlier (chapter 8), it is 
characteristic of the normal distribution that there will be a constant 
proportion of the observations within a given number of standard 
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deviations either side of the mean. Thus, if we have a normal 
distribution of sample means we can say, for example, that 68.2% 
of the means will fall within one standard error either side of the 
overall mean ; or that 95 % of the means will fall within 1.96 stan-
dard deviations either side. 

True population mean 
(fixed but unknown) 

Figure 14.1. Relationship between population mean and a 
series of sample means ; each bar shows a sample mean and 
the range covered by a fixed number of standard errors. 

Since this overall mean is the population mean in which we are 
interested, we can say, for example, that the means of 95% of the 
simple random samples which we select from this population will 
fall within 1.96 standard errors of the population mean. However, 
since we don't know the population mean we have to work this the 
other way round : for 95 % of the samples drawn from the popula-
tion a distance of 1.96 standard errors either side of the sample 
mean will include the true population mean ; for 5 % of the samples 
it will not. Of course we can change the percentages by changing the 
number of standard errors. What is involved may be usefully illus-
trated by a diagram (figure 14.1). The procedure enables us to 
produce a confidence interval : a range within which our parameter 
should lie, with a specified level of probability, the range being 
expressed in terms of the number of standard errors associated with 
the level of probability in which we are interested. 

It's now about time that this theoretical discussion was illustrated 
by means of a simple example. Let us suppose that we have selected 
a simple random sample (we'll see how this is done later) of 50 
arrowheads from a collection of 2000, for the purpose of obtaining 
an estimate of the mean length for the collection as a whole, and 
that we want our estimate to have a 95% probability of being 
correct. We will suppose that our measurements have produced a 
mean length for our sample of 22.6 mm, with a standard deviation 
of 4.2 mm. The first step is to obtain the standard error of the mean. 
Using the formula 
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•-(^V('-5) 
we have 

** \ V 5 Ö / \ \ 2ÖÖÖ/ 
= (0.594) (0.987) = 0.586 

The sample mean, as we have seen, is 22.6 mm. In order to obtain 
an interval which will have a 95% probability of including the 
population mean and assuming that the notional distribution of 
sample means is normal, we know that we have to take an interval 
of 1.96 standard errors either side of the sample mean. Thus, our 
interval is defined by the sample mean ± 1.96 standard errors. Here 

22.6 ± (1.96)(0.586) = 22.6 ± 1.15 
and we can say that there is a 95 % probability that the mean length 
of the collection of arrowheads as a whole lies in the interval 
21.45-23.75 mm. We may, of course, have been unlucky and the 
simple random sample we have selected may be one of the 5 % 
which does not include the true population mean. If we are worried 
about this we can decide to increase our probability of being cor-
rect, but only at the expense of widening the interval within which 
the population mean is estimated to lie. Thus, if we want a proba-
bility of 99 % of being correct, then to include 99 % of a distribution 
we have to go out 2.58 standard errors either side of our sample 
mean. In this case 

22.6 ± (2.58)(0.586) = 22.6 ± 1.51 
so there is a 99 % probability that the mean length of the population 
of arrowheads lies between 21.09 and 24.11 mm. 

For constructing a confidence interval in general we can write 

where Za is the Z score, or number of standard deviations, asso-
ciated with a particular probability level. 

Here we must interject a brief footnote. Using the Z score, as we 
have done throughout our example, is perfectly satisfactory if our 
sample size is larger than say 40 or so, but if it is smaller then we 
have to take account of the fact that s, our estimate of the popula-
tion standard deviation, is itself of course based on a sample and 
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that different samples will produce different values for it. Small 
samples will in general be more variable from one to the next and 
we have to take account of this by using in our estimates not the 
normal distribution but Student's t distribution (see e.g. Blalock 
1972, 188-93), which varies in the proportion of observations 
within a given number of standard deviations of the mean according 
to the size of the sample, converging on the normal distribution as 
the sample size gets larger. Thus, instead of the formula above we 
have 

where ία d f is the t value for a given number of degrees of freedom 
( = n - 1 ), associated with a particular probability level (see appen-
dix 1, table c; note that for the boundaries of the confidence 
interval you need to use t for the 2-sided test, i.e. the 2a row at the 
top of the table). 

Let us return to the main thread of our argument. In our arrow-
head example we supposed that we already had a sample of a 
given size and on the basis of that we were able to construct a 
confidence interval. This is all very well, but in the situation in 
which we find ourselves at the beginning of the archaeological 
investigation for which we only have limited resources, one of the 
key questions is precisely how large a sample we should select. If it 
is too small the confidence intervals for our estimates of the quan-
tities in which we are interested will be too wide to be of any use ; if 
it is larger than we need then resources are being wasted which 
could be used for something else. How then can we calculate a 
required sample size ? 

Let us look again at the formula for constructing a confidence 
interval, assuming that we are dealing with the normal distribution 
and ignoring for a moment the finite population correction. The 
formula for the interval around the mean is 

Let us designate this tolerance (or ± ) factor as d. We then have 

This can be rearranged to give 
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We have then a formula for estimating what the sample size should 
be in a given case, provided that we can specify the three quantities 
on the right-hand side of the equation. 

Fixing a value for Za is straightforward enough : it is simply a 
matter of deciding on the probability we wish to have that our 
interval will include the parameter in which we are interested. 
Specifying the tolerance, the ± factor, which we are prepared to 
accept, is also straightforward enough in principle, although less so 
in practice. Why should we decide on any particular tolerance 
value? Ideally, it should stem from the specific question which we 
are investigating, but in practice the decision may be rather arbit-
rary. The point is that if we are prepared to settle for an estimate 
with an error factor rather than insisting on obtaining the exact 
value of the population parameter, we can save a great deal of effort 
in terms of the number of units or items we have to examine. 

The third quantity, s, has been written in lower case here and 
throughout because although it is the population standard devia-
tion, S, which interests us, we have been using s, the sample-based 
estimate of 5, since the latter is, of course, unknown. When we wish 
to calculate a sample size, however, even obtaining s is problemati-
cal. In the case of constructing a confidence interval we could 
obtain it from our sample. Before taking the sample, trying to 
decide on the sample size, we are not in this position ! What can we 
do? 

In general terms there are two possible answers, neither of which 
is ideal. One is to carry out some sort of pilot study on the popula-
tion of interest, before the main investigation, and thus obtain a 
preliminary sample-based estimate of the population standard de-
viation with which to work. Another is to use the results of previous 
work on similar populations which has already produced variability 
estimates. In both cases we might want to increase the resulting 
estimate of the population standard deviation slightly in case it 
turns out to be an underestimate and our confidence intervals end 
up being wider than we would wish. 

Having used the formula presented above to obtain an initial 
estimate of the required sample size we should then consider 

or 
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whether or not this represents a sufficiently large fraction of the 
total population for the finite population correction to be required. 
To obtain the required size taking the sampling fraction into ac-
count we have 

where N is the population size and n is the sample size as initially 
calculated. 

At this point it is worth going through a numerical example of 
calculating the correct sample size to estimate a mean, to see how 
the procedure is carried out (cf. Van der Veen and Fieller 1982). 
Let us look again at our 2000 hypothetical arrowheads and ask how 
many we should measure in order to estimate their mean length, on 
the assumption of selection by means of simple random sampling. 
Prior knowledge tells us that such a distribution of lengths will 
probably have a tendency to be positively skewed, i.e. have a long 
positive tail, but this skewness is unlikely to be so great as to have a 
major effect on the normality of the notional distribution of sample 
means, which is what matters. Applying the formula 

-W 
we need to fill in some numbers : 

Za : we will assume that we are interested in the 95 % probability 
level so this may be set at 1.96. 

s: we will assume that we have selected a small number of 
arrowheads for measurement as a pilot samp.j and that this has 
given us a value of 4.00 mm as an estimate of the population 
standard deviation. To be on the safe side we have decided to 
increase this by 1.0 mm and to use an estimate of 5.0 mm for the 
population standard deviation. 

d : we will assume that we want to estimate the mean within a 
tolerance of ± 1.0 mm, an effectively arbitrary decision. 

/ 1.96 x 5.0 V _ 

""l-Tö-j =96 

Applying the finite population correction 

l + "//v 
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1 + 96/2000 

In this case, because n is such a small fraction of N, applying the 
finite population correction does not make a great deal of differ-
ence. 

To show the difference that varying the tolerance makes, let us 
recalculate the sample size figure supposing that we will be satisfied 
with a tolerance of ±2.0 mm, instead of 1.0 mm. 

/ l . 9 6 x 5 . 0 \ 2 _ 

Alternatively, if we wanted it to within ±0.5 mm : 
/ l . 9 6 x 5 . 0 \ 2

 00/1 
n = \ - ^ - ) =384 

It is obviously worth giving the matter of the tolerance level some 
thought, as it has an enormous efect on the required sample size. 

It may be, of course, that our sample size is going to be deter-
mined simply by the amount of time and money available. On the 
basis of knowledge of the cost of collecting information on one 
item, or of experiments or prior knowledge of the time taken to 
collect it, we may know our maximum number in advance. If, given 
an estimate of the likely population standard deviation, it turns out 
that a sample of this size will only produce a confidence interval 
which is too wide to be at all informative about the parameter in 
question, then we really need to rethink our whole project. 

ESTIMATING TOTALS 

Now that we have seen the procedure for estimating the confidence 
interval for a population mean with a given probability level, and 
how to rearrange the information to estimate required sample 
sizes, we can look at the question of estimating population totals; 
this can be done much more briefly since it is closely related to what 
we have just seen. 

You may be puzzled by the whole idea of estimating a total. After 
all, do we not in effect need to have a total list of our population in 
order to select a sample ? The answer is that the list of items which 
we are sampling may not be the same as the list of items in which we 
are interested. An archaeological example arises in regional survey. 
A normal procedure would be to divide the region up into a number 
of squares and to sample the squares : the squares then form the list 
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of items we are sampling, a list we can completely enumerate if 
required. What we are interested in, however, will never be the 
total number of squares, but it may be the total number of sites 
within the area, perhaps of a particular type or period. To find this 
we will need to have a sample-based estimate of the mean number 
of sites per square which can then be multiplied up by the total 
number of squares. We can write this as 

xT = Nx 

where xT is the total number of items of interest, x is the mean 
number of items of interest per sample unit, and N is the total 
number of sample units in the population. 

This is straightforward enough, but, as with estimating the mean, 
we are generally not just interested in a point estimate but in being 
able to specify an interval within which the total should lie with a 
given degree of probability. Fortunately, this too is very easy. As 
you might expect, it is simply a matter of including N in the formulae 
for obtaining confidence intervals and sample sizes which we have 
already seen for the mean. Thus, for the confidence interval we 
have 

-H4)A/( ' -*) 
with ία d f substituted for Za with small sample sizes. And for the 
sample size calculation we have 

and, as before 

\+n/N 

ESTIMATING A POPULATION PROPORTION 

This is something rather different from the two cases we have 
looked at so far but it is a situation which arises frequently in 
archaeology. We may, for example, want to estimate the propor-
tion of sherds in an assemblage with some specified characteristic 
on the basis of a simple random sample from the assemblage; 
perhaps the proportion of a lithic assemblage characterised by a 
certain type of retouch. The difference between this and the pre-
vious examples lies not in what we are trying to do but in the simple 
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structure of the values in the population and the sample, which can 
only take one of two states : a particular sherd, for example, either 
has the characteristic in question or it does not. 

As with the mean, the best estimate of a population proportion 
will be the corresponding sample proportion, but again we want a 
confidence interval, and for this we need to know the standard error 
of the proportion. 

The standard deviation of a population of ones and zeros is 
[P(l — P)Y\ where P is the proportion of interest. This can be 
estimated using p, the sample proportion. To obtain the standard 
error of the proportion we must divide this by Vn, the square root 
of the sample size, as with the mean. Thus, the standard error of the 
proportion is [p(l-p)/n]/2. 

Obviously the shape of such a distribution is not going to be 
normal. Nevertheless, the shape of the notional distribution of 
sample means will be, so long as the sample is reasonably large, say 
greater than 50. In these circumstances we can once again construct 
the confidence interval by multiplying the standard error of the 
proportion by Za, the number of standard deviations corresponding 
to the probability level in which we are interested, since the distri-
bution is a normal one. Finally, the finite population correction 
factor has the same role as before. Thus a confidence interval for P, 
the population proportion, will be given by 

where p is the sample proportion. 
This is straightforward enough when we have the information 

from a sample and want to construct a confidence interval for P on 
the basis of it, but how do we estimate sample size ? We saw above, 
when looking at confidence intervals for the mean, that if we desig-
nate the interval either side of the mean which we are prepared to 
accept as d, we have (forgetting about the finite population correc-
tion for the moment) 

And we could rearrange this to give 

If we now do this for the case of proportions we have 
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Rearranging this gives us 

n_Zl[p(l-p)] 
H~ d2 

This tells us that in order to calculate an appropriate sample size to 
obtain an estimate of a proportion with a certain level of probability 
we first need to make an estimate of what the proportion is ! This 
seems pretty Alice-in-Wonderland stuff even by the standards of 
statistics. Fortunately it is not quite as bad as it looks. 

For a given tolerance and a given probability level, the maximum 
sample size n we will need will be when/?( 1 — p ) takes the maximum 
value it can possibly take. Quite simply, this will be when p-
( 1 — p) = Vi. The product of the two in this case will be lA and the 
product of no other pair of values will be so great. In other words, 
in the case of proportions, unlike other means and totals, we can 
always find the maximum size of the sample we will need to attain a 
certain tolerance with a certain probability simply by assuming that 
the population proportions P and ( 1 - P) are Vz - we don't need to 
bother estimating them with sample proportions at all. 

For actual values of P between about 0.3 and 0.7 this maximum 
value will not be too extravagant an estimate of the required sample 
size for a given confidence interval. On the other hand, as P gets 
larger or smaller than this, the required n begins to decrease fairly 
considerably so assuming P = xh will create a fairly large amount of 
unnecessary work. In many cases, however, it will be possible to 
have a reasoned guess as to whether the proportional occurrence 
we are investigating is very rare or very common (one is obviously 
the converse of the other), or only reasonably frequent. 

As with the other sample size estimates we have seen we can 
correct for the sampling fraction 

It remains to consider an example of estimating the required 
sample size for a proportion. A researcher working in the Shetland 
Islands ( Winham 1978) wanted to know how many of the known 
sites to visit to obtain information on their locational characteris-
tics, for example the proportion on particular soil types. He decided 
he wanted his estimates of the proportions of sites having particular 



So the necessary sample size for the required degree of precision 
and probability level is 98 sites selected by simple random sampling. 

SELECTING A SAMPLE 

At this point we have seen a great deal about constructing confi-
dence intervals and estimating required sample sizes on the basis of 
simple random samples but we have not yet specified what a simple 
random sample is or how to go about selecting one. 

To select any sample at all it is obvious that we need a set of 
sampling units: discrete, definable entities amongst which samples 
may be chosen. The list of sampling units from which samples may 
be drawn is known as the sampling frame. Without a sampling 
frame containing the list of all the items in the population which we 
wish to sample we cannot go any further. 

It is important to emphasise again here that the sample units 
making up the list do not have to be the real items of interest : they 
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characteristics to have a tolerance of ± 7 %, with a 95 % probability. 
He did not have any prior information and furthermore he wanted 
to estimate the proportions for a number of different characteristics 
at the same time and there was every reason to believe that these 
would occur with widely differing frequencies. He therefore adopt-
ed the most conservative hypothesis of assuming P= V2, giving the 
largest possible sample size. The population total was 198 sites. To 
find the necessary sample size 

In this case 

Substituting numbers : 

This is nearly the whole population so we obviously need to take the 
finite population correction into account 
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may merely contain them. Thus, in an archaeological context, the 
fact that before we excavate a site we do not usually know how 
many features there will be, and that if we did know this, for some 
purposes at least we would not need to bother taking a sample, is 
completely irrelevant to the process of taking a sample. In all such 
cases we can sample from known populations which contain the one 
in which we are interested. At the regional level we can sample 
units of land and at the site level grid squares. It is then possible to 
discuss the attributes of these arbitrary units and talk about, for 
example, the number of sites per km2, or the number of sherds per 
grid square. Or we can talk about aspects of the sites or artefacts 
themselves, in which case any statistical inference procedures have 
to take into account the fact that they are dealing with cluster 
samples (see below). 

A simple random sample is a sample which has the characteristic 
that any individual, and any combination of individuals, has an 
equal chance of occurring in the sample. Such a sample can be 
obtained by drawing members from the population one at a time 
without replacement ; this means that once an item has been selected 
it is withdrawn from the selection pool and does not have a second 
chance of being chosen. 

The mechanism of choice is generally a random numbers table 
(see appendix 1, table D). The sampling units in the population are 
numbered in sequence. As many random numbers are selected 
from the table as are required to give a sample of the size decided, 
subject to the stipulation that if a number comes up which has 
already occurred it is ignored. How is the table to be read? 

Suppose the case we saw above where we wanted to select 50 
arrowheads from 2000, and each arrowhead has been given a num-
ber from 1 to 2000. Because 2000 is a four-digit number we need 
four-digit random numbers; these are obtained by reading four 
adjacent digits together from the random numbers table; a small 
extract from one is presented here to illustrate the procedure : 

10 09 73 25 
37 54 20 48 
08 42 26 84 
99 01 90 25 

We don't need to start at the top of the table and we can make our 
blocks of four digits by amalgamating any adjacent four. We might, 
for example, begin with the second row and the fourth digit across. 
Reading across and then down we would have 4204, 2268, 1902. 
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Since only one of these falls within the range 1-2000 only this one 
is selected, the other two are ignored. You continue reading the 
table until the required number of numbers has been selected, 
without duplication. 

If the population contained only 100 elements (0-99, or 1-100 
with 00 counting as 100) then only two-digit numbers would be 
required. 

If the sampling units are spatial ones defined in terms of a grid 
over an area, individual units can be selected by means of two 
random numbers specifying the coordinates of a corner of the unit. 

If the required sample size is large the process of selecting a series 
of numbers by hand from a table can be a laborious one and it will 
be quicker to use one of the random number generators available in 
many suites of statistical computer programs. You should be careful 
when using these, however, because many of them produce a fixed 
set of numbers that you will obtain every time unless you take 
explicit action to randomise the starting point. 

ALTERNATIVES TO SIMPLE RANDOM SAMPLING 

Simple random sampling is a widely used procedure and it is easy to 
operate from a statistical point of view. Nevertheless, there will 
very often be circumstances in which we want to use one of 
the more complex procedures, because (a) they are often more 
efficient than simple random sampling in the sense that a more 
precise estimate will be obtained from the same number of sample 
units; (b) they are often much easier to carry out in practice than 
simple random sampling; (c) our aims may require us to use an 
alternative method ; (d) sometimes, for archaeological reasons, we 
have no choice (e.g. we may have to use cluster samples (see 
below)). 

Stratified Random Sampling 
In a stratified random sample the sampled population is divided 
into a number of strata (nothing to do with archaeological layers) 
or subdivisions and an independent random sample is taken from 
each stratum. The subdivisions are decided by the investigator and 
are often chosen so that there is some difference between them. For 
example, if an archaeological survey of a region is being carried out 
it may be decided to divide the region into environmental zones on 
the basis of some criterion and to sample independently within each 
zone ; or if a site is being excavated and it appears from preliminary 
work that it is functionally differentiated, then each of the function-
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ally different sections may be sampled. The subdivisions may, how-
ever, be more or less arbitrary. 

The reasons for stratifying are usually the advantages it has over 
simple random sampling in two respects. First of all, an appropriate 
stratification can ensure that all parts of our population are 
sampled. Simple random sampling does not guarantee this since 
some parts of the list of units may be heavily sampled and others 
hardly at all, purely on the basis of chance. This will not matter to 
the obtaining of some overall estimate for the population as a 
whole, but more often than not we are interested in internal com-
parisons within our sample, as in the examples just given; or, for 
example, if we are selecting a sample of sherds from a multi-period 
site for scientific analysis, we will probably want to ensure that all 
the periods, or only certain specific ones, are represented. In re-
gional sampling we may simply want to ensure that all parts of the 
region are examined, without regard to any question of environ-
mental or other variation between them. 

The second reason for stratifying is that if the population charac-
teristic of interest is more homogeneously distributed within the 
strata than between them (i.e. there is variation between strata but 
not within them), then the precision of the overall estimate ob-
tained will be greater for a given number of sample units than with 
simple random sampling. 

The formula for the standard error of the mean based on a 
stratified sample is as follows (Dixon and Leach 1978) : 

= /Σ(ηΑ) 2(1-"/ν) 
*strat -y n2 

where n, is the number of units in the sample from stratum /, s, is the 
standard deviation in stratum /, n is the total number of units in the 
sample, and k is the total number of strata. If different fractions of 
each stratum were sampled, however, the formula would need to 
be altered to take this into account (see, for example, Dixon and 
Leach 1978, 19-21). 

Systematic Sampling 
With this technique (which is in fact a special case of cluster sampl-
ing) the interval between the sample points is fixed by the relation 
between the size of the proposed sample and the size of the popula-
tion. Thus, if we wanted to select a sample of 30 from a population 
of 300 we would select every 300/30th item - every 10th in other 
words. Whether the 1st, 11th, 21st, etc., are chosen, or the 5th, 
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15th, 25th, etc., or whatever, is determined by selecting a random 
number between 1 and 10 for the starting point. 

The reasons for selecting a systematic sample generally tend to 
be those of practical convenience ; it is often more straightforward 
to sample in this way. The other reason, especially if we are talking 
about sampling in archaeological survey or excavation, is that we 
will normally want our sample to serve a number of different pur-
poses, of which estimating population characteristics will only be 
one. In these circumstances a systematic sample might be taken as 
a compromise in the face of conflicting demands. 

From the strict statistical and estimation point of view systematic 
samples present undoubted problems, in particular for the calcula-
tion of an estimate of the standard error of the statistic of interest. 
These arise because of the lack of independence of the elements of 
the sample and because of the possibility that there may be periodi-
cities in the values of the population elements being sampled. This 
is particularly likely to be the case in the sampling of spatial distribu-
tions. On a settlement excavation, for example, a regular grid of 
sampling units at a given interval might find all the houses or miss 
them, if, as is likely, they were systematically distributed in some 
way. Whichever turned out to be the case any estimate of the total 
number of houses on the site based on the number in the sample 
would prove erroneous (cf. Winter 1976). 

A variety of reactions is possible in the face of these well-known 
difficulties presented by systematic samples for the calculation of 
standard errors. One is never to use them at all (cf. Doran and 
Hodson 1975), which is probably the best solution but may be 
excluded in a given situation for practical and non-statistical rea-
sons. Another is to use one of the formulae presented by Cochran 
(1977, 224-7) for obtaining the standard error, each of which is 
only applicable in certain situations. The problem here is that their 
use involves prior knowledge of the structure of the population 
which we are sampling in order to use an appropriate method ; such 
knowledge may not be available. In the particular case where the 
order of the items in the sampling frame has been randomised, or 
can be assumed to be random, then the systematic sample can be 
effectively treated as a simple random sample (Cochran 1977, 214-
16) and the same formula for the standard error used. Nevertheless, 
this option should be used with caution since periodicities and 
trends within the population may not be at all obvious. 

A further approach has been adopted by Bellhouse in an archaeo-
logical context (Bellhouse 1980, Bellhouse and Finlayson 1979). 
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It is in effect an extension of the idea of using prior knowledge and 
involves the use of a computer program which calculates the out-
come of different sampling schemes, including systematic sampling, 
in terms of the standard error of the estimate, for estimates of 
means, totals and ratios. The problem is that in order to provide an 
appropriate sampling scheme for a particular case, whether region 
or site, the method presupposes that complete information is avail-
able for a similar region or site, in order to provide the information 
on which the performance of the sampling schemes may be assessed. 

The question of spatial or area sampling to which this discussion 
(and systematic sampling in general) is particularly relevant is 
considered again below. 

Cluster Sampling 
It is most straightforward to describe what is involved in cluster 
sampling with relation to the other methods which have been de-
scribed already. 

We saw that in stratified sampling the population is subdivided 
into groups called strata and each stratum is sampled. In cluster 
sampling the population is again subdivided into groups but some 
groups are selected for examination and not others. As you might 
expect, and as we will see below, the principles on which the 
subdivision is based are different in the two cases. 

An archaeological example of the differences between these two 
approaches, contrasted with simple random sampling as well, will 
help to make the differences clearer. Let us suppose that a large 
number of pits has been excavated at a site. We are interested in 
studying the pottery from them but we do not have the resources to 
study all of it so a sample must be taken. 

If we were taking a simple random sample of the pottery we 
would treat all the pottery from all the pits as the population and 
select randomly from that population without regard to the pits 
from which the pottery came. It is likely that such a procedure 
would be extremely difficult to put into practice because of the way 
material is stored and organised after an excavation, and also that 
some pits would not be represented in the sample while others 
would only have very few sherds selected. 

If we were using stratified random sampling we could take the 
individual pits as our strata and select a random sample of pottery 
from within each pit. Although this would be very good from the 
point of view of estimating various properties of the population, it 
would still almost certainly be very laborious to put into operation 
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because we would have to organise the procedure of selecting a 
random sample from the finds bags for each pit. 

The cluster sampling approach would be to take a random sample 
of pits and study the pottery from the pits selected. This would have 
the disadvantage that not all of the pits would be examined, and 
that cluster samples almost always give greater sampling errors 
than simple random samples of the same size. On the other hand, it 
would almost certainly be the easiest procedure to put into practice, 
probably by a considerable margin, which would mean that we 
could, if we chose, actually look at more pottery. 

In cluster sampling then we do not sample among our units of 
interest directly but among clusters or groups of sample units. The 
example just described is very characteristic of the kind of situation 
which occurs in archaeology; often there is not a great deal of 
choice about dealing with cluster samples. 

The main problem with clusters, for example the contents of our 
pits discussed above, is that they tend to be relatively homogeneous 
and any single cluster is likely to represent only a fraction of the full 
range of variation in the population as a whole. This means that in 
selecting only certain clusters we may be failing to consider some of 
the variation in the population, which will simply not be repre-
sented in the sample ; alternatively our sample may include some 
unusual clusters. In neither case will we get a very good estimate of 
the standard error of the characteristic in which we are interested. 
Ideally what we want of clusters, therefore, is that they should be 
heterogeneous, incorporating a wide range of the population varia-
tion so that omitting some clusters from consideration isn't going to 
make a lot of difference. In stratified sampling, on the other hand, 
every stratum is represented by a sample of units ; accordingly, our 
sampling errors arise from variability within the strata so that we 
want the individual strata to be as homogeneous as possible. 

To sum up then. Strata are preferable on the whole, in the sense 
that their use can decrease the standard error of the estimate when 
compared with simple random sampling. Cluster samples are very 
often unavoidable for practical reasons but will usually give larger 
standard errors than using simple random sampling. Sometimes, 
however, strata can be less efficient and clusters more efficient than 
simple random sampling. Dixon and Leach (1978, 22) suggest that 
rather than using the simple random sampling formula for calculat-
ing the standard error of an estimate for cluster samples we should 
apply a correlation factor. They suggest that a quick way of doing 
this is to use a factor of 1.5 as a reasonable 'rule of thumb' figure 
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based on experience. Thus, for a confidence interval, instead of 

PROBABILISTIC SAMPLING 

OF POPULATIONS WITH A SPATIAL DIMENSION 

Now that the main techniques of probabilistic sampling and the 
concepts behind them have been outlined, it is necessary to go on 
to a discussion of their use in an archaeological context. The prob-
lems which this raises arise mostly in the context of the survey and 
excavation of regions and sites and they are of two kinds : technical 
difficulties in the use of probabilistic sampling, and wider questions 
of the relevance of probabilistic sampling at all in the light of the 
aims of survey and excavation projects. This section is concerned 
with the first of these two topics. 

As we have noted already, both regional and site sampling in-
volve sampling units of space for unknown distributions. The prob-
lems for probabilistic sampling arise from the spatial distribution of 
observations within and between the sampling units. 

In the first place, the distribution of the number of items per 
spatial unit is very often highly skewed - a standard model for such 
distributions is the Poisson distribution (see, for example, Hodder 
and Orton 1976, 33-8). Although Ihm (1978, 293-4) has pre-
sented, in an archaeological context, a formula for obtaining a 
confidence interval for the mean of a Poisson distribution, this 
author at least has never seen such a formula used in a case-study. 
Archaeologists seem always to have used the standard estimation 
procedure described in this chapter which presupposes that the 
sampling distribution of sample means is normal. We saw above 
that for this to hold the sample size must be sufficiently large and 
Thomas ( 1975) showed that 'sufficiently large' can mean very large 
indeed if the skewness is as great as it often is with spatial distribu-
tions. 

we would have 

and for calculating sample size 
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More intractable than this, however, is the problem that items 

are rarely scattered randomly over space but deviate from this 
pattern, usually in the direction of clumping or aggregation. It is 
this problem of aggregation which has meant that most archaeo-
logical investigations of spatial sampling techniques, whether at 
the site or regional scale, have been essentially ad hoc empirical 
investigations (see, e.g., Plog 1976), with all that is implied by that 
statement concerning limitations in their significance. They have 
not been soundly based in theory because the consequences 
of aggregation have not been explored in a theoretically based 
fashion. 

Some of the most interesting work on this and a number of other 
problems associated with spatial sampling has been carried out by 
Nance (1981, 1983), largely using perfectly standard results from 
statistical theory but working at a level of statistical sophistication 
considerably in advance of that used in most earlier applications 
and much more relevant to archaeological problems. In particular, 
he has used the negative binomial distribution (see e.g. Hodder 
and Orton 1976, 86-97) for describing spatial distributions and 
shown how increasing aggregation drastically increases the stan-
dard error of any estimates. 

Nance has also examined a rather different but important sampl-
ing question to which relatively little attention has been given 
compared with that devoted to obtaining assessments of the pre-
cision of estimates : the question of discovery probabilities, i.e. the 
number of sampling units required on average to discover the 
presence of some phenomenon among the sampling units ; or con-
versely, for a given sample size, the probability that at least one 
sampling unit will contain an example of the phenomenon, for 
items of varying degrees of rarity. Here too aggregation is impor-
tant since as it increases - as the number of items concentrates into 
an increasingly small number of the sampling units - discovery 
probabilities decrease. 

Finally, Nance has also applied these ideas to another problem of 
considerable importance in regional sampling. Surface survey and 
sampling techniques were first developed in their modern form in 
the arid regions of the western and south-western United States, 
where surface visibility of finds is generally extremely good. Since 
then attention has been drawn frequently to the problems of such 
techniques where surface visibility is poor (e.g. Wobst 1983). In 
the United States, in the context of the very large funds available 
for contract archaeology, attempts have been made to overcome 
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the difficulties by excavating small test pits within the larger sampl-
ing units. Naturally, the question has arisen of the statistical proper-
ties of such observations and the inferences which may validly be 
drawn from them (Lovis 1976, Nance 1983, Nance and Ball 1986, 
Wobst 1983). Nance's work on discovery probabilities and esti-
mation in such situations again provides a basis for planning future 
designs and assessing the limitations of current ones. McManamon 
(1981) has used these techniques in estimating site densities in 
different environmental strata on Cape Cod. In principle then it is 
possible to use distributions of shovel test pits in a rigorous fashion, 
in a similar way to the use of surface collection. Whether the 
practical problems posed by digging such pits can always be over-
come is another matter. In particular, the small sample sizes which 
are practically feasible, relative to the rarity in the landscape of the 
items being sought, are a major obstacle to achieving worthwhile 
estimates (see Wobst 1983). 

Bellhouse's approach (Bellhouse 1980, Bellhouse and Finlayson 
1979) to improving spatial sampling methods has been referred to 
already during the discussion of systematic sampling, as have the 
problems associated with it. Despite these it may prove very useful 
in particular situations, and if it is widely used some generalisations 
may begin to emerge. 

The concentration here on aspects of spatial sampling is a reflec-
tion both of the importance of fieldwork in the archaeological 
research process and of the considerable problems from a sampling 
point of view inherent in it. The manipulation of the data collected 
is no less important but their characteristics are, of course, ulti-
mately dependent on the fieldwork; furthermore, the intrinsic 
problems associated with assemblage sampling are not as great, for 
several reasons. First, the spatial dimension has been removed 
from consideration, except as a basis for stratifying the sample. 
Second, the external non-statistical constraints, while they exist, 
are less complex and less powerful. Finally, there is usually a 
considerable amount of redundancy present in the populations, in 
contrast to the situation at site and regional level, so that sampling 
really can make a difference as far as saving time and money are 
concerned. The redundancy stems from two main sources: the 
inherently greater complexity and variability present at the site and 
regional levels, and the sheer number of items available for study at 
the assemblage level. It tends to be forgotten in many archaeo-
logical discussions of sampling that the most important feature of 
samples as far as estimation is concerned is their size and not the 
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sampling fraction ; the fraction required of very large populations 
can often be minute. It might be necessary to examine 100 artefacts 
to obtain some estimate of interest and this could easily be a tiny 
percentage of the available artefact population. In contrast, if some 
problem required information from 100 sites this could well repre-
sent a large proportion of the sites in an area. It goes without saying 
that carrying out an investigation on 100 artefacts is something on a 
rather smaller scale than investigating 100 sites ! 

On the other hand, however, Nance (1981) has demonstrated 
that for some purposes at least it is not the total number of items in 
the collection which is important but the number of clusters (exca-
vation or surface collection units) from which they come, so the 
issues are not always straightforward. 

SAMPLING AND ARCHAEOLOGICAL AIMS: 

ALTERNATIVES TO PARAMETER ESTIMATION 

We have seen that probability sampling is concerned with giving us 
estimates whose reliability and precision we can assess of aggregate 
population characteristics. We also noted at the beginning of the 
chapter that whether such measures will be of interest to us depends 
on what our aims are. More often than not, in fact, we are interested 
in variation within our site or region so that some overall blanket 
measure of some characteristic is not particularly helpful. 

The answer to this in sampling terms is the process of stratifica-
tion described above. If we are interested in whether there are any 
differences between certain parts of our site or area then we can 
divide it up into strata and sample each part separately. Neverthe-
less, although in principle stratification can be a good idea, its use 
can also raise major problems, both at site and regional level. For 
example, the question of whether we have enough information to 
produce a stratification cannot be lightly dismissed, nor can the 
possibility that in devising and applying a stratification scheme we 
will simply perpetuate existing biases in our information. 

In the regional case problems arise because it is rarely feasible to 
carry out a regional survey devoted to a particular period or prob-
lem : covering the ground is generally so expensive that we only 
want to do it once and to collect information on all periods when 
doing it. There is usually no reason to believe that the factors 
affecting site or find density will be constant for all periods, indeed 
this is highly unlikely. The consequence of this is that a stratification 
relevant for one period will not be relevant for another, and the 
application of a number of different cross-cutting stratification 
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schemes is likely to be impossibly unwieldy in practice. 

The same problem also arises with multi-period sites, of course, 
which present very intractable problems if they are deeply strati-
fied. However, there is also another problem at the site level, which 
arises both from the destructive nature of excavation and again the 
expense associated with it. When excavating we are invariably 
interested in the characteristics of a number of different populations 
- pottery of different types, animal bones, seeds, structures, lithics, 
etc. - and it is unlikely that these will be spatially distributed across 
the site in the same kind of way : a stratification relevant to obtain-
ing good estimates of population characteristics for one will not 
necessarily be good for the others. Integration of different aims 
remains a major excavation problem. 

Even when stratified sampling can be carried out, however, it will 
not be satisfactory for obtaining certain kinds of spatial informa-
tion. It has long been pointed out (e.g. Redman 1974) that in a 
given case investigations of both regions and sites are likely to 
involve both a probabilistic and non-probabilistic element, and that 
to obtain full information on spatial patterning in an area may well 
involve total coverage of that area, whether by survey or excava-
tion, in order to produce a complete map or plan. Nevertheless, 
even with so-called total coverage we cannot escape sampling con-
siderations, because the question arises of how intensive our cover-
age should be if we are to recover rare elements in the population 
from a surface survey, or how intensive soil processing should be to 
recover, for example, plant remains or lithic debitage (cf. the 
discussion of Nance's work above). 

On the positive side, however, total continuous coverage is not 
always necessary to make statements about spatial patterning. De-
spite what was said above about the limited use of aggregate de-
scriptive statistics for telling us about internal variation, there are 
certain overall statistics which can be calculated on the basis of 
sample data and which tell us in a general way about spatial pattern-
ing, in particular concerning the extent to which the distribution is 
clustered, random or dispersed. Morisita's index of dispersion, for 
example (see e.g. Rogge and Fuller 1977, Shennan 1985), unlike 
nearest neighbour analysis or the usual forms of quadrat analysis 
(see Hodder and Orton 1976) only requires data on the frequencies 
of sites per sample unit and these units need not be contiguous. 
Given the problems posed by clustering or aggregation for para-
meter estimation discussed above, assessing its extent seems an 
important prerequisite for the evaluation of other estimates. Plog 
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(1974) has discussed other useful aspects of spatial pattern which 
can be assessed by means of such general indices. 

But even when we want detailed information on spatial pattern-
ing total coverage may not always be required and is certainly not 
always feasible. For some mapping purposes the use of sample-
based data is satisfactory, but we are not using the sample for 
parameter estimation purposes so the criteria for what is a good 
sample will be different. The most important criterion is spatial 
regularity: there has to be a systematic element in the sampling 
scheme, so that observations are recorded in all areas of interest. 
The paradigm here is the site contour survey, in which a regular grid 
for observations is laid out, a measurement is taken at each and the 
contours are then interpolated. In a contour survey, however, it is 
possible to see where the slope is going between the data points, so 
we know whether or not they are representative and can, if neces-
sary, take extra readings if a particular point on the grid is obviously 
unrepresentative, or if there are local variations in slope which the 
grid observations do not characterise sufficiently. When we are 
interpolating patterns of spatial variation in archaeological distribu-
tions, on the other hand, we are in the dark, just as with parameter 
estimation, and cannot see when problems arise. 

From this point of view, although an essentially even distribution 
of data points is essential, systematic samples present problems just 
as great as they do for parameter estimation : regularities in the 
distributions, such as that of houses on settlements referred to 
above, are potentially equally disastrous from both points of view. 
The answer which has been proposed by geographers faced with 
similar kinds of problem is the use of stratified systematic unaligned 
sampling (see e.g. Haggett etal. 1977, 272-4). This is illustrated in 
figure 14.2. 

First of all the area is divided into grid squares. We then start with 
the bottom left or top left square and use two random numbers to 
define the coordinates of a point within this square (figure 14.2a). 
All grid squares along the top or bottom row of the area are then 
given the same x coordinate as the first square but the y coordinate 
for each square is selected by random numbers (14.2b). Similarly, 
all squares along the left-hand margin of the area have the same y 
coordinate as the first square but their JC'S are chosen randomly 
(14.2c). For all other squares the sample point is obtained by 
taking the x coordinate of its row and the y coordinate of its column 
(14.2d). 

In effect this is a minutely stratified sample with the grid squares 
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Figure 14.2. Stages in the generation of a stratified 
systematic unaligned sample (after Haggett et al 1977). 

as the strata. The method does seem to have the potential to avoid 
the periodicity problem and at the same time to provide regularly 
distributed spatial information ; on the other hand it rarely seems to 
be used in practice in archaeology as a basis for estimating popula-
tion characteristics with associated confidence intervals, the other 
purpose for which such samples are normally required (with the 
exception of Bellhouse 1980). 

Even using such a method as stratified systematic unaligned 
sampling, however, we still have no very satisfactory criterion for 
telling us how good or bad our interpolations are when we make 
them. One way round this is to use trend surface analysis to see if 
there are any spatial trends in the values of the variables of interest. 
This is a form of multiple regression in which there are two indepen-
dent variables, the two spatial coordinates of the data points, and 
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one dependent, the values of the variable of interest at the data 
points (see e.g. Davis 1973, Orton 1980). A more sophisticated 
method of spatial interpolation is kriging, which involves the use of 
spatial autocorrelation assumptions (see Hodder and Orton 1976, 
174-83, for an archaeological discussion of the latter) in estimating 
the value of a spatially distributed variable at a location from its 
values at adjacent locations; so far only Zubrow and Harbaugh 
(1978) seem to have used this technique in an archaeological con-
text. As they show, its use is not restricted to spatial mapping ; it can 
be used in a predictive fashion, as in geology, to maximise the 
probability of site discovery for a given amount of effort. 

It is important to note that such a prospecting exercise, trying to 
maximise returns, is very different in its aim from obtaining repre-
sentative information on, for example, site density in a region. 
Perhaps some authors have not always been clear about which of 
these aims they have been, or should have been, pursuing. If a 
survey of a threatened area is taking place, it could be argued that 
maximising site discovery is actually more appropriate than estimat-
ing regional site densities. 

All the methods just described are different approaches to ob-
taining different kinds of spatial data. As usual, it will be the aims 
of the investigator which will determine which of them is the most 
appropriate. In making such a decision it is important to be aware 
of the options which are available and not to automatically assume 
that some fairly straightforward probability sampling scheme will 
be the best. 

Indeed, a radical conclusion from this discussion of spatial pat-
terning in distributions would be that estimation of means and 
standard errors is almost entirely irrelevant : what matters most of 
all is distributional shape, to which relatively little attention has 
been given apart from that noted in the discussion above. This point 
is not dissimilar to the criticisms made by the exploratory data 
analysts with regard to statistical distributions in general : if a distri-
bution has peculiarities of shape these are the most important thing 
about it and we need to know about them. In the face of significant 
clustering, it could be argued, averages become irrelevant. 

But we can go on from this and argue further that what matters 
most of all, in contrast to estimation, is to account for the variation 
we observe. To take an example at the regional scale, we may be 
less interested in estimating site densities than in understanding 
factors behind site location, or, more generally, behind variations 
in artefact density on the ground surface (e.g. Shennan 1985). In 



328 Quantifying Archaeology 
these circumstances, rather than automatically adopting a probabil-
istic area sampling technique we could set up a traditional experi-
mental design, selecting combinations of factors which we believe 
to be relevant to the variations in density and then going out into 
the field and carrying out surface collections in those places where 
the selected combinations of factors exist. The resulting data could 
then be analysed using classic analysis of variance techniques (simi-
lar to regression but involving nominal scale independent variables 
- see, for example, Blalock 1972, chapter 16) and a measure ob-
tained of the percentage variation in artefact density accounted for 
by the different factors. Of course, having identified all the various 
combinations of factors in which we were interested, we could if 
necessary sample probabilistically within them in a very straight-
forward fashion. 

Even if we have not collected the data in such a rigorous way, and 
have not even collected it according to a probabilistic sampling 
scheme, we can still use such an approach to analyse variation in the 
data we have collected in a perfectly valid manner, although we will 
not be able to infer statistically to a larger population. The main 
problem in such a case is likely to stem from the fact that the 
resulting design may be so unbalanced that the effects of different 
variables are confounded with one another and cannot be distin-
guished. 

An argument similar to this has been developed by Wobst ( 1983 ), 
who expresses considerable scepticism about the results of many 
projects based on probabilistic sampling, not least because in the 
many regions where surface visibility is poor actually collecting 
sufficient observations to produce estimates which have any worth-
while degree of precision is a virtually impossible task. Wobst's 
answer is that we should turn away from general purpose estimation 
to hypothesis testing, since the observations required for the testing 
of a hypothesis can almost certainly be specified much more narrow-
ly and as a result there will be a more realistic chance of obtaining 
them. 

It is obvious from all this that the issues involved in probability 
sampling are both complex and unresolved and whether Wobst is 
right or not its use should never be a substitute for thought. 

EXERCISES 

14.1. In a study of settlements in an area it is decided to begin by 
studying the locations of known sites in order to try and develop 
some predictive principles to guide subsequent survey in search of 
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new sites. At each site various locational features are noted and the 
aim is to obtain an estimate of the percentage of the sites which 
possess specific characteristics, to an accuracy of ± 5 % with a 
confidence of 95 %. The number of sites is 291. How many must be 
visited, assuming that they are selected by simple random sampl-
ing? 

14.2. In the course of a study of the material from the excavation of 
a neolithic settlement in Hungary, it is decided that it is important 
to investigate pottery fragmentation as a basis for understanding 
the nature of the different deposits. To save time and money it is 
decided to select a sample of each pottery fabric from each deposit, 
rather than weighing all the sherds. The sample will be selected by 
simple random sampling. 

For one particular fabric type the selection of a preliminary 
sample provides a standard deviation of 25 g. It is decided that a 
tolerance on the estimated weight of 5 g is acceptable, with a 95 % 
probability. 

Calculate a basic sample size to achieve this aim, which can then 
be corrected for the varying population sizes of different deposits. 

14.3. An archaeological survey has been carried out of an area of 
100 km2. The survey was based on a simple random sample of 
one-hectare quadrats, totalling 5 km2 in all. Densities of material in 
each quadrat were recorded and for lithic artefacts of the neolithic 
and earlier bronze age the mean density was 16.95/ha, with a 
standard deviation of 7.03, and a distribution not too far from 
normality, albeit positively skewed. 

Calculate a confidence interval for the total number of lithic 
artefacts in the survey area as a whole, with a probability of 99%. 

14.4. A hunter-gatherer occupation site was excavated on a grid of 
2 x 2 metre squares. Below is a list of the number of lithic pieces 
found in each of the 50 squares excavated. 

2 5 15 17 11 26 25 28 23 22 
38 37 35 30 39 48 47 45 48 42 
47 45 41 55 50 59 51 59 56 57 
53 61 67 64 63 60 79 75 77 72 
71 85 82 89 96 93 95 108 103 117 

i) Work out the mean and standard deviation for the site as a 
whole. 

ii) (a) use random numbers to select 10 simple random samples 
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of 30 squares ; ( b ) obtain the mean and standard deviation for each 
sample, together with the mean of the means; (c) obtain the 
standard error of the mean for each sample, and 95% and 99% 
confidence intervals for the mean; (d) how do the confidence 
intervals relate to each other and to the overall population mean. 

iii) Repeat (ii) for samples of 10 squares and 20 squares. 
(N.B. The t distribution should be used for the confidence inter-
vals.) 



Fifteen 

Conclusion 

FURTHER PROGRESS 

If you have managed to get this far you should find that you have 
reached a level of competence which will enable you to carry out 
some basic data analysis and to talk to statisticians without mutual 
incomprehension ; you should also be able to follow many of the 
statistical arguments in the literature and obtain the general idea of 
most of the rest ; and you have a firm basis for further reading and 
finding out about other techniques. Some appropriate further read-
ing has already been mentioned. Blalock (1972) is very good on 
most of the material in the first part, although becoming rather 
dated in certain respects. Hartwig and Dearing (1979) and Tukey 
( 1977) provide a firm grounding in exploratory data analysis, while 
at a more advanced level of the same general philosophy there is a 
great deal to be learnt from Mosteller and Tukey ( 1977). Johnston 
(1978) is very appropriate for extending your knowledge of the 
more advanced techniques. 

A barrier does come, however, in that without a knowledge of 
calculus and matrix algebra you can only go so far on your own and 
you will find that you are unable to read more mathematical books 
on statistics and data analysis. Davis (1973) provides an accessible 
introduction to matrix algebra, as do Wilson and Kirkby (1980), 
who also cover calculus. The book by Everitt and Dunn (1983) is a 
good intermediate level text which requires some knowledge of 
matrix algebra to get the most out of it but is not impossibly difficult. 

Whether you follow up quantitative data analysis, the extent to 
which you do so, and the direction you take are likely to be deter-
mined by the particular problems with which you are faced: of 
those which require it, some are susceptible to analysis by the 
methods described in this text and others related to them, while 
other problems require the development of novel techniques. 

331 
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RECENT DIRECTIONS AND FUTURE TRENDS 

Recent work provides examples of both these solutions to prob-
lems. Log-linear modelling has been finding increasing use (e.g. 
Hietala 1984, Leese and Needham 1986), while cluster analysis has 
been applied in novel ways as an important tool in intra-site spatial 
analysis (e.g. Whallon 1984, Kintigh and Ammerman 1982). De-
tailed work on problems of the application of particular techniques, 
such as probabilistic sampling, also continues (e.g. Shott 1985, van 
der Veen 1985). 

In the longer term, however, it is probable that novel, or at least 
non-standard techniques will be required to solve many archaeo-
logical problems, and this is where co-operation between archae-
ologists and statisticians and mathematicians is especially impor-
tant. In particular, the use of so-called 'bootstrap' techniques is 
likely to become far more important, in which the statistical or 
mathematical analysis is tailored to the complexities of the specific 
problem at hand, usually involving the computer simulation of 
distributions which take into account the constraints of the real 
data, and with which patterning in that data can be compared (e.g. 
Bradley and Small 1985, Simek 1984, Berry et al 1984). Rather 
similar in approach is some important work on modelling the re-
lationship between the archaeological evidence as recovered and as 
originally deposited, for pottery by Orton (1982) and for animal 
bones by Fieller and Turner (1982; Turner and Fieller 1985). 
These studies go considerably beyond probabilistic sampling in 
some important respects and again indicate further possibilities for 
the future in the development of rigorous models in which the 
mathematics closely match the archaeological problem. 

Many of the developments are likely to be outside the field of 
quantitative data analysis in archaeology as traditionally perceived. 
Cluster analysis, for example, can now be seen as one part of the 
rapidly developing field of computerised mathematical pattern re-
cognition (e.g. Bow, 1984), which in the future could well have an 
important contribution to make, for example to the analysis of 
shape, whether of artefacts or of spatial distributions, in archae-
ology; indeed, some of these techniques have long been used in 
archaeology for improving plots of geophysical survey readings 
(e.g. Scollar 1969), and have recently been applied to shapes (Gero 
and Mazzullo 1984). 

The general trend in these recent and hypothesised future de-
velopments is clear : it is the increasing integration of archaeological 
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knowledge and information into quantitative analyses. Standard 
'off-the-peg' analyses will continue to be appropriate for many 
purposes, but for many others they will not. Another line of current 
research in archaeology points in a similar direction : it is the de-
velopment of intelligent knowledge-based 'expert' systems for com-
puters (see e.g. Huggett 1985). These involve the setting up of 
bodies of knowledge and rules for inference, which will enable the 
drawing of appropriate conclusions when new problems are pre-
sented to the system; medical diagnosis is probably their best-
known field of application at present. Although their use in archae-
ology faces undoubted problems, as Huggett indicates, the idea 
behind them is undeniably attractive, not least in the context of the 
developments in data analysis which I have outlined above. 

Some may say that developments of this kind may be interesting 
but they are unlikely to impinge on more than a small area of the 
archaeological profession. Whether or not this proves to be the case 
depends on two things. The first is the availability of facilities, and 
all the experience of the last few years suggests that increasingly 
high-powered facilities in terms of both hardware and software will 
be increasingly available in the future, even to archaeologists ! The 
second is the level of education of the archaeological profession in 
data analysis and computing. With respect to the latter it is un-
doubtedly coming on apace. If this book makes a contribution to 
the former it will have been worthwhile, because it will have helped 
to create a climate for the realisation of the potential in the vast 
quantities of archaeological data whose possibilities remain almost 
untouched. 
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Statistical Tables 

A. Percentage points of the χ2 distribution 

B. Areas of the standardised normal distribution 

C. Percentage points of the ^-distribution 

D. Random numbers 

Tables A and C are reproduced by permission 
of the Biometrika Trustees, and tables B and D 
are reproduced from White, Yeats & Skipworth 

(1979) by permission of Stanley Thornes 
(Publishers) Ltd. 
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Table A. Percentage Points of the Chi-Squared Distribution. 

The values tabulated are xl(a), where 
Pr(x^ > Χν(α) ) = a, for v degrees of freedom. 
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Table B. Areas of the Standardised Normal Distribution. 
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0.99807 
0.99736 
0.99643 
0.99520 

0.99361 
0.99158 
0.98899 
0.98574 
0.98169 

0.97670 
0.97062 
0.96327 
0.95449 
0.94408 

0.93189 
0.91774 
0.90147 
0.88298 
0.86214 

0.83891 
0.81327 
0.78524 
0.75490 
0.72240 

0.68793 
0.65173 
0.61409 
0.57535 
0.53586 

-0.08 

0.99997 
0.99995 
0.99992 
0.99988 
0.99983 

0.99975 
0.99964 
0.99948 
0.99926 
0.99896 

0.99856 
0.99801 
0.99728 
0.99632 
0.99506 

0.99343 
0.99134 
0.98870 
0.98537 
0.98124 

0.97615 
0.96995 
0.96246 
0.95352 
0.94295 

0.93056 
0.91621 
0.89973 
0.88100 
0.85993 

0.83646 
0.81057 
0.78230 
0.75175 
0.71904 

0.68439 
0.64803 
0.61026 
0.57142 
0.53188 

-0.07 

0.99996 
0.99995 
0.99992 
0.99988 
0.99982 

0.99974 
0.99962 
0.99946 
0.99924 
0.99893 

0.99851 
0.99795 
0.99720 
0.99621 
0.99492 

0.99324 
0.99111 
0.98840 
0.98500 
0.98077 

0.97558 
0.96926 
0.96164 
0.95254 
0.94179 

0.92922 
0.91466 
0.89796 
0.87900 
0.85769 

0.83398 
0.80785 
0.77935 
0.74857 
0.71566 

0.68082 
0.64431 
0.60642 
0.56750 
0.52790 

-0.06 

0.99996 
0.99994 
0.99992 
0.99987 
0.99981 

0.99973 
0.99961 
0.99944 
0.99921 
0.99889 

0.99846 
0.99788 
0.99711 
0.99609 
0.99477 

0.99305 
0.99086 
0.98809 
0.98461 
0.98030 

0.97500 
0.96856 
0.96080 
0.95154 
0.94062 

0.92785 
0.91308 
0.89617 
0.87698 
0.85543 

0.83147 
0.80511 
0.77637 
0.74537 
0.71226 

0.67724 
0.64058 
0.60257 
0.56356 
0.52392 

-0.05 

0.99996 
0.99994 
0.99991 
0.99987 
0.99981 

0.99972 
0.99960 
0.99942 
0.99918 
0.99886 

0.99841 
0.99781 
0.99702 
0.99598 
0.99461 

0.99286 
0.99061 
0.98778 
0.98422 
0.97982 

0.97441 
0.97846 
0.95994 
0.95053 
0.93943 

0.92647 
0.91149 
0.89435 
0.87493 
0.85314 

0.82894 
0.80234 
0.77337 
0.74215 
0.70884 

0.67364 
0.63683 
0.59871 
0.55962 
0.51994 

-0.04 

0.99996 
0.99994 
0.99991 
0.99986 
0.99980 

0.99971 
0.99958 
0.99940 
0.99916 
0.99882 

0.99836 
0.99774 
0.99693 
0.99585 
0.99446 

0.99266 
0.99036 
0.98745 
0.98382 
0.97932 

0.97381 
0.96712 
0.95907 
0.94950 
0.93822 

0.92507 
0.90988 
0.89251 
0.87286 
0.85083 

0.82639 
0.79955 
0.77035 
0.73891 
0.70540 

0.67003 
0.63307 
0.59483 
0.55567 
0.51595 

-0.03 

0.99996 
0.99994 
0.99990 
0.99986 
0.99979 

0.99970 
0.99957 
0.99938 
0.99913 
0.99878 

0.99831 
0.99767 
0.99683 
0.99573 
0.99430 

0.99245 
0.99010 
0.98713 
0.98341 
0.97882 

0.97320 
0.96638 
0.95818 
0.94845 
0.93699 

0.92364 
0.90824 
0.89065 
0.87076 
0.84850 

0.82381 
0.79673 
0.76731 
0.73565 
0.70194 

0.66640 
0.62930 
0.59095 
0.55172 
0.51197 

-0.02 

0.99996 
0.99993 
0.99990 
0.99985 
0.99978 

0.99969 
0.99955 
0.99936 
0.99910 
0.99874 

0.99825 
0.99760 
0.99674 
0.99560 
0.99413 

0.99224 
0.98983 
0.98679 
0.98300 
0.97831 

0.97257 
0.96562 
0.95728 
0.94738 
0.93574 

0.92220 
0.90658 
0.88877 
0.86864 
0.84614 

0.82121 
0.79389 
0.76424 
0.73237 
0.69847 

0.66276 
0.62552 
0.58706 
0.54776 
0.50798 

-0.01 

0.99995 
0.99993 
0.99990 
0.99985 
0.99978 

0.99968 
0.99953 
0.99934 
0.99906 
0.99869 

0.99819 
0.99752 
0.99664 
0.99547 
0.99396 

0.99202 
0.98956 
0.98645 
0.98257 
0.97778 

0.97193 
0.96485 
0.95637 
0.94630 
0.93448 

0.92073 
0.90490 
0.88686 
0.86650 
0.84375 

0.81859 
0.79103 
0.76115 
0.72907 
0.69497 

0.65910 
0.62172 
0.58317 
0.54380 
0.50399 

-0.00 

0.99995 
0.99993 
0.99989 
0.99984 
0.99977 

0.99966 
0.99952 
0.99931 
0.99903 
0.99865 

0.99813 
0.99744 
0.99653 
0.99534 
0.99379 

0.99180 
0.98928 
0.98610 
0.98214 
0.97725 

0.97128 
0.96407 
0.95543 
0.94520 
0.93319 

0.91924 
0.90320 
0.88493 
0.86433 
0.84134 

0.81594 
0.78814 
0.75804 
0.72575 
0.69146 

0.65542 
0.61791 
0.57926 
0.53983 
0.50000 



0.00 O.Ol 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 0.50000 
0.1 0.46017 
0.2 0.42074 
0.3 0.38209 
0.4 0.34458 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 Ο 
1.6 0. 
1.7 0. 
1.8 0. 
1.9 Ο, 

2.0 Ο, 
2.1 Ο, 
2.2 Ο, 

2.3 Ο, 
2.4 Ο, 

2.5 Ο, 
2.6 0. 
2.7 Ο, 
2.8 Ο, 
2.9 0. 

3.0 0. 
3.1 Ο, 
3.2 Ο, 
3.3 0. 
3.4 Ο, 

3.5 Ο, 
3.6 0. 
3.7 Ο, 
3.8 Ο, 
3.9 0. 

0.30854 

0.27425 

0.24196 

0.21186 

0.18406 

0.15866 

0.13567 

0.11507 

0.09680 

0.08076 

0.06681 

0.05480 

0.04457 

0.03593 

0.02872 

0.02275 

0.01786 

0.01390 

0.01072 

0.00820 

0.00621 

0.00466 

0.00347 

0.00256 

0.00187 

0.00136 

0.00097 

0.00069 

0.00048 

0.00034 

0.00023 

0.00016 

0.00011 

0.00007 

0.00005 

0.49601 

0.45620 

0.41683 

0.37828 

0.34090 

0.30503 

0.27093 

0.23885 

0.20897 

0.18141 

0.15625 

0.13350 

0.11314 

0.09510 

0.07927 

0.06552 

0.05370 

0.04363 

0.03515 

0.02807 

0.02222 

0.01743 

0.01355 

0.01044 

0.00798 

0.00604 

0.00453 

0.00336 

0.00248 

0.00181 

0.00131 

0.00094 

0.00066 

0.00047 

0.00032 

0.00022 

0.00015 

0.00010 

0.00007 

0.00005 

0.49202 

0.45224 

0.41294 

0.37448 

0.33724 

0.30153 

0.26763 

0.23576 

0.20611 

0.17879 

0.15386 

0.13136 

0.11123 

0.09342 

0.07780 

0.06426 

0.05262 

0.04272 

0.03438 

0.02743 

0.02169 

0.01700 

0.01321 

0.01017 

0.00776 

0.00587 

0.00440 

0.00326 

0.00240 

0.00175 

0.00126 

0.00090 

0.00064 

0.00045 

0.00031 

0.00022 

0.00015 

0.00010 

0.00007 

0.00004 

0.48803 

0.44828 

0.40905 

0.37070 

0.33360 

0.29806 

0.26435 

0.23269 

0.20327 

0.17619 

0.15150 

0.12924 

0.10935 

0.09176 

0.07636 

0.06301 

0.05155 

0.04182 

0.03362 

0.02680 

0.02118 

0.01659 

0.01287 

0.00990 

0.00755 

0.00570 

0.00427 

0.00317 

0.00233 

0.00169 

0.00122 

0.00087 

0.00062 

0.00043 

0.00030 

0.00021 

0.00014 

0.00010 

0.00006 

0.00004 

0.48405 

0.44433 

0.40517 

0.36693 

0.32997 

0.29460 

0.26109 

0.22965 

0.20045 

0.17361 

0.14917 

0.12714 

0.10749 

0.09012 

0.07493 

0.06178 

0.05050 

0.04093 

0.03288 

0.02619 

0.02068 

0.01618 

0.01255 

0.00964 

0.00734 

0.00554 

0.00415 

0.00307 

0.00226 

0.00164 

0.00118 

0.00084 

0.00060 

0.00042 

0.00029 

0.00020 

0.00014 

0.00009 

0.00006 

0.00004 

0.48006 

0.44038 

0.40129 

0.36317 

0.32636 

0.29116 

0.25785 

0.22663 

0.19766 

0.17106 

0.14686 

0.12507 

0.10565 

0.08851 

0.07353 

0.06057 

0.04947 

0.04006 

0.03216 

0.02559 

0.02018 

0.01578 

0.01222 

0.00939 

0.00714 

0.00539 

0.00402 

0.00298 

0.00219 

0.00159 

0.00114 

0.00082 

0.00058 

0.00040 

0.00028 

0.00019 

0.00013 

0.00009 

0.00006 

0.00004 

0.47608 

0.43644 

0.39743 

0.35942 

0.32276 

0.28774 

0.25463 

0.22363 

0.19489 

0.16853 

0.14457 

0.12302 

0.10383 

0.08692 

0.07215 

0.05938 

0.04846 

0.03920 

0.03144 

0.02500 

0.01970 

0.01539 

0.01191 

0.00914 

0.00695 

0.00523 

0.00391 

0.00289 

0.00212 

0.00154 

0.00111 

0.00079 

0.00056 

0.00039 

0.00027 

0.00019 

0.00013 

0.00008 

0.00006 

0.00004 

0.47210 

0.43250 

0.39358 

0.35569 

0.31918 

0.28434 

0.25143 

0.22065 

0.19215 

0.16602 

0.14231 

0.12100 

0.10204 

0.08534 

0.07078 

0.05821 

0.04746 

0.03836 

0.03074 

0.02442 

0.01923 

0.01500 

0.01160 

0.00889 

0.00676 

0.00508 

0.00379 

0.00280 

0.00205 

0.00149 

0.00107 

0.00076 

0.00054 

0.00038 

0.00026 

0.00018 

0.00012 

0.00008 

0.00005 

0.00004 

0.46812 

0.42858 

0.38974 

0.35197 

0.31561 

0.28096 

0.24825 

0.21770 

0.18943 

0.16354 

0.14007 

0.11900 

0.10027 

0.08379 

0.06944 

0.05705 

0.04648 

0.03754 

0.03005 

0.02385 

0.01876 

0.01463 

0.01130 

0.00866 

0.00657 

0.00494 

0.00368 

0.00272 

0.00199 

0.00144 

0.00104 

0.00074 

0.00052 

0.00036 

0.00025 

0.00017 

0.00012 

0.00008 

0.00005 

0.00003 

0.46414 

0.42465 

0.38591 

0.34827 

0.31207 

0.27760 

0.24510 

0.21476 

0.18673 

0.16109 

0.13786 

0.11702 

0.09853 

0.08226 

0.06811 

0.05592 

0.04551 

0.03673 

0.02938 

0.02330 

0.01831 

0.01426 

0.01101 

0.00842 

0.00639 

0.00480 

0.00357 

0.00264 

0.00193 

0.00139 

0.00100 

0.00071 

0.00050 

0.00035 

0.00024 

0.00017 

0.00011 

0.00008 

0.00005 

0.00003 

ζ 



One-Sided Test 

AM 
0 K(a) 

Pr(7>iv(a)) = a , 
for v degrees of freedom 

a = 0.4 0.25 0.1 0.05 0.025 
v 2a = 0.8 0.5 0.2 0.1 0.05 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
40 
60 

120 
00 

0.325 
0.289 
0.277 
0.271 
0.267 
0.265 
0.263 
0.262 
0.261 
0.260 
0.260 
0.259 
0.259 
0.258 
0.258 
0.258 
0.257 
0.257 
0.257 
0.257 
0.257 
0.256 
0.256 
0.256 
0.256 
0.256 
0.256 
0.256 
0.256 
0.256 
0.255 
0.254 
0.254 
0.253 

1.000 
0.816 
0.765 
0.741 
0.727 
0.718 
0.711 
0.706 
0.703 
0.700 
0.697 
0.695 
0.694 
0.692 
0.691 
0.690 
0.689 
0.688 
0.688 
0.687 
0.686 
0.686 
0.685 
0.685 
0.684 
0.684 
0.684 
0.683 
0.683 
0.683 
0.681 
0.679 
0.677 
0.674 

3.078 
1.886 
1.638 
1.533 
1.476 
1.440 
1.415 
1.397 
1.383 
1.372 
1.363 
1.356 
1.350 
1.345 
1.341 
1.337 
1.333 
1.330 
1.328 
1.325 
1.323 
1.321 
1.319 
1.318 
1.316 
1.315 
1.314 
1.313 
1.311 
1.310 
1.303 
1.296 
1.289 
1.282 

6.314 
2.920 
2.353 
2.132 
2.015 
1.943 
1.895 
1.860 
1.833 
1.812 
1.796 
1.782 
1.771 
1.761 
1.753 
1.746 
1.740 
1.734 
1.729 
1.725 
1.721 
1.717 
1.714 
1.711 
1.708 
1.706 
1.703 
1.701 
1.699 
1.697 
1.684 
1.671 
1.658 
1.645 

12.706 
4.303 
3.182 
2.776 
2.571 
2.447 
2.365 
2.306 
2.262 
2.228 
2.201 
2.179 
2.160 
2.145 
2.131 
2.120 
2.110 
2.101 
2.093 
2.086 
2.080 
2.074 
2.069 
2.064 
2.060 
2.056 
2.052 
2.048 
2.045 
2.042 
2.021 
2.000 
1.980 
1.960 

Two-Sided Test 

-tv(a) 0 i„(a) 

P r ( 7 v > / v ( a ) o r T v < - r v ( a ) ) = 2a, 
forv degrees of freedom 

0.01 0.005 0.0025 0.001 0.0005 
0.02 0.01 0.005 0.002 0.001 

31.821 
6.965 
4.541 
3.747 
3.365 
3.143 
2.998 
2.896 
2.821 
2.764 
2.718 
2.681 
2.650 
2.624 
2.602 
2.583 
2.567 
2.552 
2.539 
2.528 
2.518 
2.508 
2.500 
2.492 
2.485 
2.479 
2.473 
2.467 
2.462 
2.457 
2.423 
2.390 
2.358 
2.326 

63.657 
9.925 
5.841 
4.604 
4.032 
3.707 
3.499 
3.355 
3.250 
3.169 
3.106 
3.055 
3.012 
2.977 
2.947 
2.921 
2.898 
2.878 
2.861 
2.845 
2.831 
2.819 
2.807 
2.797 
2.787 
2.779 
2.771 
2.763 
2.756 
2.750 
2.704 
2.660 
2.617 
2.576 

127.321 
14.089 
7.453 
5.598 
4.773 
4.317 
4.029 
3.833 
3.690 
3.581 
3.497 
3.428 
3.372 
3.326 
3.286 
3.252 
3.222 
3.197 
3.174 
3.153 
3.135 
3.119 
3.104 
3.091 
3.078 
3.067 
3.057 
3.047 
3.038 
3.030 
2.971 
2.915 
2.860 
2.807 

318.309 
22.327 
10.215 
7.173 
5.893 
5.208 
4.785 
4.501 
4.297 
4.144 
4.025 
3.930 
3.852 
3.787 
3.733 
3.686 
3.646 
3.610 
3.579 
3.552 
3.527 
3.505 
3.485 
3.467 
3.450 
3.435 
3.421 
3.408 
3.396 
3.385 
3.307 
3.232 
3.160 
3.090 

636.619 
31.599 
12.924 
8.610 
6.869 
5.959 
5.408 
5.041 
4.781 
4.587 
4.437 
4.318 
4.221 
4.140 
4.073 
4.015 
3.965 
3.922 
3.883 
3.850 
3.819 
3.792 
3.768 
3.745 
3.725 
3.707 
3.690 
3.674 
3.659 
3.646 
3.551 
3.460 
3.373 
3.291 

Table C. Percentage Points of the ^-Distribution. 



Table D. Random Numbers. 

Each digit in this table of computer-generated pseudo-
random numbers is an independent sample from a popu-
lation where each of the digits 0 to 9 has a probability of 
occurrence of 0.1. 

65 23 
06 56 
55 99 
72 82 
04 21 
87 01 
31 62 
29 81 
39 98 
56 14 
29 56 
93 32 
95 69 
65 71 
90 27 
95 29 
99 74 
87 87 
46 24 
66 79 
36 42 
07 66 
93 10 
49 50 
20 75 
02 40 
59 87 
48 08 
54 26 
35 35 
73 84 
34 64 
68 56 
72 47 
44 44 
28 11 
87 22 
44 93 
81 84 
09 75 
77 65 
19 06 
52 91 
52 47 
52 67 
65 25 
29 97 
15 25 
82 08 
81 35 

68 00 
76 51 
98 60 
45 44 
28 72 
80 59 
46 53 
57 94 
74 22 
80 10 
62 74 
57 38 
51 54 
32 43 
33 43 
42 45 
06 29 
56 91 
17 74 
81 43 
94 58 
25 08 
05 72 
63 99 
58 89 
62 09 
21 38 
99 66 
86 75 
58 45 
90 49 
78 00 
87 47 
05 52 
96 75 
57 47 
38 88 
14 59 
37 25 
35 21 
05 04 
51 61 
87 07 
25 14 
87 40 
71 73 
56 42 
03 68 
65 67 
03 25 

77 82 
04 73 
01 33 
09 53 
73 25 
89 36 
84 40 
35 91 
77 19 
76 52 
12 67 
39 36 
43 19 
64 67 
97 84 
61 34 
20 55 
16 97 
97 37 
40 92 
83 30 
99 27 
18 26 
26 71 
39 04 
00 71 
29 78 
43 38 
44 15 
23 58 
01 21 
92 59 
63 06 
88 07 
89 57 
61 57 
91 99 
67 40 
90 43 
04 47 
22 18 
34 03 
19 62 
93 91 
63 41 
78 60 
56 90 
92 45 
64 13 
87 24 

58 14 
94 30 
06 93 
04 83 
02 74 
41 59 
56 31 
90 70 
12 81 
38 54 
09 35 
87 42 
20 49 
22 55 
20 57 
30 13 
72 70 
51 50 
39 03 
84 72 
92 39 
69 48 
36 67 
47 94 
42 73 
09 37 
72 67 
28 13 
20 39 
63 66 
90 29 
67 74 
24 71 
27 55 
12 60 
89 88 
16 08 
24 10 
58 62 
54 08 
20 10 
61 55 
32 28 
75 51 
91 86 
50 62 
16 75 
53 00 
51 14 
83 59 

10 85 
16 74 
85 13 
03 83 
35 81 
60 27 
74 96 
94 24 
29 42 
84 13 
89 33 
72 55 
57 25 
65 65 
49 91 
30 39 
11 43 
61 36 
54 83 
88 32 
18 40 
85 32 
68 48 
32 71 
37 93 
80 44 
42 83 
50 25 
20 03 
09 62 
57 06 
58 48 
41 98 
58 74 
42 38 
62 18 
17 76 
11 63 
94 58 
98 44 
81 87 
98 58 
04 91 
49 26 
10 47 
91 04 
74 95 
06 29 
38 28 
04 67 

11 85 
69 59 
23 17 
98 41 
78 49 
64 89 
52 23 
19 35 
04 50 
99 90 
04 28 
73 97 
90 55 
48 86 
41 20 
21 52 
95 82 
96 47 
34 00 
83 24 
03 00 
16 46 
31 69 
72 91 
11 07 
50 37 
65 21 
47 93 
58 54 
80 92 
68 73 
92 09 
79 06 
82 08 
77 36 
93 67 
27 47 
40 47 
49 03 
08 16 
05 69 
83 50 
42 48 
49 41 
80 70 
95 97 
99 26 
46 43 
24 30 
51 52 

57 11 
04 38 
25 51 
67 41 
52 67 
47 45 
72 95 
50 22 
62 34 
22 55 
44 75 
98 36 
26 20 
10 88 
17 64 
59 28 
75 37 
76 68 
74 61 
67 01 
12 90 
19 31 
68 58 
34 18 
28 77 
32 70 
54 79 
11 15 
80 29 
14 55 
51 10 
42 20 
07 18 
42 28 
45 69 
57 32 
52 14 
07 56 
84 22 
44 86 
43 70 
01 48 
66 24 
20 83 
56 87 
64 16 
01 63 
46 66 
39 62 
26 21 

73 74 
83 98 
92 04 
01 38 
61 40 
18 21 
96 06 
23 72 
36 81 
41 04 
01 57 
57 41 
70 98 
20 12 
29 60 
64 98 
90 24 
49 11 
77 51 
41 34 
32 27 
85 02 
93 49 
74 06 
91 36 
20 38 
66 42 
07 84 
62 53 
81 41 
51 95 
40 37 
58 29 
26 48 
21 68 
96 72 
98 86 
14 22 
57 22 
69 71 
96 76 
99 85 
86 09 
30 30 
25 86 
71 31 
25 16 
27 12 
20 35 
69 75 

45 25 
30 20 
52 31 
66 83 
60 50 
69 84 
58 83 
87 34 
43 07 
72 37 
87 45 
76 09 
43 73 
40 18 
66 87 
08 76 
77 43 
50 56 
43 33 
70 19 
91 65 
86 36 
45 86 
32 14 
60 47 
71 86 
47 86 
28 30 
09 67 
21 48 
63 08 
63 80 
16 49 
25 32 
32 70 
21 17 
35 68 
62 74 
47 98 
20 52 
42 05 
08 67 
87 68 
43 22 
89 94 
32 80 
54 18 
85 05 
23 90 
87 28 

60 46 
87 85 
38 70 
11 99 
47 50 
76 06 
85 22 
83 15 
97 92 
89 33 
52 21 
11 68 
56 45 
49 25 
55 97 
09 27 
63 21 
51 06 
15 67 
26 93 
48 15 
22 96 
99 29 
40 80 
82 62 
75 34 
31 15 
19 07 
71 51 
87 34 
57 99 
58 93 
67 37 
00 31 
04 96 
13 54 
23 85 
93 39 
86 37 
64 94 
21 10 
15 91 
55 51 
69 08 
21 42 
19 61 
54 46 
22 44 
57 36 
61 50 



Table D. Random Numbers—continued 

67 00 76 07 
37 41 48 98 
54 85 60 58 
82 78 21 26 
72 32 72 25 
86 73 37 38 
54 67 40 72 
80 86 35 17 
08 32 44 20 
96 84 83 43 
48 67 84 20 
35 99 47 15 
13 07 22 58 
73 15 83 78 
18 92 29 56 
50 07 11 21 
59 50 53 71 
45 55 85 24 
90 80 65 04 
84 51 93 90 
07 66 01 78 
19 41 96 21 
01 38 53 01 
12 95 21 94 
25 88 63 69 
95 89 07 45 
49 69 36 31 
47 52 59 03 
41 89 34 25 
41 89 18 07 
46 58 12 07 
98 42 17 61 
09 44 61 42 
41 97 74 05 
70 42 82 33 
05 18 96 66 
69 44 33 07 
71 95 73 70 
99 59 52 07 
97 07 78 13 
85 04 86 52 
11 68 36 63 
12 69 35 64 
62 72 73 45 
78 63 02 76 
65 40 31 04 
42 68 22 96 
40 15 54 28 
51 19 95 91 
77 55 25 60 

06 04 17 26 
99 14 86 78 
43 58 36 74 
47 21 31 66 
83 98 34 31 
09 68 16 67 
97 91 06 61 
08 51 17 12 
01 13 17 22 
36 80 18 75 
48 23 50 47 
37 62 62 27 
68 80 91 93 
75 46 76 36 
47 99 74 31 
26 62 94 01 
99 35 15 56 
55 08 49 43 
38 06 30 57 
28 31 22 31 
75 25 68 67 
21 48 53 68 
20 30 43 53 
99 72 76 51 
99 41 89 27 
38 96 63 61 
40 43 65 22 
71 19 04 67 
98 99 14 49 
02 57 18 44 
61 94 29 39 
53 32 62 34 
84 40 80 09 
94 04 57 50 
21 08 41 30 
53 07 84 44 
09 02 87 76 
09 66 69 55 
54 56 90 44 
46 90 10 48 
92 49 65 46 
15 84 92 56 
97 00 63 69 
26 19 35 75 
61 95 57 00 
87 02 46 38 
29 30 39 32 
80 30 30 07 
95 98 92 53 
17 30 53 23 

85 10 29 42 
56 14 20 12 
44 33 96 38 
50 67 34 87 
63 44 31 47 
81 32 03 42 
98 95 38 02 
07 87 75 39 
42 71 76 76 
16 54 53 48 
15 85 24 65 
35 41 55 57 
64 68 59 55 
65 56 34 75 
42 88 52 71 
89 32 51 14 
41 95 71 78 
00 21 31 67 
56 62 21 88 
48 44 45 97 
31 08 85 38 
46 91 11 40 
83 34 87 15 
69 20 66 93 
18 92 52 49 
11 49 98 72 
63 59 43 94 
42 38 98 78 
65 61 20 09 
53 64 89 51 
90 76 24 23 
19 38 05 03 
25 36 73 61 
28 49 26 54 
67 58 46 55 
17 62 70 43 
98 50 65 99 
73 19 20 59 
75 85 84 35 
53 29 43 92 
99 78 99 66 
31 78 47 49 
41 06 75 10 
15 23 75 26 
30 05 18 52 
43 16 63 83 
75 36 64 03 
53 91 62 62 
98 08 55 70 
98 29 52 71 

93 48 93 46 
28 86 70 70 
13 52 98 74 
78 86 26 32 
09 57 26 23 
28 56 09 92 
94 57 65 32 
83 43 77 04 
33 56 94 22 
71 77 34 88 
78 93 01 84 
03 12 74 45 
19 45 72 83 
92 58 99 38 
90 84 23 56 
17 11 30 31 
53 15 10 51 
73 35 42 10 
30 85 56 89 
48 85 79 68 
37 76 01 94 
98 12 50 26 
63 52 17 89 
80 83 88 97 
56 75 99 20 
50 67 30 94 
43 18 76 48 
36 75 12 62 
71 32 63 20 
56 63 63 37 
64 84 38 61 
07 09 45 01 
09 53 51 95 
91 50 26 20 
84 19 40 76 
76 28 64 80 
36 27 77 23 
12 95 01 99 
17 08 97 87 
58 51 39 39 
82 34 22 86 
14 51 34 78 
94 21 70 74 
98 66 97 45 
19 86 40 08 
76 95 23 06 
70 64 83 51 
26 31 75 25 
68 78 21 13 
92 10 71 72 

52 72 77 53 
66 62 99 86 
01 27 52 08 
35 38 94 63 
89 88 16 10 
75 20 50 35 
75 34 64 33 
66 02 13 46 
02 67 70 98 
43 51 41 76 
02 04 41 31 
83 25 14 57 
08 01 28 93 
51 64 98 42 
75 22 62 08 
12 01 18 58 
86 17 53 81 
71 12 46 37 
02 21 43 40 
78 78 05 18 
22 20 03 04 
58 52 74 39 
43 19 31 11 
35 52 23 76 
68 13 04 50 
93 01 20 20 
00 90 10 65 
10 27 23 83 
88 92 25 40 
25 64 17 23 
35 84 78 95 
61 01 81 34 
76 09 13 64 
75 12 91 39 
47 37 85 59 
98 32 21 11 
93 92 15 72 
75 88 31 13 
56 04 61 52 
18 38 47 35 
79 10 85 96 
76 47 87 47 
06 08 90 56 
31 86 44 80 
83 32 17 42 
76 48 54 60 
61 81 15 96 
10 23 43 84 
95 15 87 36 
52 21 06 21 



Appendix 2 

Computer Packages 
for Statistical Analysis 

This appendix gives brief details of some of the most widely avail-
able computer packages for statistical analysis; more extensive 
information is available in Richards and Ryan (1985, chapter 7). 
There is no attempt to cover the enormous range of packages now 
available for microcomputers, although several of those listed be-
low now have microcomputer versions. Similarly, with the excep-
tion of cluster analysis, there is no attempt to list the many sets of 
programs which have been written for particular purposes ; except 
for cLUSTAN all the rest are general-purpose packages for statisti-
cal analysis. 

In general they are straightforward to learn and use but it is worth 
remembering that at the initial stage they often involve what can be 
a considerable amount of time and effort learning your way around 
them, especially if you're a beginner. Although introductory manu-
als are available for some, the sheer bulk of the documentation of 
the major packages can be daunting and not all of it is as clear as it 
might be (to say the least ! ). 

The execution of particular tasks is controlled by keywords, 
which call up relevant procedures. These procedures generally 
have standard options for routine analysis and are therefore ex-
tremely easy to use, while non-standard options can be called up by 
providing extra information ; thus, a considerable amount of flexi-
bility is possible. 

The big danger with these programs is that in general they do not 
tell you when you are using techniques inappropriately. The fact 
that a package will carry out an instruction doesn't necessarily 
mean that the instruction is statistically appropriate : ability to run 
the packages, and not much is required, can easily outstrip statisti-
cal expertise. This is a point you should always bear in mind. 

343 
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MINITAB 
(Minitab Inc., 215 Pond Laboratory, 

University Park, PA 16802, USA) 
The MINITAB statistical package provides a comprehensive set of 
procedures for carrying out statistical analyses up to the level of 
multiple regression. It includes many techniques not described in 
this book, including comparisons of means and analysis of variance. 
It also includes a useful set of procedures for matrix manipulation, 
including eigenvectors and eigenvalues. 

Perhaps the best feature of MINITAB, especially at an introduc-
tory level, is its ease of use. It is interactive (results of instructions 
come straight back to the screen for the user to look at) in a flexible 
and straightforward way and provides excellent help facilities which 
can be requested if you're stuck or you've forgotten something. 
Furthermore, the MINITAB Handbook (Ryan et al. 1985) is easy to 
use and includes details of the statistical methods as well as of the 
relevant MINITAB procedures. 

A microcomputer version is available. 

S P S S - X 

(SPSS Inc., Suite 3300, 444 North Michigan Avenue, 
Chicago, Illinois 60611, USA) 

This is the successor to SPSS, a long-standing and very widely used 
general statistical data analysis package, and has extensive file 
handling, data modification and report preparation facilities in 
addition to statistical analysis. It covers virtually all the methods 
described in this text, including frequency distributions and descrip-
tive statistics, cross-tabulations, regression and correlation, as well 
as factor analysis and log-linear models, in addition to many other 
techniques not covered here. 

Documentation is extensive, with simplified versions for begin-
ners, and includes descriptions of statistical techniques as well as 
details of SPSS-X procedures. 

A microcomputer version is available. 

SAS 
(SAS Institute Inc., Box 8000, Cary, 
North Carolina 27511-8000, USA) 

The s AS System is a comprehensive system for data analysis. It 
provides facilities for information storage and retrieval, for data 
modification, for file handling and report writing, in addition to 
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statistical analysis. As well as basic descriptive statistics it includes 
methods for significance testing, regression, log-linear modelling, 
cluster analysis and multivariate analysis, including methods which 
this text has not covered. Extensive documentation is available. 

In Britain it does not have the popularity of some of the other 
packages but elsewhere, especially in the United States, it is very 
widely used. 

BMDP 

( B M D P Statistical Software, 1964 Westwood Blvd, 
Suite 202, Los Angeles, CA 90025, U S A ) 

This is another general statistical package very similar to SPSS and 
s AS, although it does not include the non-statistical repon. writing 
facilities included in the other two ; nor does it have their introduc-
tory level documentation. There is simply one large manual, which 
looks rather forbidding at first sight. In fact, it's not as bad as it 
looks. What it says in the manual (Dixon 1983, 15) is not too far 
from the truth : BMDP programs are easy to use if you igno; e what 
you don't need to know. For a beginner, however, what you don't 
need to know is not necessarily obvious. 

The range of techniques covered is very extensive, particularly at 
the more complex end of the range. 

GENSTAT 

The Statistical Package Co-ordinator, 
Numerical Algorithms Group Limited, 
NAG Central Office, Mayfield House, 

256 Banbury Road, Oxford OX27DE, υ κ ) 
GENSTAT is another general purpose statistical package but it is 
unlike the others listed in this appendix in that it is in some ways 
more like an ordinary high-level computer language, such as FOR-
TRAN, than a package. This gives it a great deal of flexibility while 
at the same time making it rather more difficult to use. It is probably 
true to say that it is less easy to misuse GENSTAT than the other 
packages because it requires more knowledge and expertise to use 
it in the first place. In some circles GENSTAT has acquired some-
thing of a cachet as the expert's statistics package ! It covers an 
enormous range of techniques, including correspondence analysis. 

The GENSTAT manual is not particularly easy reading but an 
introduction to the package appeared a few years ago ( Alvey et al. 
1982), which makes coming to grips with it rather easier. 

G E N S T A T does not seem to be especially popular in North Amer-
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ica, at least in archaeological circles, in the light of lack of reference 
to it in the literature. 

From the same general stable as GENSTAT, and thus very similar 
to it, is the generalised linear modelling package GLIM (Baker and 
Neider 1978). 

CLUSTAN 

(Dr D. Wishart, c/o Dept. of Computational Science, 
University of St Andrews, North Haugh, 

St Andrews KY 169sx, υ κ ) 
This is an extremely comprehensive set of programs for cluster 
analysis. In addition to all the clustering procedures described in 
this text and many others, c L U S T A N has facilities for the production 
of similarity and distance matrices using a very wide range of 
coefficients. It also now includes some of the cluster validation 
procedures described in chapter 12. 

A weakness is the lack of facilities for data modification and 
manipulation, but the package does provide the possibility of links 
with BMDP, and with SPSS in particular, which help to overcome 
this. An associated program called c LUS COM allows interactive 
input of CLUSTAN instructions, but it is not available everywhere 
and without it instruction input can be rather tedious and mistake-
prone. 

Beginners tend to find the manual rather difficult to follow. 
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MiNiTAB (statistical package for com-

puters), 46,154,180,181,182-6,344 
mode, 34, 39-40 

bimodal, 39 
model-building, 120 

modelling, 332 
see also log-linear modelling 

Morisita's index of dispersion, 324 
see also dispersion 

Montelius, O., 190 
Mosteller, F. and Tukey, J. W., 331 

see also Tukey, J. W. 
Mount Pleasant (neolithic henge monu-

ment), England, 27-9, 31, 35, 45-6 
multicollinearity, see collinearity 
multiple coefficient of determination, 

176 
multiple correlation, 166,175-9,188 

coefficient, 169, 173, 175, 176,177, 
178,184 

multiple coefficient of determination, 
176 
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multiple regression, 143,144, 154, 

166-87, 196, 241, 243, 255, 271-2, 
326, 344 

analysis, 166, 182 
assumption of, 186-7 
coefficients, 176, 179-83 
equation, 167, 169, 179, 180, 181 
model, 167, 179 
plane, 168-9, 176 
programs, 182 
problem of collinearity in, overcome, 

261 
residuals of, 185, 186,187 

multivariate analysis, 6, 12, 244-88, 345 
correspondence analysis, 244, 276, 

283-6,291,297,345 
discriminant analysis, 286-8 
non-metric multidimensional scaling, 

244, 281-3, 284 
principle coordinates analysis, 244, 

280-1,282 
see also principal components analysis, 

factor analysis 

Nance, J., 321, 322, 333 
nearest neighbour cluster analysis, see 

cluster analysis 
negative matches, 202, 203, 204 

definition of, 201-2 
New Archaeology ( North American 

processual school), 4-5, 6, 126-7 
normal distribution, 42, 43, 44-5, 46, 

101-13, 138, 139, 249, 303, 306 
curve, standard form of, 102-3, 105 
curve, asymptotic, 108 
of residuals, 137, 138, 139, 140 
tables for areas of standardised, 105, 

107,338-9 
Norusis, M. J. 132 

ordination, 196, 197, 269 
methods of, 196-7, 211, 229, 241-4 
procedure, 207 

orthogonal, 200, 256 
axes, 284 
rotations, 273, 274 
variables, 248 

Orton, C , viii, 3, 4, 50, 53, 58, 107, 332 
see also Hodder, I. and Orton, C. 

outliers, 46, 150, 154, 269 
Owens Valley (subsistence-settlement 

system), California, 275 

parameters of population, 301, 302, 307, 
309, 324, 325 

definition of, 49-50 

partial correlation, 169-75, 179,188 
coefficients, 84-8, 169,173, 174, 175, 

176, 177 
partial regression 

coefficients, 169, 179-80 
standardised coefficients of, 180,181 
see also coefficients, beta 

pattern recognition, 332 
patterning, 244 

chronological, 209 
imposed by cluster analysis, 228 
in similarity matrices, 208-12, 242 
spatial, 324, 325, 327 
see also seriation 

Peebles, C. S., 225 
Pétrie, SirW. M. Flinders, 191 
phi-squared, 78-9, 81 
Phylakopi (Bronze Age settlement) on 

Melos, Greece, 118-19 
pie charts, see charts and graphs 
pilot study, 10,307 
Plog, S., 10, 324 
population, 57, 299, 301, 303, 311, 314, 

315,317,318,319,320,323,328 
characteristics of, 49 
hypothetical or ideal, 58, 59 
proportion, estimating, 310-13 
mean, 302 
redundancy present in, 322-3 
standard deviation, 305, 307, 308, 309 
standard error of the proportion, 311 
total, 302 
totals, estimating, 309-10 
see also finite population correlation 

factor 
principal components analysis, 127, 179, 

229, 244, 245-70, 271, 276, 279, 280, 
281, 282, 283, 284, 288, 289, 290 

assumptions in, 261-2 
compared with factor analysis, 271-5 
computer programs for, 261 
geometrical presentation of principal 

components, 246-9 
summary of, 261 

principal diagonal (of matrix), 198 
probabilistic sampling, 299, 301, 332 

accessibility sampling, 300 
discovery probabilities in, 321-2 
judgemental sampling, 300 
methods of, 301 
probability theory in, 299 
purposive sampling, see judgemental 

sampling 
scheme, 300 
technical difficulties in use of, 320-3 

probability level, 309, 312, 313 
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probability theory, 49, 50, 299 
processual school, see New Archaeology 

Q coefficient, see Yule's Q 

radiocarbon dates, 107 
random numbers, 314, 329 

table of, 314, 341-2 
generators in computer programs, 315 

randomisation, 58-9 
test, 69 
in evaluation of cluster analysis, 230 

range, 41 
interquartile, 41-2, 44-5 
see also dispersion, hinge 

rank 
rank-ordering, 11, 62, 281, 282 
order, 11,38 
order correlation, 132 
see also scale, ordinal 

regression, 129,130,132,138,147-53, 
170,172,243,255,261,328,344,345 

analysis, 90,114-31,135,144,160, 
166,175,178,182,196, 243, 255 

bivariate, 143,144, 180,241 
definition of, 119 
equation, 121,126,146,148,181,182 
least-squares, 123-4,139,160,176,182 
least-squares compared with Tukey 

line, 160-4 
linear, 139,147,149 
model, 137,160 
model, assumptions of, 139-42 
robust, 160-4 
significance tests for, not included, 

159-60 
standard error of, 136-7,138 
weighted least-squares, 154 

regression line, 122,124-5,127,129,130, 
131,136-7,140-1,145,146,158, 
165,184,185,276 

heteroscedastic variation, 141 
homoscedastic variation, 141 

relationships, 192 
between variables, 261 
curvilinear, 116, 128, 145, 150 
direction of, 116 
double-log, 145 
exponential, 151 
hypothesised, stated mathematically, 

120 
linear, 116,121-2,123,148,150,167 
monotonie, 116 
non-linear, 123, 145, 147 
non-monotonic, 117 
Pare to, see double-log 

shape of, 116 
strength of, 65,74,77,78,117-18,119, 

126-31,159 
see also correlation and regression 

Renfrew, C , 7,145 
andCooke, K. L.,2 
and Sterud,G., 209-10 

residuals, 134,136-9,147,185, 276 
negative, 141 
normal distribution of, 137,138, 

140-1,154,185 
plot, 144,151,153 
plot of standardised residuals, 143-4, 

150 
positive, 141 
standardised residual, 138-9,143-4, 

147 : equation for, 138 
studentised, 139 note 
variation of, 130, 256 

Richards, J. D. and Ryan, N. S., 9 
Robinson, W.S. , 191,193 

and Brainerd approach, 191-3, 234 
Robinson coefficient of agreement, see 

coefficients 
rotation, see orthogonal rotation 
runs test, 61-2,132 

see also significance testing 
Ryan, B.F. era/., 154,183 

Sabloff,J. A . , 2 
sample, 48, 49, 53, 57, 58, 298, 301, 311, 

314,325,330 
means, 302, 305 : distribution of, 302, 

303-4,305,311,320 
proportions, 311, 312 
random, 57-8, 59, 302, 304, 305, 310, 

314,317,318,319 
selection, methods of, 301 
size, 77, 307, 308, 309, 310, 311, 312, 

313, 322 
standard error of the mean, 302-3, 

304,316 
stratification of, 323, 324 

sampling 
cluster, 314, 315, 316, 318-20 
frame, 313, 317 
random, 301, 308, 313, 315, 318, 329 
spatial, 320-3 
stochastic, effects of, 51 
stratified random, 315-16, 318, 319, 

324, 325 
stratified systematic unaligned, 325-6 
systematic, 316-18, 322, 325 
units, 313, 314 
see also probabalistic sampling 

sampling in archaeology, 48, 58, 298 
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SAS (computer package), 344-5 
scales 

continuous numeric, 25 
interval, 11,12,25,34,39,40,54,101, 

102,126,131,132,139,199,200 
nominal, 11,13, 23, 31, 34, 40, 41, 55, 

61,65,132 
ordinal, 11, 25, 31, 39, 40, 41, 55, 61, 

65,132 
ratio, 11,12,13, 25, 39, 40, 54,104, 

132,199, 200 
scattergram, see graphs and charts 
Schoknecht, U., 13 
seriation, 192,209,211,233 

Robinson-Brainerd approach to, 193 
techniques of, 209-11 
see also close proximity analysis 

Shennan,S. J., 132, 135 
significance, levels of, 51-2, 53, 54, 67, 

68-9, 73 
significance, statistical versus sub-

stantive, 63, 74 
significance testing, 49, 53-63, 65,101, 

159, 282, 345 
Kolmogorov-Smirnov test, 55-8, 60-1, 

68 
limitations of, 77 
Mann-Whitney test, 61-2,132 
runs test, 61-2, 132 

similarity and distance 
coefficients of, 198-208, 209, 284 
matrix of coefficients, 198, 199,208-12 
measures of, 198-208 
see also coefficients : city-block metric ; 

close-proximity analysis ; Euclidean 
distance ; Gower's general ; Jaccard ; 
patterning; Robinson's 

simple matching coefficient, see 
coefficients 

single link cluster analysis, see cluster 
analysis 

skewed distribution, see distribution 
Spaulding,A. C.,191,193 
Spearman's coefficient of rank cor-

relation, 132 
specification, see interaction 
spss-x (computer package), 174, 344, 

346 
standard deviation, 42-4,102,103,107, 

124,129-30,136,137,181, 183,185, 
186, 249, 302, 303-4, 305, 311, 329, 
330 

units (ordistances), 103,107,138,246 
squared, 124 

standard error, 317, 318, 319, 321, 327, 
330 

of the mean, 302-3, 304, 316: formula 
for, 303, 316 

of the proportion, 311 
of the regression, 136-7,138 

standard score, see Z score 
statistical inference 

introduced, 22, 48-63 
procedures of, 314 
in regression, 159-60,182 

statistics 
aggregate descriptive, 324 
definition of, 49-50, 301 
descriptive, 33, 344 

stem-and-leaf diagram, see graphs and 
charts 

stochastic sampling, see sampling 
strength of relationship, see relationships 

stress, 282 
summation, 37 
symbols, statistical, 36-7 

t distribution, Student's, 306, 330 
table for, 340 

ί-test, ix 
two-sided test, 306 

Tainter,J. A.,225 
taxonomy, 

biological, 192 
numerical, 192-4 
see also classification 

Thomas, D .H. , 107, 320 
Thomsen, C.,190 
Tilley,C.,6 
tolerance, 307, 308, 309, 312, 329 
transformations, 108-12,145,147,150-3, 

155,160, 261 
square-root, 110-11 
log, 112,146,150-3 

trend surface analysis, 326-7 
tripolar graph, see graphs and charts 
Tukey,J.W.,22,23,331 

see a/so Mosteller,F. andTukey, J. W. 
Tukeyline, 160-4,165 

Uruk period settlement sites, Meso-
potamia, 31, 47 

bevel-rim bowls from, 235, 288 

variables, 61 
binary, 202, 206 
continuous, 302 
covariation between, 246 
definition, 9-13 
dependent/independent, 82,115,121, 

122,139,166,169-70,171,173,175, 
176,179,180,184,186, 243 
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variables—contd 

mean variable, 249-50 
multistate, 206, 207, 280 
numeric, 198, 206 
presence/absence, 199, 201, 202, 207, 

220, 222: measures of association 
between, 204-8, 220 

qualitative, 199, 207, 280 
standardisation of, 262 

variance, 42, 263 
analysis of, 99,184-5 
common, 271, 275 ; see also factor 

analysis 
error variance, stabilising, 153 
unique, 271, 275 ; see also factor 

analysis 
techniques, 328 
see also standard deviation 

variation, coefficient of, see coefficients 
vectors, 246 

Vierra, R. K. and Carlson, D. L., 262 

Ward's method, see cluster analysis 
weights, 206 
Whallon, R., 116, 207, 217 
Whallon, R. and Brown, J. A., 13, 59, 

193,195 
Wilson, A. G. and Kirkby, M. J., 331 
Winham,P.,312 
Wobst, M., 328 

Yule's 0,79,81,83-9,91,175 
formula for, 79 

Z-score, 105, 108, 138, 142, 181, 146, 
260, 262, 305 

to standardise measurement scales, 
200 

tables for normal distribution, 338-9 
Zubrow, E. and Harbaugh, J., 327 


