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Preface

These notes were started during an enforced period of idleness in late 2011. They
were abandoned when I recovered enough to move on to other things (i.e. my
day job). What was written up to that point, roughly Chapter 7 in the present
format, was tidied up and made available on my academia.edu and web sites. It
was always the intention to return to them, if only to complete and add a chapter
on cluster analysis. This has only happened in the last year or so.

Things didn’t go quite according to plan. To begin with, I was dissatisfied with
aspects of what had been written and the existing chapters were subjected to major
revision and/or expansion. Much of the R code for undertaking the analyses was
also rewritten. Apart from the chapter on cluster analysis and some rearrangement,
chapters on discriminant analysis, factor analysis and statistical inference (mainly
hypothesis tests) were added. For reasons explained in the text – chiefly because
I think they’ve been oversold and not delivered what was promised – I had second
thoughts about including the last two but they have survived.

The original and rather unworthy genesis of these notes lay in dissatisfaction,
possibly bordering on the irrational at times, with what I viewed as the widespread
misuse of software such as Excel to produce inadequate graphs that disfigure
archaeological publication. This remains manifest in the treatment of discrete
data. The original intention, abandoned almost immediately, was to keep things
short and restrict attention to a few topics traditionally regarded as ‘simple’.

A main reason for expanding the coverage is that, in a sense I try to explain in
the introduction, I’d regard the vast majority of statistical methods that have been
found useful in archaeology as ‘simple’. At the conceptual level, and regardless
of any mathematical complexity, it is easy to explain in ordinary language what
most methods are trying to do. Similarly, the compuations associated with the
mathematics can be complex, and computational statistics is a field of study in its
own right. However, those who have engaged in this kind of study have made the
fruits of their labor widely available, and free, in software such as R so, from the
point of view of the end-user, the execution of an analysis is also simple. Chapter 2
illustrates this by taking some of the standard methods of multivariate analysis
used in archaeology – traditionally often presented as ‘complex’ – and shows how
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usefully interpretatble output can be produced in one line of code in R. The idea
underlying most of these methods is the simple one of reducing a (possibly large)
table of data to a two-dimensional, archaeologically interpretable, ‘map’.

This is all made possible by the availability of powerful, open-source software
such as R. This is often presented as something that is ‘difficult’ or ‘forbidding’ for
users reared on menu-driven software, and if potential users do find R ‘difficult’
then I suppose this is true, though it’s also a product of perceptions fuelled by
some of the literature, or preconceptions. Writing introductory textbooks on R

is something of a growth industry (and there’s plenty of free material) so there
is considerable assistance out there for aspirant users. Worth mentioning is the
fact that it’s possible to do some things more rapidly in R than in some popular
statistical software such as SPSS; you don’t have to wade through vast amounts of
irrelevant and sometimes borderline incomprehensible output; and can customize
your output (i.e. graphs) to your heart’s content rather than being restricted to
formats determined by anonymous programmers in the dim and distant past.

I want to emphasize that these notes are not intended as a textbook, either
as an introduction to statistics or to R. I understand a textbook (as opposed to
text) to be a piece of work written, at some length, for didactic purposes, on a
topic systematically developed, intended to be read in a linear fashion, and as
comprehensive as possible within its chosen remit. The present offering fails, I
think, on every count.

The use of the word Notes in the title is meant to indicate this. As discussed in
the introductory chapter, one or two sections need to be taken early and in some
sort of sequence, but mostly the idea is that the text can be dipped into for code
that enables you to get going with the kind of data you have to hand. This is,
I’m claiming, ‘simple’, but this is not to be equated with the idea that statistics
is ‘easy’. Like any other subject worth studying effective use needs to be learned,
and this occurs over time with experience and by accretion. The idea here is that
you need to start somewhere, and a good case can be made for learning by doing
something first and worrying about what you’ve done later1.

On the ‘learning-by-doing’ principle the notes emphazise the importance of
real data analysis, and to this end a lot of data sets from different archaeological
specializations are analyzed, often in more than one way. These should be available
on my academia.edu pages and website2. These provide a useful starting point for

1In La Peste Albert Camus creates a character, Joseph Grand, who is trying to write a novel
but doesn’t progress beyond the first sentence because he can’t perfect it. I had friends at
university who never completed, or even started writing, their PhDs for similar reasons. Much
better is to get something written down and tidy it up later, possibly discarding much of it in
the process. The important thing is to get started.

2https://nottinghamtrent.academia.edu/MikeBaxter and http://www.mikemetrics.com/ re-
spectively.
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beginning, though if your own data are immediately available in a suitable format
analyzing them might be more fun.

Since R has become something of an industry standard in writings on applied
statistics that has penetrated many areas of application I’m rather surprised it
seems not to have gained much traction in archaeology, individual endeavour and
possibly what’s invisible and below the surface of publication apart. I don’t know
of any book length introduction to R for archaeologists, though David Carlson’s
website promises one3 and includes R accompaniments to the examples in the stan-
dard introductory quantitative archaeology texts of Shennan (1997) and Drennan
(2009). These texts together with Carlson’s work provide a good entrèe to what is
attempted here, which should be seen as complementary rather than a ‘competi-
tive’ approach to the subject.

One final word of warning is that I don’t regard computer programming as
among my competencies – it was evident from my undergraduate days that I
lacked any aptitude for it. This should encourage those with a similar view of
their abilities; those who do have such an aptitude will find some of the code
presented inelegant, inefficient, etc. and will be able to improve it. For my own
part I have a pragmatic attitude and am usually happy if something works that
does what I’ve asked for and I understand what’s happening – that is, I treat R as
an extremely useful practical tool for data analysis.

Mike Baxter, Nottingham, May 2015

3http://people.tamu.edu/ dcarlson/quant/index.html (Accessed May 2015)
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Chapter 1

Introduction

1.1 Introduction

· · · simple descriptive statistics and display techniques are indispensable prelimi-
naries to the application of even the most basic inferential statistics or tests. To
my knowledge, the vast majority of statistical analyses of archaeological data, pub-
lished and unpublished, have been done without adequate scrutiny of the data with
such elementary display techniques and descriptive statistics. From my experience,
I will be so bold as to put forward the view that this lack of adequate scrutiny of
the data renders every one of these analyses, and consequently the studies and in-
terpretations based on them, suspect a priori. · · · However, there is another, more
positive, pragmatic reason for so strongly advocating the cause of such humble dis-
plays and descriptions of one’s data, which is that, in almost every instance, one
can learn, more quickly, more clearly, and in more detail about one’s data with
these techniques than through the use of inferential statistics or tests.

Whallon (1987: 135)

The above is from an article entitled Simple Statistics ; there is nothing in it to
take issue with. It was published more than 20 years after statistical methodology
began to attract serious archaeological attention. Any statistical analysis carried
out in anger should begin with ‘simple descriptive and display techniques’. What
has changed since Whallon wrote is what might legitimately be thought of as
‘simple’. This is entirely down to the enormous increase in computing power now
available. Many of the techniques discussed in these notes could not then be used
easily and routinely, if at all.

Fast forward to the 2010s. Some of the software packages developed from
the 1970s on survive and remain popular. This isn’t necessarily a ‘good thing’;
practices developed then have become ‘fossilized’ in the software, not necessarily to
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good purpose (e.g., Chapter 8 for further comment). To misquote slightly ‘the past
is a foreign country: they [did] things differently [then]’; they do things differently
now.

Software accessibility is important. It explains the understandable widespread
use (and misuse) of Excel – not a purpose-built statistical software package –
in archaeology. There is now no longer any excuse for this. High quality, open-
source software means that powerful statistical resources are available to all. The
software, R, is used in these notes. It is often described as a ‘difficult’ package
to learn for anyone who is not a ‘sophisticated’ statistician and/or computer pro-
grammer; the thinking, simply put, seems to be that potential users who have been
weaned on menu-driven software find the command-driven mode that characterizes
R daunting. Some additional comment on this is provided in Section 1.3.

My own thought is that anyone who can write a sentence with due regard to
spelling, syntax and capitalization can start analyzing their own data in R in a
matter of minutes. Methods sometimes portrayed as ‘complex’, such as princi-
pal component analysis (PCA), are actually quicker to implement in R than the
menu-driven implementations of software commonly used in teaching (Chapter 2).
While R is undoubtedly ‘sophisticated’, matching sophistication on the part of a
potential user is not essential. That is, by imitating existing code widely avail-
able in texts and online, analytical progress can be made without any great initial
understanding of how what you can achieve has been done. Such understanding
and greater ‘sophistication’ will come with practice; the important thing is to get
started. Motivation, in the form of having your own data that you want to analyze
efficiently, helps.

These views rest on the premise that a lot of statistical ideas are ‘simple’, in a
sense somewhat broader than that used by Whallon. Many methods, traditionally
thought of as ‘complex’, are computationally straightforward to execute. The idea
of ‘simplicity’ motivates much of what follows in later chapters. It can be construed
in various ways, as follows

• conceptual simplicity;

• computational simplicity (i.e. simplicity of execution);

• mathematical simplicity.

Here, ‘computational simplicity’ is being equated with simplicity of execution.
The application of many ‘standard’ (and ‘non-standard’) statistical methods in R

easily meets this criterion. This is not to claim that the computational details are
necessarily simple, but the necessary work on this has been carried out by experts,
leaving the average end-user free to enjoy the fruits of their labor.

To take full advantage of this an understanding of what any particular method
is intended to do helps; that is, is it conceptually simple? If the answer to this is

2



‘yes’ then, allied to computational simplicity, and from the end-user’s viewpoint, a
method may be regarded as ‘simple’. A fundamental thesis of these notes, argued
in more detail in individual chapters, is that the statistical methods mostly used
in archaeology are simple in this sense.

A simple idea can lead to mathematically complex developments but, as with
the computational detail, experts have dealt with this, so it’s not usually necessary
for the user to understand the details1. An exception to this generalization, as some
might view it, is that some understanding of mathematical/statistical notation is
desirable for a number of reasons, among them brevity and clarity of expression.

A fine but important distinction to make is that statistics is often simple in
the sense described but this does not make it easy. Almost anyone who wishes to
(and can afford it) can learn to drive a car without any deep understanding of the
technology that makes this possible. The part that is less easy is learning to do
this with facility and appropriately, and this only comes with practice.

The archaeological trowel provides another analogy. It’s a simple tool and what
you do with it is simply explained; using it well does not, for most diggers, come
immediately, effective use comes with practice. Most aspirant diggers can arrive
on a site and be on their knees and using a trowel within a short space of time, but
will do so under supervision or relegated to an area where they can do no damage.
To be realistic, some remain on these margins or are transferred to other duties
more suited to their aptitudes but, with practice and motivation, most graduate to
a position where they can operate with minimal supervision. Some diggers will be
better than others; it’s a shibboleth that ‘practice makes perfect’ but it certainly
does no harm2.

To summarize, employing statistics usefully can start from quite a limited
knowledge base. You do eventually need to learn more about methods you find
useful, a process of accretion, and be aware of when their use is appropriate.
Statistics is no different, in this respect, from other subjects worthy of study; but,
contrary to occasional misconceptions, you don’t need to be especially gifted, with

1Mathematics is not avoided in these notes but, for the most part, is quarantined so that it can
be ignored by the reader if wished. Some appreciation of the mathematical distinction between
principal component and factor analysis (Chapters 7. 8 and Appendix D) helps to appreciate
the way in which they have been used and confused but, unless you are attracted by what factor
analysis appears to offer, the mathematics can be ignored.

2When I did this sort of thing seasoned diggers, armed with their 4-inch cast-steel WHS
pointing trowels (R) would look pityingly on aspirant excavators arriving with inappropriate over-
sized and over-flexible welded (they break easily) plasterers trowels (Excel) and condescendingly
point them to the path of righteousness. The overly-seasoned digger would sport a second trowel,
discreetly but visibly displayed and well-worn, testifying to their vast experience. These were
very functional but equally important as symbols of superiority to be mutely admired by the
cognoscenti. Except in the pub when conversation sometimes descended to the ‘mine is smaller
that yours’ kind of boasting.
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a strangely configured intellect, to engage in productive statistical analysis.
Chapter 2 illustrates by example what is intended by the term ‘simple’. The

standard methods of multivariate analysis used in archaeology are each executed in
one line of R code, and in most cases immediately useful and interpretable graphical
output is produced. That’s the computationally simple bit. Conceptually, the
methods are intended to reduce a large table of data to a picture, usually two-
dimensional and often interpretable as a map showing the relationship between
the rows and/or columns of the data table. The output can be examined for
archaeological patterns in the data. Also a simple idea.

The simplicity conceals specific differences that distinguish between the meth-
ods that are discussed in the individual chapters devoted to them; Chapter 7 for
principal component analysis (PCA), Chapter 9 for correspondence analysis (CA),
Chapter 10 for cluster analysis and Chapter 11 for linear discriminant analysis
(LDA). The chapter on LDA includes a brief treatment of classification trees, an
attractive alternative to LDA that is non-linear and computationally intensive,
but underpinned by a very simple idea.

It is worth emphasizing the important idea of ‘mapping’ the data in these
methods. There’s an analogy with map projections in cartography where different
projections can be chosen to emphasize particular features of interest. Methods
such as PCA, CA and LDA measure the ‘distance’ between the rows of a data
matrix in different ways (i.e. they project the data differently). The choice de-
pends on the nature of the data available and the aim of an analysis. Results
are ‘distorted’ in the sense that only a visually accessible approximation to the
‘reality’ is obtained, and the quality of approximation needs to be assessed. The
niceties of this are discussed in the relevant chapters; other issues that require
attention in practice are also covered, such as the choice of data transformation or
specific methods (e.g. in cluster analysis) to use, and the many different ways of
interrogating the output of an analysis that are available.

Chapter 8 on factor analysis follows that on PCA fairly naturally, since the two
methods are often confused. I’ve suggested elsewhere that, despite the ‘historical’
importance of factor analysis in the development of quantitative archaeology it is
past its ‘sell-by’ date. That I’ve devoted space to the subject is because of what
I read as misleading advocacy of the method in a recent quantitative archaeology
text. Anyone who thinks factor analysis might be for them ought to be acquainted
with its ‘problematic’ aspects, even if they disagree with my take on the subject.

A systematic discussion of descriptive statistics, such as the mean, median,
standard deviation etc. is not attempted. Read (almost) any introductory text
on statistics for this kind of thing3. Chapters 3 and 4 look very selectively at

3Those that shy away from notation can get definitionally confused, particular in distinguish-
ing between population parameters and their estimates – so read more than one text.
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some of the more commonly used methods of graphical display for continuous and
discrete data. Kernel density estimates, as an alternative to the histogram that
is sometimes more useful, is given more space in Chapter 3 than is common in
quantitative archaeology texts

Chapter 4 is primarily concerned with bar-charts (or barplots) and pie-charts.
The former are sometimes confused with histograms or inappropriately presented
as three-dimensional constructs. Pie-charts are often similarly misrepresented and,
depite their popularity, a good case can be made for not using them at all. The
chapter is more opinionated than I might allow myself if writing a textbook, but
the opinions are not uniquely mine.

Chapter 6, which can be thought of as a continuation of Chapters 3 and 4, is
a pot-pourri of graphical methods of analysis. Some are fairly standard; some are
little-used but deserve more attention; and some are probably neglected for good
reasons.

Chapter 5, on regression analysis, covers a topic invariably dealt with in texts
on quantitative archaeology. At its simplest – fitting a straight line through a
scatter of points – the ideas are straightforward. The chapter strays beyond this
into the realms of non-parametric regression, not a topic much mentioned in ar-
chaeological textbooks. More notation is needed here than in most other chapters,
to distinguish adequately between different models, and between models and their
estimates.

I had second thoughts about including Chapter 12, on statistical inference. It’s
arguable that the development of formal theories of statistical inference was one
of the greatest intellectual achievements of the first half of the twentieth century;
unarguable that these ideas motivated the promotion of quantitative methodol-
ogy in archaeology; and arguable that formal inferential methods have delivered
much less than was originally promised. Quantitative archaeology texts sometimes
present the methodology with enthusiasm but I suspect equally often out of a sense
of duty. Having included the subject I’ve been equally dutiful and illustrated the
use of R with sometimes quite extensive examples, but with added opinion that
the reader is free to disagree with.

1.2 How (not) to read these notes

The point made in the preface that this is not intended as a textbook, should be
reiterated. It’s meant more as a ‘dipping into’ kind of text – as the use of the term
Notes in the title indicates. It also indicates that coverage is selective, including
methods I have practical experience of and excluding those where this is not the
case. Some methods are excluded for other reasons (see below). It’s assumed that
anyone reading this will have been exposed to a systematic introductory treatment
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of statistics.
The material might be regarded as a kind of practical supplement to an intro-

ductory textbook development. The ‘standard’ texts for archaeological purposes
will be taken to be Shennan (1997) and Drennan (2009) (see Section 1.3). Other
than their treatment of sampling methods in archaeology, omitted here, much the
same kind of methodology is covered, but with rather different emphases. As al-
ready noted some of the commoner descriptive and graphical methods used arise
in context, rather than being systematically presented. There is considerably more
emphasis on undertaking analysis than to be found elsewhere, with more analyses
of real, large and, in some cases, quite complex data sets.

Some topics not usually covered in quantititative archaeology texts, or ac-
corded only brief treatment, are introduced, including kernel density estimates
(Chapter 3), non-parametric regression (Chapter 5), fuzzy cluster analysis (Chap-
ter 10), classification trees (Chapter 11) and some of the graphical methods of
Chapter 6 . These are present because they are useful and fulfil the criteria for
‘simplicity’ that is being applied.

In a few sections a more critical view is taken of the way some commonly
used methods have been applied. This includes comment on the misuse of bar-
and pie-charts (Chapter 4) and the real need for much of the standard inferential
methodology of hypothesis tests (Chapter 12). Factor analysis is usually mentioned
in the standard texts, but often in a cursory way or, where treated at any length,
in a manner I think is unsatisfactory. It will be clear from Chapter 8 that I have
my doubts about the value of the method for archaeological purposes and that
others would disagree entirely; the chapter and associated Appendix D is possibly
one of the fuller critical appraisals in the archaeological literature.

Faced with an academic text of any kind my normal practice is to skim it to
see what’s there then ignore the bits which don’t interest me or are not suited to
immediate purposes (which may be the entire text). Some experience is necessary
to get away with this; teaching texts are usually intended to be read in a linear and
systematics fashion, so you have to wade through some fairly boring, if essential,
bits to get to the parts that might interest you. I’d never rely on a single text; just
because something is published in some form doesn’t make it sacrosanct (even if
written by your instructor). It’s as well to be aware that there’s more than one
way of tackling a subject, and it can come as surprise to learn that statisticians
can have different views, sometimes vehemently expressed, about what does and
doesn’t constitute valid and useful methodology.

Having said this, a systematic reading of parts of these notes may be useful.
Anyone entirely new to R would need to start with Appendix A and Section 2.6 and
is then advised to do a few data analyses as soon as possible, either reproducing the
analyses in the notes (e.g., those in Chapter 2) or using analyses found elsewhere
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in the notes as templates for looking at your own data. Chapter 7 can be usefully
read as a prelude to those which follow, on other multivariate methods, as it
includes discussion of data-analytic concerns of general relevance. If it seems like
regular use of R is an attractive proposition an early acquaintance with user-defined
functions (Section 3.2.1) is helpful.

I’ve suggested at various points in the notes that doing things first and then
worrying about what you’ve done afterwards is a viable way of learning about
R, and the statistics involved. This is not a flippant suggestion. Jump, or ease
yourself, in at the shallow end and immerse yourself a little. Any discomfort
induced by the temperature will rapidly disappear, and once you are convinced
you are still breathing you can think about learning to swim. You may even come
to enjoy it.

What has been omitted from these notes could, as they say, fill a book. Sam-
pling methodology has already been mentioned. It’s important and more-than-
adequately covered in Orton (2000). It’s not a topic I’ve had to engage with in
recent years and I’m not sure how useful R might be for acquiring and analyzing
data in a realistic archaeological setting.

Spatial analysis is an interesting area also largely ignored. It’s fairly astonish-
ing that Hodder and Orton (1976) still seems to be referred to as the standard
archaeological text on the subject. Archaeologists don’t, of course, ignore spatial
analysis but it is, I suspect, largely associated with the use of geographical infor-
mation systems (GIS). I know almost nothing about GIS so am not competent
to write on the subject and probably shouldn’t comment either. The subject is
undoubtedly important and has been around for over 20 years; it was ‘oversold’ in
its early days and, when I last looked, made surprisingly little effective use of what
I’d regard as ‘proper’ statistics – things have probably changed without impinging
on me.

Computer-intensive methodologies are important and will become increasingly
so, but are not dealt with systematically. As mentioned in several places a review
of the use of such methods, for statistical purposes, in archaeology would be useful,
but is not attempted here. Archaeological simulation, thoroughly reviewed recently
by Lake (2014), is computationally intensive but makes limited use of statistical
methodology as I understand it. I have more in mind resampling methodologies
such as bootstrapping, noted at several points in what follows.

A systematic treatment of non-parametric methodology is similary not at-
tempted, though kernel desnity estimates fall into this class of methods. Had
more detailed treatment been provided it would have been in Chapter 12, where
the methods, can be viewed as more ‘robust’ alternatives to the hypothesis tests
usually discussed in introductory texts. Given they are intended to avoid assumpi-
ons that trouble some users of statistics I was surprised, on reviewing the textbook
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literature, to see how little attention they have received.
Robust methods which, in some senses, are similarly motivated are similarly

not much mentioned here. They are designed to minimize the effect on analytical
outcomes of the violation of assumptions that underpin ‘standard’ methodologies,
the deleterious impact of ‘unusual’ data on analyses having received particular
attention. More exploration and exploitation of the use of the methods with
archaeological data is probably needed to assess their merits. Almost needless
to say, several R packages are available devoted entirely to robust methods.

It would have been possible to extend the treatment of regression analysis –
more generally ‘linear models’ – to generalized linear models. These include log-
linear models for contingency table analysis and logistic regression models. The
beauty of the idea is that a lot of different models, some looking very complicated
and non-linear, can be shown to have a common underlying structure that admits
a common algorithmic approach to their estimation. Conceptually, the more ‘com-
plex’ models inherit much of the interpretive machinery of linear models and – to
the extent that the latter are ‘simple’ – it might be argued that generalized linear
models are also ‘simple’. In practice I don’t find them as straightforward as other
methods covered and have not attempted an exposition. Log-linear models had a
brief vogue in archaeology in the 1980s and 1990s but I don’t think are now widely
used; logistic regression acquired something of a niche role in predictive modeling.
Baxter (2003) provides examples of their use.

1.3 Suggested reading

As already mentioned, Shennan (1997) and Drennan (2009) are useful introduc-
tions to quantitative archaeology, referenced a lot in what follows. They can be
viewed as complementary; both are worth looking at. I’ve seen nothing published
since, in a similar vein, that I’d recommend. Don’t neglect introductory statistics
texts in subjects other than archaeology; they may suit your ‘learning style’ better.

In the past I’d recommend students to spend an hour or so browsing texts
on the shelves of a university library if they had access to one. I retain an old-
fasioned preference for written texts, finding them easier to dip into or exploit in a
serendipitous fashion. The modern reality is to make a beeline for a search engine
to see what can be found on the web, which can be very good but also highly
variable in quality and reliability.

The first editions of Shennan and Drennan appeared in the late-1980s and
mid-1990s and the current editions, with a few extra topics, don’t differ in their
conception. The style reflects their genesis; both authors are aware of the value of
computational software but neither devote much space to practical implementation
with specific software. This is perfectly understandable; both books were intended
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to sell and the software access available to purchasers was highly variable. This
has remained the case until fairly recently, but the advent and development of R
has effected a radical change in the publication of applied statistics texts, as well
as practice. It can seem that every other statistics text now published has a title
along the lines Statistics for Something using R4.

Archaeology, unless I’ve missed something, stills need to catch-up with sta-
tistical developments. David Carlson’s web pages promise a book on R and ar-
chaeology, and his notes on the subject provide a useful introduction, designed as
R-based computational accompaniments to the texts of Shennan and Drennan5.
His site also lists some of the free introductory material that is available.

Carlson makes use of the Rcmdr package, a graphical user interface (GUI) to R,
designed to make R ‘easier’ to use and an entrée to the full command-driven version.
The development of GUIs for R seems to be something of a growth industry with
none having yet achieved market dominance (Valero-Mora and Ledesma, 2012).
Within the command- or script-driven paradigm, much of fairly recent origin and
likely to grow in importance, are developments that simplify the writing and use
of code6. That is, R is developing at a rapid pace so any work produced over a
period of time – this one included – is going to be ‘out-of-date’ by the time you
see it.

That said, there’s nothing wrong with older texts on the subject – the basics
haven’t changed, just the resources in terms of user-written contributions. As far as
R goes, and its ‘ancestor’ S, I’m ‘self-taught’ and much of what I know was learned
from Venables and Ripley (2002) and earlier editions. Its age notwithstanding, if I
could only own one text on R this would be it; I still consult it regularly. In fact I
own several; Dalgaard’s introduction, now in its second edition (Dalgaard, 2008),
was also useful. A number of, to some extent ‘competing’, texts emphasizing the
powerful graphical facilities in R that develop the ‘traditional’ graphics that come
with it are also available (e.g., Murrell, 2011; Sarkar, 2008; Wickham, 2009).

As with introductory statistics texts I think it’s useful to own, or at least have
access to, more than one treatment of R at introductory and intermediate levels.
As I don’t believe in the ‘one-size-fits-all’ principle, and if its not a requirement
for a taught course, I’d hesitate to make definitive recommendations; intelligent
‘shopping around’ to suit your own requirements is what’s needed7.

4The site http://www.r-project.org/doc/bib/R-books.html lists about 150 texts on
statistics and R, about a sixth at an introductory level. New texts appear on a regular basis
and the list does not include free web-based material in plentiful supply.

5http://people.tamu.edu/ dcarlson/quant/index.html (Accessed May 2015)
6See Ben Marwick’s brief review at http://www.r-bloggers.com/doing-quantitative-

archaeology-with-open-source-software/ (accessed May 2015) and links provided there.
7Apart from anything else, I should confess to not having read a lot of what’s available; it’s

nothing to be ashamed of.
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On more specific statistical topics, the multivariate methods of Chapters 7
to 11, are covered in an archaeological context and in what is intended to be an
accessible manner in Baxter (1994a) (reprinted as Baxter, 2015). The style of
presentation, that is the graphics, shows its age but the basics haven’t changed.
Baxter (2003) is a wider-ranging, more recent, survey at an intermediate level,
of archaeological usage of most of the methods covered in these notes, with the
exception of the material in Chapter 12. In particular a fairly detailed review of
the use of regression methods in archaeology is provided; Shennan (1997) includes
a more conventional and quite lengthy introductory treatment that goes somewhat
beyond what is often attempted in introductions, including a brief account of log-
linear models avoided here.

More topic-specific reading is suggested in the relevant chapters; there are a lot
of good texts out there on specific multivariate methods and regression analysis.
As with other recommendations, that you may have noticed I’m not making, I
hesitate to be too specific and, once you have gained a toe-hold in a subject
of particular interest, read around to see what’s there and suits you. Subject-
specific statistical texts abound but sometimes need to be approached warily. Some
domains of study have developed their own statistical idioms (I have in mind
some of the psychological, social and life sciences, among others) that, beyond the
introductory level, can result in texts with methodological biases and emphases not
readily transferable to or appropriate for other domains. Quantitative archaeology
publications are largely exempt from this comment since archaeological use of
statistics is, for the most part, within the ’statistical mainstream’8.

8This is notwithstanding the ‘philosophical baggage’ that came with some of the early promo-
tion of statistics in archaeology, and a later mild 1980s obsession with the need for ‘concordance’
between archaeological theory and statistical method. The latter is a worthy aim that resulted
in a body of sometimes impenetrable writing that reinvented existing statistical wheels in shapes
not necessarily fit for purpose. Clive Orton (1992: 137), in the context of methods developed
for intra-site spatial analysis, memorably characterized this as ‘the Audrey syndrome (“an ill-
favoured thing, sir, but mine own”. As You Like It, Act V, Scene iv’ (Baxter, 2003: 7–8). This
has more general application – don’t ignore statistical publications just because they have been
produced by statisticians.
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Chapter 2

Introductory examples

2.1 Introduction

The examples illustrate the use of R for implementing four methods commonly
applied in quantitative archaeology applications. They are principal component
analysis (PCA), correspondence analysis (CA), cluster analysis, and linear dis-
criminant analysis (LDA). These are all examples of multivariate methods and
are often considered to be at the ‘complex’ or ‘advanced’ end of the spectrum of
quantitative methods used in archaeology. They usually feature in introductory
treatments towards the end of the text, if at all.

Apart from introducing R the main aim of this chapter is to illustrate how
computationally simple it is to implement such ‘advanced’ methodologies in R. It
will also be argued that the ideas involved are easy to understand; this is discussed
in more detail in the chapters devoted to each topic, where some of the finer points
of application are covered.

As far as ideas go, given a table of data with n rows and p columns the aim
of three of the methods discussed (PCA, CA, LDA) is often to produce a two-
dimensional ‘map’ or bivariate plot of the data that shows (approximately) how
similar rows are to each other in terms of the distance between them. Details
depend on the type of data available and precise purpose of the analysis and are
covered in later chapters. Cluster analysis is also a way of visualizing the similarity
between the rows of the table, but uses a different form of graphical representation
in the form of a tree-diagram or dendrogram.

The aim in general is to investigate structure in the data, not otherwise easily
done for ‘large’ tables with p > 3. In order to concentrate on the practicalities of
application, the data sets analyzed below have been chosen because their structure
is fairly obvious. Complications arise in practice such as the occurrence of unusual
data (outliers), the common need for some form of data pre-treatment (eg., data
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transformation), the absence of clear structure, and so on, dealt with in later
examples.

2.2 Example – Principal component analysis

The data in Table B.1, from Tubb et al. (1980), consist of n = 48 rows and p = 10
columns to be referred to as cases and variables. The first nine columns, the data
to be analyzed, are concentrations (%) of oxides in specimens of Romano-British
pottery. This defines a 48× 9 data matrix; the tenth column, coding the region of
the kiln site where the pottery was found, is used to label plots.

In the original paper several questions were posed.

• Ignoring ‘region’ is there evidence of chemical grouping in the data?

• If grouping exists can it be associated with region?

• What variables contribute most to group separation, if groups exist?

• Can a subset of variables describe the data well?

With minor complications, to be discussed, these turn out to be fairly simple
to answer. Figure 2.1 is a PCA biplot of standardized data based on the oxides
(Section 7.2). A single command line was used to obtain the plot

biplot(prcomp(tubb.data, scale = TRUE))

where tubb.data is the name given to the 48× 9 data matrix in R. The argument
scale = TRUE standardizes the data so that all variables have zero mean and unit
variance, giving them equal weight. Other options are possible (Section 7.2) but
this scaling is often desirable (Venables and Ripley, 2002: 303). The appearance
of the plot can be customized using other arguments – it is kept simple here.

In mathematical terminology, the data exist in a 9-dimensional space defined
by the number of variables. The distance between cases in nine dimensions can be
defined mathematically but can’t easily be visualized . What PCA is often used
for is to transform the data to new variables – principal components (PCs) – such
that bivariate plots based on the first two of these approximate in two dimensions
the distances between cases in nine dimensions. The points labeled 1–48 (the row
numbers) identify the cases.

It is readily apparent that, apart from a few stray cases, there are three groups
in the data, and is easily shown (see Figure 2.2) that these correspond to the
three regions. The reasonably tight group to the left corresponds to Region 3,
and the central group to Region 1. A biplot also provides information about
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Figure 2.1: PCA biplot of the standardized chemical data from Table B.1.

the relationship between the variables. The arrowed lines (vectors) point to the
variable markers. Angles between vectors approximate the correlations between
variables1, so we can infer that Al and Ti are strongly positively correlated with
each other; negatively correlated with Mg, Mn and K; and poorly correlated with
Na. The relative positions of row and column markers suggests that the group
to the lower left, compared to other groups, has relatively low values for several
variables that plot opposite it. This can, of course, be checked.

The previous code illustrates how simple it is to produce a PCA in a single
line of code, and the default output obtained is very informative. There are,
however, advantages in breaking the code up, to enhance readability and open up
presentational possibilities not otherwise readily available. Thus

1Strictly speaking, it’s the cosines of angles that approximate correlations.
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tubb.pca <- prcomp(tubb.data, scale = TRUE)

biplot(tubb.pca)

will produce Figure 2.1, but also creates an object, tubb.pca, that holds informa-
tion that can be manipulated for presentational and interpretive purposes. This is
discussed in detail in Chapter 7, but an illustration of what can be done is shown
in Figure 2.2, the code for which is given in Section 2.6. Suppose that only a
plot based on cases is required, labeled according to region (remembering that this
information is not otherwise used in the PCA). In the figure cases are labeled by
number and colored plotting symbols that differentiate between regions.
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Figure 2.2: An enhanced PCA row plot of the standardized oxide compositional
data from Table B.1.

An important point to note is that the axes of the plot are equally scaled.
This allows the separation between cases to be interpreted as (approximate) dis-
tances. Equal scaling is not a feature readily available in some widely used sta-
tistical packages. The biplot function automatically provides this; for Figure 2.2
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the eqscplot function produces equal scaling where this is not automatic (Sec-
tion 2.6.3).

It is as easy to look at these kind of data using PCA as it is to use ‘conventional’
and ‘simpler’ graphical methods (which should not be ignored). If needed the
PCA can be revisited and refined. Simply scanning the table of data can be
informative. This is best done from hard copy, rather than looking at data on
a terminal. Looking at the columns of Table B.1 reveals some obvious outliers,
almost certainly typos. These are cases 4 (Ti = 0.03), 35 (Mn = 0.394) and 36 (K
= 0.81). There is also some evidence of outliers within regions.

In Figure 2.1 the outliers stand a bit apart from the regional groupings to which
they belong, with the suggestion of a small tight sub-group in Region 2 to the
bottom right. Case 12 seems isolated relative to its regional group, but a chemical
reason exists for this (not discussed here). Only a small number of variables
are needed to show regional differences. Lacking regional information, sensible
univariate or bivariate data inspection would reveal clusters. Two bivariate plots
are shown in Figure 2.3 where a clear outlier for the variable K is obvious2.
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Figure 2.3: Bivariate plots for selected variables from Table B.1. See the text for
an explanation.

The bivariate plots show that regional clusters are chemically distinct, that only
two variables are needed to show this, and that these can be chosen in more than
one way. The variable choice can be undertaken in several ways, but inspection

2Scatterplot matrices, or pairs plots, can be used to produce displays of all possible bivariate
plots. These can be inspected to identify interesting pairs of variables that can be separately
plotted in more detail. The pairs (Section 5.2) or scatterplotMatrix (Section 6.2) functions
are available for this kind of analysis.
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of Table B.1 is all that is needed here. For example, values for Mg are different
between regions; those for Fe separate Region 3 from the other two regions; Ca
separates Region 1 from the other two; and so on. In terms of the questions posed
at the outset of this analysis intelligent inspection of Table B.1 may be all that is
needed, which is what was meant when stated earlier that the data were ‘easy to
analyze’.

Once groups are established, identifying how they differ is of interest. This is
often done by presenting a table of means, standard deviations and other summary
statistics. The (arithmetic) mean is a measure of location usually used with the
idea that it is, in some sense, ‘typical’ of the data. The median is an alternative if
there are obvious outliers in the data. Both are inappropriate as a measure of what
is typical if there is are clear sub-groups within those being summarized. That is,
using a simple statistic such as the mean, as with the choices made in PCA, re-
quires a consideration of the validity of the assumptions involved. The standard

deviation is a measure of dispersion or spread often used in conjuction with
the mean; the interquartile range (IQR) is a measure of dispersion often asso-
ciated with the median. Table 2.1 shows various measures of typicality and spread
for all the data for K, and for the regions. The clear regional differences, and
that for other variables, could also be inferred from the biplot of Figure 2.1. The
measures of dispersion are greater for Region 2 than the other two regions.

Region Mean Mean- Median SD SD- IQR
Region 1 3.11 - 3.13 0.22 - 0.15
Region 2 4.01 4.22 4.28 0.97 0.48 0.72
Region 3 2.02 - 2.03 0.19 - 0.17

All 3.18 3.22 3.16 0.92 0.86 0.96

Table 2.1: Summary statistics for K from Table B.1. Mean- and SD- indicate that
an outlier, case 36, has been omitted.

2.3 Example – Correspondence analysis

It is not mandatory, but correspondence analysis (CA) is usually presented as a
method appropriate for analyzing two-way cross-tabulations of categorical vari-
ables. This includes the special case where the data are recorded as presence or
absence, coded as 0–1 (e.g., artifact types and contexts). At the mathematical
level there are differences between CA and PCA (Section 9.2) but fundamentally
their aims are identical, which is to display the approximate distances between
rows, and in the case of CA possibly columns as well, in a 2-dimensional map.
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To emphasize the difference in variable types the notation I × J will be used
for the table of data to be analyzed, I and J being the number of categories for the
two variables. The data as a whole are often displayed as a biplot - more commonly
than with PCA where the emphasis is often on cases. This is not necessarily true
of CA, and the roles of the variables can be reversed and a J × I table analyzed.

A common use of CA is for seriation (e.g., Madsen, 1988a; Section 9.5) where
it is hoped that an ordering of the rows can be inferred from the row plot and
that the order has a chronological interpretation. As an illustration of this kind of
application data from McLellan (1979), in a study of the chronology of ‘Philistine’
burials, are used (Table B.2). Columns in the table correspond to tombs, and rows
to counts of 52 different types of pottery found in the tombs. The main interest
was on seriating the tombs, with a particular interest in sequencing tombs g to
j. A ‘horseshoe’ shaped pattern to the plots is usually expected in a successful
seriation, and the ordering is read around the horseshoe. Archaeological criteria
are needed to determine the early and late ends of the sequence. The data have
been used in Baxter (2003: 136–8) to illustrate the use of CA for seriation; other
purposes to which CA can be put are illustrated in Chapter 9.

A biplot is obtained in a nearly identical fashion to the PCA biplot. With the
data held in burial.data the MASS package needs to be loaded using

library(MASS)

then

biplot(corresp(burial.data, nf = 2))

does it. The corresp function from the MASS package has been used. This needs
to be loaded using the library function (see Section A.3 for details). The other
difference from the PCA analysis is the need for the argument nf = 2 which
specifies the number of ‘components’ to extract. Two are needed for bivariate
plotting with the first two usual, though others can be extracted if wished.

While useful for initial exploratory purposes the resultant biplot is often too
crowded to be easily read if there is a large number of rows and/or columns, and it
is not shown here. For display purposes separate plots for the rows and columns,
presented adjacently, are often to be preferred (see Sections 7.2 and 9.2 for a
discussion of plotting issues). This is easily done; for example

biplot(corresp(burial, nf = 2), xlabs = rep("", 52))

suppresses the printing of labels for the rows. The rep function produces blank
labels (using "" for the 52 rows). Column labeling may be suppressed in a similar
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way using the ylabs argument3.
Baxter’s (2003) Figure 11.1 was produced in the manner just described and

revealed an outlying tomb "c", with somewhat larger numbers for four artifact
types than other tombs, that cramped the rest of the plot, making it harder to read.
As with the PCA analysis there are advantages to breaking down the computations.
Specifically, corresp(burial.data, nf = 2) creates a CA object allowing access
to information more easily manipulated for plotting purposes. This has been done,
in much the same way as needed for Figures 2.2 and 2.3 to obtain Figure 2.4, where
the outlying tomb has been omitted.
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Figure 2.4: Correspondence analysis plots of the data from Table B.2.

The plot for tombs shows a good seriation of the data, reflected for the most
part in that for the artifact types. Tombs "g" to "j", which were of particular
interest, are highlighted in blue and with a larger typeface. Their chronological or-
dering as inferred from the seriation corresponds to that hypothesized by McLellan
(1979) using archaeological criteria.

2.4 Example – Cluster analysis

Cluster analysis is a generic term for a wide range of methods that can be imple-
mented in different ways. Given an n×p matrix of continuous data – the situation
assumed here – the common aim is to produce groups, or clusters, of cases such

3Several packages contain functions for undertaking CA, which differ in the defaults and the
way plots can be labeled. The ca function from the ca package is used for some of the examples
in Chapter 9. In addition to being loaded this package also needs to be imported; see Section A.3
for details.
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that cases within a cluster have similar profiles that are distinct from those of
clusters.

Obtaining a cluster analysis is straightforward; interpretation not always so.
Some of the issues to be taken further in Chapter 10 are raised by the introductory
examples presented here. Coding can be reduced to one line as follows.

plot(hclust(dist(scale(tubb.data)), method = "ward.D"))

The result is shown in Figure 2.5
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Figure 2.5: The dendrogram for a Ward’s method cluster analysis of the standard-
ized oxide data from Table B.1. This is the default output

The output produced is a tree-diagram (or dendrogram) that can be thought
of as consisting of branches and leaves (corresponding to the cases). The idea is
to cut the tree at some point to isolate distinct branches whose leaves define the
clusters. There are, fairly obviously, three clear clusters in the figure that can be
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shown to correspond to the regions. Such identification is not usually as easy when
there is less clear structure in the data.

There are three main steps in the methods of cluster analysis most widely used
in archaeology. Firstly, the data usually needs to be transformed and this involves
the same issues as in PCA (Section 7.2). Here the scale function standardizes
the data to zero mean and unit variance. Secondly, a measure of (dis)similarity
between rows needs to be defined and the dist function produces, by default,
Euclidean distance4. Other choices are possible, but Euclidean distance is much the
most common (Section 7.3). Finally, and this is where issues of interpretation arise,
a method, or algorithm, for clustering the data needs to be chosen. Hierarchical
clustering is common. Cases are initially treated as single clusters and successively
merged until a single cluster, of all cases, results. The hclust function effects the
clustering; there are different algorithms for this that depend on the criterion
for merging clusters. The method = "ward.D" argument to hclust specifies that
Ward’s method is to be used (Section 10.3).

The choice of methods is simply effected using the method argument. Choices
other than "ward.D", such as "s" or "a", produce single-link and average-link
analyses of those illustrated in detail in Chapter 10. These will produce different
output from Ward’s method, and single-link is illustrated in Figure 2.6. Rather
than simply replacing "ward.D" with "s" the opportunity is used to illustrate the
use of the plot function, used in conjunction with hclust, to show how the default
labeling can be ‘tidied-up’. The code used is given below.

plot(hclust(dist(scale(tubb.data)), method = "s"),

labels = tubb.region, sub = " ", xlab = " ", cex = 0.8,

main = "Single-linkage cluster analysis - Romano-British pot compositions")

The sub = " " and xlab = " " arguments replace the labeling at the bottom
of Figure 2.6 with blank space. Replacement text could be added if wished, with
the main argument showing how a more informative title can be produced. The
labels argument replaces the default labeling of leaves by row number with re-
gional identifications held in tubb.region which needs to be created in advance
of analysis. Finally the argument cex = 0.8 controls the character expansion of
the leaf labels, in this case to 0.8 of the default, to remove overlapping.

As far as interpretation goes the appearance of the dendrograms in the two
analyses differs, but it is clear that there are three main groups in the single-link
analysis, with the revised labeling making it clear that these are regional groups.
the main difference is that single-link suggests three outliers (two from Region 2
and one from Region 1) not evident in the Ward’s method analysis. This is fairly

4Mathematically this is just a generalization of distance as we measure it in two or three
dimensions.
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Figure 2.6: A Single-link cluster analysis of the standardized oxide data from Ta-
ble B.1.

characteristic of the way these methods can differ; issues of method choice, cluster
validation, and the comparison of analyses are considered in detail in Chapter 10.

2.5 Example – Linear discriminant analysis

The fundamental difference between LDA and PCA is that the former uses the
information (or assumptions) about groups in the data in the analysis and, it is
hoped, will show much better separation between groups than in the PCA. For
what follows it is necessary to load the MASS package using library(MASS) in
order to access the eqscplot function, which produces equal scaling of the axes
and the lda function to carry out the LDA. Once this is done the following one-line
command will produce the output of Figure 2.7.

eqscplot(predict(lda(tubb.data, tubb.region), dim = 2)$x)
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Figure 2.7: A linear discriminant analysis plot of the data from Table B.1.

The lda function carries out the LDA. The predict function with the argu-
ment dim = 2 generates the scores for cases on the first two discriminant functions
and the addition of $x extracts these for plotting purposes. To use the eqscplot

function as shown the argument dim = 2 is needed; the more general case is dis-
cussed in Section 2.6.2. More so than the other methods discussed the code ben-
efits from being broken down into more than one line. The plot produced is not
entirely satisfactory and would benefit from enhancement. The message is that
there are three groups in the data with the separation between them much more
evident than for the PCA in Figure 2.2 and this is what we hope to see. It can
be assumed, given previous analyses, that the grouping displayed almost certainly
corresponds to the regions, but for more general purposes, when the grouping is
less clear-cut, we would like as a minimum to label the points to see what group a
case is supposed to belong to. How this can be done, along with other aspects of
labeling, is discussed at length in Section 2.6.2 as it introduces features of R used
throughout these notes.
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2.6 R notes

2.6.1 Introduction

The chapter concludes, as do other chapters, with notes on the R coding used
to obtain the analyses in the chapter where these introduce new features of R.
Some features are used on a regular basis and are covered here in the following
sub-section to avoid repetition. This includes labeling and presentational options.
Some other general features of R that are used regularly are covered in context
in other sections. In particular, Section 3.2.2 introduces the idea of user-defined
functions, not needed for the present chapter; Appendix A discusses aspects of
data entry and accessing user-written packages in more detail than given here.

2.6.2 Aspects of labeling and presentation

The one-line coding used to generate the output for the examples illustrates the
ease with which ‘advanced’ analyses can be undertaken. The plots obtained are
useful for initial exploratory purposes; from the point of view of presentation and
interpretation some form of enhancement is desirable and sometimes essential.
The least satisfactory of the default ouputs presented in the examples was that for
LDA, where the regional information is essential for plot construction and ought
to be included in the plot in some way. Code for an enhanced version of Figure 2.7,
with the associated output, is given below as a peg on which to hang a discussion
of aspects of labeling. Without further ado an enhanced version of Figure 2.7 is
shown in Figure 2.8 that uses the following code5.

library(MASS)

tubb.lda <- lda(tubb.data, tubb.region)

tubb.ld <- predict(tubb.lda)$x

x1 <- tubb.ld[,1]

x2 <- tubb.ld[,2]

eqscplot(x1, x2, xlab = "first linear discriminant",

ylab = "second linear discriminant", col = Coltubb, pch = Symtubb,

main = "Enhanced LDA - Romano-British pot compositions",

cex = 1.3, cex.axis = 1.2, cex.lab = 1.3, cex.main = 1.3)

legend("topright", c("Region 1", "Region 2", "Region 3"),

col = c("red", "blue", "green2"), pch = c(15,16,17),

bty = "n", title = "Region", cex = 1.4)

5For display on the page individual directives that can occupy one line if typed at a terminal
are sometimes run over two or more lines. Blank lines are used to make it clear where this is
occurring. The # symbol comments out what follows it and can be used for annotation.
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Figure 2.8: Enhanced linear discriminant analysis plot of the data from Table B.1.

The original one-line coding has been broken up to make it clearer, and there
are slight modifications. The dim argument has been omitted from the predict

function so that tubb.id holds information on all the discriminant functions; this
requires a slightly different approach from that previously used for plotting. The
first two discriminant functions are defined by x1 and x2 and these are used in
the plotting function6. For this particular code to ‘work’ at least three groups are
needed.

The more obvious differences from Figure 2.7 lie in the use of axis labels and
titles, the use of different symbols and colors for labeling points, and the provision
of a legend. Given the ubiquity of their usage in later examples they are discussed

6Note the use of x1 = tubb.id[ , 1] etc. to ‘pick-out’ the discriminant function to use. The
[ , ] component is used to identify the rows and colums that are included or omitted. Thus,
x[-4, 1:2] would extract the first two discriminant function omitting case 4. More complicated
uses are illustrated in other chapters.
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in turn, in some detail.

Labels and titles

Axis labels are produced using the xlab and ylab arguments in plot with the
title supplied by the main argument. Note that, here and elsewhere, the text
must be enclosed in double quotation marks, " ". If the content is left blank the
axis labels and/or title are also blank. This can be useful for suppressing default
labeling. The arguments cex, cex.axis, cex.lab and cex.main control the size
of the plotting symbols, the size of the numbers on the axes, the size of the axis
labels and the size of the main title. What is appropriate will depend on how the
output will eventually be presented.

Plotting symbols

In general, points can be plotted using different symbols for individual cases and
these are supplied by the plotting character argument, pch in the plot function
(or eqscplot if equally scaled axes are needed). The default is to plot using open
circles that are otherwise undifferentiated. The argument pch = Symtubb was
used in the eqscplot function above. Symtubb is a list of plotting symbols that
needs to be created, identified by numbers, of the same length as n. There are
22, 16 and 10 cases for the three regions and the rows are blocked by region. If
Symtubb is defined as

Symtubb <- c(rep(15, 22), rep(16, 16), rep(17, 10))

this does the job, where 15, 16 and 17 correspond to solid squares, circles and
triangles. The rep function replicates its first argument, the second argument
defining the number of copies needed. Thus rep(15, 22) produces 22 replicates
of the number 15; the function c(. . .) combines the arguments given in . . . into
a list of length 48. The available plotting symbols can be located using judicious
Googling and are listed on several websites7. They are shown, for convenience of
reference, in Figure 2.9. In the code given the character expansion cex = 1.3 is
used to produce more ‘visible’ symbols on the page than the default.

If only a single plotting symbol is needed, different from the default (e.g., solid
circles) then pch = 16 is sufficient. The graphs in these notes mostly use the
symbols 15–17 if three or fewer are needed.

7http://research.stowers-institute.org/efg/R/Color/Chart/index.htm for one source for sym-
bols and colors.

25



Figure 2.9: Available symbols for plotting points in R.

Colors

Colors are treated in much the same way as plotting symbols using the col argu-
ment to the plotting function. The argument col = Coltubb specifies the colors
used in the example, where Coltubb has been defined as

Coltubb <- c(rep("red", 22), rep("blue", 16), rep("green2",10))

A list of available colors can be obtained in R using the functions colors() or
colours(); there are 657 in total. The colors "red", "blue" and "green2" are
numbers 552, 26 and 257 in the list. In the definition of Coltubb the text identifiers
can be replaced with the numbers as follows, and if wished.

Coltubb2 <- c(rep(colors()[552], 22), rep(colors()[26], 16),

rep(colors()[257],10))
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This is not as ‘neat’ as the previous construction. It requires the numeric identifiers
and these can be obtained from the listing produced by colors. An alternative
is to use Figure 2.10 (from the same source as Figure 2.9) to identify color labels
that seem suited to the purpose. Apart from displaying the colors on offer this is

Figure 2.10: Available colors for plotting in R.

potentially useful for identifying adequately contrasting colors where several are
needed – not always straightforward. In these notes, when two or three or colors
are needed "red", "blue" and "green2" are most used, the last tending to display
more satisfactorily than "green" in many examples. For a single color something
like col = "blue" will suffice.
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Lines

Lines are not needed for Figure 2.8 but it is convenient to discuss them here.
The lty and lwd arguments control the line type and width. The available line
types are shown in Figure 2.11, from the same source as Figures 2.9 and 2.10.
The default is lty = 1, a solid line, with lwd = 1; line color can be controlled
using the col argument. Lines can be added to plots using the abline and lines

functions, for which the same control is available.

Figure 2.11: Available lines for plotting in R.

Legends

On first acquaintance the legend function can look quite forbidding – see ?legend.
Figure 2.8 is a fairly minimalist example that illustrates some of the more useful
features.

In the first argument to the function given in the example code the position of
the legend is specified. This can be done by providing the coordinates for the top
left-hand corner of the ‘box’ that encloses the legend, but it is simpler, if space
and aesthetics permit, to place the legend in one of the four corners of the figure
using one of "topright", as in the example, "bottomleft" etc.

The second argument lists the names to be used in the legend. The col and
pch arguments are lists with the same length as that of the legend that indicate
the colors and plotting characters associated with each component of the legend;
cex controls the character expansion used in the legend with pt.cex available for
addition control over point sizes. The default is to have a visible box enclosing
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the legend; bty = "n", as used here, renders this invisible. A title for the legend
can be added using the title argument. Other features will be introduced, when
needed, in later examples.

The code for the examples in this chapter will be provided in detail, where
this is not given in the text. In subsequent chapters arguments associated with
the labeling and the legend will often be omitted unless it is useful to illustrate
features not previously discussed. Thus the code for the example used here might
be presented as

library(MASS)

tubb.lda <- lda(tubb.data, tubb.region)

tubb.ld <- predict(tubb.lda)$x

x1 <- tubb.ld[,1]

x2 <- tubb.ld[,2]

eqscplot(x1, x2)

2.6.3 Code used for analyses in the text

Figure 2.2

The main aim in this plot, apart from serving as a first illustration of plot con-
struction, was to show the disposition of cases corresponding to different regions,
while simultaneously labeling points by case number so that potential outliers
could be identified. Additionally, the plotting of variable markers provided by the
biplot default was not of interest, and greater control over labeling than that
easily possible with biplot was needed.

library(MASS)

Coltubb <- c(rep("pink", 22), rep("skyblue", 16), rep("green2",10))

Symtubb <- c(rep(15, 22), rep(16, 16), rep(17, 10))

tubb.pca <- prcomp(tubb.data, scale = TRUE)

tubb.x <- tubb.pca$x

x1 <- tubb.x[,1]; x2 <- tubb.x[,2]

eqscplot(x1, x2, col = Coltubb, pch = Symtubb, xlab = "PC1",

ylab = "PC2", cex = 2.5)

text(x1, x2, 1:dim(tubb.x)[1], cex = 0.75)

legend("topleft", c("Region 1", "Region 2", "Region 3"),

col = c("pink", "skyblue", "green2"), pch = c(15, 16, 17),

title = "Region", bty = "n", cex = 1.2, pt.cex = 2)

The prcomp function carries out the PCA with the first argument specifying
the data to be used, and the scale = TRUE argument standardizing the data.
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Principal component scores are extracted using tubb.pca$x and stored in tubb.x.
Next, x1 and x2 are defined to hold the scores for the first two components needed
for plotting. The commands to generate these have been run together on the same
line with a semi-colon needed to separate them.

The structure of the eqscplot function is as previously illustrated but Coltubb
is constructed with lighter colors that the previous example, so that case numbers
are more easily read when superimposed on them. The text function adds the
case numbers to the plot. The first two arguments are the variables used and are
the same as those used with the eqscplot function. The third argument supplies
the labels to be used. In this example the function dim is the dimension of the
data matrix, tubb.x, that holds the PC scores. It consists of two elements giving
n and p, the number of rows and columns of the data matrix. The first of these
is what we need and dim(tubb.x)[1] extracts it. It is known that n = 48 so the
effect is to define the third argument as 1:48 which is a quick way of generating
the numbers (1, 2, . . . , 48). Using 1:48 directly is simpler but less general.

The default text color is "black" but it can be changed using the col argu-
ment if preferred. The cex values vary between the eqscplot and text function.
The idea is to arrange things so that the text fits within the symbols, and some
experimentation was needed to obtain the effect shown.

Table 2.1

K <- tubb.data$K # tubb.data[ , 6] could also be used

# Create new data omitting an outlier, case 36

K_Out <- K[-36]

tubb.region_Out <- tubb.region[-36]

m <- mean(K)

med <-median(K)

sd <- sd(K) # standard deviation

IQR <- IQR(K) # Inter-Quartile Range

statistics <- c(m, med, sd, IQR)

print(round(statistics, 2))

The code can be streamlined by writing it as a function (Section 3.2.2) but is
adequate for immediate illustrative purposes. The variable K has a column heading
of the same name and is the sixth variable in the data matrix; it can be extracted
in either of the ways indicated. The code as given obtains the mean, median,
standard deviation and interquartile range (IQR) of the data. The print function
takes whatever is listed and returns it on the terminal. The round function takes
the first argument – in this case statistics, a list of the summary statistics –
and rounds it to the number of decimal places given by the second argument.
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To do calculations for the regions replace K with K[tubb.region == 1], for
example, which extracts the data for Region 1 – note the use of square brackets
and the ‘double equal’ symbol, ==, to define the subset to be extracted. This can
be done for each region in turn.

Figure 2.3 reveals a clear outlier for K in Region 2, and it is easily established
that this is case 36 in the data table. The variables K Out and tubb.region Out

remove this outlier from the data and regional classification. Only Region 2 is
affected by the outlier and only the mean and standard deviation are of interest
(the median and IQR will not be much affected, if at all, by the outlier). The
mean, for example, can then be obtained by using

m < −mean(K Out[tubb.region Out == 2])

.

Figure 2.4

The data of Table B.2, named burial here, was analyzed in Baxter (2003: 137)
where the third tomb was something of an outlier, plotting sensibly but cramping
the rest of the display. In what follows, and for clarity of graphical presentation,
burial1 omits this tomb. The left-hand plot in the figure shows a seriation of
the data, and the aim was to highlight tombs "g" to "j" in which there was a
particular interest. This was done by modifying the plotting color and size of the
labels for these tombs and introduces features not previously used.

library(MASS) # Needed for corresp and eqscplot

burial1 <- burial[ ,-3] # Omit tomb "c"

z <- corresp(burial1, nf = 2)

# Extract row and column coordinates for plotting purposes

x1 <- z$rscore[,1]; x2 <- z$rscore[,2]

y1 <- z$cscore[,1]; y2 <- z$cscore[,2]

# Row (artifact) plot

eqscplot(x1, x2, type = "n", xlab = "axis 1", ylab = "axis 2",

main = "CA of ’Philistine’ burials - artifacts")

text(x1,x2, 1:52)

abline(h = 0, lty = 2); abline(v = 0, lty = 2)

# Column (tombs) plot

Labs <- letters[-c(3, 17:26)] # Define text for point labels.
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eqscplot(y1, y2, type = "n", xlab = "axis 1", ylab = "axis 2",

main = "CA of ’Philistine’ burials - tombs")

Cex <- rep(1.5, 15); Cex[6:9] <- 2

Colburial <- rep("red", 15); Colburial[6:9] <- "blue"

text(y1,y2, Labs, cex = Cex, col = Colburial)

abline(h = 0, lty = 2); abline(v = 0, lty = 2)

Once the coordinates are extracted, as indicated, obtaining the row plot is
straightforward. In both eqscplot commands, which produces equal scaling of
the axes, the argument type = "n" produces a blank plot with the axis and titles
shown. The text function adds text (the point labels) to the plots. For the rows
the third argument, 1:52, defines the row numbers 1 to 52. Labeling for the
column plot is a little more involved.

The variables Cex and Colburial define the character expansion and color to
be used, and are then modified to produce a larger size with a different color for
tombs (columns) "g" to "j" (6 to 9 or 6:9 in burial1). Note that cex = Cex

is now specified as has been previously the format for colors and symbols as it
is now a variable quantity. Labels for points are defined by Labs and are the
tomb identifiers "a" to "p", omitting "c". These are generated using the letters

function which generates the 26 lower-case letters of the Roman alphabet (use
LETTERS for uppercase). The letters from "q" onwards are not used and need
to be omitted along with "c". In letters[-c(3, 17:26)] note the use of -c(3,
17:26) to list letters to be omitted, specified by their position in the list generated
by letters and that, via the minus sign, omission is intended.

Finally the abline function is used to add reference lines to the plots. Here
the arguments h = 0 and v = 0 add horizontal and vertical lines to the plot. This
is particularly useful for biplots presented as separate row and column plots since
it aids the visual superimposition of plots when interpretating the results. The
lty = 2 argument specifies the line type lty to be used – dashed in this case.
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Chapter 3

Continuous data

3.1 Continuous data

3.1.1 Introduction

This chapter deals with simple methods for the analysis of continuous or quantita-
tive data. The distinction is often drawn between interval-scaled and ratio-scaled
data, the latter type involving positive numbers and for which the concept of a
ratio is meaningful. Temperatures on the Celsius (centigrade) and Farenheit scales
are examples of interval scaled data. For example, we cannot say that a tempera-
ture of 40 degrees centigrade is ‘twice as hot’ (a ratio concept) as one of 20 degrees;
using the Farenheit scale converts to 104 and 68 with a ratio 1.53. This differs
from 2 and shows that the scales are not ratio-scales. On the other hand it makes
sense to say that a pot that is 10 cm tall is twice as tall as one of 5 cm, so height is
a ratio-scaled variable. The same is true of many variables used in archaeological
data analysis (e.g., length, weight).

Continuous data are usually contrasted with discrete (or counted) data, the
subject of Chapter 4. The nature of the data should reflect the method of analysis,
including graphical presentation, and this is sometimes neglected. In deciding
how to analyze a set of data it should be emphasized that the important issue is
whether or not measurements are of a variable that is continuous, in principle.
For example, (estimated) age at death is a continuous variable but may only be
measured to the nearest year. In fact all continuous measurements are inevitably
truncated/rounded. The height of a pot may be 10.2683310 · · · cm but, depending
on the measuring instrument and the accuracy that is realistic, may be recorded
as 10 cm, 10.3 cm or 10.27 cm.

For illustration, unpublished data from Cool (1983) are used. They are the
lengths (mm) of 90 copper alloy hairpins from southern Britain, 55 classified as
early and 35 as late on archaeological grounds (see Cool, 1990, for a review of the
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use of such hairpins). The data are given in Table 3.1.

54 56 74 84 85 85 87 88 89 90
90 92 92 92 92 93 93 93 93 93
94 94 94 95 95 95 96 96 97 97
97 98 98 100 100 100 100 101 102 103
104 104 104 104 105 107 108 108 111 115
115 116 123 128 134

51 52 54 56 57 58 60 60 61 62
62 63 63 63 65 65 66 67 68 68
70 70 70 70 71 74 75 77 78 78
80 80 82 82 87

Table 3.1: Lengths (mm) of Romano-British copper alloy hairpins from southern
Britain (Cool,1990). The upper set are early and the lower set late.

3.1.2 Histograms, dotplots and boxplots

Figure 3.1 shows examples of histograms, dotplots and boxplots for the early hair-
pins data. Much of this will be familiar. An aim here is to demonstrate the ease
with which R can be used to get publication quality graphs. Code is given either
following the figures or in Section 3.2.2. In terms of substantive interpretation the
histograms and dotplot are unimodal, with a central concentration of data that
tails off, and nothing too distressing in the way of outliers or long tails. The second
histogram and dotplot draw attention to two possible outliers to the left that are
smaller than the bulk of the data, but not enough to agonize about. We shall
loosely refer to such data as (reasonably) well-behaved. Data that have a normal
distribution are the ideal example of well-behaved data (Section 12.2.1).

A histogram is defined by counts of measurements in cells that have defined
lower and upper limits; the default in software packages is to have cells of equal
widths (bin-widths), with a default rule applied to determine the number of bins.
With equal bin-widths the heights of the bars associated with the bins are propor-
tional to frequencies. A probabilty density scale can be specified if preferred. If a
case lies exactly on the boundary between two bins a rule of some kind is applied
to determine whether such cases go into the left or right bin. In what follows
RBpins.early is the name of the data file given to the early hairpins.

The appearance of default histograms can sometimes be improved by increasing
the number of bins (i.e. the original is ‘oversmoothed’). To specify 20 bins use
hist(RBpins.early, 20). This is a guide since aesthetic considerations, namely
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Figure 3.1: Univariate graphical displays for the lengths of early Romano-British
hairpins. The upper left histogram is the R default; that to its right specifies 20
bins. A dotplot and boxplot are shown beneath them.

the desire for ‘nice’ numbers on the x-axis, may dictate a slightly different choice.
It is legitimate to play around with the number of bins until the result is judged
satisfactory, at which point labeling can be tidied up (Section 2.6.2).

If data are well-behaved it limits complications that may arise in further anal-
ysis. In the present instance it legitimizes the use of boxplots (sometimes called
box-and-whisker plots) for data display, which are not well-suited to data with
more than one mode. The way boxplots are drawn depends on the software used
but typically, as here, the box covers the central 50% of the data with its width
the interquartile range (IQR), and the line in the box the median. For very well-
behaved data whiskers extend to the maximum and minimum of the data. Where,
according to a default criterion, which is a bit arbitrary, ‘unusual’ values (or out-
liers) are detected the whiskers are broken and the unusual cases highlighted. In
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R the default, which can be changed, is to highlight cases more than 1.5 × IQR
from the limits of the box.
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Figure 3.2: Univariate graphical displays for the lengths of all Romano-British
hairpins. See the text for discussion.

Care needs to be exercised in interpretation, and the present plot exemplifies
this. The highlighted cases in the lower part of the boxplot could be interpreted as
outliers, whereas those in the upper part are more indicative of a ‘slight’ tail to the
right. In more extreme cases than that illustrated it may be sensible to re-examine
the data omitting outliers. If highlighted cases are indicative of a long tail, then
the boxplot will not be symmetric. For some methods of statistical analysis long
tails are not always welcome, and logarithmic transformation to improve symmetry
is common.

Figure 3.2 is mostly as Figure 3.1 but uses all the hairpins, ignoring knowledge
of their date. The main difference is the evidence of bimodality in the histograms
and dotplot, rendering the boxplot unhelpful. It has been replaced by a violin plot
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(Hintze and Nelson, 1998) which, as well as a boxplot, produces an estimate of
the density along the boxplot, so that the bimodality can be seen. The package
vioplot needs to be imported and loaded, with the function of the same name
then being used. In the second histogram 30 rather than 20 bins were specified,
and it might be thought a little ‘bitty’.

3.1.3 Kernel density estimates

Univariate data – one group

Kernel density estimates (KDEs) would be regarded as mathematically complex
by many archaeologists (see Silverman, 1986; Wand and Jones, 1995; Bowman
and Azzalini, 1997, to be convinced). Baxter and Beardah (1996) and Baxter et
al. (1997) provide what counts as early expositions aimed at archaeologists, and
Chapter 3 of Baxter (2003) reviews some uses of KDEs in archaeology, to that date.
They can now be regarded as a standard method in archaeological data analysis.
Conceptually, as illustrated in most of the examples here, KDEs can be used to
produce smoothed histograms that overcome many of the problems of the latter
illustrated in Whallon (1987). Computationally, plot(density(RBpins.early))
using the density function gets you going for the early hairpins data. We proceed
by illustration, starting with Figure 3.3.

The upper-left plot, for the early hairpins data, is the default plot for the
density function. It is useful to look at because it gives the default bandwidth
used. The bandwidth is analogous to the bin-width in a histogram, and controls
the appearance of the KDE through the degree of smoothness. Various rules
have been put forward for choosing ‘good’ bandwidths. These are mathematically
based and, to my eye, sometimes result in KDEs that are too smooth. As with
bin-widths, my preference is to experiment with different bandwidths and select
the KDE subjectively. The upper-right plot uses a smaller bandwidth than the
default, but it makes little difference to the appearance, with the tails being a bit
bumpier. The labeling has also been modified from the default.

The two lower plots are for all the hairpins. That to the left is designed to
show the bimodality in the data – remember, at this stage a difference between
early and late hairpins is not being assumed. The plot to the right shows a KDE
with a larger bandwidth, and therefore smoother.

The next example was provoked by examination of the data for Mg in Table B.1.
It illustrates issues of smoothing and data transformation. Examination of the
table shows quite clearly that there are regional differences with the values for
Region 3 somewhat smaller than for other regions. This is not evident in the
default KDE in the upper left of Figure 3.4. To show that Region 3 is separate
in a KDE a rather drastic reduction in the bandwidth is needed, as shown in the

37



40 60 80 100 120 140

0.
00

0.
01

0.
02

0.
03

0.
04

density.default(x = RBpins.early)

N = 55   Bandwidth = 3.616

D
en

si
ty

60 80 100 120 140

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Early Romano−British hairpin lengths

length (mm) bandwidth = 2.5

D
en

si
ty

40 60 80 100 120 140

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

All Romano−British hairpin lengths

length (mm) bandwidth = 3

D
en

si
ty

60 80 100 120

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

All Romano−British hairpin lengths

length (mm) bandwidth = 4

Figure 3.3: Applications of KDEs to the Romano-British hairpin lengths of Ta-
ble 3.1, discussed in the text.

upper-right panel. The bandwidth was chosen to isolate Region 3, and it also does
a good job of identifying Region 2 with the highest mode. My immediate reaction
on seeing this was that the right-hand side of the plot was undersmoothed; in fact
the lower left-hand plot of Figure 2.3 suggests it is reasonable. It is consistent with
the fact that there is an extreme case in Region 2 and a small but separate group
of five cases.

A common strategy in the analysis of artifactual chemical compositions, where
measurements are strictly positive, is to transform to logarithms (Bieber et al.,
1976). If this is done the default KDE immediately suggests trimodality, with the
mode for Region 3 to the right. Reducing the bandwidth emphasizes the grouping
more, without introducing spurious detail (lower figures). The variation in Region
2, noted in the previous paragraph, is not picked up. In these examples some
prior knowledge of the data structure, gained from tabular inspection, is needed
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Figure 3.4: The upper and lower plots contrast KDEs for untransformed and log-
transformed data to base 10, for Mg from Table B.1. See the text for a discussion.

to obtain sensible and informative displays. Almost invariably, it is useful to look
at a set of data in more than one way.

Comparing two groups

The two left-hand panels in Figure 3.5 show histograms for the early and late
hairpins. There are arranged vertically and the scales on the x-axis and bin-widths
have been arranged to be the same. A probability scale is used so the comparison
is of shape ignoring sample size. I am not generally a fan of this kind of display,
but it works well enough here.

Other examples of this usage are given in Mellars and Wilkinson (1980) to
compare the distribution of otolith lengths for samples from late Mesolithic shell-
midden sites from Oronsay. Relatively few histograms are used (up to five) and
the patterns are sufficiently clear to be informative (though the graphs use a lot of
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Figure 3.5: Comparing two groups using histograms and KDEs. For the KDEs the
solid and dashed lines are for early and late hairpins respectively. See the text and
section notes for a discussion.

space). I am less convinced by the numerous examples in Albarella et al. (2006)
where 10/25 pages, most consisting of five histograms, are used to compare mostly
pig lower-tooth measurements from a variety of Italian prehistoric contexts. Sam-
ple sizes are small for some contexts with, arguably, too many bins used; patterns
are not easy to compare; and, with the exception of a clearly bimodal distribution,
a table of summary statistics might have served as well or better.

The upper-right plot in Figure 3.5 superimposes the two histograms, and a
frequency scale is used which allows the sample size difference to be seen. A
problem with such plots is that one histogram will obscure part of the second
histogram. In this instance the main message, that the groups have reasonably
different locations, is not obscured but, in general, this kind of plot is not really
suitable for histograms with much overlap, or for more than two histograms. My

40



preference in this example would be to superimpose two KDEs, as shown in the
lower-right figure. The separation between early and late hairpins is evident,
without one KDE obscuring the other. The KDEs are on a density scale so provide
no information on sample size differences.

Histograms and KDEs are not the only way of comparing groups. Figure 3.6
shows some possibilities using stripcharts, violin plots and boxplots. The stripchart
for the %Fe data from Table B.1, by region, justifies the use of boxplots as there is
no evidence of multimodality (also true of the violin plot). The stripchart suggests
there are two outliers in Region 1, also suggested by the relevant boxplot. Boxplots
for the Romano-British hairpins data are also shown in the lower-right plot and
show that the early hairpins tend to be longer than the late hairpins.
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Figure 3.6: The upper left-hand plot is a ‘stripchart’ showing the distribution of
%Fe by region for the data from Table B.1. To its right, and below, the violin plot
and boxplots effect similar comparisons. The final figure is based on the Romano-
British hairpins data and shows the distinction between early and late hairpins.
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With software such as R it is sensible to explore different methods of display
before selecting one for final publication that tells the story the data deserves.
Sometimes the use of more than one display is merited, though publication con-
straints can militate against this.

3.2 R notes

3.2.1 Functions

In Section 2.6.3 the possibility of writing a function to ease the calculation of the
statistics for Table 2.1 was mentioned in passing. User-defined functions are often
introduced in the later stages of introductory texts on R, but it is useful to know
about them at an early stage. With more than a few lines of code it can be more
efficient to write a function to do the job. This can be tested and edited, using
the edit function, before applying it ‘in anger’1. One might also wish to reuse
a function – for example, by applying the code used to generate the numbers in
Table 2.1 for another variable. This will be taken as an initial illustration, then
made more general.

The first line in the code that follows names the function RBpot.statistics1;
function(x) defines the function with an argument, x, that will be replaced with
the data to be used. The function code is enclosed within the braces { and }
and consists mainly of code to calculate the statistics previously used. These
are collected together in the object statistics, where the column bind function,
cbind, treats each statistic as a 1×1 table, resulting in a 1×4 table. Doing it this
way retains the statistics’ names which makes the output, when printed, easier to
read

RBpot.statistics1 <- function(x){

Mean <- mean(x)

Median <-median(x)

SD <- sd(x) # standard deviation

IQR <- IQR(x) # Interquartile Range

statistics <- cbind(Mean, Median, SD, IQR)

list(stats = round(statistics, 2))

}

1For example, RBpot.statistics1 <- edit(RBpot.statistics1) will bring up an edit
screen where the function in question can be edited. If mistakes are made then, when you
exit from edit mode, you will get a message about this – not always that helpful. Typing the
function name will return the original code. To recover the edited version for correction, mistakes
and all, use edit().
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The list function provides the names for and definitions of the objects of
interest to be printed – in this case the rounded values of the statistics, named
stats, are made available (more than one object can be listed). The rounding
is achieved by the round function which takes the data in the first argument and
rounds it to the number of decimal places given in the second argument. The
contents of the list can be obtained by typing the function named. Should the
output be needed for later use it can be saved using

Statistics <- RBpot.statistics1(tubb.data$K)

and viewed immediately by typing Statistics to get

$stats

Mean Median SD IQR

[1,] 3.18 3.16 0.92 0.96

There are several obvious advantages to creating even simple functions like this.
One is that other statistics can be added (or subtracted) at will. The argument x
can be varied to obtain statistics for different subsets of the data or different vari-
ables. For example, when invoking the function, replacing K with K[tubb.region

== 1] will produce the statistics for Region 1 only; replacing it with Fe will cal-
culate the statistics for that oxide etc.

A natural question to ask is if the regional calculations for all regions can
be done with a single function. The following code is one possible way of doing
this. The function includes a second argument, TypeId, which is where the list
containing the group identifiers is entered.

RBpot.statistics2 <- function(x, TypeId){

Names <- names(table(TypeId))

Stats <- NULL

for(I in seq(1:length(Names))) {

Mean <- mean(x[TypeId == Names[I]])

Median <- median(x[TypeId == Names[I]])

SD <- sd(x[TypeId == Names[I]]) # standard deviation

IQR <- IQR(x[TypeId == Names[I]]) # Interquartile Range

Stats <- rbind(Stats, round(cbind(Mean, Median, SD, IQR), 2))

}

row.names(Stats) <- Names

list(Stats = Stats)

}
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The table function is a convenient way of finding how many categories are
represented in the TypeId variable and their names are extracted using the names

function. The extracted variable is here called Names, and the subsequent use of the
function length provides the number of elements in Names (three in this instance).
Group labels are integers here and will be listed accordingly; with text identifiers
the ordering produced by the table function corresponds to alphabetical order.

A ‘for loop’ using the for function does the computations. The function seq,
in conjunction with length as used here, generates the number of categories to
loop through; each loop creates a table of the statistics with one row using the
cbind function; and these are bound together using the row bind function, rbind,
to produce, in this instance, a 3× 4 table of statistics. The binding process needs
to start from somewhere and an ‘empty’ object is created using Stats <- NULL

that is subsequently filled in during the looping process. Finally, the row.names

function adds row names to the table so that it is more readable when printed.
The function may be executed and results saved using

Statistics <- RBpot.statistics2(tubb.data$K, tubb.region)

and printed as in the previous example to obtain

$Stats

Mean Median SD IQR

1 3.11 3.13 0.22 0.15

2 4.01 4.28 0.97 0.72

3 2.02 2.03 0.19 0.16

As a final example the calculation of statistics for all the variables is illustrated.
This is not broken down by region, but this can be achieved, region-by-region, in
the call to the function.

RBpot.statistics3 <- function(x) {

Mean <- apply(x, 2, mean)

Median <- apply(x, 2, median)

SD <- apply(x, 2, sd)

IQR <- apply(x, 2, IQR)

Stats <- rbind(round(cbind(Mean, Median, SD,

IQR), 2))

list(Stats = Stats)

}

The apply function takes the data matrix x as its first argument; the second
argument dictates whether calculations are to be based on columns (2 as here)
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or rows (1); and the third argument is the function that is to be applied (which
can be user-defined). Calling the function as previously illustrated produces the
following results.

$Stats

Mean Median SD IQR

Al 15.61 16.15 2.70 4.38

Fe 5.83 6.89 2.35 1.93

Mg 2.54 1.93 1.73 2.29

Ca 0.51 0.30 0.45 0.68

Na 0.25 0.21 0.17 0.27

K 3.18 3.16 0.92 0.96

Ti 0.85 0.90 0.21 0.25

Mn 0.08 0.08 0.07 0.05

Ba 0.02 0.02 0.00 0.00

If, for example, statistics are needed for Region 1 they can be obtained using

RBpot.statistics3(tubb.data[tubb.region == 1,])

3.2.2 Code used for analyses in the text

Figures 3.1 and 3.2

The following function might be used, omitting presentational arguments.

somegraphs <- function(x) {

win.graph()

hist(x)

# The default; look at the result and try 20 bins.

win.graph()

hist(x, 20)

library(plotrix) # Needed for the dotplot.

win.graph()

dotplot.mtb(x)

win.graph()

boxplot(x)

}

Print the graphs with somegraphs(RBpins.early) where RBpins.early con-
tains the data on early hairpin lengths. The same graphs can be obtained, without
using a function, as
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hist(RBpins.early)

hist(RBpins.early, 20)

dotplot.mtb(RBpins.early)

boxplot(RBpins.early)

but the function can be used for other data, such as RBpins.late. In practice
presentational arguments are included and it is easier to experiment with these by
editing the function rather than re-typing the command every time. This can be
done even more easily by expanding the function to add further arguments.

Thus, and for example, to label the axes

somegraphs <- function(x, Xlab = " ", Ylab = " ")

specifies the arguments;

hist(x, xlab = Xlab)

is included in the body of the function; and

somegraphs(RBpins.early, Xlab = "length (mm)", Ylab = "frequency")

labels the x- and y-axes accordingly.
Several graphs are produced; the win.graph() functions ensure that all plots

are displayed on the terminal; if omitted only the final graph will be printed. The
hist function produces the histograms. That to the left is the default histogram.
For the second histogram the second argument, 20, specifies the number of bins
preferred. To get sensible (i.e. short) labels on the axis R may modify this a little.

The dotplot.mtb function requires the plotrix package to be imported and
loaded. It produces a dotplot that imitates what can be obtained in MINITAB;
it is limited in the control that can be exercised over labeling. The function
stripchart is the preferred alternative in R. The boxplot function produces the
boxplot. Figure 3.1 has x = RBpins.early as its argument; Figure 3.2 replaces
boxplot with vioplot and uses x = RBpins.all.

Figure 3.3

kde.plots1 <- function(x, y){

library(MASS) # Needed for ‘truehist’ function.

win.graph(); plot(density(x))

win.graph(); plot(density(x, bw = 2.5))

win.graph(); plot(density(y, bw = 3))

win.graph(), truehist(y, nbins = 20), lines(density(y, bw = 4))

}

kde.plots1(RBpins.early, y = RBpins.all)
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Presentational aguments are omitted. The semi-colons (;) allow commands to be
placed on the same line.

The KDEs are produced using the density function . To produce the figure the
function arguments, x and y were RBpins.early and RBpins.all. The first KDE
is the default output for the former and provides a starting point for selecting the
bandwidth. This is chosen by a default automatic bandwidth selection procedure;
several options are available via the bw argument (see ?density for details). My
preference is to choose the bandwidth subjectively after experimentation starting
from the default choice and the second plot uses bw = 2.5 for the early pins data,
producing a less smooth estimate.

For all the hairpins bw = 3 is used in the third plot and bw = 4 in the final
plot, producing greater smoothing. The second of these shows how to overlay
the KDE on a histogram using the lines function. This requires the truehist

function from the MASS package. The KDE is on a density scale so the histogram
must also be on this scale; the truehist function provides this by default.

Figure 3.4

The function log10, transforms the data to base 10 logarithms; for natural loga-
rithms, loge, use the log function.

kde.plots2 <- function(x){

win.graph(); plot(density(x))

win.graph(); plot(density(x, bw = .2))

win.graph(); plot(density(log10(x)))

win.graph(); plot(density(log10(x), bw =.06))

}

kde.plots2(tubb.data$Mg)

Figure 3.5

In the following code the col argument for the hist function shows how to color
the bars of the histogram. The xlim argument controls the range of the x-axis,
with ylim doing the same for the y-axis. There are various reasons one might
wish to do this; to restrict the range to ‘magnify’ parts of a plot, or to expand a
plot to accommodate a legend, for example. In the present instance it is used to
ensure that histograms have the same range on both the x- and y-axes. In the
plots showing two histograms simultaneously this is essential. Here this is done
by superimposing two plots; the first of these produces a histogram for the early
hairpins and the histogram for the late hairpins is overlaid on this.
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This is done using par(new = T) with limits given by xlim = c(40, 140) and
ylim = c(0, 15) to ensure compatibility of the plots. Note that the argument
freq = T is used in both cases, to provide a histogram on a frequency scale. This
is the default and could be omitted; to get a probablity density scale, as in the
separate histograms for the two groups, use freq = F. This removes the effect of
the sample sizes in any comparison of the histograms, which the joint plot retains.

The par function can take numerous arguments that allow fine control of the
graphics to be exercised. See Section 4.4 of Venables and Ripley (2002) for a
discussion of this and some examples; ?par in R lists what arguments are available.

KDEHist <- function(x, y) {

win.graph()

hist(RBpins.early, n = 20, col = "skyblue", xlim = c(40, 140), freq = F)

win.graph()

hist(RBpins.early, n = 20, xlim = c(40, 140), ylim = c(0, 15), freq = T)

par(new = T) # This superimposes the plot on the previous one

hist(RBpins.late, n = 10, xlim = c(40, 140), ylim = c(0, 15), freq = T)

legend("topright", c("early pins", "late pins"), fill =

c("skyblue", "yellow"), bty = "n", cex = 1.5)

win.graph()

hist(RBpins.late, col = "yellow", n = 10, xlim = c(40, 140), freq = F)

win.graph()

plot(density(RBpins.early, bw= 4),xlim = c(40, 150), ylim = c(0,.05))

lines(density(RBpins.late, bw= 4))

}

KDEHist(RBpins.early, RBpins.late)

Figure 3.6

Most of the features used below have already been discussed and illustrated in the
figures in the text. This is the first use of the stripchart function, mentioned
earlier as an alternative to the dotplot produced by dotplot.mtb. The vioplot

function has fewer graphical capabilities than the other functions used.
The default in the boxplot function is to display the plots in a vertical array;

the argument horizontal = T produces a horizontal array. The boxwex argument
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controls the width of the boxes and may be used to produce a more appealing
appearance of the plot.

graphs <- function() {

library(vioplot) # Needed for the ‘vioplot’ function

win.graph(); stripchart(tubb.data$Fe ~ tubb.region)

win.graph()

vioplot(tubb.data[1:21,2], tubb.data[22:38,2], tubb.data[39:48,2],

names = c("Region 1", "Region 2", "Region 3"))

win.graph()

boxplot(tubb.data$Fe ~ tubb.region, horizontal = T)

win.graph()

boxplot(RBpins.early, RBpins.late, boxwex = .5)

}

graphs()
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Chapter 4

Discrete data

4.1 Discrete data, barplots and histograms

Histograms are appropriate for the presentation of continuous data. Such data are
usually contrasted with discrete data which, at their simplest are counted data in
different and disjoint categories. An example would be counts of distinct vessels
by type in an assemblage of pot or glass. Most archaeologists will be familiar with
the presentation of such data in the form of pie-charts or bar-charts (barplots).
These are among the most visible of statistical methods used in the archeological
literature; they are sometimes over-used, used unnecessarily, or misused (despite
their apparent simplicity).

Discrete data may be ordinal, in that categories have a natural ordering but
the ‘distance’ between categories is not known. Common archaeological exam-
ples may involve chronology; for example, counts of a single artifact type ordered
chronologically on the basis of stratigraphy or phasing, without knowing the ab-
solute chronology. Whether or not data are ordinal has implications for graphical
presentation, and for the choice of analytical method.

Barplots (and pie-charts) for a single set of counts, possibly expressed as per-
centages, are often pretty boring. Unless there are a large number of categories,
looking at the numbers in a table is often all that is really needed. Things get more
interesting when tables of counted data arise from data analysis. If, for example,
counts of different artifact types are available for a single context a simple barplot
will do. If such data are available for different contexts they can be expressed in
tabular form (examples follow) and questions can then be asked about the simi-
larity of contexts in terms of the artifact assemblages that characterize them, or
the similariy of artifacts in terms of their distribution across contexts.

Data in such a form are variously referred to as cross-tabulated, cross-classified,
or contingency tables. Compared to data matrices for continuous data, where rows
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and columns (cases and variables) have a different ‘status’, in contingency tables
the rows and columns have a similar status and a different notation is used here to
reflect this. In general we refer to an I × J contingency table. Rows and columns
can be interchanged, though in practice the emphasis may be on one or the other.

To herald later comment, it is convenient to focus on the difference between his-
tograms and barplots. The examples in Figure 4.1 use the weights of loomweights
data, from Tables B.3 and B.4. The lower-right plot shows the default R histogram
using the hist function. Note that the bars associated with the bins ‘touch’ each
other. Histograms are sometimes referred to as barplots or bar-charts in the ar-
chaeological literature and vice-versa. This is possibly understandable since the
histogram is represented by bars whose area corresponds to the counts within bins,
but should probably be regarded as incorrect.

Default barplot of histogram bin counts
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Figure 4.1: Right and wrong ways of presenting a histogram, based on counts for
bins in the default R histogram for the reduced loomweight weight data of Tables B.3
and B.4 – (1, 22, 26, 19, 27, 23, 10).
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It is easy enough to get the histogram if all the data are available. What if
only counts within bins are given, in this instance (1, 22, 26, 19, 27, 23, 10)?
It is impossible to tell by looking at the numbers alone whether they represent
continuous or discrete data so the context, which would include the intervals,
continuous or (usually) integers for discrete data, needs to be examined.

The upper plots incorrectly show the data as barplots; the gaps between bars
indicate quite clearly (at least to my eye) that the data are discrete. This misuse
is not uncommon. In R the barplot function allows control over the spacing
used between bars and setting this to zero produces the histogram shown in the
lower-left plot.

This kind of graphical/terminological misuse to be found in the literature is
possibly not misinterpreted much, but may betray confusion about the distinctions
involved, or a lack of adequate software. (The problem was common some years
ago but may now be less prevalent because popular and widely used non-statistical
software has belatedly caught up with the issue.)

Other issues concerning the use of barplots are illustrated later, but first a
more interesting example is examined. The data relate to Roman pillar-moulded
bowls found in excavations at Colchester. Eighteen periods, with a chronological
sequence, were identified. Data are given in Table 4.1.

In the absence of knowledge of the date span of the periods it is legitimate
to represent the data in the form of a barplot1. This is done in the top plot in
Figure 4.2. On a technical note the width of a bar is arbitrary. What is shown is
conventional, but vertical lines with heights corresponding to percentages would
be as legitimate.

We can do better because information on the date span of the periods, in
terms of actual dates and the width of the spans, is available. The earlier periods
are more tightly defined than later ones. Pillar-moulded bowls are an early form
and occur predominantly in the earlier periods. Knowing the dates and spans
means that the data can be treated as continuous and represented in the form of
a histogram. This is done in the right-hand plot in the figure, using period rather
than mid-points to label the scale.

There is a complication. Most software for histograms produces equal bin-
widths by default. Sarkar (2008: 39) goes so far as to say that unequal bin-widths
are ‘rarely used outside introductory statistics textbooks’. This, and others in
Cool and Price (1995), is a counter-example.

How the histogram was produced is discussed in Section 4.4. Briefly, the
barplot function was used, with zero spacing between bars, and widths of bars

1The date span is being ignored here; so the sequence is ordered but the date-span of categories
is not known. This is an example of ordinal data; this is quite common with chronological data
– the situation here where the date-span can be specified is less often seen.
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Period Date Width Midpoint %
I 43-50 8 46 11

II 51-60 10 55 22
III 61-70 10 65 9
IV 71-80 10 75 8
V 81-90 10 85 6

VI 91-100 10 95 5
VII 101-125 25 112 9

VIII 126-150 25 137 5
IX 151-175 25 162 4
X 176-200 25 187 3

XI 201-225 25 212 2
XII 226-250 25 237 2

XIII 251-275 25 262 2
XIV 276-300 25 287 3
XV 301-325 25 312 2

XVI 326-350 25 337 1
XVII 351-375 25 362 1

XVIII 376-400 25 387 1

Table 4.1: Chronology of Roman glass pillar-moulded bowls found during exca-
vations at Colchester, 1971-1985. The data are ordinal, but the periods are of
different lengths. See Cool and Price (1995: 15–19) and the text for discussion.
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Figure 4.2: Different ways of representing the data from Table 4.1. The barplot
to the left respects the ordinal nature of the data, but not the fact that periods are
of different lengths. The histogram to the right, constructed using the barplot

function, does respect the differing lengths. Because of the unequal bin-widths a
vertical scale is not appropriate.
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corresponding to the date span specified. Because of the unequal widths a sensible
scale for the vertical axis is not available.

The advantage of the histogram compared to the barplot is that it emphasizes
the decline in use over time more obviously. The quite sharp and steady decline in
usage is readily apparent. The barplot does not do this, because it was constructed
without use of the spans which are longer for the later periods. There is the
suggestion in the barplot of a secondary peak in period VII that exists simply
because the span is longer than earlier periods and, for the same reason, the sharp
decline in usage over time is less apparent.

4.2 Barplots for two-way tables

The barplots in Figures 4.1 and 4.2 provide examples of what barplots for single
sets of counts look like. This section deals with two-way tables of counts. For
illustration, data adapted from Table 5 of Bailey et al. (1983) are used, showing
the distribution by stratum of four classes of artifacts from excavations of the
palaeolithic rockshelter of Kastritsa in north-west Greece. It is assumed that
interest lies in a comparison of the distribution across strata of artifact types,
expressed in Table 4.2 as percentages. The authors did not present analyses of the
kind to follow – they are here to demonstrate ‘technique’ and coding.

Stratum I II III IV

1 13 7 21 59
3 12 9 19 60
5 17 14 16 53
7 16 14 19 52
9 11 9 8 72

Table 4.2: Data on the distribution of artifact classes by strata (row percentages)
from Table 5 of Bailey et al. (1983). The classes I–IV are cores, utilized flakes,
unmodified flakes and waste.

Figure 4.3 shows the types of plot available; to the left stacked barplots, and to
the right clustered barplots. Choice of orientation is arbitrary. My impression is
that stacked barplots are more prevalent than clustered barplots in the literature.
Clearly Class IV, waste, dominates and is fairly similar in most strata, apart from
Stratum 9 where there is a noticeable increase. As a generalization, with the
exception of Stratum 9, the relative importance of other classes is mostly III, I
and II. Re-ordering the first two columns of data would make this, and minor
exceptions, even more clear. The sample sizes for Strata 7 and 9 are much smaller
than for other strata.

54



1 3 5 7 9

0
20

40
60

80
10

0

1 3 5 7 9

0
10

20
30

40
50

60
70

1
3

5
7

9

0 20 40 60 80 100

1
3

5
7

9

0 10 20 30 40 50 60 70

Figure 4.3: Unannotated barplots for the data of Table 4.2; enhanced versions of
the upper two charts are shown in Figure 4.4. Plots to the left are stacked and those
to the right clustered; plots at the top and bottom are vertically and horizontally
orientated respectively.

Sarkar (2008: 61) suggests that the stacked barplot has limitations if one is
interested in comparing proportions; if patterns are obvious a table will do; if not
then making the necessary judgments may not be easy. In the barplots shown the
fact that one class is dominant, and differentially so among strata, means that
the less common classes are differentially ‘squashed’ at the bottom of the plot
(in this example) so comparison across bars is not straightforward. The clustered
barplot does a better job, since the dominant class can be mentally discounted and
comparison among other classes is easier. If these are the main focus of interest
the plot can always be produced omitting the dominant class.

By way of illustrating examples of barplot presentation that occur commonly
but could be considered ‘wanting’, Figures 4.4 and 4.5 show, respectively, stacked
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and clustered barplots from R and two versions of stacked barplots from Excel.
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Figure 4.4: Enhanced stacked and clustered barplots for the data of Table 4.2.
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Figure 4.5: Two- and three-dimensional Excel stacked barplots.

There are several problems with the Excel barplots, which are defaults. In the
two-dimensional plot the bars that should be there are innocent; the grid lines and
background shading are the culprits. The lines are too prominent and there are too
many of them. Coupled with the background the gridded parts also look like bars,
and leap to the foreground if you stare long enough, distracting from the message
of the plot. The three-dimensional plot is much worse. As with three-dimensional
pie-charts, the third-dimension does not exist and should not be there. It adds,
along with the grid and the ‘three-dimensional’ frame employed, to a variety of
optical illusions. Even with the grid it is difficult to read off values from the scale.
Such plots should not be allowed. If grids must be used they should be fewer than
in the examples here and less obtrusive.

Barplots, of whatever variety, have probably been overused. Have users been
seduced by myths such as ‘every picture tells a story’ or ‘a picture paints a thousand
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words’? Tables tell stories too; in the context of tables that might be presented as
barplots they require nothing like a thousand words; typically occupy less space
than a graphic with commentary; and retain more precise information about ac-
tual numbers and their difference. I have particularly in mind single sets of counts
with few categories (I’ve seen a barplot presented with just one category) and fairly
small contingency tables. To see patterns, reordering of categories for both tables
and plots, if the data are not ordinal, may be useful. With large numbers of cate-
gories barplots may be difficult to read, and correspondence analysis (Chapter 9)
represents an alternative method of presentation.

Other methods of analyzing discrete data exist, attracting different degrees of
archaeological attention. For moderate to large tables correspondence analysis is
widely used as a graphical method of presentation (Chapter 9). A common method
of assessing whether there is a significant association between the rows and columns
of a table is the chi-squared test (Section 12.3.3). More formal modeling methods,
log-linear models, analogous to the use of regression models for continuous data
(Chapter 5) are available. Their use was explored in the 1980s and 90s and Shennan
(1997: 201–13) and Baxter (203: 131–36) have brief sections on them, but I do not
think they have been widely used and other than a very brief notice in Section 12.5
are not accorded further discussion.

4.3 The iniquitous pie-chart

Pie-charts are circular graphs that are divided into segments or slices whose areas
are proportional to the percentages for a single set of counts. The R help notes
state that ‘Pie-charts are a very bad way of displaying information. The eye is
good at judging linear measures and bad at judging relative areas. A bar chart or
dot chart is a preferable way of displaying this type of data’. There is nothing to
disagree with here and we proceed mainly by illustration.

Wainwright (1984: 8) shows a pie-chart of the regional distribution of sched-
uled monuments in England, by period. It is stated that the chart shows 49%
of prehistoric date, 43% medieval, 7% Roman and 3% post-medieval. It is noted
that the ‘percentages are crudely derived’ and given this and just four categories
all that is needed is to say that prehistoric and medieval dates predominate with
similar percentages, and that the other two periods are much less common.

A graphic is not needed, and if you must have one a barplot is better. The
pie-chart in the paper is emulated in the top-left of Figure 4.6. There is nothing
wrong with it, except that it is unnecessary and occupies over a third of a page in
the original publication.

It is possible to do worse, and often is. A pie-chart is a two-dimensional con-
struct; properly done, the areas provide a true representation of the numbers
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Figure 4.6: Different ‘pie-chart’ presentations. The charts show the distribution
of scheduled monuments by period; P = Prehistoric, M = Medieval, PM = Post-
medieval, RB = Romano-British. (Source: Wainwright, 1984.)

involved. The authors of too many publications have been seduced by the lure
of ‘business-type’ presentations and seem to use default options in packages not
designed for proper statistical use. These distort the ‘truth’ of data presentation
and should not be allowed in academic publications. Similar comments apply to
barplots, as illustrated in Figure 4.5. That the default options can be overridden
is often neglected.

Some illustrations are provided in the rest of Figure 4.6. Plots like that in the
upper-right are most commonly found. A meaningless third dimension, height,
that is arbitrary, is added to the plot. To enable this to be seen it is necessary
to tilt the plot, the degree of tilt also being arbitrary. Presumably this is done to
make the chart look more ‘exciting’, but the price paid is to distort the information
the chart is intended to display.

It might be claimed that this kind of misrepresentation does little harm, but
take it to extremes! The bottom-left plot takes the tilt to its extreme and shows
the chart from the side. It contains no useful information. The final plot uses a

58



height that begins to distract from such information as is there. In using three-
dimensional effects, incidentally, it can become difficult to judge the size of the
smaller categories. No-one, of course, would be stupid enough to use plots like the
bottom two, but if you depart from the presentation given in the top-left figure
you are on the slippery slope that leads you there.

Shennan (1997: 23) suggests that the ‘pie-chart is a very helpful mode of
data presentation when the aim is to illustrate relative proportions of unordered
categories, especially when making comparisons’. This, particularly the comment
about making comparisons, is highly questionable. His following comment that
pie-charts can be confusing if there are numerous categories or categories with
small or zero entries is to the point.

A good case can be made for abandoning the pie-chart as a method of archae-
ological data presentation.

4.4 R notes

Figure 4.1

Most of the labeling arguments in the code for this and the following example are
omitted.

histbar <- function() {

wt <- loomweights$weight

wt <- wt[wt > 90 & wt < 400]

win.graph() # histogram

hist.wt <- hist(wt))

count <- hist.wt$counts #histogram counts

mid <- hist.wt$mids #mid-points of bins

win.graph()

barplot(count))

win.graph()

barplot(count, names.arg = mid, space = 0.7)

win.graph()

barplot(count, names.arg = mid, space = 0)

}

histbar()

The loomweight data of Tables B.3 and B.4, from the file loomweights, are used.
The weights are extracted, in wt, using the appropriate column heading from that
file and outliers, determined by prior data exploration, are then omitted. This
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is done by selecting weights greater than 90 g and less than 400 g, excluding six
outliers outside this range2.

As coded here the histogram needs to come first since an object hist.wt is
created from which the bin counts and mid-points, used in the subsequent barplot
constructions, are extracted. The first barplot is the default presentation; the
subsequent barplots use the names.arg and space arguments to add the mid-
points as axis labels and control the spacing between bars. The use of space = 0

closes up the gaps and a histogram results. A more complicated example of this
kind of usage follows.

Figure 4.2

hist.varbins <- function() {

z <- pillarmoulded

win.graph() # barplot

barplot(z$Percentage, names.arg = z$Period, las = 2)

win.graph() # histogram with unequal bin-widths

barplot(z$Percentage/z$Width, space = 0, width = z$Width, las = 2,

names.arg = z$Period, axes = FALSE)

}

hist.varbins()

The file pillarmoulded used is that based on Table 4.1 with the column head-
ings as given there. Both plots use names.arg = z$Period to supply axis labels
and this causes some problems in fitting all the labels on the plot, particularly
with the small bar widths evident to the left of the histogram in the figure. Using
cex.names to reduce the expansion factor is unsatisfactory because labels become
too small to be easily legible. The ‘solution’ adopted here was to use the las = 2

argument to produce labels perpendicular to the axis (other options can be found
in the help for the par function).

Other than this, the first argument in the second plot ‘adjusts’ the percentages,
dividing by width to compensate for the different duration of the periods; uses the
space = 0 argument (as illustrated in the previous example), in conjunction with
the width argument that specifies the bin-widths to use, to produce the histogram

2Available logical operators include <= for ‘less that or equal to’ and >= for ‘greater than or
equal to’. Thus wt <- wt[wt > 90 & wt < 400] or wt <- wt[wt >= 91 & wt <= 399] could
be used. Other operators include == for equality, and != for lack of equality which can also be
used with character variables.
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desired; and uses the axes = FALSE argument to remove, in particular, the default
y-axis which is meaningless given the different bin-widths.

Figure 4.3

Kastritsa.barplot <- function() {

z <- t(Kast) # Interchange rows and columns

win.graph(); barplot(z, beside = F)

win.graph(); barplot(z, beside = T)

win.graph(); barplot(z, beside = F, horiz = T)

win.graph(); barplot(z, beside = T, horiz = T)

}

Kastritsa.barplot()

The final four columns of Table 4.2 were imported into R as the object Kast.
For the purpose of the analysis, which operates on the columns of the data table,
the rows and columns need to be interchanged so that the columns correspond to
strata. This is achieved by the transpose function t(). The default, beside = F,
produces a vertically arrayed stacked barplot; the beside = T argument produces
a clustered barplot; the argument horiz = T produces a horizontal array.

Figure 4.4

This is the code for the plot to the left. That for the plot to the right is identical
except that the beside = T argument is used; the legend is displayed vertically
at the top-left; and ylim = c(0,100) is used.

stacked <- function() {

barplot(t(Kast), names.arg = c("1", "3", "5", "7", "9"),

xlab = "stratum", legend.text = TRUE, args.legend = list(x = "top",

horiz = T, bty = "n", title = "Artifact class", cex = 1.3),

ylim = c(0,119), col = c("skyblue","yellowgreen","red","yellow"),

cex.lab = 1.3, cex.axis = 1.3, cex.names = 1.3)

}

stacked()

The names.arg supplies the names to be used for the x-axis. Note that quota-
tion marks are used (e.g., "1") so that the names are character rather than numeric
variables. The legend is supplied as an argument to the barplot function, rather
than externally, using legend.text = TRUE; the list function supplied to the
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args.legend controls the placement and appearance of the legend. Most of the
arguments are familar from previous uses of the legend function. Placement is
more explicitly declared using x = "top" which puts it at the top center with a
horizontal alignment using horiz = T. The ylim = c(0,119) argument expands
the range of the y-axis slightly to accommodate the legend. The R help, ?barplot,
gives far more detail about the construction of barplots that could be used.

Figure 4.6

wainpie <- c(49,43,7,3)

wainpie.name <- c("P", "M", "RB", "PM")

Col <- c("red", "greenyellow", "skyblue", "pink")

Pie <- function() {}

library(plotrix)

win.graph()

pie(wainpie, wainpie.name, col = Col , radius = 1)

win.graph()

pie3D(wainpie, labels = wainpie.name, col = Col)

win.graph()

pie3D(wainpie, labels = wainpie.name, theta = pi/2, col = Col)

win.graph()

pie3D(wainpie, labels = wainpie.name, height = .7, col = Col)

}

Pie()

The pie function in R very properly does not encourage the use of three-
dimensional pie-charts (or pie-charts at all, for that matter), for which the pie3D

function from the plotrix package was used. The first three lines provide the
four numbers from which the chart is constructed, shortened names indicating the
period of construction of the monuments that are the focus of analysis, and colors
to be used for plotting. The arguments theta and height control the angle of
view and the ‘depth’ of the artificial third dimension.
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Chapter 5

Regression analysis

5.1 Linear regression analysis

5.1.1 Introduction – an example

The methods that have been examined so far are mostly descriptive and/or ex-
ploratory. All the methods covered have been widely used in archaeological appli-
cations. Regression methods – the focus of this chapter – have also been widely
used (Baxter, 2003: 50–65). Such methods require a model to be formuated for
the data, representing an important departure from most of what has gone before.

At its simplest, and stripped of context, the starting point in treatments in in-
troductory texts is that of finding a ‘best-fitting’ straight line through a ‘cloud’ of
points displayed in a bi-variate scatterplot. This is mathematically easy but, from
the point of view of the average end-user, detailed knowledge of the mathematics
is unnecessary. Other than in taught courses based on texts that illustrate hand
calculations it is doubtful that anyone does anything other than use software to
obtain results. This, once a data file is created, can be accomplished almost imme-
diately. This frees the user to concentrate on the more interesting and challenging
problems of model formulation and model interpretation.

These matters are discussed below and involve more use of mathematical no-
tation than has hitherto been the case. To fix some initial ideas, an example is
first presented. The data used are those of Table B.5, named pmedwine in R (from
Robertson 1976), and are for six variables descriptive of the morphology of 49
post-medieval sealed wine bottles of known date.

It is clear that morphology changes over time and we shall suppose that interest
lies in developing a model that can predict the date of undated bottles from their
morphology. We shall further suppose that a simple (linear) regression model with
just one variable as a predictor is sought. The full data set is examined in more
detail in Example 1 of Section 5.2 where it is clear that body height, BH is likely
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Figure 5.1: A linear regression fit superimposed on a plot of date against body
height for the data of Table B.5.

to be the best single linear predictor of date.
Figure 5.1 is a plot of date against body height with a linear fit superimposed.

It is straightforward to produce this. Omitting presentational arguments, and
assuming that variables BH and date have been previously created, use

plot(BH, date)

fit <- lm(date ~ BH)

abline(fit)

where lm is the linear modelling function that fits the model required and saves
the result, in this example, in the object fit. The abline function adds the fitted
line to the plot. These are discussed in more detail in Section 5.4.

Once this is done, we would minimally like to know what the fitted line is and
how well it fits the data. Execute the summary function, using summary(fit) to
get the following (deleting some of the output).

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.605e+03 1.282e+01 125.18 < 2e-16 ***

BH 1.088e+00 9.977e-02 10.91 1.8e-14 ***
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---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 20.46 on 47 degrees of freedom

Multiple R-squared: 0.7168

F-statistic: 119 on 1 and 47 DF, p-value: 1.801e-14

Under Coefficients, the estimated model for predicting date is given as

1605 + 1.088 BH

with a goodness-of-fit of R2 = 71.7%, which is the Multiple R-squared expressed
in percentage terms and rounded to one decimal place (See Section C.2.1 for more
on R2 and Sections 12.2.2 and 12.3.2 for the interpretation of p-values and the
F-statistic that appear in the output.). This anticipates the fuller discussion
provided in Sections 5.1.3, but in this context would usually be regarded as ‘rea-
sonable’. The main point about introducing the idea here is to show how easily
such basic information is extracted.

With simple linear regression, other than provision of the line of best fit, in-
spection of the graph is often as or more informative than the basic output. For
example:

• It is clear that a reasonable, though not perfect, linear fit will be obtained.

• It is evident that at the lower (less than 105) and higher (greater than 155)
body heights prediction is less good than at the intermediate heights; that
is, the variation about the fitted line is greater.

• The two earliest dates are badly over-predicted by the model and stand out
as potential outliers.

Most of this is not evident from the numerical analysis to date. It can be taken
further to address some of the issues involved. This is dealt with in Section 5.1.3
after a discussion of models, terminology and notation.

5.1.2 Regression models and notation

Begin with n observations on a dependent variable, y, and a single independent
variable, x. A plot of y against x will suggest whether or not there is a relationship
between y and x, its nature, and whether or not any of the data are unusual.
Typically there will be some deviation from an exact mathematical relationship,
attributable to what is conceived of as random error or variation. The most
familiar model, the simple linear regression model, can be written

y = α + βx+ ε (5.1)
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where α and β are unknown parameters and ε is an unobserved error term1.
The model specified is an additive one. By this it is meant that the model is

linear in the parameters and the error term added as shown. The parameters, α
and β, are the intercept and gradient (or slope) of the line. The intercept is the
value of y when x = 0. The gradient is the change in y that occurs when there is
a unit change in x, and is dependent on the units of measurement.

The simple linear model looks restrictive, but it can be extended in various
ways, for example, to a two-variable regression model of the form

y = α + β1x1 + β2x2 + ε (5.2)

One special case is when x2 = x2, a quadratic term, so that model (5.2) becomes

y = α + β1x+ β2x
2 + ε (5.3)

where the systematic component is a non-linear quadratic function that can be used
to model this kind of non-linear pattern. The regression model is linear because of
the linearity in the parameters. These are examples of multiple regression models.
It can obviously be extended by adding cubic, quadratic terms and so on.

Another extension is when the data are split into two groups, and interest lies
in seeing if and how relationships vary between groups. Define a variable z to have
the value 0 for one group and 1 for the second group, an example of what is called
a dummy or indicator variable. The model

y = α + β1x+ β2z + ε (5.4)

has the effect of fitting two parallel lines through the data for the two groups. If
a further term (xz) = x× z is defined the model

y = α + β1x+ β2z + β3(xz) + ε (5.5)

simultaneously fits separate regressions for the two groups. The use of these models
is illustrated, with further discussion in Example 3 of Section 5.2.

1The expression α + βx is the mathematical expression for a perfect straight line and is the
systematic component of the model, in contrast to the random error; real data almost never
follow such a line and to express this the error term is added to model the scatter about the
line. The terms dependent, independent and error are hallowed by usage, and used here, but
the terminology has been queried. The use of dependent might be taken to imply that the
relationship is a causal one. This is sometimes the case, but if regression is used for description
or prediction, for example, there is no implication of causality, and terms such as regressor and
regressand have been used as an alternative. The term predictor has also been used above for
the independent variable. Similarly, the ‘error’ need not be an error (of measurement or model
mis-specification, for example) but may represent natural random variation about the dependent
variable. The more neutral term, disturbance, is sometimes preferred.
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Figure 5.2: The stone axe distance-decay data of Table 5.1 before and after a log-log
transformation.

To motivate further discussion two small data sets are shown in Tables 5.1
and 5.2. These use data of a similar kind, both measuring the frequency of arti-
fact types found at different distances from a source of production or distribution
center. Plots of frequency against distance typically show a distance-decay pattern
with frequency declining to zero at some distance from the source. Linear models
are inappropriate as they will result in negative predictions at some point. Two
simple distance-decay models are explored below.

Table 5.1 is based on Cummins (1980) and shows the frequency of Neolithic
stone axes at different distances from a distribution center. The data have been
reconstructed from Figure 7 in Cummins, which is on a log-log scale.

Frequency 390 140 65 49 32 18 11 5 5 1
Distance 40 80 150 190 240 290 490 330 430 390

Table 5.1: Frequency of neolithic stone axes at different distances (km) from a
distribution center (Cummins, 1980).

A linear regression model (5.1) will be fitted after data transformation where
y is the logarithm of frequency and x is the logarithm of distance (Section 5.2,
Example 2). Figure 5.2 shows plots of the data before and after the log-log trans-
formation, and before undertaking the regression.

Although Cummins does not discuss this, the implicitly assumed model for the
untransformed data has the form

y′ = α′x′βε′ (5.6)
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where y = log y′, x = log x′, α = logα′ and ε = log ε′ show the correspondence
with the notation of model (5.1). This is called a power-law model and is an
example of a multiplicative model where ε′ is a multiplicative error term. It is also
an example of a linearizable model.

The appearance of the plot for the untransformed data suggests that a smooth
model of distance-decay is reasonable. After the ‘linearization’ it is noticeable that
there are departures from linearity at the longer logged distances. There is a clear
outlier that may cause problems in fitting a linear model to the transformed data.
This is discussed in detail in the continuation of the example in Section 5.2.

As a second and similar example that poses different problems in analysis, data
from Morris (1994) are used. These are based on Figure 2A of that paper and are
given in Table 5.2. The table shows the frequency of Late Iron Age pottery found
at different distances from a production source. Morris did not examine the data
in the way it is to be treated here.

Distance 4 18 21 22 23 27 30 34 36 43 52 62
Frequency 80 61 41 17 18 8 6 43 2 3 3 1

Table 5.2: Frequency of Middle-Late Iron Age pottery at different distances (km)
from a source (Morris 1994).

In contrast to the power-law model, an exponential decay model will be used
which has the form

y′ = α′ expxβε′ (5.7)

which is linearizable after a (natural) logarithmic transformation where, in the
simple linear regression model (5.1), y = log y′, α = logα′ and ε = log ε′. As
with the data from Cummins (1980) the data before and after transformation are
shown in Figure 5.3.

The most obvious feature of this is a clear outlier in both plots (that Morris
does not discuss). It would be legitimate from a model-fitting perspective to omit
this from the outset and seek an explanation for it, but it is retained in some
later analyses for illustrative purposes. The transformation to ‘linearity’ is not
especially impressive, and this will be explored further in the continuation of the
example in Section 5.2.

Finally, note that models of the kind, with a non-linear systematic component
and additive error, such as

y = α′ expxβ + ε (5.8)

cannot be simply linearized.2

2For those unfamiliar with logarithms, terms of the form ab can be transformed as log ab =
log a+ log b but this is not possible for a+ b. The systematic component can be linearized, and
this is an example of a generalized linear model, which is beyond the scope of the present notes.
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Figure 5.3: The pottery distance-decay data of Table 5.2 before and after a log-
transformation of the frequency. An obvious outlier is highlighted.

5.1.3 Model checking

More notation and terminology

The general aim in regression analysis is to say something useful about the un-
known systematic component in the model with, in simple linear regression, the
focus often being on β. This requires estimation of the parameters that, in the
light of the unknown errors, is ‘sensible’. This can be done in more than one way.

It is important to distinguish between the ‘theoretical’ model, in which the
parameters and error term are unknown, and the fitted model. The latter can be
written as

ŷ = α̂ + β̂x (5.9)

where α̂ and β̂ are the estimated parameters and ŷ is the fitted/predicted value of
y using these estimates. With this in place ε̂ defined as

ε̂ = y − ŷ. (5.10)

is the estimated error or residual. The latter term is used to distinguish the
observable estimated errors from the unknown true errors3.

Parameters must be estimated. The default, often the only one in the texts and
software used by archaeologists, is the method of least squares. This involves deter-
mining the estimates to minimize the sum of squared residuals. These estimates

3The use of Greek letters for unknown parameters, surmounted by a circumflex or ‘hat’ for
their estimates, is a common convention; other conventions can be used.
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have ‘optimal’ properties under certain error assumptions – most importantly that
they have a normal distribution with constant variance and are independent. It
is not, however, necessary for linear regression to be useful for the errors to be
normally distributed, as is sometimes incorrectly asserted, so long as they are
reasonably ‘well-behaved’.

It is convenient here to introduce the idea of correlation. The data are to
be regarded as a sample from a population, and the correlation coefficient in the
population, ρ, is estimated as r (see Appendix C, and texts such as Shennan
(1997: 140) for the mechanics of calculation). The correlation is a measure of
the strength of the linear relationship between x and y, with 1 showing a perfect
positive linear relationship and -1 a perfect negative one. In the context of simple
linear regression the square of r, perhaps confusingly called R2, often expressed as a
percentage, is used as a measure of the ‘success’ of the regression, with values close
to 1 ‘good’ and close to zero ‘bad’. It is called the coefficient of determination with
the interpretation that it is the amount of variation in y ‘explained’ by variation
in x. One reason for the notational distinction is that the definition of R2 extends
to linear models with more than one independent variable, and with the same
interpretation.

Diagnostic statistics

It is desirable to check the validity of the error assumptions in assessing the fit of the
model. While R2 provides a global meaures of fit it can be more helpful to identify
unusual observations or patterns in the data that compromise the adequacy of the
model. A plethora of statistics have been developed for this purpose; many are just
variations on similar themes and only some have garnered reasonably widespread
use. The reader should be warned that for simple linear reqression the use of
these statistics can be superfluous, since what they tell you can be obvious from
graphical examination. They do, however, extend to more complex models where
potential problems may be much less evident.

The error terms are unobservable but their properties are ‘mimicked’ by the
observable residuals. Cases can be unusual becauses the value of the dependent
variable is an outlier, having a ‘large’ residual. They can also be unusual because
the value of the independent variable is ‘extreme’; such cases are said to have high
leverage. Outliers generally need some attention; cases with high leverage can
actually be beneficial in fitting a model, but this depends on their other charac-
teristics. Neither need affect the fitted model much; cases whose removal has an
undue effect on the parameter estimates are said to have a large influence.

Dealing with leverage first, often denoted by hi or mi and lying between 1/n
and 1, it measures how distant a case is from the centroid of the ‘point’ cloud of
independent variables. For simple linear regression where the number of indepen-
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dent variables p = 1, points of high leverage will stand out at the extremes of the
scatter. Mathematically it is sensible to base a formal measure of the leverage of
case i on the distance of the case from the mean, (xi − x̄), and the mathematics
leads to a measure based on the square of this scaled to have a maximum of 1.
For p = 2 recourse is needed to matrix algebra, but the measure obtained does a
similar job. Rules-of-thumb exist for deciding what is an extreme leverage, but an
index plot (of hi against i) is often most useful.

Cases with high leverage are sometimes called outliers, but the term is best
reserved for cases with large residuals. These can be defined in various ways. The
raw or ordinary residuals, ε̂, form a sensible starting point for detecting outliers,
but are scale dependent. Rescaling is achieved by dividing ε̂ by an estimate of
its standard deviation s, where s2 is an estimate of the assumed common error
variance σ2.

Let s2 be this estimate using all the data, with s2
(i) an estimate omitting the

ith case (which will differ for each i). Terminology is confusing. What have been
called standardized residuals can be defined as ε̂/s, and were what was available
in older software. We follow the usage of Venables and Ripley (2002: 151) and
define standardized residuals as

ri = ε̂/s
√

(1− hi).

The term studentized residuals will be used for

ti = ε̂/s(i)

√
(1− hi).

See Cook and Weisberg (1982: 20) for the mathematical relationship between
ri and ti. The ri have also been called internally studentized residuals; the ti
have variously rejoiced in the names studentized, externally studentized, jacknife
or deleted-t residuals, the last being used in the MINITAB package.

Although residuals mimic the properties of the errors they do not have exactly
the same properties. In particular their standard errors depend on hi in the manner
indicated. If a case is an outlier it will inflate the estimate of s and s(i) will be
somewhat smaller, so ti > ri. The general idea is that, for large enough samples,
the distribution of the scaled residuals should mimic the assumed (usually) normal
distribution of the errors. This means that, keeping the numbers simple, values in
excess of 2 (in absolute value) can be regarded as ‘unusual’, and values in excess
of 2.5 or 2.6 as ‘very unusual’. For small samples the t-distribution can be used to
define such ‘rules-of-thumb’. For specialized situations more exact theory exists,
but in practice it is generally more useful to inspect a plot of the scaled residuals
against the fitted values rather than relying on rules-of-thumb.

An illustrative example for the post-medieval bottle body heights and date,
following the regression illustrated in Figure 5.1, is provided in Figure 5.4, where

71



standardized and studentized residuals are contrasted with reference lines at ±2.5
shown (only the negative value being relevant here).
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Figure 5.4: Residuals from the regression fit of Figure 5.1.

The two kinds of residual are largely coincident in their values and the standard-
ized residuals have been ‘jittered’ to avoid overwriting the studentized residuals
(see Section 5.4). The exceptions to this are two cases at the bottom left of the
plot where the studentized residuals are larger than the standardized residuals,
though both residuals suggest the cases are outliers. These are just the two bot-
tles with the earliest dates, which are predicted to have somewhat later dates than
the known values.

Of measures of influence available Cook’s statistic

di =
1

p
r2
i

hi
1− hi

is the most commonly used. It is a function of residual and leverage statistics and
large values will often have large values of one or both statistics, though this is
not inevitable (remember hi is bounded above by 1). Conversely, large values of
one statistic will not necessarily give rise to a large di if the other is small. The
statistic has an interpretation as the distance between parameter estimates with
and without case i, or, equivalently, the distance between predicted values. An
index plot is useful for making judgments about what is ‘large’.
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Figure 5.5 shows index plots of the leverage statistic hi, and Cook’s statistic
for the regression of body height against date.
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Figure 5.5: Diagnostic index plots from the regression of Date against BH. Cook’s
distance to the right and leverage, hi, to the left.

The plots don’t give too much cause for concern. The shape for hi is to be ex-
pected as the index corresponds to a natural ordering (by date) with the extremes
at either end. The plot for di has some values larger than others (some have to
be), but nothing ‘shouts out’ as seriously extreme. Omitting the first two cases
that were suggested as outlying in Figure 5.4 increases R2 by about 5% without
introducing further noticeable problems.

Other than the last case, the gap between the second and third earliest dates,
of 19 years, is noticeably larger than for other adjacent pairs (ordered by date).
The last case has nothing else unusual about it. Reporting results omitting the
first two cases, on the basis that they are early and untypical, is a sensible option.
A plot of the residuals against Date, which is sensible though not shown here,
suggests even more starkly that the first two cases are untypical.

5.1.4 Inference

Intentionally, not too much has been said about traditional methods of statistical
inference at this point. There are differing points of view about its value for
archaeological data analysis; mine is that its importance has been exaggerated,
partly for historical reasons (see Chapter 12). Some engagement with ideas is
needed with model-based methods, however, if only to interpret output provided
by software.

As far as regression goes, two concepts need to be distinguished, that of statis-
tical significance of the regression fit, and goodness-of-fit which has been covered
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in the foregoing discussion. For p = 1 the hypothesis that β = 0 (i.e. there
is no linear relationship) is notionally of interest but formally testing this, using
significance tests, is often a waste of time, since it will either be obvious that
the regression is significant, or that it is too poor to be of substantive interest.
Some acquaintance with p-values is desirable and discussed in context below and
in Chapter 12. Repeating the analysis previously reported, with some editing

Estimate SE t-value Pr(>|t|)

Intercept 1.605 13 125 0.0000 ***

BH 1.088 .01 10.9 0.0000 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Multiple R-squared: 0.7168

F-statistic: 119 on 1 and 47 DF, p-value: 0.0000

allows us to infer from the very small p-values that, with the t-distribution as a
reference, the hypotheses that α = 0 and β = 0 are unsustainable. The F-statistic
does the same job as the t-statistic for β (BH) in this instance but this is not the
case if there are two independent variables or more. The conclusions are obvious
from graphical inspection alone.

For p > 1 things are more complicated and interesting4. The significance of the
regression is often obvious, but it is not always clear which variables are important,
so testing the importance of subsets of variables is of interest. An illustration is
provided in Example 3 in the next section.

5.2 Examples

Example 1 – Post-Medieval wine bottle dimensions

A pairs plot, also sometimes called a scatterplot matrix, of the post-medieval wine
bottle data is shown in Figure 5.6 omitting Type, and Height which is the sum
of neck height, NH, and body height, BH. This was obtained using the pairs func-
tion and was part of the preliminary data analysis that informed the choice of
body height as the independent variable in the analyses that are the subject of
Figures 5.1, 5.4 and 5.5.

It seems clear that BH will be the best single linear predictor of date, and a
reasonable fit can be anticipated. The relationship of Base to Date is interesting;
the pattern is distinctly non-linear but suggests a positive relationship for earlier
dates and a negative one for later dates. The issues are pursued in Section 5.3.

4p as notation for the number of independent variable and p-value need to be distinguished.
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Figure 5.6: Post-medieval wine bottles - a pairs plot for selected variables.

Example 2 – Linearizable models

This continues the analyses of the data from Cummins (1980) and Morris (1994),
begun in Figures 5.2 and 5.3. Specifically, a variety of fitted models are added to
the plots previously presented, with commentary.

Cummins (1980) preferred log-log model, chosen presumably on the basis of vi-
sual interpretation, was to use just the first five observations. This was interpreted
as a change in ‘regime’ at the associated distance and is shown as the dotted blue
line in Figure 5.7. The dashed red line shows the fit using all the data.

Apart from the small number of observations used to fit the preferred model
the interpretation is questionable on statistical grounds. Transforming the model
using all the data back to the original scale results in a fit in the left-hand plot that
is virtually indistinguishable from the data. On the log-scale, with all the data, the
tenth observation for which the frequency is 1 is highlighted, with ti = −4.1. If 1
is changed to 2 then ti = −2.1. That is, the evidence for a ‘boundary effect’ resides
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Figure 5.7: The plot to the shows linearized model fits for the Cummins (1980)
data, one using all the data and the other the first five observations. The plot to
the left transforms the model fit using all the data back to the original scale. See
the text for a full discussion.

with a single observation, and its importance is almost certainly attributable to
the small frequency and use of a log-transformation. The estimates of β differ by
0.24 with standard errors of 0.38 and 0.22. The estimates are not independent,
but this is convincing evidence that they do not differ significantly as the standard
errors would need to be much smaller to suggest a significant difference. The
conclusion has to be that there is little statistical evidence for a boundary effect,
with the attendant lesson that relying on visual interpretation in the presence of
small samples is unsafe.

Turning to Morris (1994), following the initial presentation of the data in Fig-
ure 5.3, the right-hand plot of Figure 5.8 shows the fits for the exponential model,
linearized as in model 5.7, with and without the outlier. Case 8 has |ti| = 2.79.
Omitting the outlier changes the fit from 73% to 84%, but has virtually no influ-
ence on β̂, which can been seen visually. This is because the omitted case has very
low leverage as it is centrally placed along the x-axis.

The exponential model was used for illustration. The linear transformation
does not do a good job of ‘straightening out’ the plot, suggesting that a power-law
model might have been better. If, omitting the outlier, this and the exponential
model are fitted, the left-hand plot suggests the power-law model does a better job
of fitting the data other than the first observation. Interestingly, for the linearized
power-law model, case 1 has a larger value of |ti| than case 8, 2.46 compared to
2.36.
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Figure 5.8: The plot to the right shows linearized model fits for the Morris (1994)
data, both omitting and including the outlier. The plot to the left transforms the
model fits for the exponential decay and power-law models, omitting the outlier,
back to the original scale. See the text for a full discussion.

There are, perhaps, two lessons here. One is that a large residual with low
leverage need not affect the fitted model much. The other is that the two models
can give rise to noticeably different results, theory not always providing a guide
to choice .

Example 3 – Stone ‘circle’ dimensions

Barnatt and Moir (1984) present and analyze data from Thom (1967) on the
dimensions of stone ‘circles’. These are not usually exact circles, some deviations
from true circularity being greater than others, The difference between maximum
and minimum diameters is used as a measure of deviation. Figure 5.9 reproduces
Figure 3 of Barnatt and Moir using 69 circles with diameters less than 160 ft and
deviations less than 20 ft (Table B.6). A distinction is made between northern
circles (open triangles) and southern circles (closed triangles). Separate regressions
are fitted to each subset, that for the northern data having the steeper slope.

Barnett and Moir (1984: 210) draw several conclusions from this. They claim,
presumably on their interpretation of the visual evidence, that the regression lines
are distinct, and that in southern England circles tend to be constructed more
accurately. These conclusions need to be qualified. It is questionable whether
linear regression should be used at all and this is pursued in Section 5.3.

To begin, however, the analysis shown in Figure 5.9 is examined more closely.
Model (5.5) is used, defining a dummy variable z = 1 for southern circles and 0
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otherwise. Bearing in mind that z can only take these values it can be seen that
for northern circles the intercept and slope are (α, β1) and for southern circles
(α + β2, β1 + β3). A test of the hypothesis that β3 = 0 tests whether regressions
have the same slope. If this is not rejected, drop (xz) from the model and refit it;
a test of the hypothesis that β2 = 0 then indicates whether the separate intercept
is needed or not. As opposed to this sequential testing, a simultaneous test of
the hypothesis β2 = β3 = 0 using ANOVA (analysis of variance) methods is also
possible (Section 12.3.4).
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Figure 5.9: The plots are based on data for 69 stones circles. Circles are divided
into northern (open triangles) and southern circles (closed triangles) with sim-
ple linear regressions fitted separately to the two regions. See the text for a full
discussion.

Whichever approach is adopted there is no real evidence at the levels usually
used to suggest, on the basis of the methodology in the paper, that regressions for
the two regions differ significantly. This is shown by the tests just described (details
not presented); it can be seen more informally as follows. Barnatt and Moir (1984)
fit their regressions separately (i.e. they use two simple linear regressions, rather
than the interaction model used here). This gives a difference in slope estimates of
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0.036. The standard error of β̂ for the southern data is 0.018 so that the northern
estimate lies within two standard errors of the southern estimate ignoring error
in the latter. It would need to be larger to show a significant difference (neither
intercept estimate differs significantly from 0, as is to be hoped for). If allowance
is also made for the standard error of the slope estimate for the northern data of
0.014 it becomes even clearer that the regressions are not significantly different.

That this conclusion differs markedly from that in the paper is because no
allowance was made there for the uncertainty of estimation. This is relatively
large because of the noticeable variability in the data. The example is pursued
using non-parametric regression methods, in the next section.

5.3 Non-parametric regression

The models used so far have the form y = f(x) + ε where f(x) is a function
linear in the parameters. Linearizable models that reduce to this form have been
illustrated. It is possible to define models with rather simple functions f(x) that
cannot be linearized so that non-linear least squares estimation, for example, is
required. Such models use explicitly defined forms of f(x) usually dependent on
just a few parameters.

An alternative approach, rather than assuming a parametric model, is to allow
the data itself to determine a form for f(x). This gives rise to the idea of non-
parametric regression or scatterplot smoothing. These methods have been used
much less than linear methods in archaeology; Baxter (2003: 63–65) lists some
examples available at that date; this section provides a discussion of some possi-
bilities, with application.

The methodology can be viewed as conceptually simple and mathematically
complicated but, with the aid of R, relatively straightforward to implement. This
qualifies the methodology as ‘simple’ in the sense defined in Section 1.1 but caveats
need to be entered. There are a lot of approaches that have been developed – Ven-
ables and Ripley (2002: 229) illustrate six. Choices within each approach need to
be made that determine the degree of smoothing so that many different estimates
are possible and, with much variation in the data, selection and interpretation of
an estimate is not straightforward. Accounts of non-parametric smoothing geared
to R include Venables and Ripley (2002: 228–232) and Faraway (2006: 211–230);
Simonoff (1996: 134–214) provides a general presentation. Ambitions here do not
extend beyond providing an intuitive account of the method of loess smoothing,
with examples. Faraway (2006: 228) suggests that the loess smoother is a good
all-purpose smoother.
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Example 4 – Non-parametric regression of stone ‘circle’ dimensions

The idea is illustrated in Figure 5.10. For the circle data and the two regions
separately a smooth, using the defaults in the loess.smooth function, has been
fitted. This is discussed in more detail in Section 5.4. The departure from linearity
is sufficient to suggest that the original fitting of linear models is not appropriate
(a conclusion that might be reached by simply looking at the pattern of scatter
involved in the two plots).
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Figure 5.10: The plots are for the northern and southern circles fitted separately
and showing loess smooths as well as the fitted regression.

The loess method works by defining a neighborhood of points (or window) about
each value of x and fitting a linear or quadratic regression model within each
neighborhood to predict the smoothed values at x. Cleveland (1979) provides a
detailed technical account. A complex iterative weighted regression procedure is
used for fitting (Baxter 2003: 65). Loosely speaking, a complicated kind of average
is computed for each neighborhood, and the resultant points are ‘joined up’ to get
the smooth. The appearance and smoothness of an estimate is dictated by the
size of the neighborhood, determined by the span in the loess.smooth function,
and precise fitting procedure. Section 5.4 discusses other arguments available.

Example 5 – Varying neigborhood size in non-parametric regression

Figure 5.11 uses the stone circle data for the southern region. The main purpose is
to illustrate the variation that can arise with different levels of smoothing; defaults
in the loess.smooth function have been used, other than that the span is varied.
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Figure 5.11: Non-parametric regressions for the southern circle data showing the
effect of varying the span.

The solid line shows the linear regression fit. The dashed line shows the fit
based on the loess smoother with a span of 2/3; the dotted line uses a span of
1.3. The larger values of a span produce larger neighbourhoods and hence greater
smoothing. The choice of the degree of smoothing has a limited effect for larger
diameters of more than 100 ft; for smaller diameters the results are highly sensitive
to the choice. Both spans suggest that simplifying to a liner model is inappropriate.

Example 6 – Non-parametric regressions of the post-medieval wine bottle data

For a final example, and to make some slightly different points, we return to the
post-medieval wine bottle data, the pairs plot for which was shown in Figure 5.6.
With body height as the independent variable, smoothed fits are presented using
four different dependent variables.5

In the analyes the loess.smooth function with defaults is used. This explains

5Other than for date, treating body height as the ‘independent’ variable is a convenience.
The interest lies more in description than prediction.
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why some obvious outliers have little effect on the smooths since their effect is
downweighted (see the notes for Figure 5.10 in Section 5.4). Varying the level of
smoothing between 1/3 and 2/3 has little effect on the fitted models.
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Figure 5.12: Non-parametric regressions for the post-medieval wine bottle data with
approximate two standard-error limits. See the text for an explanation.

For date as the dependent variable there is little evidence of any serious de-
parture from linearity, justifying the use of a linear fit; for other variables there
is clear evidence of non-linearity with two ‘regimes’ either side of a body height
of about 120 mm. For date as the dependent variable the two outliers previously
noted depart from the general linear pattern; if the family and/or degree argu-
ments are varied in the loess.smooth function these result in a departure from
linearity at the lower end of the smooth. In summary, and notwithstanding the
fact that variability is appreciable in most examples as the standard-error limits
show, there is generally a fairly stable and simple underlying non-linear pattern,
differentiated by bottles with small (less than 120 mm) and large body heights.
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5.4 R notes

Figures 5.1, 5.4, 5.5, and 5.6

Code for Figure 5.1 is in the text where an object fit was created that is needed
for other plots. The preliminaries are

date <- pmedwine$Date

BH <- pmedwine$BH

index <- 1:dim(pmedwine)[1] # create list of row numbers

fit <- lm(date ~ BH)

The residual plot, 5.4, is obtained with

library(MASS)

win.graph()

plot(fitted(fit), studres(fit))

points(jitter(fitted(fit),amount = 0), jitter(stdres(fit)))

abline(h = 0); abline(h = 2.5); abline(h = -2.5)

where labeling and legend commands etc. are omitted. The MASS package is needed
to obtain the standardized (sddres) and studentized (studres) residuals. The
points function operates in the same way as the lines function and adds points,
with the specified coordinates, to the graph previously created. The usual color,
character expansion etc. arguments are available. The jitter function is used to
displace points slightly to avoid overwriting; see ?jitter for details of control.

The plots put together for Figure 5.5 are obtained with

plot(index, lm.influence(fit)$hat) # leverage statistic

plot(index, cooks.distance(fit))

The lm.influence function using lm.influence(fit)$hat extracts the leverage
statistic. The ?lm.influence query helps direct you to a lot of other diagnostic
statistics, not illustrated here, obtained via the influence.measures function.
The cooks.distance function extracts, as the name suggests, Cook’s statistic.

For Figure 5.6

pairs(pmedwine[ , -c(1,3)])

removes the first and third variables not used in the plot.
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Figures 5.2, 5.7, 5.3 and 5.8

Data from Tables 5.1 and 5.2 are in the files cummins and morris. Presentational
arguments and the legends are omitted. As written, the appropriate models, dis-
cussed in the text, are added to the initial plot; if only the former is needed use
the first lines after the win.graph() directives.

cummins.plots <- function(){

win.graph()

plot(Frequency ~ Distance, data = cummins) # Figure 5.2

pred <- lm(log(Frequency) ~ log(Distance),

data = cummins)$fitted.values

lines(cummins$Distance, exp(pred)) # Add for Figure 5.7

win.graph()

# Figure 5.2

plot(log10(cummins$Distance), log10(cummins$Frequency))

# Add for Figure 5.7

abline(lm(log10(cummins$Frequency) ~ log10(cummins$Distance)))

abline(lm(log10(cummins$Frequency[1:5]) ~ log10(cummins$Distance[1:5])))

}

cummins.plots()

The above is for the data from Cummins (1980). Logarithms to base 10 in the
second plot emulate Cummins (1980). The code for the data from Morris (1994)
is similar, allowing for the difference in the treatment of outliers and the models
fitted. The exponential function, exp, transforms the fit for the linearized models
back to the original scale.

morris.plots <- function() {

Col <- rep("black", 12); Col[8] <- "darkorange"

Sym <- rep(16,12); Sym[8] <- 15 # Case 8 is the outlier

win.graph()

# Use first line for Figure 5.3

plot(Frequency ~ Distance, data = morris, pch = Sym, col = Col)

# Add for Figure 5.8

# Exponential decay omit outlier

ze <- lm(log(Frequency) ~ Distance, data = morris[-8,])

lines(morris$Distance[-8], exp(ze$fitted.values))

# power-law model omitting outlier
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zp <- lm(log(Frequency) ~ log(Distance), data = morris[-8,])

lines(morris$Distance[-8], exp(zp$fitted.values))

win.graph()

# Use first line for Figure 5.3

plot(log(Frequency) ~ Distance, data = morris, pch = Sym, col = Col)

abline(lm(log(Frequency) ~ Distance, data = morris)) # All data

# Outlier omitted

abline(lm(log(Frequency) ~ Distance, data = morris[-8,]))

}

morris.plots()

Figure 5.9

The original data are split into northern and southern data for the stone circles,
called circlesN and circlesS. Most of the presentational arguments are omitted.

circles.plots <- function() {

N <- circlesN; S <- circlesS

regN <- lm(N$Deviation ~ N$Diameter)

regS <- lm(S$Deviation ~ S$Diameter)

plot(N$Diameter, N$Deviation, pch = 6)

points(S$Diameter, S$Deviation, pch = 17)

abline(regN)

abline(regS)

}

circles.plots()

In general the xlim and ylim arguments, not shown here, may need setting so
that when the points function is invoked all the points are included on the plot
previously created.

Figure 5.10

In the following function presentational arguments, other than pch and main which
are specified in the call to the function, have been omitted. Its use is illustrated for
the Northern circles circlesN; use circlesS for a plot of the Southern circles with
the appropriate modification of Pch and Main. Legend specifications have been
omitted from the function but can be supplied either within the function or after
it is invoked. For both plots ylim = c(0,18) was used to ensure comparability.

region.plots <- function(Data, Pch = 16, Main = ""){

reg <- lm(Data$Deviation ~ Data$Diameter)$fitted.values
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plot(Data$Diameter, Data$Deviation, pch = Pch, main = Main)

lines(loess.smooth(Data$Diameter, Data$Deviation))

lines(Data$Diameter, reg)

}

region.plots(circlesN, 6, Main = "Northern circles")

Loess smoothing is described briefly in the text; the loess.smooth function is
a convenience for adding the fit produced by the loess function to a plot; the
latter function is more flexible for some purposes. Users need to be aware that the
defaults in the two implementations vary. The default span, for example, is 2/3
for loess.smooth and 3/4 for loess. The degree and family arguments control
other aspects of a smooth with, respectively, options 1, 2 and "s", "g". The
first option in each case is the default for loess.smooth; the second options are
the defaults for loess.

The method works by fitting a (weighted) regression to points within a neigh-
borhood, using the fit to predict a representative point for the neighborhood. A lo-
cal linear fit is applied if degree = 1, otherwise degree = 2 produces a quadratic
fit. If family = "s" is used a robust regression fit that downweights the influ-
ence of outliers is used; otherwise family = "g" assuming Gaussian errors (i.e.
normally distributed) is applied. If spans are specified to be the same then the
defaults in loess.smooth will produce a smoother fit than the loess defaults –
which may not be what is sought.

Although the defaults for loess.smooth have been used in the example, for
illustration and the message is clear enough, the choices can have a noticeable
effect on the smooth and are worth experimenting with. This is pursued, with
regard to the span, in the next example.

Figure 5.11

Presentational arguments other than span, and the legend, are omitted.

varyspan <- function() {

S <- circlesS

regS <- lm(S$Deviation ~ S$Diameter)

win.graph()

plot(S$Diameter, S$Deviation)

abline(regS)

lines(loess.smooth(S$Diameter, S$Deviation, span = 2/3))

lines(loess.smooth(S$Diameter, S$Deviation, span = 1/3))

}

varyspan()
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Figure 5.12

Define BH, Date, NH, Base, Kick using BH <- pmedwine$BH etc. Some presen-
tational arguments and the legend are omitted from the code.

bottlesloess <- function(x, y, Xlab = "", Ylab = "", Main = "")

{

pred <- predict(loess(y ~ x, span = 2/3, family = "s", degree = 1),

se = TRUE)

upper <- pred$fit + 2*pred$se

lower <- pred$fit - 2*pred$se

plot(x, y, xlab = Xlab, ylab = Ylab, main = Main)

lines(loess.smooth(x, y, span = 2/3))

lines(loess.smooth(x, upper, span = 2/3))

lines(loess.smooth(x, lower, span = 2/3))

}

win.graph()

bottlesloess(BH, date, "bottle height", "date", Main = "Date vs.

bottle height")

The predict function needs to be applied to a fit from the loess function to
obtain (approximate) standard errors using the se = TRUE argument. Arguments
to loess produce the same fit as the loess.smooth default; predict does not
work with loess.smooth, hence the need for loess if standard errors are needed.
In the call to the function replace Date and labeling arguments with those for NH

etc. to get the other plots.
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Chapter 6

Graphs – a miscellany

6.1 Introduction

In this chapter a miscellany of graphical applications are presented. Usage in the
literature is variable with some of the approaches illustrated having had little, if
any, archaeological application. Nevertheless implementation is usually straight-
forward and the methods can be quickly applied for exploratory purposes. La-
beled pairs plots and two-dimensional contour plots have general application, while
ternary diagrams have a specialist niche. Confidence ellipsoids are widely used for
display purposes in the archaeometric literature; convex hulls have had limited
use. I do not recall seeing any uses of correlation diagrams or of Chernoff faces.

6.2 Enhanced pairs plots

Pairs plots, or scatterplot matrices, are illustrated elsewhere (e.g., Figure 5.6).
They provide a tool that merits routine use. Here an enhanced pairs plot, obtained
with the scatterplotMatrix function from the car package, is illustrated.

The chemical compositional data from Table B.1, used in Section 2.2 are re-
visited. It was shown there that the variables Ca, Fe, K and Mg in the file
tubb.data did a good job of distinguishing between the regions held in the variable
tubb.region (Figure 6.1).

library(car) # load package car

scatterplotMatrix( ~Ca+Fe+K+Mg, data = tubb.data, smooth = F,

by.group = F, group = tubb.region,reg.line = F)

That the regions are chemically separate is evident, as is the outlying value for
K in Region 2 previously noted. The KDEs down the diagonal are optional, and
other choices of graphical display are possible, or none at all. The plots are useful
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in this instance for emphasizing the multi-modality of the data. The rug at the
bottom of each KDE displays the individual data points.
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Figure 6.1: A labeled pairs plot, or scatterplot matrix, for a subset of the oxide
compositional data from Table B.1.

6.3 Graphics with more than one variable

6.3.1 Two-dimensional KDEs

The examples in this section use data on the dimensions of loomweights, from
Tables B.3 and B.4. Using KDEs, Baxter and Cool (2008) and Baxter et al.
(2010) showed that the weights of the loomweights had an unexpected bimodal
distribution; the latter paper explores reasons for and some of the implications
of this. Baxter and Cool (2010a), using formal statistical tests, establish that the
bimodality is not an accidental by-product of sampling variability. The bimodality
is reflected in the distribution of height and volume which, along with weight,
are the variables used in Figures 6.2 and 6.3. A reduced data set omitting outlying
weights of more than 400g or less than 90g was used.
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Figure 6.2: One and two-dimensional KDEs for the loomweight data of Tables B.3
and B.4 for weight volume.

All the plots were produced using defaults in the sm package except that band-
widths were subjectively chosen. They are otherwise estimated separately using
automatic methods. The package is associated with the book of Bowman and Az-
zalini (1997). Other than loading other packages needed and setting up the data
appropriately only four lines of code are needed to produce the four graphs.

The upper-left plot, a KDE for weight, establishes the bimodality of the vari-
able. The added confidence band provides reassurance that the bimodality is
genuine. Remaining plots shows different methods of displaying output based on
a two-dimensional kernel density estimate for weight and volume/10000. An al-
ternative would be to use the cube-root of volume, but essentially the same results
are obtained. Perspective, image and contour plots are shown, with all clearly
demonstrating bimodality.
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6.3.2 Ellipses, convex hulls, contours – one group

Two-dimensional KDEs can also be obtained using the kde2d function from the
MASS package. Similar display methods can be used (Venables and Ripley, 2002:
131), and the contour plot in Figure 6.3 was obtained using this function. In
Figure 6.3 different summary displays of a mass of points are illustrated. They are
potentially useful if the amount of data makes perception of any pattern difficult,
or if the distribution of two or more large groups is to be compared.
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Figure 6.3: Confidence ellipse (95%), convex hull and contour plot at two levels
for the reduced loomweight data using weight and height.

Confidence ellipsoids are quite widely used in studies of artifact provenance
based on chemical compositional data, and elsewhere. In provenance studies, based
on an n× p data matrix where n and p can be quite large, information on groups
within the data is often available. The groups may be defined independently of
the chemical composition, as in the regional data in Table B.1, or may be derived
from some statistical procedure such as cluster analysis (Chapter 10). Bivariate
plot may be based on a selection of a pair of variables from the original p, or derived
variables such as the linear combinations obtained from a PCA (Chapter 7).
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Group separation can be investigated by comparing confidence ellipsoids for the
groups on the plot. Where the groups are defined independently of the chemistry
visible separation then implies that different provenances are chemically distinct.
Where groups are derived from the chemistry the first task is to establish that they
are clearly chemically distinct (cluster analyses will produce groups whether they
are ‘real’ or not). Interpreting any grouping in terms of provenance is a separate
task, undertaken independently of the chemistry.

Confidence ellipsoids are based on the assumption that within groups the data
are sampled from a population with a (bivariate) normal distribution, so that the
ellipsoids are estimates of the extent of the groups in the population and typically
extend beyond the observed limits of the data. The assumption is rarely tested
and is not always self-evidently true. Some applications drop, sometimes silently,
outlying points that violate the assumption, so that the appearance of a nicely
bivariate normal sample of data becomes a ‘self-fulfilling prophecy’.

Convex hulls are purely descriptive and summarize the data in the form of an
envelope based on the minimum bounding set of points; they can be obtained with
the chull function. They have been used relatively infrequently, except possibly
in the GIS literature (which I am not very familiar with) where delineation of
the spatial extent of a set of features or artifacts with something in common is
an obvious application. Ringrose (1992) provides an interesting application. A
correspondence analysis (Chapter 9) of an r × c table of data can be used as
the basis for a bivariate plot showing the relationship between columns based on
coordinates for the first two components. The stabilty of the plot is an issue. Using
computer intensive methodology, bootstrapping, Ringrose replicates the data N
times, producing a set of N distinct coordinates for each column marker. Convex
hulls are used to display the distribution of points for each marker, and these can
be compared for overlap or its lack to see how distinct each column marker really
is.

6.3.3 Ellipses, convex hulls, contours – several groups

In Figure 6.3, for illustration, only one group was used, displaying a 95% confidence
ellipsoid and convex hull for the data, which may be contrasted with the contour
plot also shown. Contour plots can reveal sub-regions of dense point scatters that
the first two cannot capture. The inner contours contain about 42% of the data.

To illustrate the use of confidence ellipsoids and convex hulls when the compar-
ison of two or more groups is of interest, three groups were defined with Ward’s
method of cluster analysis (Section 10.3) using three variables weight, height

and volume. A PCA was undertaken with these variables and Figure 6.4 shows
a bivariate plot based on the first two components, with points labeled by group
membership and confidence ellipsoids added for each group.
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Figure 6.4: Confidence ellipses (95%) for the reduced loomweight data using weight
and height based on a partitions into three groups, determined by a Ward’s method
cluster analysis. See the text for fuller details.

With only three variables and three groups defined by cluster analysis – Ward’s
method in particular – good group separation is to be expected, and this is what we
get. There is some overlap between the central group and the other two groups, ow-
ing to the extent of the ellipsoids which go beyond the limits of the data. Visually
it can be seen that the groups are largely distinct and the ellipsoid representation
does not show this as effectively as one might wish.

The comparable plot, Figure 6.5, using convex hulls for the three groups is
more satisfactory. The idea of peeling is illustrated. The outer hull is stripped
away and a second hull calculated for the remaining data. This can be repeated
so long as sufficient data remains. Only one peel is needed here to completely
separate groups, the original overlap being attributable to one case.
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Figure 6.5: Convex hulls for the reduced loomweight data using weight and height,
based on a partition into three groups, determined by a Ward’s method cluster
analysis. See the text for fuller details.

6.4 Correlation diagrams

The correlation between two variables can be represented as an ellipse. An elon-
gated ellipse that slopes to the right is associated with a positive correlation; to the
left indicates a negative correlation; (near) circularity shows a weak correlation;
correlations close to a limit of -1 or +1 show a nearly linear pattern. Correlations
can be presented numerically as a table of the correlation matrix; alternatively a
correlation diagram, which is a visual summary of the information in the matrix,
can be used. Figure 6.6, using the data in Tables B.9 to B.11 on the dimensions
of polished Neolithic stone axes (O’Hare, 1990) illustrates the idea.

The general pattern is one of positive correlations and leads us to expect that
the first component in the PCA will be interpretable as a size component (Sec-
tion 7.4.1). The thickness variables are very strongly correlated, as are the breadth
variables together with the width of the cutting edge, WC, while the depth of the
cutting edge, DC, shows a relatively weaker correlation with most other variables.
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Figure 6.6: Correlations represented as ellipses for stone axe dimensions.

It is to be expected, and turns out to be the case, that this will be reflected in
components other that the first, which have a shape interpretation. To obtain the
correlation diagram all that is needed is the following.

library(ellipse) # load package ellipse

plotcorr(cor(stoneaxe.data))

6.5 Ternary diagrams

If data are available in the form of an n× 3 data matrix where each row sums to
100% (or 1) they may be represented in the form of a ternary diagram1. Each row is
represented as a point within an equilateral triangle, with proportions represented
by the perpendicular distances to the axes of the triangular coordinate system.
The geometry is illustrated in Greenacre (2007: 13). To illustrate, data from
Doran and Hodson (1975) given in Table 6.1 are used.

1Also called triangular, tri-polar or trinary diagrams or plots.
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Levels Cores Blanks Tools

25 21 12 70
24 36 52 115
23 126 650 549
22 159 2342 1633
21 75 487 511
20 176 1090 912
19 132 713 578
18 46 374 266
17 550 6182 1541
16 76 846 349
16 17 182 51
14 4 21 14
13 29 228 130
12 133 2227 729

Table 6.1: Counts of cores, blanks and tools from middle levels of the palaeolithic
site at Ksar Akil (Lebanon). This is Table 9.12 from Doran and Hodson (1975).

Before plotting, the artifact counts in the final three columns must be con-
verted to row proportions so that sample size is ignored. Where p > 3, in some
applications, a subset of r = 3 columns is selected and rescaled, or r = 3 new
variables that are linear combinations of subsets of the original columns are de-
fined. Several different R packages contain functions to plot ternary diagrams and
Figure 6.7 shows some of the different plotting options available. The packages
used are listed in the caption; there are several others that might equally well have
been chosen.

Because the proportions must sum to 1, given any two the third is readily
calculated so the data are two-dimensional. The upper-left plot in the figure
is three-dimensional, but a view has been chosen to show that the data can be
‘captured’ in a two-dimensional slice. There are choices that can be made about
positions of labels, the inclusion of a grid or not and so on, with different pack-
ages differing in the options allowed. What is chosen may be partly a matter
of preference. The lower- right plot, for example, only uses the smallest triangle
needed to include all the data and this can help in reading a plot as it minimizes
‘bunching’ of points. It is common in practice to label the vertices at the apexes
of the triangle as in the lower-left plot, but placing labels as in the lower-right plot
makes it easier to see which axis a label refers to. The plots show some evidence
of a seriation (not perfect) with blades tending to increase from levels 25 to 12,
while tools decrease. Seriation is an early use to which ternary diagrams were put
in archaeology (Meighan, 1959).
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Figure 6.7: Ternary plots from different packages for the data of Table 6.1.
Reading clockwise from the upper-left the functions scatterplot3d, triax.plot,
triangle.plot and plot.acomp from the packages scatterplot3d, plotrix,
ade4 and compositions were used.

The use of ternary diagrams is scattered, often appearing in ‘specialist’ publi-
cations that draw on the traditions of the specialization involved. One such area
is zooarchaeology where, for example the relative proportions of three species such
as cattle, sheep/goats and pigs are displayed as points within a ternary diagram.

The data used for illustration are based on Figures 1–4 in Hesse (2011). For
four different regions up to six clustered barplots for different site types show
the proportions of cattle, sheep/goat and pigs in each assemblage, of which there
are 20. Hesse does not use ternary diagrams, but the data are based on King
(1999) who does make extensive use of them. The information contained in the 20
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clustered barplots shown in Hesse can be recast as in Table B.12 and, minimally,
displayed in a single ternary diagram as in the upper-left plot of Figure 6.8.
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Figure 6.8: Ternary plots, using different labels, for data derived from Hesse (2011)
(Table B.12) based on King (1999). The upper plots are labeled according to the
region of the site type, the site type being used to label the lower plots. Plots to the
left omit the data from Roman Provence.

Labeling is by region and two of the assemblages from Roman Provence (P) are
identical, so only 19 points are visible. The triangle.plot function from the ade4
package was used. The most obvious feature of the upper-left plot is the complete
separation of assemblages from Roman Provence from other regions. Other regions
separate reasonably well, though not perfectly. This is a bit clearer in the upper-
right plot omitting data for Roman Provence. Relative to other regions Roman
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Provence has a higher proportion of sheep/goats and lower proportion of cattle;
Roman Britain tends to have a higher proportion of cattle and Roman Germany a
lower proportion of sheep; ignoring Roman Provence the Three Gauls tend to have
lower proportions of cattle and sheep/goats and hence higher proportions of pig.
Variation with respect to site type is harder to discern, and numbers are probably
too small to admit generalization.

Hesse (2011: 217–218) reaches essentially these conclusions based on clustered
barplots2. The ternary diagram(s) are a more economical way of presenting the
data.

Another use of ternary diagrams in zooarchaeology is for comparing mortal-
ity patterns by plotting age profiles such as juvenile, prime and old. Steele and
Weaver (2002) list several papers that have used this approach of which Stiner
(1990) is the earliest. Stiner illustrates the division of a ternary diagram into re-
gions corresponding to general types of mortality pattern, allowing the type of an
individual assemblage to be characterized. In other contexts such divisions are
called phase diagrams. Geoarchaeology (silt/sand/clay diagrams to characterize
soils) and archaeometallurgy are other areas of specialist application. Googling
‘ternary diagram’ with an appropriate choice of other terms will produces plenty
of examples. Steele and Weaver (2002: 319) note that ternary diagrams take no
account of sample sizes for assemblages, making statistical comparisons between
different sets of data problematic. They propose the use of resampling methods
(bootstrapping) to simulate the distribution from which a set of data is sampled.

6.6 Chernoff faces

No text of this kind is complete without an illustration of Chernoff faces. In
fact I’ve never seen them used in anger, though they appear quite often in texts
on multivariate analysis and are fun. Figure 6.9 illustrates, using the pottery
chemical compositional data of Table B.1. To get this use the apl package,
library(aplpack) and faces function, faces(tubb.data).

2Attention is drawn to the fact that data are averaged across provinces, concealing variation
within regions.
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1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48

Figure 6.9: Chernoff faces for the chemical compositional data of Table B.1.

A list showing how variables correspond to features is returned, but it is the
overall impression that is most useful. The three regions from which the pottery
comes correspond to cases 1-22, 23-38 and 39-48. The Region 3 faces are distinc-
tive – they have a lean and hungry look and appear to be rather surprised and
concerned, perhaps worried about the fact they are growing pigtails.

100



6.7 R notes

Figure 6.2

kde2.plots <- function() {

library(sm) #load sm package

wt <- loomweights$weight

x <- loomweights[wt > 90 & wt < 400,]

weight <- x[,6]; volume <- x[,7]/10000

win.graph()

sm.density(weight, display = "se", h = 15, lwd = 8)

win.graph()

sm.density(cbind(weight, volume), display = "persp", h = c(15,6))

win.graph()

sm.density(cbind(weight, volume), display = "image", h = c(15,6))

win.graph()

sm.density(cbind(weight, volume), display = "slice", h = c(15,6))

}

kde2.plots()

The third and fourth lines select loomweights with weights between 90g and 400g.

Figure 6.3

EllipseEtc <- function() {

library(ellipse)

library(MASS)

wt <- loomweights$weight

z <- loomweights[wt > 90 & wt < 400,]

height <- z$height; weight <- z$weight

X <- cbind(weight, height)

m1 <- mean(X[,1]); m2 <- mean(X[,2])

Z <- ellipse(cov(X), centre = c(m1, m2)) # ellipse

plot(Z)

hpts <- chull(X) # convex hull

hpts <- c(hpts,hpts[1])

lines(X[hpts,])

K <- kde2d(weight, height) # contour plot

contour(K, add = T, drawlabels = F, nlevels = 5)

}

EllipseEtc()

101



Some presentational arguments and the legend are omitted. Line type and width,
color and character expansion can be controlled in all the plotting functions. The
ellipse is plotted first as it is the most extensive of the various plots and determines
the scale on which they are superimposed. Otherwise the xlim and ylim arguments
need to be experimented with.

Figure 6.4

multiple.ellipse <- function() {

library(ellipse)

library(MASS)

wt <- loomweights$weight

z <- loomweights[wt > 90 & wt < 400,]

height <- z[,1]; weight <- z[,6]; volume <- z[,7]

X <- cbind(weight, height, volume)

nclust <- cutree(hclust(dist(scale(X)), method = "w"), k=3)

# Set-up plotting characters and colors

Symbol <- rep(16, length(nclust))

Symbol <- ifelse(nclust == 2, 17, Symbol)

Symbol <- ifelse(nclust == 3, 15, Symbol)

Col <- rep("red", length(nclust))

Col <- ifelse(nclust == 2, "green2", Col)

Col <- ifelse(nclust == 3, "blue", Col)

PCA <- prcomp(scale(X))$x[, 1:2]

eqscplot(PCA[,1], PCA[,2], pch = Symbol, col = Col,

xlim = c(-3.5, 3.5))

X1 <- PCA[nclust == 1, ]

X2 <- PCA[nclust == 2, ]

X3 <- PCA[nclust == 3, ]

m11 <- mean(X1[,1]); m12 <- mean(X1[,2])

m21 <- mean(X2[,1]); m22 <- mean(X2[,2])

m31 <- mean(X3[,1]); m32 <- mean(X3[,2])

Z1 <- ellipse(cov(X1), centre = c(m11, m12)); lines(Z1)

Z2 <- ellipse(cov(X2), centre = c(m21, m22)); lines(Z2)

Z3 <- ellipse(cov(X3), centre = c(m31, m32)); lines(Z3)

}

multiple.ellipse()
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Figure 6.5

chull.loomweights <- function(){

library(MASS)

wt <- loomweights$weight

z <- loomweights[wt > 90 & wt < 400,]

height <- z[,1]

weight <- z[,6]

volume <- z[,7]

X <- cbind(weight, height, volume)

nclust <- cutree(hclust(dist(scale(X)), method = "w"), k=3)

PCA <- prcomp(scale(X))$x[, 1:2]

eqscplot(PCA[,1], PCA[,2], type = "n")

X1 <- PCA[nclust == 1, ]

X2 <- PCA[nclust == 2, ]

X3 <- PCA[nclust == 3, ]

points(X1[,1], X1[,2], pch = 16, col = "red", cex = 1.2)

points(X2[,1], X2[,2], pch = 17, col = "green2", cex = 1.2)

points(X3[,1], X3[,2], pch = 16, col = "blue", cex = 1.2)

hpts <- chull(X1) #plot for cluster 1

hpts <- c(hpts,hpts[1])

lines(X1[hpts,], lwd = 2, col = "red")

hpts <- chull(X2) #plot for cluster 2

hpts <- c(hpts,hpts[1])

lines(X2[hpts,], lty = 2, lwd = 3, col = "green2")

hpts <- chull(X3) #plot for cluster 3

hpts <- c(hpts,hpts[1])

lines(X3[hpts,], lty = 3, lwd = 3, col = "blue")

points = chull(X3) # One peel of the data for the cluster

X3 <- X3[-points,]

hpts <- chull(X3)

hpts <- c(hpts,hpts[1])

lines(X3[hpts,], lty = 2, lwd = 2, col = "black")

}

chull.loomweights()
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Figure 6.7

Ksar.ternary <- function() {

# Set up data

Ksar <- Ksar_Akil[,-1]

Ksarsum <- apply(Ksar, 1, sum)

Ksar <- Ksar*100/Ksarsum

win.graph(); library(scatterplot3d)

scatterplot3d(Ksar$C, Ksar$T, Ksar$B, xlab = "C", ylab = "T",

zlab = "B")

win.graph(); library(plotrix)

triax.plot(Ksar, cex.ticks = 1.2, show.grid = TRUE)

win.graph(); library(compositions)

plot.acomp(Ksar, axes = TRUE)

win.graph(); library(ade4)

triangle.plot(Ksar, addaxes = TRUE, box = TRUE, cpoi = 2.5)

}

Ksar.ternary()

For other than triangle.plot the usual presentational arguments are available
and not shown. See the ?help facility for the many variations possible with each
type of plot.

Figure 6.8

library(ade4)

triangle.plot(king.data, show.position = F,

label = king.region, clabel = .8)

triangle.plot(king.data[-c(13:16),], show.position = F,

label = king.region[-c(13:16)], clabel = .8)

triangle.plot(king.data, show.position = F,

label = king.type, clabel = .8)

triangle.plot(king.data[-c(13:16),], show.position = F,

label = king.type[-c(13:16)], clabel = .8)}
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Chapter 7

Principal component analysis

7.1 Introduction

In Chapter 2 principal component analysis (PCA) and correspondence analysis
were introduced to show how easy it is, using R, to undertake such analyses. It is
(almost) as simple as calculating a mean. To remind the reader, given a suitable
n × p table of data, Y entered as Y in R,, a basic PCA can be carried out using
prcomp(Y).

Calculation of a mean should not be carried out without thought. It is useless
if the data are seriously multi-modal; can be compromised if there are obvious
outliers in the data; and is not sufficient as a single summary measure of location
if the data are highly skewed. Preliminary data inspection is called for, and PCA
is no exception. Principal component analysis is conceptually, as well as compu-
tationally, simple. As usually applied, it takes an n × p data set and reduces it
to a ‘picture’ that allows patterns in the data to be investigated using conven-
tional two- and three-dimensional plots. There are practicalities to be addressed
in applications and interpretation, and this chapter discusses and illustrates these.

Assuming n > p, the table of data is p-dimensional and not susceptible to con-
ventional methods of data exploration if p > 3. It is possible to define the distance
between the rows of data cases (Section 7.3); one way of thinking about PCA is
that it is designed to approximate these distances in two- or three-dimensional
space using the first two or three principal components (PCs). Inevitably infor-
mation is lost in the approximation so some means of measuring its quality is
desirable.

Sections 7.2 to 7.4 are centered on examples, used to introduce the ideas that
underpin PCA, implementation and interpretation. The algebra that underpins
PCA is covered in Appendix D. It is helpful to have some acquaintance with
the associated terminology that finds its way into software output. It is perfectly
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possible to apply PCA usefully without needing to master the algebra. There is a
focus in Section 7.2 on data standardization and transformation, and Section 7.3
interpolates a brief discussion of the important concept of distance before the
example of Section 7.4.

The earliest uses of PCA in archaeology date back to the 1960s. This coincided
with the start of a period when the method of factor analysis was in vogue. The two
methods were, and still are, confused. Chapter 8 attempts to explain what these
differences are and why they can be considered fundamental. The opportunity
is taken, in Section 8.4, to recount, briefly, some of the history of the use of the
methods in archaeology, along with critical comment on more recent advocacy of
factor analysis.

7.2 Example 1 – Roman glass compositions

Standardization and log-transformation

The data consist of 105 specimens of Romano-British waste glass, measured with
respect to nine major and minor oxides, excavated from sites at Leicester and
Mancetter in the UK (Tables B.7 and B.8)1. One question is whether or not the
glass from the two sites is chemically distinct. The analysis will be used as a peg
on which to hang a discussion of data transformation in PCA.

The initial data table (or matrix), X, has a typical entry xij, with x̄j and
sj denoting the estimated mean and standard deviation of variable (column) j,
j = (1, 2, . . . , p). Invariably, PCA is carried out after some transformation of the
original data to a data matrix Y.

The simplest form of transformation is centering where yij is defined as

yij = (xij − x̄j).

This is the first stage in packages where PCA is available, but usually analysis goes
beyond this for two reasons. One is that, if variables are measured in different units,
the use of centered data alone is inappropriate as the variables are not comparable.
The second reason, illustrated in Figures 7.2 and 7.3, is that even if the variables
are in the same units a PCA of centered data will be dominated by the variables
with the larger variances, so potential information provided by other variables is
lost. Thus, unless variables have similar variances to begin with, some further
transformation beyond centering is called for.

1The data were collected by Dr. Caroline Jackson of Sheffield University, UK, as part of an
unpublished PhD thesis. Some analyses are undertaken in Baxter (1994a).
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Figure 7.1: PCA score and variable plots for the standardized Romano-British glass
data of Tables B.7 and B.8.

The most common form of data pre-treatment, and the default in many soft-
ware packages though not R, is to standardize the data as

yij = (xij − x̄j)/sj

producing variables with a mean of 0 and standard deviation (and variance) of
1. This gives each variable equal ‘importance’ so that each has an ‘equal chance’
of influencing the PCA. A biplot for the PCA of standardized data is shown in
Figure 7.1 presented as adjacent score and variable plots.

This can be contrasted with the output obtained using log-transformed (to
base 10) data (Figure 7.2)

yij = log xij

which is the other approach to have found widespread use. This is applied before
any subsequent centering and standardization 2.

It is quite common to standardize the data after log-transformation, though
this then often produces results very similar to standardization of the original data
(Baxter, 1995). Values recorded exactly as zero cannot be log-transformed and the
problem is usually resolved by adding a small value to the data (see Section 8.3.2
for an example).

2Terminology in the literature is confusing. Standardization is sometimes called normal-
ization, implying that the transformed variables have a normal distribution. They will not,
unless the untransformed data begin with a normal distribution. To confuse matters further
log-transformation is sometimes referred to as standardization. It is also sometimes used with
the hope that it will induce normality.
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Figure 7.2: PCA score and variable plots for the unstandardized log-transformed
Romano-British glass data of Tables B.7 and B.8.

Some of the differences that can arise between the use of standardized and
unstandardized log-transformed data are illustrated in Figures 7.1 and 7.2. The
two sites largely separate out, with the grouping for Leicester the more compact.
There are about 10 cases that plot more closely with the Mancetter data. The
score plot using log-transformed data suggests a possible sub-division among the
Mancetter data.

The variable plots are more obviously distinct. The variable markers for the
standardized data lie (very roughly) round a circle, equidistant from the origin.
This reflects the equal weighting induced by standardization, though it is still
possible for some variables to have little effect on the PCA, or to play a lesser role
(e.g., Al, Fe, Mn). If row (cases) and column (variable) plots are compared it can
be seen for the row plot that the Leicester data lie largely to the right and the
Mancetter data to the left. For the variables, (Fe, Na, Ti) plot to the right, while
(Al, Ca, Mn, P) plot to the left. It can be inferred that the Mancetter glasses are
richer in the latter group and poorer in the former group, relative to Leicester.
This is readily checked, where it can be seen that the variable means for the two
sites support this inference (Table 7.1).

Site Al Fe Mg Ca Na K Ti P Mn
Leicester 2.38 0.70 0.55 6.59 18.20 0.71 0.10 0.12 0.27
Mancetter 2.47 0.48 0.53 7.19 17.20 0.72 0.08 0.14 0.41

Table 7.1: Variable means (%) for the Romano-British glass and the two sites.
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The variable plot for the log-transformed data is rather different, being domi-
nated by Mn and Fe. This implies that these two variables have much the largest
variances on the log-transformed scale, and this too is readily checked. The vari-
ances for Mn and Fe are 0.0338 and 0.0175 respectively, with the next largest
that for Ti of 0.007. The pattern in the row plot for the log-transformed data is
thus dominated by the effect of Mn and Fe, in contrast to that for standardized
data. The row plots, while showing differences, are not incompatible with each
other, pointing to the fact that different transformations can give rise to similar
patterns in the data, even though different variables may be responsible. Similarly,
it is possible for row plots to differ, but admit equally valid archaeological inter-
pretations. The message is that in exploratory work the examination of different
transformations is worthwhile.

The interpretation of biplots was discussed briefly in Chapter 2, and some
elaboration is provided here. Further discussion is provided in Section 9.2 after
their use in correspondence analysis has been introduced. What is understood
by the term ‘biplot’ varies – I err on the side of a more informal usage, allowing
the term to embrace the joint presentation of row and column plots, rather than
superimposing them, for example. It is easy enough to imagine the two plots being
superimposed, provided a common origin is indicated and correct aspect ratios are
used, though issues of axis scaling arise (see Section 9.2).

With the caveat that the PCA should be of reasonable quality, variable mark-
ers that lie opposite to each other on the plot should have a negative correlation
(e.g., Ca and Na in the plot for standardized data); variables at right angles should
show weak correlation (e.g., K, Na); variables plotting close to each other, with
an acute angle at the origin, should exhibit strong positive correlation (e.g., Fe,
Ti). This can be seen to be broadly the case from Table 7.2, which shows corre-
lations to one significant digit, with the ordering based on reading clockwise from
Na on the variable plot for standardized data. It can be seen from Figure 7.2
that the Mancetter glass has a comparatively higher concentration of Mn than
Leicester where the concentration of Fe stands out. As already noted the coin-
cidence of interpretation of the score plots can be attributed to different subsets
of variables and is not uncommon in applications that contrast standardized with
unstandardized log-transformed data. It is not inevitable; situations where the
latter approach highlights variables with a low absolute presence leading to no
useful interpretation are also not uncommon.

Other forms of transformation have been proposed but little used. Baxter
(1995) suggested rank-transformation as a possibility, and ‘standardizing’ variables
to the range [0,1] has occasionally been seen. More needs to be said about log-ratio
transformations.

109



Na Fe Ti Mg K Mn Al P Ca
Na 1 0.5 0.6 0.3 0.2 -0.2 -0.4 -0.6 -0.8
Fe 0.5 1 0.8 0.4 0.2 -0.2 -0.1 -0.3 -0.6
Ti 0.6 0.8 1 0.5 0.3 -0.2 -0.1 -0.3 -0.7
Mg 0.3 0.4 0.5 1 0.4 0.1 0 0.1 -0.1
K 0.2 0.2 0.3 0.4 1 0.2 0.1 0.1 -0.2
Mn -0.2 -0.2 -0.2 0.1 0.2 1 0.2 0.4 0.1
Al -0.4 -0.1 -0.1 0 0.1 0.2 1 0.3 0.4
P -0.6 -0.3 -0.3 0.1 0.1 0.4 0.3 1 0.5
Ca -0.8 -0.6 -0.7 -0.1 -0.2 0.1 0.4 0.5 1

Table 7.2: Correlations between variables for the Romano-British glass data.

Log-ratio transformation

Data of the kind used here are sub-compositional. They would be fully compo-
sitional, adding to 100%, if all the naturally occurring elements were measured.
Only a subset are ever measured and hence the data are sub-compositional . It
is possible to convert such data to fully compositional form, either by rescaling
to 100% or defining a ‘residual’ as the sum of the measured data subtracted from
100%. In the present case the ‘residual’ will largely coincide with the silica content
of the glass (not measured by the instrumentation used).

The use of ratio transformations has been debated in archaeology from time to
time and was explored more generally in the seminal text of Aitchison (1986). He
advocated the use of log-ratio transformation, a symmetric version being

yij = log(xij/g(xi))

where g(xi) is the geometric mean of row i, defined as the 1/pth root of the product
of the elements of row i. An argument for this is that the raw compositional
data are positive and constrained to lie in a (p − 1)-dimensional space, for which
the more common methods of analysis, including the use of standardization, are
inappropriate. The log-ratio transformation removes the constraints on the data,
allowing standard methods to be applied. This is illustrated in Figure 7.3, where
the original composition is augmented by the constructed ‘silica’ (Si) variable.

The analysis is practically indistinguishable from that of log-transformed data.
This is precisely the point. Aitchison’s advocacy of the methodology he developed
for analyzing compositional data is theoretically compelling. Baxter (1989) used
the methodology for analyzing glass compositional data and was initially enthu-
siatic, but later exploration suggested that, regardless of theory, the more usual
methods of analysis often produced equivalent or more satisfactory and archaeo-
logically interpretable results. This is because log-ratio transformed data are not
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Figure 7.3: PCA score and variable plots for the unstandardized log-ratio-
transformed Romano-British glass data of Tables B.7 and B.8.

usually standardized in subsequent analysis. This means that variables with a low
absolute presence and high relative variance are emphasized, at the expense of
variables with a greater presence that may be more important for understanding
the production processes that produced the glass.

The dominance of the variables with low absolute presence is what is illus-
trated in Figure 7.3. It happens to make sense in that interpretable results, in
the form of as good a separation between sites as can be reasonably be expected,
is attained. This is also, in a sense, ‘accidental’ since, as noted, variables with
smaller typical values can dominate log-ratio (and log-transformed) analyses to no
good effect. Usually this can be ‘corrected’ for by adopting pragmatic measures,
omitting such variables from an analysis for example, but this often then leads to
outcomes similar to the simpler (if not necessarily ‘theoretically correct’) methods
that are prevalent in the literature. Log-ratio analysis has not really caught on in
archaeological applications but anyone with compositional data to analyze should
be aware of the issues involved; a detailed account of what these are is provided
in Baxter and Freestone (2006)3.

3A lot of work has been done on developing a rigorous mathematical framework for compo-
sitional data analysis (Pawlowsky-Glahn and Buccianti, 2011; Pawlowsky-Glahn et al., 2015).
Advocates of log-ratio methodology can be dismissive of analytical approaches that do not con-
form to their theoretical dicta. My practice, when confronted with compositional data, is to
examine a range of analyses including the use of log-ratios, so my opinions are driven by practi-
cal experience (relating primarily to multivariate data analysis) rather than theoretical agonizing.
An R package, compositions, is available along with a book devoted to its use (van den Boogaart
and Tolosana-Delgado, 2013) for those wishing to explore the ideas and application.
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7.3 The idea of distance

A fundamental idea behind PCA is that, using all the components (PCs), the dis-
tance between cases on the scale of the data used is reproduced. A subset of the
first few PCs allows distances to be approximated in a low-dimensional space that
can be more readily interrogated using standard graphical methods. The distances
approximated depend on the standardization/tranformation used. As will be seen
in later chapters, different definitions of distance underpin, and distinguish be-
tween, different methods of multivariate analysis. The (mathematically) simplest
application of the ideas arises in the context of PCA, and a general discussion is
provided here.

Given two rows of a data matrix – call them yi and yk – it is possible to measure
exactly the distance between them, dik, in p dimensions. Several multivariate
methods work by defining new variables, in which the rows are zi and zk. For the
first r < p columns the distance between the rows can be defined, but will only
approximate the true distances. This begs the questions of how to define the new
variables and how the quality of approximation is judged. These will be dealt with
in the context of the example in Section 7.4.

The point to stress is that distance, dik, is not a uniquely defined concept.
Any proposed measure of distance qualifies as such if it satisfies a particular set
of mathematical rules. Different measures of distance are appropriate for different
kinds of data and problem specification. Of the ‘standard’ methods of multivariate
analysis PCA is the easiest to understand since it is based on Euclidean distance
which we are familiar with from everyday experience.

We can judge distances between points, and measure them exactly if needed.
At the scale we normally operate on this is Euclidean distance. It can be defined
mathematically in a way that generalizes to p-dimensions4. In p-dimensional space
a point is defined by a set of values for the variables (Y1 Y2 . . . Yp). After PCA the
distances between cases are approximated by the distances between new variables,
(Z1 Z2 . . . Zr), where r is usually 2 or 3.

4The definition, of squared Euclidean distance, is

d2ik =

p∑
j=1

(yij − ykj)2

with the square-root of this giving dik.
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7.4 Example 2 – Stone axe morphology

In this section ideas previously introduced are elaborated on, along with the prac-
ticalities of application and interpretation. The data used, from O’Hare (1990),
are dimensional meaurements on 11 variables for 181 Neolithic polished stone axes
from southern Italy, classified into three types according to their butt shape –
pointed, rounded or square. The data are a subset of a larger sample of 209 axes,
two small groups of intermediate butt types having been omitted for the purposes
of our analyses. The full data set, with a definition of the variables, is given in
Tables B.9 to B.11 in Appendix B.
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Figure 7.4: A score plot for components 1 and 2 from a PCA of the standardized
stone axe data labeled by butt shape.

One of the research questions was whether the dimensional data revealed pat-
terns that could be associated with butt type. One of the analytical tools used
was PCA and this is emulated here, using butt type for labeling and interpretive
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purposes only. An example is provided first, before spelling out some of the detail.
Figure 7.4 plots scores on the first two components from a PCA of the standard-
ized data. There is no obvious grouping in the data and no outliers to cause undue
concern.

7.4.1 Definition and properties of principal components

For a more detailed account of the notation introduced immediately below see
Appendix D. The n× p data matrix Y has typical element yij, for j = 1, . . . p and
i = 1, . . . , n; principal components (PCs) are defined to be linear combinations of
the form

Zj = aj1Y1 + aj2Y2 + . . .+ ajpYp

for component j.
The aji are coefficients to be determined5. Given the aji principal component

scores, zij, held in the matrix Z with the same dimensions as Y, can be calculated.
Principal components are defined by the following criteria.

(a) The components are uncorrelated.

(b) The first component, Z1, has maximum variance; subject to the lack of
correlation Z2 has the second largest variance; and so on. The variances are
called eigenvalues in some software and will be denoted by λi.

(c) There is a complication in that the variances are unbounded unless a con-
straint is imposed on the coefficients. Often this has the form

a2
j1 + a2

j2 + . . .+ a2
jp = 1 (7.1)

but
a2
j1 + a2

j2 + . . .+ a2
jp = λj. (7.2)

is also used. Constraint (7.1) is usual in software where PCA and factor
analysis are clearly distinguished; constraint (7.2) is usual in implementations
of factor analysis6.

Given these conditions we let the mathematics do the work of obtaining the ‘so-
lution’ to the problem (of determining the aji) (Appendix D). Computational
aspects are embedded in R functions such as prcomp, the fine detail of which the
average user may remain blissfully unaware.

5Also sometimes called loadings, a term more commonly used in factor analysis (Chapter 8).
6In the widely-used SPSS package PCA is treated as a special case of factor analysis. This

has led to a lot of confusion among users and will be discussed further in Chapter 8.
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The idea behind (a) is that it can be easier to work with uncorrelated variables.
It should be emphasized that all that is involved is a mathematical transformation
of the data. There is no requirement that the components be interpretable other
than as a linear combination of the original variables, though they often will be.
That is, assignment of a ‘meaning’ to components is not a fundamental issue. This
is a source of confusion between PCA and factor analysis where the definition of
‘meaningful’ factors is a central concern (see Chapter 8).

The idea behind (b) is that the components with the larger variances are likely
to be structure carrying in the sense that plots based on them will reveal patterns
in the data, if they exist. This idea is empirically rather than theoretically based
but it frequently ‘works’.

The correlation diagram in Figure 6.6 shows that there are generally high
correlations among the variables. This leads to the expectation that PCA will
be an effective dimension-reduction method. Furthermore, all the correlations are
positive, which leads to the expectation that the coefficients for the first PC will
be of the same sign and similar order of magnitude7. This has an interpretation as
a ‘size’ component, literally in the present example. Components with a mixture
of signs among the coefficients can be interpreted as ‘shape’ components, further
interpretability concerning aspects of shape depending on the context.

The importance of a variable in defining a component depends on the value
of |aji|. Where this, or its square, is close to 1 (if constraint (7.1) is used) the
component is effectively the same as variable i. Various strategies exist for aiding
interpretation, for example by ignoring coefficients for which |aji| is less than some
predetermined value (Section 8.3). It can help if a coefficient is either ‘large’
or ‘close’ to zero8. This can be achieved more formally, and mathematically, by
subjecting components to rotation, more common in applications of factor analysis
than PCA and discussed further in Sections 8.1 and D.3.2.

7.4.2 Interrogating PCA output

To interrogate numerical information the PCA of standardized data is first under-
taken using

axe.pca <- prcomp(stoneaxe135.data, scale = T)

where stoneaxe135.data is the subset of Tables B.9 to B.11 containing the three
butt types under investigation. Component scores are held in axe.pca$x and

7The signs of the PCs are arbitrary so if, for example, all signs are positive or all negative
the interpretation is unaffected.

8This is not essential; ‘size’ components are readily interpretable without satisfying this cri-
terion.
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coefficients in axe.pca$rotation. The former are used as the basis for the plot
of Figure 7.4. The latter can be viewed to a sensible number of significant digits
using round(axe.pca$rotation, 1) with the result shown in Table 7.3.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11

L1 -0.3 0.2 0.2 -0.1 0.4 0.4 -0.6 0 -0.3 0 0
L2 -0.2 0.4 0.5 -0.4 -0.3 0.2 0.4 0.1 0 -0.1 0
B1 -0.3 -0.3 0 -0.2 0.1 0.1 0.2 -0.1 0 0.4 -0.7
B2 -0.3 -0.2 0 -0.4 -0.5 -0.4 -0.5 -0.1 0.1 -0.1 0
B3 -0.3 -0.3 -0.1 -0.2 0.1 0.1 0.2 0 0 0.4 0.7

WC -0.3 -0.4 -0.1 -0.1 0.2 0.1 0.3 0.2 0 -0.7 0
DC -0.2 -0.3 0.6 0.7 -0.2 0 0 0 0 0.1 0
TH -0.3 0.3 -0.3 0.2 -0.1 0.1 0.1 -0.8 0 -0.2 0
L3 -0.3 0.2 0.2 0 0.6 -0.6 0.1 0 0.2 0 0
T1 -0.3 0.3 -0.3 0.2 -0.2 -0.2 0.2 0.4 -0.6 0.1 0
T2 -0.3 0.2 -0.3 0.2 -0.1 0.3 -0.1 0.4 0.7 0.1 0

Table 7.3: PC coefficients, rounded to one decimal place, from the PCA of the
stone axe data.

As expected, the coefficients for the first component have the same sign and
similar magnitude and can be interpreted as a size component – essentially it av-
erages the standardized measurements of all the variables. The second component
is a shape component that contrasts the length and thickness variables with the
breadth and cutting-edge variables. The pattern is displayed in a readily appreci-
ated form in the variable plot for the first two components, in the left-hand plot
of Figure 7.5.

Size may or may not be of intrinsic interest; for the axe data the focus in
O’Hare (1990) was on typology as revealed by shape, so size is of less interest and
the plot based on the second and third components in Figure 7.5 is of potentially
greater interest. It shows three distinct clusters based on length, thickness and
breadth variables, the last of these also associated with the width of the cutting-
edge. Depth of cutting-edge (DC) is isolated from the other variables, and also
dominates the fourth PC. The graphs tell the same story as those in O’Hare
(1990).

Output concerning the ‘importance’ of the PCs can be investigated in several
ways. Commonly in software packages the variances (eigenvalues), both individual
and cumulative, are presented. In R, if prcomp is used, the standard deviations,
as opposed to variances, are stored in axe.pca$sd. These can be manipulated to
produce Table 7.4, emulating what is to be seen in other software.

Section 6.1 of Jolliffe (2002) discusses a large number of criteria that have been
used for selection; the most commonly used, and the only ones considered here,
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Figure 7.5: Coefficient plots for components 1 and 2, and components 2 and 3,
from a PCA of the stone axe data.

Component 1 2 3 4 5 6 7 8 9 10 11
St.Dev. 2.8 1.3 0.7 0.7 0.6 0.4 0.2 0.2 0.1 0.1 0

Variance (%) 71.0 14.6 4.7 4.4 2.8 1.3 0.6 0.2 0.2 0.1 0
Cumulative (%) 71.0 85.6 90.3 94.7 97.5 98.9 99.4 99.7 99.9 100 100

Table 7.4: Standard deviations, variances (%) and cumulative variances (%) for
the PCs for the stone axe data.

are described as ad-hoc. Jolliffe (2002: 112) comments that they are ‘intuitively
plausible’ and ‘work in practice’. One simple rule is to require that the cumulative
percentage of variance accounted for by the components exceeds some threshold.
Thus, 80% would lead to a choice of two components here. Choice of the threshold
is arbitrary; 70% is sometimes mentioned as a reasonable lower limit, but I have
seen examples (mostly archaeometric) where the first two components only account
for 50–60% of the variance, but are useful. Another common criterion is to require
the variances (when standardized data are used) to exceed some value such as 1
(Kaiser’s rule) or 0.7. Both lead to a choice of two components here.

The information in Table 7.4 can be represented in a scree plot, the R version of
which is shown in the left-hand plot of Figure 7.6. The idea is to identify the point
at which the plot ‘levels off’ or, as it is sometimes expressed, an ‘elbow’ is evident.
Once again two components are suggested. Such plots can be quite difficult to
interpret; roughly, it is not unusual for them to exhibit something looking like
‘exponential decay’ so an elbow is not apparent.

Given that the size component is of limited interest in O’Hare (1990) it might
be ignored and the scree plot rescaled, as in the right-hand plot in Figure 7.6. It
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Figure 7.6: Scree plots for the PCA of the stone axe data, with and without the
first component.

can now be seen that the second component is clearly dominant, with the next
two or three contributing information.

Some of the rules just described, as Jolliffe notes, derive from studies in factor
analysis, where the ‘correct’ choice of the number of factors can be critical. The
concept of a ‘correct’ choice in PCA, if it has a meaning, has possibly been exag-
gerated in importance. My reason for thinking this is that, without committing
oneself to a choice, an inspection of pairs plots of all the PCs that seem useful is
perfectly possible – those that are useful being subject to more detailed scrutiny. It
can happen that, for example, plots involving the fourth component reveal useful
information whereas those based on the third component do not. Also, analysis of-
ten proceeds iteratively, with outliers removed and analysis repeated, for instance.
Under these circumstances attempting to select a ‘correct’ number of components
seems pointless.

Figure 7.7 is a pairs plot based on PCs 2, 3 and 4, using the version available
in the car package. The plots are best viewed in color but, however approached,
can be ‘messy’. Concentrating on the plot for the second and third components,
there is no discernible separation of types. Pointed axes are perhaps more evident
on the periphery of the plot, but are all over the place, and are the most numerous
class. Similar observations can be made about the other plots.

Given the obvious overlap of butt-types, confidence ellipses or convex hulls
(Figures 6.3 and 6.5) will be of no value for separating types. Experimenting with
contouring is an idea since denser regions at the centers of the scatter for each
type might separate, but this did not happen and the plots are not shown. The
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Figure 7.7: Pairs plot for components 2-4 from a PCA of the stone axe data.

main outcome of this analysis has been to show that there are clear patterns of
correlation in the variables, but this is not reflected in any structure in the score
plots related to butt type. Analysis continues in Section 8.3 where the idea of
rotation of components is illustrated.

7.5 R notes

Figures 7.1 to 7.6

Some of the presentational arguments and legend have been omitted. Data for the
oxides are held in oxides and site respectively. The colors (Col) and plotting
characters (Sym) for the site were created separately and the relevant code is not
shown. The following basic code is for Figure 7.1.

library(MASS)
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pcO <- prcomp(oxides, scale = T)

x1 <- pcO$x[ , 1]; x2 <- pcO$x[ , 2]

y1 <- pcO$rotation[ , 1]; y2 <- pcO$rotation[ , 2]

# Score plot

eqscplot(x1, x2, main = "Standardized data")

abline(h = 0); abline(v = 0)

# Coefficient plot

eqscplot(y1, y2, type = "n")

text(y1, y2, names(oxides))

arrows (0, 0, y1 * .85, y2 * .85, code = 2, length = .15)

abline(h = 0); abline(v = 0)

For Figure 7.1 define pcO <- prcomp(log10(oxides), scale = F); for Fig-
ure 7.3 replace log10(oxides) with LR where LR is the (centered) log-ratio trans-
formation that can be obtained from the clr function in the Hotelling package

library(Hotelling)

Si <- 100 - apply(oxides, 1, sum)

oxidesSi <- as.data.frame(cbind(oxides, Si))

LR <- clr(oxidesSi)

where Si is the ‘residual’, which can be equated with silica, that is used to augment
the data set so that it is fully compositional.

Other than the data used, Figures 7.4 and 7.5 introduce nothing new. The
scree plot to the left of Figure 7.6 might be obtained using the screeplot func-
tion, screeplot(PCA, xlab = "component"), where PCA is the object obtained
on using prcomp in the first stage of analysis. This draws on the barplot function,
which was used directly here in order to obtain the plot to the right of Figure 7.6
with barplot(PCA$sd^2, names.arg = 1:11) producing the plot to the left and
barplot(PCA$sd[2:11]^2, names.arg = 1:11) that to the right.
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Chapter 8

Factor analysis and PCA

8.1 Factor analysis

The history of the use of factor analysis in archaeology is recounted in Baxter
(1994a, 2003). A summary is that ‘factor analysis’ was widely used (or abused)
in applications to the mid-1980s, but has not been prominent since. It was widely
confused with PCA and confusion still exists. The need for a separate chapter
on factor analysis is questionable, but it has been ‘promoted’ in the fairly recent
undergraduate text of VanPool and Leonard (2010) – at the apparent expense of
PCA, though this may not be intentional – who perpetuate some of the miscon-
ceptions surrounding the distinction between the methods. This, with a summary
of the historical background, is discussed in Section 8.4.

The view almost invariably expressed in texts written by statisticians, and
adopted here, is that PCA and factor analysis are different methods and that
maintaining this distinction is important. The view expressed in some archaeo-
logical writing (e.g., Drennan, 2009: 299–300) that the methods are conceptually
different but that this is of no practical importance is only tenable if, having ac-
cepted there is a conceptual distinction, the consequences are then ignored. The
concluding section returns to this argument.

Section 8.2 summarizes some of the main differences between PCA and factor
analysis and ‘problematic’ aspects of application – that is, how the methods differ
and why. The example in Section 8.3.1 illustrates the effects of rotation and the
choice of coefficient constraints on the outcome of a PCA. The idea of rotation is
‘borrowed’ from factor analysis where it is fundamental. The intent is to take an
initial ‘solution’ and modify it in the interests of ‘interpretability’. This can be
done in many different ways, so there is an unavoidable ‘indeterminacy’ involved
in any application of factor analysis. The example in Section 8.3.2 shows how
numerical results can vary as a consequence of the choices that have to be made
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in implemention. This is, regrettably, a subject where understanding of the math-
ematics that underpins the methods helps to clarify why they are different, and a
succinct account is provided in Appendix D.

8.2 Theory - a brief summary

Remember that PCs are constructed as linear combinations of Yi

Zj = aj1Y1 + aj2Y2 + . . .+ ajpYp (8.1)

that are uncorrelated and, subject to this, account for successively decreasing
amounts of the variance in the data. Determining the aji is a purely mathematical
operation that depends, additionally, on constraints that it is necessary to impose
for a unique solution (constraint 7.1 or 7.2)1.

Constraint (7.1) is used in R and other software, where PCA and factor analysis
are clearly distinguished. An important exception, and a source of confusion, is
the widely-used SPSS package, where PCA is treated as a particular case of factor
analysis and constraint (7.2) is used.

Equation (8.1), subject to the chosen constraint, has a unique solution deter-
mined mathematically. The relationship can be ‘inverted’ to obtain an expression
for the variables as a function of the components (Section D.3.1).

Yj = a1jZ1 + a2jZ2 + . . .+ apjZp (8.2)

This does not involves any notion of random variation such as might be repre-
sented by an ‘error’ term, and does not require estimation of the coefficients with
associated measures of uncertainty2.

In contrast, and it is important, factor analysis requires that a statistical model
be specified for the data. This has the form

Yj = b1jF1 + b2jF2 + . . .+ bqjFq + εj (8.3)

where the final term is a random component (‘error’ term). The loadings bij that
determine the factors must be estimated. In PCA there are p components, of which
a subset, q, may be selected for presenting results; in factor analysis there are q < p
factors. The hope is that these latent variables can be assigned a ‘meaning’ at the
interpretive stage as unobservable variables that explain the observed covariance

1A distinction, not always made in the literature, will be maintained between the use of the
term coefficients for PCA and loadings for factor analysis. Similarly, component and factor
rotation are distinguished.

2To be clear about this, the way in which component coefficients are determined using math-
ematical methods is being distinguished from statistical estimation.
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structure of the data. In PCA no such ‘meaning’ is necessarily attributed to the
components, nor need there be for productive analysis.

The covariance matrix of the data is S. In PCA the coefficients are extracted via
the singular value decomposition (SVD) of S, or some procedure with equivalent
effect. This is a mathematical operation that produces PCs with the required
properties. In factor analysis S is broken down into the sum of two components
which are the contributions of the random terms and the systematic components
represented by the factors as in equation (D.6). A distinction often made is that,
in contrast to PCA where the aim is to account for as much variance as possible
with a small number of components, the emphasis in factor analysis is on the
covariance structure of the data rather than the variances, with the effort directed
at modeling this in terms of common factors that explain this structure.

Another way of stating this is that PCA and factor analysis have different aims.
Factor analysis implies a belief that unobservable variables – with a ‘meaning’
that can be articulated – explain the covariance structure of the data. Factor
analyis results are unavoidably affected by analytical choices for which definitive
statistical theoretical guidance does not exist. Some commentators are uneasy
about the ‘flexibility’ of interpretation this allows; what is not in doubt is the
‘indeterminacy’ in the results (i.e. factors identified) that can be obtained. Factor
rotation is at the heart of this.

Conditionally on the data pre-treatment used, PCA provides a unique solution
to the problem it is designed for. Any attempt to modify the PCA solution de-
stroys its optimality properties. Not so factor analysis, since it does not attempt
to optimize any well defined criterion that the factors should satisfy. An initial
solution (i.e. determination of the bij) is not unique. Rotation has the aim of
achieving simple and interpretable structure. The idea is that it is easier to attach
a ‘meaningful’ label to rotated factors than it is to the initial solution3.

To summarize, in factor analysis factor rotation is de riguer. Formally, in PCA,
components can be rotated but the results then do not have the optimal properties
PCA is designed to achieve. The witting use of rotation of PCs to enhance inter-
pretation is sometimes seen; the confusion of rotated PCA with factor analysis is
more pernicious. This is discussed further, in the context of the archaeological lit-
erature, in Section 8.4. Apart from the choice of a rotation method (Section D.3.2),
many methods of factor extraction are possible, contributing to the variety of so-
lutions possible. Section D.3.3 describes some of these and Section 8.3.2 provides
illustrative applications.

3It seems to be implicit, in this approach, that factors should have simple structure, with
loadings either ‘high’ or ‘close’ to zero. It is not obvious that there is a logical reason why
latent variables should have simple structure, so the requirement is really one of interpretive
convenience.
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8.3 Examples

8.3.1 PCA and rotation

The data used for illustration are the stone axe data of Tables B.9 to B.11 for butt
types 1, 3 and 5, already analyzed in some detail in Section 7.4. The sequence of
commands that follows provides the basis for the results given in the upper-part
of Table 8.1, and uses the constraint in equation (7.1).

PC1 <- prcomp(SAst)

PC1L <- PC1$rotation[, 1:4]

PC1R <- varimax(PC1L)$loadings

Components Components
1 2 3 4 1 2 3 4

PCA (prcomp) Varimax rotation (cutoff = 0.3)
L1 -0.33 0.18 0.16 0.09 -0.39
L2 -0.23 0.45 0.53 0.40 -0.80
B1 -0.33 -0.29 -0.04 0.21 -0.49
B2 -0.31 -0.23 -0.02 0.37 -0.49
B3 -0.32 -0.31 -0.08 0.20 -0.50
WC -0.29 -0.44 -0.13 0.06 -0.51
DC -0.23 -0.32 0.58 -0.67 -0.96
TH -0.32 0.26 -0.29 -0.24 -0.55
L3 -0.30 0.22 0.22 -0.04 -0.39
T1 -0.32 0.25 -0.33 -0.23 -0.57
T2 -0.32 0.24 -0.29 -0.21 -0.54

PCA (principal) Varimax rotation (cutoff = 0.45)
L1 0.91 0.23 0.12 -0.06 0.60 0.56
L2 0.64 0.57 0.38 -0.28 0.89
B1 0.91 -0.37 -0.03 -0.15 -0.88
B2 0.86 -0.29 -0.01 -0.26 -0.83
B3 0.90 -0.39 -0.06 -0.14 -0.89
WC 0.81 -0.56 -0.09 -0.04 -0.91
DC 0.65 -0.41 0.41 0.47 0.86
TH 0.89 0.33 -0.21 0.17 0.88
L3 0.85 0.28 0.16 0.03 0.61 0.55
T1 0.88 0.32 -0.24 0.16 0.88
T2 0.90 0.30 -0.21 0.15 0.87

Table 8.1: Coefficients and varimax rotated PCs for different treatments of the
stone axe data of Tables B.9 to B.11.

Here, PC1L <- PC1$rotation[, 1:4] extracts the coefficients for the first four
components. These are shown in the upper-left of Table 8.1 and, apart from
rounding, are the same as those in Table 7.3. The eigenvalues for the first two PCs
are 2.79 and 1.27; for the third and fourth PCs they are 0.72 and 0.70. The first
two components account separately for 71.0% and 14.6% of the total variance, and
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cumulatively for 85.6%; the next two account for about 9% cumulatively so about
95% of the variance is attributable to the first four components (Table 7.4).

The interpretation in terms of size and shape components is discussed in Sec-
tion 7.4.2. While several criteria for component selection in advance of rotation,
such as Kaiser’s rule, would lead to a choice of two, more forgiving criteria would
lead to different choices (e.g., a modified Kaiser’s rule using 0.7, or what VanPool
and Leonard (2010: Chapter 15) state is a ‘common cutoff’ for the cumulative
percentage used to select the number of components of 95%). Four components
will be rotated for illustrative purposes.

Jolliffe’s (2002, pp. 112–133) account of component selection in PCA concludes
that rules having a ‘sound statistical foundation’ seem ‘to offer little advantage over
the simpler methods in most cirumstances’. Since he also notes that the simpler
methods are ‘very much ad-hoc rules-of-thumb’ (page 112), and that the choice of
the number of components to rotate ‘can have a large effect on the results after
rotation’ (page 271) this would appear to leave the aspirant rotator of principle
components in something of a quandary when deciding what to do!

The command PC1R <- varimax(PC1L)$loadings uses the varimax function
to rotate the four components with results shown in the upper-right table. The
common convention of suppressing rotated coefficient values below some cutoff, is
followed. The default is to suppress values for which |aij| < 0.1. Here,

print(PC1R, digits = 2, cutoff = 0.3).

which rounds the aij to two digits and prints those for which aij > 0.3, is used, as
in the table to the upper-right. The cutoff, 0.3, is arbitrary (as is the default) but
designed to emphasize the most important clusters of variables that characterize
each rotated component.

How does interpretation differ from the unrotated solution, if at all? The plots
in Figure 7.5, based on the first three components, can be clearly interpreted in
terms of three clusters of variables corresponding to ‘length’, ‘breadth’ and ‘thick-
ness’ with depth of cutting-edge as an isolated variable. The rotated solution to
the upper-right of Table 8.1 does not add to this, but loses the direct interpretation
in terms of ‘size’ and ‘shape’ components evident in the unrotated analysis. We
might, if the fancy takes us, call these variable clusters ‘factors’, but the analysis
is not a factor analysis.

The lower set of tables repeats the analysis obtained with the principal func-
tion from the psych package using constraint (7.2). The number of components
(called ‘factors’) to extract needs to be specified explicitly and varimax rotation is
applied by default. To get a rotated PCA the following can be used.

library(psych)

PC2 <- principal(SAst, nfactors = 11, rotate = "none")
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PC2L <- PC2$loadings[, 1:4]

PC2R <- varimax(PC2L)$loadings

The argument nfactors specifies the number of components/factors to extract –
the maximum of 11 in this case – and the rotate = "none" argument suppresses
rotation. Thereafter things proceed as previously. Because of the different con-
straints, coefficients in the two unrotated analyses differ by a constant factor. The
outcome of rotation depends on the constraint used (Jolliffe, 2002: 272–74) but
both lose the variance-maximization properties of the unrotated solution and the
property that component scores are uncorrelated.

After rotation coefficients no longer differ by a constant factor. The results
in the lower part of Table 8.1 for principal can be compared with those from
prcomp. A cutoff of 0.3 was used for the varimax rotated components in the latter
case as it divided the variables neatly into different types; not such a neat division
was possible for the results from principal, a cutoff of 0.45 eventually being
chosen4.

8.3.2 Variants of factor analysis

The data used are a ‘classic’ set of measurements on 30 La Tène Bronze Age fibu-
lae from Münsingen, Switzerland. These were used in several early experimental
studies of applications of multivariate methods in archaeology, in the late 1960s
and early 1970s. They are published as Table 9.1 in Doran and Hodson (1975)
and reproduced in Table B.15. There are three angular measurements and one
variable of counts, with the other dimensions measured as millimeters. One of
these variables has some values that could not be ascertained, and one fibula has
missing data. Doran and Hodson replace these with estimates; here the offending
row and column have been omitted in the analyses to follow so a 29 × 12 data
matrix is used.

Doran and Hodson (1975: 225) stress that the data set, which is small, was
intended to ‘test out alternative methods and not to provide a useful archaeological
classification’ (their emphasis). This is the spirit in which the data are used here.

Other than the angular data, and following Doran and Hodson, variables are
transformed to logarithms before analysis. There are some zero values; follow-
ing Doran and Hodson 0.1 was added to all the non-angular data before taking

4With the principal function, rotated components do not necessarily retain the same order-
ing when compared to the original components they most resemble. Rotated components 2 and
4 in both analyses have a similar interpretation; component 1 in the prcomp rotation resembles
the third rotated component for principal; and the third rotated component for prcomp and
first component fro principal may be interpreted as ‘thickness’. Broadly, though, the analyses
lead to similar interpretations.
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(natural) logarithms5.
Following suggestions in Section D.4 for comparisons that might be of interest

the upper part of Table 8.2 contrasts the results of orthogonal varimax rotation
using principal axis and maximum-likelihood factor analysis; the lower part of the
table provides a similar contrast using oblique oblimin rotation. The default in
the fa function from the psych package was used for all analyses.

Factors Factors
A B C D A B C D

Principal axis factor analysis, varimax rotation Maximum-likelihood, varimax rotation

FL 0.83 0.81
BH 0.59 -0.51 -0.45 0.58 -0.47 -0.50
CD 0.65 0.60
ED 0.49 0.67 0.46 0.73
FEL 0.88 0.94
C 0.59 0.54 0.53 0.53 0.42 0.43 0.59
BW
BT -0.46 0.54 -0.43 -0.45 0.57 -0.59
Coils 0.68 0.48
BFA -0.74 0.40 -0.83
FA 0.77 0.73
BRA -0.85 -0.82

Principal axis factor analysis, oblimin rotation Maximum-likelihood, oblimin rotation
FL 0.50 0.54 0.41 0.51 0.54
BH -0.59 0.43 -0.55 0.45
CD -0.44 -0.41
ED 0.65 0.71 0.45
FEL 0.91 0.93
C 1.01 0.99
BW 0.45
BT 0.69 0.88
Coils 0.42 0.67 0.46
BFA 0.84 0.93
FA 0.44 0.44 -0.46 -0.41 -0.44
BRA 0.84 0.80

Table 8.2: Factor loadings from different analyses of the Bronze Age fibulae data
of Table B.15, treated as described in the text and extracting four factors.

As in Doran and Hodson (1975: 200–01), using Kaiser’s rule, four factors were
extracted. The code that follows is for principal axis factor analysis with varimax
rotation.

FA <- fa(y, nfactors = 4, fm = "pa", rotate = "varimax")

where y is the data matrix determined as previously described.

5I have been unable to reproduce the results of this transformation given in Table 9.2 of Doran
and Hodson, other than for the counted variable. My numbers don’t differ too much from theirs,
and I get similar results when reproducing their analyses.
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The method selection argument fm = "pa" selects principal axis factoring,
while rotate = "varimax" gives the rotation method to use. Change these to fm

= "ml" and rotate = "oblimin" for maximum-likelihood estimation and oblimin
rotation. There are other options available; "oblimin" is the default rotation and
"minres" the default estimation method. The latter produces an ordinary least
squares solution; the documention states it will produce results very similar to
maximum-likelihood and it did so here (not shown).

The loadings were obtained with a cutoff of 0.4 for all the analyses reported,
using the loadings function and the print method associated with it.

print(loadings(FA), digits = 2, cut = .4)

In Table 8.2 factors are ordered to make comparisons more readily between
different analyses, rather than in the order that occurs in fa output.With relatively
minor variations the two varimax analyses show fairly similar results to each other,
and the two oblique rotations are also quite similar to each other.

The more obvious differences that can be seen, which do not depend on the
cutoff used, arise in the comparison of the orthogonal and oblique rotations. Most
obviously, perhaps, the catchplate dimension (C) does not stand out in any of the
factors obtained using the varimax rotation, but dominates the third factor in the
oblimin rotations. Similarly, factor D is dominated by the foot extension length
(FEL) which has a high loading for factor B in the varimax rotations but does
not dominate (or define) that factor. It is, in fact, difficult to discern much cor-
respondence between the varimax and oblimin rotations. There is some similarity
between the third factor for the former and the second factor for the latter.

For this example at least the results are sensitive to the choice of rotation
method. The other potentially important source of difference concerns the choice
of numbers of factors to rotate (Section D.4). For illustration Table 8.3 presents
the results from a maximum-likelihood analysis using both varimax and oblimin
rotation and extracting three factors. This may be compared with the output from
Table 8.2.

For the varimax rotation factor C in Table 8.2 and factor B in Table 8.3 compare
reasonably well; there is also some correspondence between factor A in the different
analyses. Factor C in the three-factor analysis has no clear relationship to either
factor B or D in the four-factor analysis or to any simple combination of them.

For the oblimin rotation Factor C in all analyses, which is dominated by the
catchplate variable, corresponds well. The bow-angle variables are the most im-
portant in defining factor A in all analyses but the contributions of foot length
(FL) and coil diameter (CD) make somewhat greater and non-trivial contributions
in the three-factor analysis.

This leaves factor B in the three-factor analysis to be compared with factors B
and D from the four-factor analyses. There is a quite good correspondence with
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Factor A Factor B Factor C Factor A Factor B Factor C
Maximum-likelihood, varimax Maximum-likelihood, oblimin

FL -0.42 0.74 0.61 0.58
BH 0.72 -0.56 -0.66 0.44
CD 0.70 -0.62
ED 0.51 0.72 0.72 0.43
FEL -0.47 0.44 0.45
C 0.41 0.83 0.99
BW
BT 0.62 -0.68 0.91
Coils 0.50 0.50
BFA -0.83 0.87
FA 0.50
BRA -0.84 0.85

Table 8.3: Factor loadings from maximum-likelihood factor analyses of the Bronze
Age fibulae data of Table B.15, using varimax and oblimin rotation for three fac-
tors.

factor B from the four-factor oblimin rotation; less so with the varimax rotation.
Factor D in the four-factor analysis, largely determined by foot extension length,
does not correspond to anything in the three-factor analysis.

The sole intention here has been to demonstrate that the choices to be made in
conducting a factor analysis can have a non-trivial effect on the numerical output
obtained. This Tables 8.2 and 8.3 do, particularly with respect to the rotation
method used and numbers of factors rotated.

8.4 Factor analysis in archaeology

The importance of the paper by Binford and Binford (1966), which popularized the
use of factor analysis in archaeology in the 1970s, is widely recognized (e.g., Doran
and Hodson, 1975: 203–05; Orton, 1980: 136–39; Read, 1989) even when com-
mentators disagree with aspects of it. Read (1989: 6–7) commented to the effect
that the Binford’s application of ‘factor analysis’, which was actually PCA with
rotation, could serve ‘as an example of incorrectly applied statistical methods’.

Vierra and Carlson (1981) listed over 70 studies between 1970 and 1978 that
called their methodology ‘factor analysis’. Their Table 1 gives details of 43 ap-
plications; more than half (27) were PCA, mainly with varimax rotation. Baxter
(1994a: 277–79) notes about 20 additional analyses, mostly to the mid-1980s, that
were dominated by PCA with varimax rotation. That is, more than 20 years after
the introduction of factor analysis into the archaeological literature, confusion still
existed between it and PCA.

There was a visible decline in archaeological uses of factor analysis and other
multivariate methods from the mid-1980s or so arising from a backlash against
the (mis)use of these methods. Baxter(1994a: 8) suggested that a consequence of
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this was that ‘methodologically useful babies were unfairly thrown out with the
theoretical bathwater’. Happily most of these babies survived to grow to maturity
and become useful citizens in the world of quantitative archaeology; however, it
was also suggested that factor analysis had ‘possibly been lost with the bathwater,
but the loss [was] not necessarily one to mourn’ (Baxter, 1994a: 86).

Doran and Hodson (1975: 197–205) summarize their attitude towards uses of
factor analysis up to that data as ‘not very favourable’. Not all quantitatively able
archaeologists have been so troubled. Cowgill (1977a), in his review of Doran and
Hodson (1975), thought they exaggerated the distinction between PCA and factor
analysis. An obvious comment is that if the techniques really are so similar, why
bother with anything other than the simpler PCA methodology?

We return to this after first discussing VanPool and Leonard’s (2010) treatment
of the subject which, in my view, unwittingly encapaulates many of the reasons
for the confusion between PCA and factor analysis in archaeological usage6. Put
bluntly, I think they ‘oversell’ factor analysis, avoiding contentious issues that arise
in using it. The distinction made between factor analysis and PCA is confused
and the subject of what follows.

There is an absence of reference to texts that might be viewed as forerunners
or ‘competitors’ (Doran and Hodson, 1975; Orton, 1980; Shennan, 1997; Drennan,
2009; Fletcher and Lock, 2005) so the reader is not exposed to more qualified
assessments of factor analysis that have been voiced within some of these texts.
This comment also applies to the wider journal literature. References to practical
applications are very limited and hardly calculated to persuade the reader that
factor analysis is a ‘live’ topic in archaeology.

The exception to this general lack of acknowledgment of a critical literature
is Jolliffe (2002) who is cited in support of views expressed by the authors that
arguably misrepresent what he says. It is stated that ‘[p]rincipal component and
factor analysis are very similar but differ in the way they measure variation’ (my
emphasis) citing Jolliffe (2002: 180–96) as the authority for this. Jolliffe says
no such thing; both PCA and factor analyses measure (co)variance in the same
way, but the emphasis in PCA is on accounting for the variance (the diagonal ele-
ments of the covariance matrix) whereas factor analysis concentrates on modeling,
or ‘explaining’, the covariance structure (off-diagonal elements) of the covariance
matrix.

More worryingly, contrast the claim that the two methods are ‘very similar’
with what Jolliffe writes. To wit, ‘the view [that PCA is a special case of factor
analysis] is misguided since PCA and factor analysis, as usually defined, are really
quite distinct techniques’ (p. 150); ‘a major distinction between factor analysis
and PCA is that there is a definite model underlying factor analysis, but for most

6I’m working from the Kindle edition of the book, so can’t give exact page references.
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purposes no model is assumed in PCA’ (p. 158); and ‘there are many ways in
which PCA and factor analysis differ from one another’ (p. 160). This is not a
ringing endorsement of the claim that the methods are ‘very similar’.

VanPool and Leonard state that ‘[p]erhaps it isn’t necessary to go so far as to
say one should never use principal component analysis, but it is fair to say that
it should only be used when the researcher can be reasonably sure that specific
variance and error is small’. This follows an apparently supportive quote from
Jolliffe. It can be read as asserting a preference for factor analysis over PCA and
can charitably be described as misleading. To impose sense on it, it needs be
interpreted as saying that if factor analysis is the appropriate method of analysis
then PCA, as a surrogate for a proper factor analysis, should not be used.

This is important and worth spelling out in detail since it is at the heart of the
confusion between factor analysis and PCA. The supposedly ‘supportive’ remark
of Jolliffe is prefaced with another quote to the effect that ‘various authors ’ (my
emphasis) have concluded that ‘. . . principal component analysis should not be
used if a researcher wishes to obtain parameters reflecting latent constructs or
factors’. This is from a single author, Widaman (1993), quoted exactly as above
by Jolliffe (2002: 161). Widaman’s remark was made in the context of an earlier
1990s disussion which, in Jolliffe’s words, was underpinned by the ‘assumption
that unobservable factors are being sought from which the observed behavioural
variables can be derived’. Jolliffe concludes that ‘Factor analysis is clearly designed
with this objective in mind, whereas PCA does not directly address it. Thus, at
best, PCA provides an approximation to what is truly required’. Only this last
sentence is referenced by VanPool and Leonard as a ‘supportive quote’; without
very careful reading and reference back to the original source it is all too easily
understood as a fairly general view of Jolliffe, rather than specific comment on the
view of a particular scholar made in the context of a focused 1990s debate in the
behavioral sciences literature.

The fundamental problem with VanPool and Leonard’s treatment is that it
appears to be founded on the ‘PCA as a special case of factor analysis’ philosophy,
with PCA then found wanting, rather than the ‘PCA and factor analysis as distinct
methods’ philosophy. This perpetuates the crop of confusion between PCA and
factor analysis sown by Binford and Binford (1966) that Read (1989) suggested
was an exemplar of ‘incorrectly applied’ methodology.

Another problematic assertion is the statement that ‘From the perspective of
both techniques there are three “types” of variation in a data set; common, specific,
and error . . . Both [techiques] are excellent means of measuring common variance,
but they differ in their treatment of specific variance and error.’, followed by factor
analysis ‘only measures common variance’ whereas PCA ‘doesn’t mathematically
discard the specific variance and error as factor analysis does’. The PCA formu-
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lation does not involve any conception of specific or error variance; the statement
only makes sense if PCA is treated as an inferior way of undertaking a factor
analysis, rather than as a method in its own right.

This view that PCA and factor analysis are properly treated as distinct meth-
ods is overwhelmingly that of texts dealing with factor analysis and PCA writen
by statisticians. Chatfield and Collins’ (1980: 89) comment, in their introductory
text on multivariate analysis, that ‘we recommend that factor analysis should not
be used in most practical situations’ is at one extreme, but not untypical. Jolliffe
(2002) provides a more dispassionate account. Other works in the same vein as
Jolliffe’s are listed in Section D.4. All are agreed that factor analysis and PCA are
different methods; that the former involves a model for the data; and that if this
model is appropriate PCA (with or without rotation) is not an optimal method for
extracting the factors of interest. Claims that the two methods are ‘very similar’
or that they typically lead to very similar results (which can be queried7) fail to
acknowledge what many scholars regard as fundamental differences between the
methods.

One can take an entirely pragmatic view of this and ask how useful the methods
have proved to be for archaeological data analysis. It would be straightforward to
put together a book – albeit repetitive in places – consisting solely of uncontentious
applications of PCA that produce readily understood results that have been found
to be useful; such a book would be populated with examples from the mid-1960s to
the present day. It would, I suspect, be a major challenge to do this for applications
of factor analysis, avoiding studies where PCA masquerades as factor analysis. If
the relative merits of the two methods must be discussed this might be seen as an
acid test. Perhaps it isn’t necessary to go so far as to say one should never use
factor analysis (and indeed would be foolish to do so) but it is fair to say that
it should only be ‘promoted’ if it has been demonstrably useful, and where the
distinction between it and PCA is clearly maintained.

7The raison dêtre of factor analysis is that rotation, and the choice of method of rotation,
does make a difference. It would seem to follow logically that claims to the effect that PCA and
factor analysis lead to very similar results are only tenable if you envisage a PCA solution being
subjected to the same rotational procedures as the factor analysis to which it is being compared.
Even if it then turns out that claims about similarity are valid the thinking is predicated on the
‘PCA as a special case of factor analysis’ philosophy.
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Chapter 9

Correspondence analysis

9.1 Introduction

Many of the ideas that underpin correspondence analysis (CA) are similar to, if
not identical with, those for PCA. Differences between PCA and CA, and some
technical detail, are discussed in Section 9.2.

Baxter (1994a: 133–39) summarizes the development of the use of CA in ar-
chaeology to about 1992; taking the story slightly further in Baxter (2003: 12–13).
A brief resume is that Hill (1974), in a statistical journal and using an archaeo-
logical seriation problem as an example, described CA as a ‘neglected multivari-
ate technique’. Benzécri and colleagues, in the French-language literature in the
1970s and 80s, is widely credited with the modern mathematical development of
CA. This literature is equally credited with being a difficult read. Greenacre’s
(1984) English text is also heavy going. Greenacre (2007) – a thorough revision
of Greenacre (1993) – is more approachable. The use of CA for archaeological
purposes in the French-language literature was little noticed elsewhere, and it is
Bølviken et al. (1982) who are usually credited with popularizing archaeological
uses of the method.

The edited collection of Madsen (1988a), with many examples, helped CA on
its way. The method did not ‘catch on’ in Britain until the early 1990s, with North
America lagging behind. The use of CA in archaeology is now commonplace and
CA is now mentioned in the same breath as cluster analysis and PCA, the most
widely used multivariate methods in archaeology.

An introduction to CA in R, written for archaeologists, is available in Baxter
and Cool (2010b). This chapter uses packages not available when that paper was
written. More recently, Alberti (2013) has published on the use of R for CA with a
view to developing scripts for those more comfortable with menu-driven analyses..
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9.2 CA and PCA – similarities and differences

This section is more ‘mathematical’ than the rest of the chapter and some readers
may prefer to go directly to the examples of Section 9.3.

Usually CA is presented as a technique for analyzing tables of counted data,
in contrast to PCA which is usually applied to continuous data. In fact, CA can
be applied to any table of non-negative numbers, and PCA to counted data, but
the distinction drawn between them is that usually emphasized. To reflect this,
notation is changed here. Let N be the I × J table of counted data, with typical
element nij. For later reference the sum of the nij is n, the sum for row i is ri+,
and the sum for column j is c+j.

A frequent selling-point of CA is that it can jointly represent both the rows
and columns of a data table, aiding interpretation. This oversells the difference
between CA and PCA since a joint representation is possible with the latter, and
the joint representation is not compulsory for CA. If a joint representation is used
it is called a biplot and often takes the form of a plot of the column markers
superimposed on those for the rows, The examples to follow present the output
as two separate and adjacent plots, one for the rows and one for the columns.
This is often easier to read, particularly with large data sets, and does not detract
from the interpretation. Mathematically the treatment of the rows and columns is
symmetrical, so only the former is treated in detail here. Greenacre (207: 31–32)
is a convenient notational summary that provides details for the treatment of both
rows and columns1.

In PCA, with an n × p data matrix, the idea is to produce a map in which
distances between the row markers approximate the true distances in the full p-
dimensional space. This is explained in more detail in Section 7.3. The aims of
CA can be described in an identical fashion. The way ‘variance’ and ‘distance’ are
defined differs, however, and is discussed below. In CA the ‘variance’ is called the

1Biplots can be presented in several ways, about which a lot has been written. Treated
algebraically, via the singular value decomposition (Section D.2), a ‘strict’ interpretation of a
biplot is that row and column representations can be combined to approximately reproduce the
data. When these are used for plotting this can result in row (column) markers being plotted
round the periphery of the plot with column (row) markers bunched up in the center. This
‘asymmetrical’ treatment can make plots difficult to read, so a symmetrical treatment that is
more readable is often preferred, although this then loses the property that the data can be
reconstructed algebraically from the row and column representations. Since CA is mainly used
to produce an interpretable graphical representation of the relationships between rows, columns
and each other this does not trouble many users. When plotted separately the relative positions
of row and column markers on their respective plots is informative about the relationship between
row and column categories, best illustrated in the examples to follow. It is obligatory to issue a
warning that an interpretation of the difference between the positions of row and column markers
as a ‘distance’ is not valid.

134



inertia and chi-squared distance is used, in contrast to the use of Eucidean distance
in PCA. This can be thought of as a weighted PCA, and it is the introduction of
weights that complicates the mathematics.

The chi-squared test statistic for no association between the rows and columns
of a data table is often written as

X2 =
∑
ij

(Oij − Eij)2

Eij
.

Here Oij(= nij) is the observed value in cell (i, j) and Eij its expected value. The
latter is defined as

Eij = ri+c+j/n.

Thus, X2 can be written as

X2 =
∑
ij

(nij − ri+c+j/n)2

ri+c+j/n
.

The total inertia is defined as X2/n, the division by n removing the sample
size effect that X2 is subject to. It is a measure of the variance in the data, the
contributions of individual cells being (Oij − Eij)2/nEij. These can be summed
across rows or columns to get row and column inertias. The mass of row i is
defined as ri = ri+/n and of column j as cj = ci+/n, which can be collected
together as r = (r1 r2 . . . rI) and c = (c1 c2 . . . cJ). The elements of r and c
sum, by definition, to 1; c defines the average profile of the rows and r that for
the columns. The masses play an important role in defining the weighting used in
CA.

Define pij = nij/ri+ for j = (1, 2, . . . , J); the profile for row i is then given by
pi = (pi1 pi2 . . . piJ). The aim in CA is to represent the profiles on a ‘map’ where
the Euclidean distances between the row markers on the map approximates the
chi-squared distance between profiles2.

Greenacre (2007: 32) shows that the contribution of cell (i, j) to the total
inertia is proportional to

(pij − cj)2/cj

where the numerator is just the square of the difference between observed contri-
butions to the profile and their expected values, cj. What this formulation makes
clear is the introduction of weights dependent on the cj. In effect this amounts to
weighting profile contributions by 1/

√
cj. Remembering that cj = n+j/n, larger

values correspond to columns with more observations. Thus, relative to Euclidean

2This definition of pij departs from the notation used in Greenacre (2007: 31) who defines it
as p̃ij = nij/n. This involves replacing pij in the following equation with p̃ij/ri.

135



distance, categories with low frequencies receive a higher weighting than those
with larger frequencies. This ‘evens out’ the influence that rows with small and
those with larger frequencies have on the CA. It is analogous, in a way, to the
use of standardized data in PCA, where the standardization (xij − x̄j)/sj can be
thought of as weighting of the xij to remove the undue influence of high-variance
variables.

9.3 Romano-British glass assemblages

9.3.1 First- to third-century vessel glass

This is an extended example, designed both to illustrate one approach to the use
of CA and to elaborate on aspects of interpretation. It involves an examination
of the use of Romano-British vessel glass in the first- to third-centuries AD. The
data are given in Table B.13 and are a slightly modified version of tables from
Cool and Baxter (1999). The table is based on estimated glass vessel equivalents
(glass EVEs) for 25 sites.

For the purpose of assemblage comparison numbers need to be directly com-
parable. When material is fragmented several commonly used measures (e.g.,
fragment count, minimum number of vessels) lack this property. Orton (1975)
developed estimated vessel equivalents (EVEs) for pottery data in response to this
situation. Diagnostic sherds are needed, and typically the proportions of the rim
that survive on rim sherds are counted. Later the ideas were extended to other
materials. Moreno-Garcia et al. (1996) developed a zonal method for quantifying
bone data. A complete bone is defined by a number of zones (which can vary with
bone type) and the proportion of zones recognizable in a fragmented bone are
counted. The first author of Cool and Baxter (1999) drew inspiration from this to
develop glass vessel EVEs. The resultant data are fractional but comparable and
CA can be applied in the usual way.

An analysis, not shown here, was undertaken on first- to fourth-century glass.
The interpretation was obviously chronological, with the fourth-century separating
out completely. Accordingly the fourth-century data was removed and the analysis
here begins with the first- to third-century data. The last two rows in Table B.13
are not used in the first instance. Two chronological groups have been defined
according to whether occupation on the site ends before or after 150 AD. This
is an example of what Cool and Baxter (1999) call ‘peeling’ the data, where the
more obvious structure is removed from the analysis to reveal more subtle aspects
of patterning, if any.

Figure 9.1 shows the outcome of a CA using the ca function from the ca

package. The inertias are shown on the axes. The obvious interpretation is, again,
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chronological. Three of the later sites sit within the region occupied by the earlier
sites, or are on the same side of the plot. This is explored in the paper, where
the decision was made to analyze the two chronological groups separately, as is
done in the next two subsections. Some of the diagnostic information available is
illustrated in Table 9.1. Code for carrying out the analysis is given in Section 9.6
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Figure 9.1: Row and column plots for a correspondence analysisof the first- to
third-century AD Romano-British vessel glass assemblages of Table B.13.

Table 9.1 and those to follow are presented as they appear in the relevant ca

output. The total inertia, 0.256, is analogous to the total variance in PCA, and
the inertias for the individual axes are analogous to the variance of the individual
components in PCA. The first two axes account for 68.5% of the total inertia.

dim value % cum%
1 0.10771 42.1 42.1
2 0.06781 26.5 68.5
3 0.03897 15.2 83.8
4 0.02324 9.1 92.8
5 0.01834 7.2 100

Total: 0.25607 100

Table 9.1: Inertias from a correspondence analysis of first- to third-century vessel
glass assemblages from Table B.13.
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9.3.2 First- to second-century vessel glass

This analysis is based on the first 10 rows of Table B.13 to which have been added
the last two rows of that table (i.e. sites where occupation terminated before
150 AD). The CA, at first sight, does not reveal any obvious pattern, but other
information is to hand that allows a more suggestive interpretation. This is that
the sites can be classified as military or civilian. If this is used to label the row
plot it can be seen that, with one exception for each site-type, the military sites
plot to the right and the civilian sites to the left. In Cool and Baxter (1999) this
is interpreted as showing that by the Flavian period (roughly the last-third of the
first-century AD) the civilian population had developed a pattern of vessel-glass
use that differed from that of the military.
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Figure 9.2: Row and column plots for a correspondence of the first- to second-
century AD Romano-British vessel glass assemblages of Table B.13.

Comparison with the variable plot suggests that military sites are, relatively
speaking, characterized by a higher proportion of bottles and bowls, with civilian
sites having more of the other types. The outlying civilian site in the top-left of
the row plot has a higher proportion of flasks than other sites. Numerical flesh
can be added to this interpretation and serves to illustrate further aspects of the
ca package. Diagnostic statistics are presented in Table 9.2 for the variable plot.

The masses, which are the column totals divided by n, are scaled to add to
1000. The quality (qlt) shows how well each vessel type is represented in the plot;
numbers are scaled to a maximum of 1000 to aid comparisons. The larger the
values are the better the representation. Thus cups (933) and bottles (901) are
the two types best represented, with jugs and jars the least well-represented.
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type mass qlt inr k=1 cor ctr k=2 cor ctr
Cup 281 933 144 -213 727 236 -113 205 121
Bowl 214 803 181 208 418 171 -200 385 286
Jar 46 299 146 -309 246 81 142 52 31
Flask 109 711 175 -180 164 65 328 547 392
Jug 106 271 126 -197 267 76 -25 4 2
Bottle 245 901 228 286 722 371 143 180 167

Table 9.2: Diagnostic statistics for columns for the CA of the first- to second-
century AD Romano-British vessel glass assemblages of Table B.13.

The entries for k=1 and k=2 are plotting positions in terms of principal coor-
dinates. For k=1 negative values plot to the left (west) of the plot; positive values
plot to the right (east). For k=2 negative values plot in the lower-half (south) of
the plot; positive values in the upper-half (north)3.

The entries labelled ‘cor’ are squared correlations between the columns and
each of the first two axes and the quality is defined as the sum of these two terms.
That is, they measure how the quality is decomposed between the first two axes.
Thus, of the four vessel types where the overall quality of represntation is good,
cups and bottles, with squared correlations of 0.73 and 0.72 with the first axis
(numbers in the table are multiplied by 1000), different signs for k=1, and fairly
small values for k=2, might expected to lie roughly along an east-west axis at some
distance from the origin. Bowls make a significant contribution to both axes, while
flasks are particularly dominant on the second axis.

Most of this is probably more evident from the figure than the table; what
the latter does do is warn against over-interpretation of the prominence of jars in
the figure, since the quality of representation is relatively poor. The columns ctr,
scaled to add to 1000, are the contributions to the inertia of the associated axes
of the different types. This highlights, once again, the importance of bottles and
cups in defining the first axis and bowls and flasks in defining the second.

9.3.3 Second- to third-century vessel glass

The CA plots for the second- to third century glass are shown in Figure 9.3. The
row plot was examined in Figure 7 of Cool and Baxter (1999) by labeling sites
according to type. This was perhaps most interesting for what it didn’t show,

3There is a complication in that two coordinate systems are avaialble, standard as well as
principal coordinates (Greenacre, 2007: 62). The former are scaled to have zero mean and
unit variance and are the values extracted from the ca object used for plotting in the figures.
They thus differ numerically from the output of Table 9.2, though not in import, because of the
different scaling of the two coordinate systems.
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since there were no clear patterns with respect to site-type. The civilian/military
distinction observed for the first- and second-centuries largely disappeared. The
two separated sites to the right (3, 4) are small urban settlements but plot opposite
two similar sites (1,8). The most extreme points at the bottom and top of the plot
(7, 9) are auxiliary forts; that is, they are the same type but don’t occupy the
same region of the plot.
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Figure 9.3: Row and column plots for a correspondence analysis of the second- to
third-century AD Romano-British vessel glass assemblages of Table B.13.

Diagnostic statistics for the rows are shown in Table 9.3. They have the
same interpretation, with respect to rows, as Table 9.2 has for columns. Site
7 (Rochester) is a clear outlier in Figure 9.3 and this is reflected in the diagnostic
statistics where it dominates the second axis, with lesser contributions from sites
9 and 13. It is characterized by an unusually high proportion of bottles. Sites 9
(Housesteads) and 13 (York 160-289 AD.), to the north, are, by contrast, charac-
terized by cups. These inferences can be confirmed by examining the corresponding
table for columns (not shown).

As far as the first axis goes the two most extreme sites to the east, Towcester
(3) and Harlow (4), are differentiated from other sites by the relative proportion of
jars. Inspection of Table B.13 confirms this. Site 9 (Housesteads) has a comparable
proportion of jars, but is overwhelmingly dominated by cups and is, in consequence,
a major contributor to the definition of the second axis rather than the first.

The row plot in Figure 9.3 shows that most other rows cluster fairly close
to the origin and are not well represented by the CA. In summary, the overall
picture obtained is largely determined by three types and four or five sites. A
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Id. mass qlt inr k=1 cor ctr k=2 cor ctr
1 194 786 82 -304 782 140 -21 4 1
2 76 118 12 -59 81 2 -40 37 1
3 61 799 126 668 775 213 -118 24 10
4 124 867 240 684 866 453 24 1 1
5 75 226 36 -95 67 5 146 159 19
6 32 706 17 -263 480 18 181 226 13
7 47 910 197 -171 25 11 -1014 885 578
8 76 865 44 -357 782 76 -116 82 12
9 51 569 118 32 2 0 603 567 223

10 67 141 21 -67 52 2 -88 89 6
11 53 513 15 182 412 14 90 101 5
12 72 198 18 80 93 4 -85 105 6
13 72 902 73 -335 393 63 381 509 124

Table 9.3: Diagnostic statistics for rows for the CA of the second- to third-century
AD Romano-British vessel glass of Table B.13.

detailed archaeological interpretation of the results is provided in Cool and Baxter
(1999) – the intention here has been to illustrate the ‘peeling’ process and the
statistics available for interpreting the output. In practice some these may often
be superfluous mainly confirming what is evident from inspection of the plots.

The statistics in the tables can be viewed as different ways of assessing the
‘validity’ of a CA that aid its interpretation. For such purposes Ringrose (1992)
suggested assessing the stability of a CA using bootstraping/resampling methods.
A large number, N , of ‘replicate’ tables are generated, each being subjected to a
CA, so generating N plotting positions for each row/column of the table. For any
given row/column, if these plotting positions cluster tightly the representation of
that row is stable; if the points are widely spread it may be unsafe to read too much
into their positioning on the original CA plots. Convex hulls or confidence ellip-
soids (Chapter 6) of the plotting positions can be used to get an overall impression
of plot stability. Ringrose’s ideas have largely been neglected in the archaeological
literature until recently, but have been exploited fruitfully in two recent papers by
Peeples and Schachner (2012) and Lockyear (2013). Both use R and readers are
directed to available R code in the former paper.

9.4 Flavian drinking-vessels

Perhaps the most common use of CA in the archaeological literature is for seriation.
Seriation, in the ideal case, typically produces an unambiguous ordering of the
data and, most commonly, it is hoped that this can be given a chronological
interpretation. If this is reasonably successful the pattern in the data is that of
a ‘horseshoe’ on a plot of the first two axes, and the ordering is read around
the horseshoe. Here an example is provided where a clear seriation is obtained
of a spatial rather than chronological nature. The data of Table B.14 are used.
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These are glass vessel EVEs for seven types of drinking-vessel, current during the
Flavian period in England, from 10 sites ordered by their north-south orientation,
with three from the north, two from the Midlands, and five from the south. The
outcome of the CA is presented in Figure 9.4.

With the exception of Site 1 (Carlisle) an almost perfect seriation of the data
is obtained in the row plot. Labeling sites by their north-south orientation Site 2
(York) sits apart from others in its region but, though not perfect, the seriation
admits a spatial interpretation. Reading around the horseshoe, sites from the
north and Midlands are perfectly separated from southern sites on the first axis.
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Figure 9.4: Correspondence analysis row and column plots for the Flavian drinking-
vessels of Table B.14.

Cool and Baxter (1999: 90–91) can be referred to for discussion of these results,
which admit more than one interpretation. One is that the north is characterized
by earlier vessel forms and the south by later ones, and this may be the ‘rule
rather than the exception’, contradicting ‘traditionally’ held views that the earlier
forms found in the north and Midlands were ‘isolated survivals. An alternative
interpretation is that drinkers in the north/Midlands favoured low cups while those
in the south preferred tall beakers.

If the diagnostic statistics for the variable plot in Table 9.4 are consulted to-
gether with Figure 9.4 it can be seen that two cup-types (ribbed and Hofheim)
and two beaker-types (indented and facet-cut) are those best represented in the
plots. The ribbed and Hofheim cups, in particular, dominate the first and second
axes. The quality of representation of the two beaker-types is more evenly split
between the two axes; they plot closely together in the north-east quadrant of the
plot.
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vessel type mass qlt inr k=1 cor ctr k=2 cor ctr
Sport Cups 91 166 104 148 21 5 394 146 38
Tall Beakers 68 76 56 -239 75 10 34 1 0
Ribbed Cups 97 993 342 -1730 912 759 516 81 70
Hofheim Cups 359 994 246 10 0 0 -796 994 616
Indented Beakers 138 944 75 515 526 96 459 418 79
Facet-Cut Beakers 175 822 132 531 402 129 542 419 139
Wheel-Cut Beakers 73 512 45 37 2 0 543 509 58

Table 9.4: Diagnostic statistics for columns for the CA of the Flavian drinking-
vessel glass of Table B.14

Ribbed cups only appear in the northern and Midland assemblages (Table B.14),
all of which plot, along with these cups, to the left. Hofheim cups are not confined
to any particular region, but are particularly prominent in Sites 2, 5 and 7 (York,
Caersws, Gloucester) which accordingly plot in a similar region towards the bot-
tom. The indented and facet-cut beakers are particularly prominent in the three
most southerly sites, 8 9 and 10 (Caerleon, London, Fishbourne), and also plot
closely in the north-east quadrant.

The analysis of these data raises an interesting and more general question. It
has been observed (in more than one personal communication) that the numbers
(of EVEs) on which the analysis is based are small and asked if this raises questions
about the validity of any interpretation based on them. Both the observation
and the question are legitimate. The ‘generality’ of the question arises because in
archaeological data analysis one has to work with the data to hand, and the sample
sizes involved may often be quite ‘small’ according to the desiderata sometimes laid
down for what constitutes an adequate sample (not, incidentally, a question that
necessarily has an easy answer). It can also be argued that most archaeological
data analysis is concerned with pattern recognition in some form or other, using
the terms ‘data’ and ‘pattern’ in a very broad sense.

The thought occurs – and it is difficult to put into words – that if there
is obvious pattern in a data set and if a plausible archaeological interpretation
can be advanced for that pattern (the emphases are important here) then this
transcends any purely statistical concerns one might have about sample sizes. That
is, intelligent archaeological pattern recognition and interpretation may ‘trump’
statistical formalism when the two appear to conflict because of sample size doubts.

The thought, though it can be differently articulated, is not terribly original;
something of the kind is expressed in Section 3.15 of Doran and Hodson (1975),
and others, around at the time when quantitative methodology began to be widely
applied, grappled with the conflicting requirements of archaeological and statis-
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tical inference. In the context of debates that were taking place at the time it
might, fancifully, be seen as a choice between the Scylla of unquestioning accep-
tance of the rigor and utility of statistical analysis for archaeological purposes,
and the Charybdis of complete rejection of statistical methodology. This depends,
of course, on the conception one has of what statistics is ‘about’, and there was
particular concern with the merits of ‘classical’ methods of statistical inference
(Chapter 12). The extremes of both positions had their proponents; the issues
raised have not disappeared, though they can be discussed in a more sober fashion
that was sometimes evident. The strait between the two is not so narrow that it
can’t be negotiated.

9.5 Anglo-Saxon male graves and seriation

The final example is at the opposite end of the spectrum from that in the previous
section which was a rather small one. A large table of 272 male Anglo-Saxon burials
characterized by the presence or absence of 80 types of grave goods, coded as 1 or
0, is analyzed4. This is an example of incidence data; the previous examples used
counted abundance data, albeit fractional. These latter analyses were exploratory
in nature with no strong expectation about any patterns that would emerge; indeed
the seriation in the example of Section 9.4, with the evidence of the regional
pattern, proved something of a surprise.

By contrast, CA for the purposes of seriation in Anglo-Saxon burial studies
is quite common, and typically there is a clear expectation that a chronological
seriation exists. Again, commonly, graves are not stratified so this provides no help
in relative dating, which is what is attempted in CA applications. If a cemetery was
in use for a reasonable period of time, however, it is expected that changing fashions
associated with the grave goods will result in graves that are temporally close to
each other having assemblages more similar to each other than to temporally more
distant graves. It can be shown that in such situations CA is expected ‘to work’.

The data were collected for, and analyzed in, Bayliss et al. (2013). Analysis
there proceeded iteratively, over 50 pages or so. Rather than entering all the data
at the start, only a subset of the types were used initially. Graves and types were
then omitted if their representation was unsatisfactory; further types added; and
the process repeated until a seriation judged to be satisfactory was achieved. There
is some further ‘tweaking’ at the end that is discussed shortly.

The ‘philosophy’ that underpins this process seems to follow that espoused in
Jensen and Høilund Nielsen (1997), the latter being a co-author of the book un-

4Given the size of the data set it is not reproduced here but can, with a little effort, be
extracted from the Archaeology Data Service archives at
http://archaeologydataservice.ac.uk/archives/view/aschron eh 2013/
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der discussion. A condensed summary of the ‘philosophy’ is that an underlying
seriation is assumed to exist at the outset; analysis proceeds iteratively as just de-
scribed, omission of graves and types that do not conform to a ‘seriation pattern’
being justified by the assumption that such a pattern exists. Ideally this is also ra-
tionalized on archeological grounds; for example, some grave goods are of a type of
some antiquity (compared to other types in the burial assemblage) at the time the
burial took place. As described thus there is a resemblance to the ‘peeling’ process
of Cool and Baxter (1999) that informed the analyses of Section 9.3. There are,
however, differences. The Jensen/Høilund Nielsen approach assumes a particlar
type of structure in the data, whereas Cool/Baxter do not, and an emphasis is on
identifying ‘outliers’ that ‘conceal’ the seriation. Cool and Baxter, by contrast,
envisage the use of CA for purposes other than seriation, where the emphasis is
on identifying patterns in the data, and removing the more obvious structure to
reveal more subtle features.

In addition to the kind of information normally used for this kind of exercise, 48
radiocarbon dates were available for 40 of the male graves, indicated in Figure 9.5.
This is the preferred seriation in Bayliss et al.5. The seriation provides a relative
ordering of the graves and is used to suggest phasing for the data. What is novel
is the way Bayesian modeling is used in conjunction with the seriation to provide
date estimates for the phase boundaries. In Figure 9.5 the ordering of the dated
graves is determined by the ordering of the graves on the first CA axis. Some of
the phasing is rather ‘fine’ and some phases contain few dated graves.

What the phasing does is provide prior information about the relative chrono-
logical position of subsets of the dated graves that feeds into the modeling process.
Not all of the original data set contribute to the seriation and some of the graves
omitted have associated radiocarbon dates. The ‘almost’ final seriation provides
partial information on the relative chronology of these graves that allows them to
be fitted into what becomes the preferred seriation.

The combination of techniques used converts the relative chronology provided
by the seriation into an estimated absolute chronology. This provides finer dat-
ing evidence for the sixth to seventh-centuries than that previously available, in-
cluding an estimate of the ‘end’ of Anglo-Saxon occupation that places it in the
later seventh-century rather than the earlier eighth-century, as previously accepted.
This is an eye-catching conclusion (for Anglo-Saxon scholars at least) and is a good
example of innovative statistical methodology leading to archaeologically impor-
tant interpretations.

There are open questions, as the authors acknowledge. The preferred seriation
is based on calibrated radiocarbon dates that assume fish is not an important

5Their Figure 6.49 on p. 286. Figure 9.5 reproduces this closely, but with some embellishment
not in the original; R was used, rather than the software in the book.
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Figure 9.5: A seriation of 6th and 7th century Anglo-Saxon graves from Britain.
Dashed vertical lines are phase boundaries. (Data source: Bayliss et al., 2013.)

component of diet. Were fish consumption non-neglible – and the evidence in
the book allows this reading – the estimated end date would be later, though
still earlier than the previously presumed end. For some of the later, and dated,
burials, there is also an unresolved conflict with dates derived from numismatic
evidence which are later.

Overall the analysis is a thorough attempt to reconcile relative with ‘absolute’
dates. Previous work on these lines I have seen has been hampered by a paucity
of dates, and is not always applied ‘in anger’. From the perspective of these
notes Chapters 6 and 7 make considerable use of statistics and are central to the
book. By common consent they are also a very ‘difficult read’, particulary for non-
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statisticians; Baxter (2014a, b) provides a commnentary that attempts to separate
the essential material from the considerable and less essential detail .

9.6 R Notes

Figures 9.1 to 9.5

Coding is covered in earlier chapters. Only a brief note on the basic code for
Figure 9.1 is shown. The ca and MASS packages are needed.

In Table B.13 numbers are in the form of percentages; the raw data used for the
CA was in the form of EVEs which. If a table similar to that shown is the source
available conversion back to the original data may be required. The subset used
in the initial analysis is extracted to the data set data13. This has seven columns,
six of percentages for the vessel types, with total EVEs in the final column. To
convert to EVES use

data <- data13[, 1:6] * data13[, 7]/100

zr <- ca(data)$rowcoord; xr <- zr[,1]; yr <- zr[,2]

eqscplot(xr,yr)

zc <- ca(data)$colcoord; xc <- zc[,1]; yc <- zc[,2]

eqscplot(x,y)

arrows(0, 0, x*.85, y*.85, code = 2, length = .15)
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Chapter 10

Cluster analysis

10.1 Introduction

10.1.1 Main ideas

Cluster analysis is a generic term for a range of methods aimed at identifying
groups in a set of data. It is probably the most widely used multivariate method
in archaeology. To give only a few examples, cluster analysis has been used to group
artifacts on the basis of their dimensions or chemical compositions; assemblages
on the basis of the similarity of their profiles; and to spatial clustering on the basis
of the location of artifacts in space.

Many methods of cluster analysis result in the identification of G groups, with
the hope that cases in a group are similar to each other and dissimilar from cases
in other groups. This introduces the idea of (dis)similarity, which is crucial to
an understanding of how many methods of cluster analysis work. Many measures
of (dis)similarity can be defined, contributing to the many methods of cluster
analysis available. Another reason for this proliferation is that, given a measure of
(dis)similarity, a large number of clustering algorithms have been proposed for the
subsequent grouping exercise. This chapter discusses the most common methods
used in archaeological practice.

In some ways these have not changed much since the earlier days of exploration
in the 1960s and 1970s (Doran and Hodson, 1975; Hodson, 1969, 1970; Bieber et al.,
1976), which are often more interesting in the way cluster analysis was exploited
that it commonly is now. A lot of research has subsequently been undertaken
on more complex methods but most have, as yet, found limited archaeological
application. Some of these are discussed in Section 10.3. Before discussing methods
in more detail a small example is provided to illustrate ideas and issues.
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10.1.2 Example – Blue medieval window glass

The data given in Table B.16 in Appendix B were originally published by Cox and
Gillies (1986) and have subsequently been reanalyzed by Baxter (1989), Bell and
Croson (1998) and others, usually for the purpose of methodological illustration.
The measurements, the chemical composition in percentages for 11 oxides, are
for 27 specimens of blue medieval glass from the windows of York Minster and
elsewhere. It was of interest to see if the Minster glass was distinct from other
sources. A basic cluster analysis is shown in Figure 10.1 and can be obtained in
one line of code using

plot(hclust(dist(scale(york)), method = "a"))

though it makes for easier reading if broken down into its component parts. To
herald discussion in Section 10.2 some of these components are discussed now.
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Figure 10.1: An average-link cluster analysis for the standardized medieval glass
compositional data from Table B.16.
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The method = "a" argument specifies that the average-link method of cluster-
ing is to be used. This is a hierarchical clustering method of which several alterna-
tives are available in R. The same considerations concerning data transformation
occur with cluster analysis as with principal component analysis (Section 7.2);
thus scale(york) standardizes the 27× 11 data matrix (named york). The dist

argument computes Euclidean distances (Section 7.3) between the rows of scaled
data; hclust executes the analysis; and plot displays the result in the form of a
dendrogram, as in Figure 10.1.

This can be thought of as a tree consisting of branches and leaves which are
the individual cases. The idea is to identify branches that contain leaves that are
similar to each other, in terms of the distance between them, and at some distance
from leaves associated with other branches. This is not always easy and not always
possible. The most common practice is to cut the tree at some chosen height to
identify distinct branches. A cut that gives three clusters is shown at a height
of 4.5. The choice is subjective; if a cut is made at a slightly lower height four
clusters are obtained, once containing a single case, 20, that may be an outlier.
Splitting the coding above as

clus <- hclust(dist(scale(data)), method = "a"); plot(clus)

allows the object clus to be interrogated. Thus, cutree(clus, h = 4.5) identi-
fies cluster membership for the cut at a height of 4.5, as follows,

1 1 2 1 1 1 3 3 1 2 2 2 2 2 2 3 3 2 2 3 3 2 3 3 3 3 3

which is useful for labeling purposes in further analysis. It is possible to specify
the number of clusters required, using k = 3 rather than h = 4.5.

Checking the validity of a proposed cluster is not always easy. Clustering al-
gorithms are designed to identify clusters even when they do not exist. Given the
clusters, a simple method of assessing their integrity is to use labeled principal
component plots. This is shown for a scatterplot matrix of the first three compo-
nents in Figure 10.2, where the three clusters are mostly clearly distinct. Clusters
1 and 2 are very tightly defined, the former in particular, apart from one case that
is outlying relative to the rest of the cluster. Cluster 3 is rather more dispersed
but plots coherently on the first two components.

The default output from the plot command is invaluable for a quick look
at the data, but some sort of enhancement is desirable for presentational and
interpretive purposes. Figure 10.3 illustrates some possibilities. Default titles
have been removed or replaced so that the figure is more informative. Readers
familar with applications of cluster analysis may not be familiar with the default
style of presentation used in R in Figure 10.1. Figure 10.3 may be a more familiar
representation, where all the leaves ‘descend’ to a base of zero. This is obtained
by including the argument hang = -1 in the plot command.
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Figure 10.2: A scatterplot matrix for the first three components of a PCA of the
medieval glass compositional data from Table B.16, showing cluster labeling from
an average-link cluster analysis of the data.

The coloring requires more explanation. The default labeling in R is by case
number. This can be replaced by other text, such as cluster identifications (1,
2, 3). With many observations the labeling can be unreadable unless corrective
action is taken, by splitting the dendrogram into component parts, for example.
The use of different colors and symbols as labels can make it easier to read the
dendrogram. Color labeling is illustrated in Figure 10.3. It is uninformative in this
example because the dendrogram itself defines the labeling. It is useful, however,
for looking at the extent to which other methods of clustering reproduce the results.
This is illustrated in Section 10.2.2 .
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Figure 10.3: An average-link cluster analysis for the standardized medieval glass
compositional data from Table B.16 - an enhanced version of Figure 10.1.

10.2 Hierarchical Clustering

10.2.1 The most commonly used methods

Hierarchical agglomerative methods of cluster analysis are those most commonly
used in practice. Each case is initially treated as a single cluster so there are n in
all. The two most similar cases are merged to form a cluster of two cases, giving
(n− 1) clusters. Thereafter, clusters are successively merged (treating single cases
as clusters) on the basis of which pair is most similar at any stage. Eventually all
cases are merged into a single cluster. It is possible to start by assuming that all
cases belong to a single cluster and then successively split clusters up, one case at
a time, until all cases are distinct. This method, hierarchical divisive clustering,
has had comparatively limited use, and will not be considered further.

To merge clusters a measure to determine how similar clusters are is needed.
Similarity can be defined in different ways. In single-link cluster analysis the
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similarity of two clusters is measured by the smallest distance between two cases,
one from each cluster. The two clusters merged are those for which this smallest
distance is smallest. In complete-link cluster analysis, similarity is defined by the
largest distance between two cases, one from each cluster, the clusters being merged
for which this largest distance is smallest.

Single-link cluster analysis is rarely used because it tends to produce uninter-
pretable results unless the structure is obvious. It is sometimes useful for detecting
outliers. A criticism of both single- and complete-link clustering is that the mea-
sure of similarity between clusters depends only on two cases, and fails to take
account of group structure. Average-link cluster analysis attempts to overcome
this problem by defining similarity between clusters as the average distance be-
tween all possible pairs of cases, one from each cluster. It has probably been
the most widely used method of cluster analysis in archaeology. Ward’s method
(Section 10.3) also takes group structure into account.

The results from a hierarchical cluster analysis need to be validated and inter-
preted. This is usually done using a dendrogram, useful in conjunction with PCA.
Cases that merge at a low level (e.g., 4 and 9 in Figure 10.1) show a high level
of chemical similarity. The appearance of a dendrogram depends on the style of
presentation, choice of method, and the distance measure used.

10.2.2 Example – Levantine glass compositions

The York data used so far is not especially suitable for exploring the issues raised
above. The structure is obvious and recovered by all the methods mentioned. For
further illustration a 67 × 5 data matrix showing the compositions of Levantine
glass found at primary glass-production sites in Israel, from the first centuries AD,
is used (Table B.17).

A Ward’s method analysis using standardized data is shown in Figure 10.4. The
appearance is ‘cleaner’ compared to the average-link analyses previously presented,
making it easier to select a level of clustering to work with. A cut at a height of 7
produces seven reasonably convincing looking clusters. A six-cluster ‘solution’ is
also defensible; a three-cluster solution ignores some of the structure in the lower
part of the plot. The default dendrogram configuration from R is used but this is
not very evident from the plot. This is a function of the way Ward’s method can
tend to work, where the depth to which the leaves hang look mostly the same.

The exception to this comment is one case from Cluster 4 which, as will be
seen later, is an extreme outlier. Ward’s method can be poor for outlier detection.
This is a consequence of the ‘model’ that implicitly underpins the method and is
discussed further in Section 10.3.

In a sense single-link analysis is at the opposite pole to Ward’s method. The
cluster analysis for single-link for the Levantine data is shown in Figure 10.5.
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Figure 10.4: A Ward’s method cluster analysis for the standardized Levantine glass
compositional data.

It should be emphasized that the cluster identifications are those derived from
the Ward’s method analysis. A reason for the lack of use of single link in the
archaeological literature is evident from the plot, and this is the phenomenon
called ‘chaining’. This arises because otherwise distinct clusters can be linked
because of the effect of a small number of cases that are intermediate between the
otherwise disparate clusters. In its purest manifestation the dendrogram will have
a ‘staircase’ like appearance that makes cluster identification impossible without
the use of externally derived cues. The dendrogram in the figure is not quite
that bad but apart from some outliers to the left and two small groups there is
no obvious structure. If the ‘cues’ provided by the clustering from the Ward’s
method analysis are used it can be seen that apart from Cluster 6, and the partial
exception of Cluster 1, there is no real match, with cases from different clusters
scattered throughout the dendrogram.

The contrast with the average-link cluster analysis in Figure 10.6 is more in-
teresting. Average-link is possibly the most widely used, in archaeology, of the
available methods. There are several reasons for this; is is the default in several
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Figure 10.5: A single-link cluster analysis for the standardized Levantine glass
compositional data.

popular software packages; it was ‘promoted’ from an early stage once archaeology
engaged with quantitative ideas (e.g., see Doran and Hodson, 1975: 177); and (one
hopes) practitioners have found it useful.

Coming to the dendrogram ‘cold’, without additional cues, interpretation is
not straightforward. The eleven cases to the left can be treated as ‘outlying’
and include the two small Clusters 4 and 6. Visually cutting the dendrogram at
between 2 and 3 (allowing the cut-height to vary) suggests three clusters. Stray
cases apart, that to the right can be identified with cluster 5 from the Ward’s
method analysis, and that to the left with Cluster 7. The larger central cluster
could be cut at just below a height of 2 to give a subdivision of three clusters, one
of which can be identified with Cluster 1 from the Ward’s method analysis. There
is a small cluster of six cases, all from Cluster 2, with the remaining cluster mixing
cases from the Ward’s method Clusters 2 and 3.

Thus the correspondence between the Ward’s method and average-link results
is reasonable, with 5/7 of the clusters from the former method blocking together
on the dendrogram for the latter method. The average-link analysis might thus
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Figure 10.6: An average-link cluster analysis for the standardized Levantine glass
compositional data.

be regarded as producing a more nuanced analysis than Ward’ method.
Just because the different methods produce moderately similar results doesn’t

mean they are ‘right’. It is advisable to check on this and PCA is one way of doing
so1. Figure 10.7 shows plots based on the first three PCs.

In the plot of the first two components two outlying points below the bottom
of the plot, which were from Cluster 4, are not shown, for easier reading of the rest
of the plot. Essentially Cluster 4 consists of outliers, so that it plots separately
but not coherently. Cluster 6 is a small group that plots coherently on both plots
and is ‘extreme’ relative to other clusters. A stray case apart, Cluster 1 plots
separately on the plot for the first and third components, and much the same can
be said for Cluster 7 on the first two components. Cluster 5 is rather less compact
than either cluster analysis might suggest. It can be largely separated from other
clusters, though not perfectly. It does, however, separate out on a plot of the third

1In practice exploratory analyses would be carried out before a cluster analysis; PCA can be
used for this. It may reveal outliers that one could consider omitting from the cluster analysis,
or obvious clusters that can be separated out before undertaking further analysis.
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Figure 10.7: Principal components plots for the standardized Levantine glass com-
positional data, labeled after the Ward’s method clustering. Two outlying values
from Cluster 4 are not shown in the left-hand plot.

and fourth components (not shown).
This leaves Clusters 3 and 6 which were not especially well-separated on the

average-link dendrogram, the same being true for the plot on the first two com-
ponents. One case from each cluster apart they separate out on a plot of the
first and third components, though they are contiguous. The plot on the first two
components suggests that two cases from Cluster 3 are fairly clear outliers.

Overall the PCA suggests that the clustering produced by Ward’s method
is acceptable, provided one examines more than the first two components. The
average-link cluster analysis, while confirming much of what can be inferred from
the Ward’s method analysis, fails to distinguish between two Ward’s method clus-
ters that the PCA shows can be distinguished. Both methods of cluster analysis
provide little information on the coherence or otherwise of clusters. Ward’s method
is of little use for detecting outliers; average-link is much more satisfactory for this.
The overall message is that a combination of both methods of cluster analysis, al-
lied to checking using PCA, is a much better way of interrogating the data than
relying on a single method of cluster analysis (which many publications give the
impression of having done so).

It remains to ask if the sites can be distinguished. There is an imbalance
between the sample sizes of 53 and 14. They are not readily separated; analyses
are not shown, but the best that can be done is with the second and third PCs
which separate out 9/14 of the smaller sample. This can be examined using PCA
without recourse to cluster analysis which can, however, be useful for identifying
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sub-groups within site assemblages if sites plot separately. The small Cluster 6
comes from the site with the smaller sample size.

10.3 Ward’s method and model-based methods

10.3.1 Ward’s method

Ward’s method is an exception to the generalization that most commonly used
methods of cluster analysis in archaeology are just grouping algorithms with no
firm basis in statistical theory. These methods have been widely used because they
have seemed sensible to the people who devised them, and have found favor with
practitioners. Statisticians have been less impressed (see Cormack, 1971, for an
early and damning review from a statisticians perspective) and this has led more
recently to the development of model-based clustering methods. Ward’s method
is discussed in further detail here, partly to introduce some of the ideas used in
model-based and other methods.

In contrast to the other linkage methods, Ward’s method attempts to optimize
an explicit objective function, SG. All the agglomerative methods discussed suffer
from the drawback that once a merge is made it cannot be undone. Ward’s method,
as usually applied, is no exception and the word ‘attempts’ was used above because
often SG will not be optimized. That is, given any specific partition into G clusters
produced by Ward’s method, it may be possible to improve SG by relocating cases
between clusters. This is the basis of k-means methodology (Section 10.3.3).

Ward’s method was popular in the 1970s and 80s, partly because it was the
default in CLUSTAN, one of the earliest software packages designed specifically for
cluster analysis. Applications of the method often use squared Euclidean distance
as a dissimilarity measure. This distance forms the basis of measuring the vari-
ability within a cluster. At any given stage of clustering let G be the number of
clusters. For a single case, i, and single cluster the overall closeness to the cluster
centroid, (ȳ1, ȳ2, . . . , ȳp), can be measured by∑

j

(yij − ȳj)2

where summation is over the p variables. Summing this over the ng cases in cluster
g gives Sg, a measure of the ‘compactness’ of the cluster, and summing over g gives
SG a measure of the compactness of the clustering2. Any merge in the clustering
process will increase SG and the merge is chosen for which this increase is least.

2For a singleton cluster (i.e. consisting of a single case) which predominate in the early stages
of clustering, ng = 1 and Sg = 0. It is easy to see that merging two non-identical cases will
increase SG and this is generally true regardless of cluster size.
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10.3.2 Model-based clustering

It has already been noted that Wards method can suggest clusters quite clearly,
even when none exist. This behaviour can be understood by viewing Ward’s
method as a special case of a model-based method. Specifically, Ward’s method
will tend to produce (hyper-)spherical clusters of the same size. It can be shown
to be an ‘optimal’ method if the assumption that clusters have a spherical normal
distribution of equal size is correct. The method will tend to impose this kind of
structure on clusters even if the assumption is not true.

Model-based methods were developed partly in response to the lack of theoret-
ical justification for more heuristic methods. Such models depend on assumptions;
it is unfortunate that archaeological data rarely satisfy the assumptions for Ward’s
method to be optimal, but the theory also explains the typical appearance of a
Ward’s method dendrogram.

Only a very brief account of model-based methods is attempted here – the
mathematics is beyond the level of these notes. Banfield and Raftery (1993) pro-
vide a technical account that led on to the development of a package in R, mclust,
to implement some of the methods; Papageorgiou et al. (2001) provide a detailed
archaeological application, but the methodology has not been much used. Some
possible reasons for this are discussed after describing the ideas involved.

What follows is less general than would be possible but covers the most com-
mon uses. Assume that clusters are (hyper)-ellipsoidal in p-dimensional space;
a special case is when the clusters are (hyper)-spherical. Assume the sample is
from K sub-populations and that the data for a single cluster, k, are sampled
from a multivariate normal distribution. In principle the size and orientation of
the clusters can vary. Given these assumptions it is possible to define a proba-
bilty density function for the data, and parameters can be estimated using the
method of maximum-likelihood; that is, an objective function is optimized but
the optimization depends on the assumptions just listed. The parameters are
those associated with the underlying probability densities and cluster labels, the
estimation of which is the object of the exercise.

In its most general form the model is rarely used, as the number of parameters
allied to the size of the data make estimation impractical. Banfield and Raftery
(1993) simplify matters by developing models that impose constraints on the size,
orientation and shape of the clusters. Thus, clusters may be constrained to have
the same orientation, but allowed to vary in size, or vice-versa. Note that all this
involves moving away from the theoretically preferred model. The most extreme
simplification assumes that clusters are spherical and of the same size (orientation
is irrelevant) and this leads to what is essentially Ward’s method.

Thus Ward’s method approximates the solution to a model that assumes that
clusters have identical multivariate normal distributions other than their variation
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in location. This results in a method that ‘looks for’, and tends to find, spherical
clusters of the same size, resulting in a typical dendrogram having the appearance
illustrated in Figures 10.4. The issue of choosing K remains. Banfield and Raftery
(1993) develop an approximate Bayesian method, rather complicated mathemati-
cally, that involves investigation of a range of values for K. In passing it can be
noted that fully-fledged Bayesian approaches to clustering have been developed
that are model-based and even more complex (Buck et al., 1996). They have
been little used in archaeology and such papers I have seen mostly use data for
illustrative purposes where the cluster structure is obvious.

That model-based methods, other than in their simplest form, are rarely used
is (apart from mathematical complexity) possibly because data sets are often too
small or of too high a dimension to exploit the power of the methodology and/or
because the structure of the data invalidates the assumptions of the methods. One
area of application where model-based methodology is more practical is in spatial
clustering, where the (usually) two-dimensional nature of the data (i.e. its low
dimensionality) allows the use of more complex models.

Having said all this, Ward’s method and other, ad-hoc, methods have been
widely used and this is likely to continue. Ward’s method is interesting in that it
only approximates an ideal solution, and it may be possible to improve on this.
This leads into the idea of k-means clustering.

10.3.3 K-means clustering

At its simplest the idea behind k-means clustering is straightforward. Newer and
more complex methods that extend the ideas have been developed (e.g., Hastie et
al. 2009). Attention here is confined to Ward’s method. The basic idea is to take
an initial starting position for the group centroids, either randomly chosen or from
an initial Ward’s method analysis (involving a choice of G), and reallocate cases
between clusters until the optimum is, hopefully, attained.

For the seven-cluster Ward’s method solution we follow Venables and Ripley
(2002) and take the centroids of each cluster as a starting point. The distance
from each case to each centroid can be calculated along with the criterion to be
optimized, and cases can be reallocated if this improves the optimization. Ta-
ble 10.1 compares the clustering from the original analysis with that resulting
after reallocation.

Summing down the diagonal. 59/67 (88%) of cases are allocated to the same
cluster as produced by Ward’s method with three clusters remaining unaltered.
Of the reallocated cases 5/8 were originally in Cluster 2; this result perhaps is not
surprising given the earlier evidence from the average-link analysis and PCA. This
kind of analysis is less common in the archaeological literature than one might
expect; a possible reason is that such applications as exist often show very little
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Ward’ method K-means clusters
Cluster 1 2 3 4 5 6 7

1 10 0 0 0 0 0 0
2 2 10 0 0 0 0 3
3 0 0 11 0 1 0 0
4 0 0 0 3 1 0 0
5 0 0 0 0 10 1 0
6 0 0 0 0 0 4 0
7 0 0 0 0 0 0 11

Table 10.1: A comparison of the clusterings obtained by Ward’s method and sub-
sequent reallocation using the k-means algorithm from the kmeans function in R.

difference, if any, in the clusterings obtained. The results are not readily presented
in a simple form such as the dendrogram.

2 4 6 8 10 12

50
10

0
15

0
20

0

Scree plot for k−means analyses of Levantine data

number of clusters, k

to
ta

l w
ith

in
−

gr
ou

ps
 s

um
 o

f s
qu

ar
es

, S
(k

)

Figure 10.8: A scree plot of S(k) against k for the Levantine data k-means analysis.

The question ‘what is the correct number of clusters’ remains; it is not nec-
essarily an easy question to answer. One approach that has been suggested is to
look at a scree plot of the total within sums of squares for the clusters against the
number of clusters, or S(k) against k, where S(k) is the criterion that k-means
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optimizes for k clusters (Section 10.3). The idea then is to look for a clear ‘elbow’
that suggests the appropriate number of clusters. A scree plot for the Levantine
data is shown in Figure 10.8.

The idea is simple but, as with other uses of the scree plot (for example,
determining the appropriate number of components in a PCA in Section 7.4), it
is frequently of little use in practice. This is because a clear elbow is often not
apparent. This is the case for Figure 10.8. It is inevitable that S(k) will decrease
as k increases. In the figure the decay is greater up to k = 5 compared to larger
values of k where the decrease is almost linear. There is not a clear elbow; it could
be argued that a value of k = 6 seems appropriate, but the graphical evidence is
not especially compelling.

10.3.4 Fuzzy clustering

Levantine glass compositions

The methods discussed so far produce what are called hard clusters where each case
is assigned to a single cluster. In fuzzy clustering cluster membership is distributed
across all clusters. Baxter (2009) discusses the ideas involved with some technical
detail that is not repeated here. Implementation in R is straightforward and the
function used here, cmeans from the e1071 package, is almost identical in structure
to the kmeans function. An alternative implementation, not explored here, is the
function fanny from the cluster package.

The one difference between the command line for cmeans and kmeans is the
inclusion of a fuzzification factor for which the default in cmeans is the argument
m = 2. This controls the ‘crispness’ of the clustering; as m approaches 1 a hard
clustering is obtained; as it becomes large a totally fuzzy clustering results. The
use of m = 2 is arbitrary but claimed to work in a generally satisfactory way.
Baxter (2009) provides examples where values of m less than 2 were judged to
produce better results. Output from the two functions differs in various ways, the
most important for present purposes being a table of membership values.

An illustration is provided in Table 10.2 for a subset of the Levantine data.
Cluster 2 from the original Ward’s method analysis contained 15 cases; 5/15 cases
were reallocated using k-means analysis. Fuzzy clustering provides further insight
into this and Table 10.2 shows how c-means distributes the membership of this
cluster across the seven suggested by the Ward’s method analysis.

The c-means analysis has the highest membership in Cluster 2 for 11/15 cases,
though not always dramatically so. This is fairly similar to what is suggested by
the k-means analysis but with values of the membership for 10 of these 11 cases
below 50 it suggests, as might be inferred from earlier analyses, that the clustering
is not a very crisp one. Of the four cases where Cluster 2 does not have the highest
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Cluster
1 2 3 4 5 6 7

Case Membership
2 23 48 9 8 1 10 2
3 21 33 11 22 3 8 3
5 17 41 22 8 2 7 2
6 22 42 10 8 2 14 2

15 26 49 7 8 1 8 2
25 32 22 4 32 1 8 1
29 38 17 3 36 1 4 1
34 22 32 11 23 3 7 2
35 21 48 10 12 2 6 2
43 26 43 5 17 1 6 1
45 3 94 1 1 0 1 0
46 18 38 27 6 2 8 2
63 19 26 12 21 6 12 4
66 12 26 47 5 1 7 2
67 12 23 48 5 2 8 3

Table 10.2: Results from a c-means clustering of the Levantine data showing mem-
bership values for cluster 2 from the Ward’s method analysis with seven clusters.

membership, two could plausibly be associated with Clusters 2 or 4 and the other
two with Cluster 3.

Medieval glass compositions

For a different and simpler illustration the York medieval glass data are subjected
to a similar analysis in Table 10.3. The analysis is simpler in the sense that the
clustering is quite a crisp one with 25/27 cases clearly associated with a single
cluster (taking, a little arbitrarily, ‘clearly associated’ to imply that the smallest
membership value is 65 or greater).

The two exceptions to this observation are cases 20 and 22 which were the most
outlying in Figure 10.1, particularly case 20. Case 22 can be seen from Table 10.3
to have a much higher membership value for Cluster 2 than 3 (60 compared to
29). The impression given by the plot for the first two PCs does not suggest this
very clearly; further investigation reveals that the case is much closer to Cluster
2 if plots using the third component are examined3. It is clear, though, from
the dendrogram and the PCA of the first two components, that this case is best
regarded as an outlier. Case 20 is allocated to Cluster 3 in the original analysis;
it has the highest membership value for this group but the difference compared
to Cluster 2 is marginal (42 compared to 40). Inspection of plots using the third

3The plots of Figure 10.2 need to be labeled by case number to see this.
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component show it is at some distance from the rest of Cluster 3, so the conclusion
is that this is also a clear outlier.

Id. Cluster
1 2 3

Membership
1 100 0 0
2 98 1 1
3 1 98 1
4 98 1 1
5 95 2 2
6 92 4 5
7 8 7 85
8 4 3 93
9 99 1 1

10 1 97 2
11 1 97 1
12 1 97 2
13 1 98 1
14 1 98 1
15 1 99 1
16 7 7 86
17 5 6 89
18 6 86 8
19 1 98 1
20 19 40 42
21 12 21 67
22 11 60 29
23 11 14 76
24 6 7 86
25 5 4 91
26 5 4 91
27 5 3 92

Table 10.3: Results from a c-means clustering of the York medieval glass data
showing membership values.

.

10.4 Summary

Given the difficulties of applying more sophisticated model-based methods to typ-
ical archaeological data (with the possible exception of spatial clustering), it is
not surprising that practitioners continue to rely largely on the older and more ad
hoc methods. Presumably they are commonly found to give archaeologically inter-
pretable results, with the caveat that results judged to be unsatisfactory usually
never get published.

Some space has been devoted to Ward’s method, but not because it is a pre-
ferred choice. It is good practice to compare more than one clustering method,
and Ward’s method is a useful starting point because it usually suggests clear, if
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possibly illusory, clusters. Given an initial and provisional identification the results
can then be compared with those from other methods, as illustrated above.

Ward’s method is also a useful peg on which to hang a discussion of model-
based clustering methods. Although, for the reasons outlined, they have had
limited archaeological use the underlying theory explains why Ward’s method can
be a potentially misleading method. Other methods lack a theoretical basis but
can be subject to analogous or other problems. The method also provides an
entrée into k-means and c-means clustering. Both have probably been underused
by archaeologists (fuzzy clustering in particular). Both are very easily implemented
in R. Fuzzy clustering is capable of producing a more nuanced view of the data
than hard clusterings afford, and deserves more attention than it has received.

Books written specifically for archaeologists, that discuss cluster analysis, in-
clude, in ascending order of difficulty, Shennan (1997), Baxter (1994) and Baxter
(2003). Not all the methods discussed in this chapter are covered in the last
two books. General statistical texts, with a wider coverage, include Everitt et al.
(2011), which is devoted to cluster analysis, accessible, and includes some archaeo-
logical examples. Good statistical texts on multivariate analysis, with treatments
of CA, abound. They include Everitt and Dunn (2001), Krzanowski and Marriott
(1995), and Seber (1984). This is in rough order of difficulty.

For ‘newer’ approaches to cluster analysis Everitt et al. (2011) is probably the
most accessible statistical text for a non-statistical readership and includes ma-
terial on mixture models and fuzzy cluster analysis. Hastie et al. (2009) covers
several newer methods at a more advanced level. They are primarily concerned
with methods of supervised pattern recognition (e.g., discriminant analysis, classi-
fication trees, neural networks), but have chapters on unsupervised pattern recog-
nition that cover many more recent methods. Banfield and Raftery (1993) is a
useful starting point for a statistical treatment of model-based clustering. Buck
et al. (1996) is the best starting point for an exposition of the uses of Bayesian
methods in archaeology, with references to, and applications of, cluster analysis
to archaeological data; their pioneering work has not been emulated much.

10.5 R notes

Figure 10.2

pca <- prcomp(scale(york))

pairs(pca$x[,1:3], oma=c(4,4,6,12))

par(xpd=TRUE)

legend(0.85, 0.7)

This shows how, if you wish, placement of the pairs plot and a legend can
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be controlled. The oma argument in the call to the pairs function controls the
placement of the plots by adjusting the outer margins; par(xpd = TRUE) clips the
plot to the figure region with the effect of emsuring the legend is visible. See the
help on par for details. The first two arguments in the call to legend specify its
location. The arguments col, pch and cex are available for the pairs function
but have been omitted, as they and other arguments have in legend.

Figures 10.3 to 10.6

The code for Figure 10.4 is given first since it is a prerequisite for Figures 10.5
and 10.6; Figure 10.3 is produced in a similar way. Normally this would be best
written as a function, but it is convenient for expository purposes, to split the code
that would be in the function into blocks. It is assumed that the standardized data
for the Levantine glass compositions are held in Levantine. Version 3.1.2 of R was
used for this; earlier work on these notes used R 2.13.1. For the most part it doesn’t
matter much, but in the later version, in hclust, it is necessary to select the version
of Ward’s method (there are now two possibilities); method = "ward.D", based
on Euclidean distance, was used here.

A Ward’s method analysis is undertaken first since the clusters identified deter-
mine the labeling used in later analyses. The first block of code produces and plots
the dendrogram, from which it was decided that a seven-cluster solution woud be
used as a starting point.

data <- Levantine

clus <- hclust(dist(scale(data)), method = "ward.D")

plot(clus)

Next the cutree function is used to associate each case with a cluster label,
1 to 7, and these, in turn, are used to define a character variable, Colour, that
associates each cluster with a color label.

clus.id <- cutree(clus, h = 7)

Colour <- c(rep("black",dim(data)[1]))

Colour <- ifelse(clus.id == 2, "magenta", Colour)

Colour <- ifelse(clus.id == 3, "blue", Colour)

Colour <- ifelse(clus.id == 4, "red", Colour)

Colour <- ifelse(clus.id == 5, "cyan", Colour)

Colour <- ifelse(clus.id == 6, "green2", Colour)

Colour <- ifelse(clus.id == 7, "pink", Colour)

Folllowing this the as.dendrogram function converts the previously defined ob-
ject clus to a dendrogram structure that can then be manipulated to achieve the
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desired effect using other functions. These include order.dendrogram which ex-
tracts the ordering (left to right) of case labels as they appear on the dendrogram..
The small function that follows then associates each of the re-ordered labels with
its appropriate color as defined from the initial clustering. A plotting character
(pch = 16) is also defined for the colored labels that are to be used subsequently in
plotting the dendrogram. The main reason for doing this was so that dendrograms
using clustering methods other than Ward’s have the same colors associated with
case labels, so the similarity to Ward’s method results is more apparent4.

hcd <- as.dendrogram(clus, hang = 0.1)

newindex <- order.dendrogram(hcd)

i <- 0

colLab <- function(n) {

if (is.leaf(n)) {

i <<- i + 1

a <- attributes(n)

attr(n, "label") <- NULL

attr(n, "nodePar") <- c(a$nodePar, list(lab.col = "black",

pch = 16, col = Colour[newindex[i]], cex = 1.2))

attr(n, "frame.plot") <- TRUE

}

n

}

Having done all this the desired dendrogram can be plotted. The function
dendrapply uses the function colLab defined above to color the symbols used for
each label according to their cluster. The presentational arguments for plot have
been omitted, as has the legend.

clusDendro = dendrapply(hcd, colLab)

plot(clusDendro)

To obtain single- and average-link clusterings replace "ward.D" wih "s" or "a"
at the start of the above code, omitting the second block where the coloring is
defined.

4I’d assumed that this would be a fairly simple thing to do, but based on what I found on
the web apparently not. I eventually hit on what I used on a couple of sites, but did not make
a note of the source. At least two packages, dendroextras and dendextend, have been written
to facilitate dendrogram manipulation. I suspect the latter can do what I wanted, but how to
do it is not especially obvious.
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Figure 10.8

The kmeans function is used to obtain the total within-groups sums-of-squares
for k = 2, 3, . . . , 12 cluster solutions. The second argument centers = initial

specifies centers of the initial clusters to use. These are the centroids of k clusters
obtained from an initial Ward’s method analysis using code based on Venables and
Ripley (2002: 318). It is simpler to use centers = k which will randomly sample
k (distinct) rows from the data matrix as starting centroids. If this is done the
appearance of the scree plot is at the mercy of the random selection, and the scree
plot may vary if an analysis is repeated.

WithinSS <- NULL

k = 2

hh <- hclust(dist(Levantine), method = "ward.D")

while(k < 13) {

initial <- tapply(Levantine,

list(rep(cutree(hh, k), ncol(Levantine)), col(Levantine)),

mean)

km <- kmeans(Levantine, centers = initial)

WithinSS <- c(WithinSS, km$tot.withinss)

k <- k + 1

}

plot(2:12, WithinSS, type = "b")

Table 10.2

This proceeds much as the code for the k-means analysis above. In the call to
cmeans the argument m = 2 is the (default) ‘fuzzification’ factor, and can be varied.
The object cmmembership can be printed and edited to get Table 10.2.

hh <- hclust(dist(Levantine), method = "ward.D")

cluslev.id <- cutree(hh, 7)

initial <- tapply(Levantine,

list(rep(cutree(hh,7), ncol(Levantine)),

col(Levantine)), mean)

cm <- cmeans(Levantine, initial, m = 2)

cmmembership <- 100 * round(cm$membership[cluslev.id == 2,], 2)
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Chapter 11

Discrimination and classification

11.1 Introduction

Principal component, correspondence and cluster analysis are examples of unsu-
pervised learning methods. Discriminant analysis is, by contrast, an example of a
supervised learning method; only linear discriminant analysis (LDA) is considered
in any detail here. Unsupervised learning methods are geared towards the discov-
ery of structure in data, often in the form of distinct groups. Information may
exist about suspected grouping, but this does not feed into the analysis except that
it may be used for labeling graphs to aid interpretation (Chapters 7, 9, 10). By
contrast, supervised learning methods include information on (suspected) groups
in the data which underpins, and is incorporated into, the mathematics of the
methods. The aims of analysis may be to confirm that the groups are genuinely
distinct; to display group differences graphically; to identify variables that best
discriminate betwen groups, or to allocate cases not in the analysis to an appro-
priate group. This last aim, often called ‘classification’, motivates much of the
more recent methodological development (Hastie et al., 2009).

Mathematically, PCA, CA and LDA, can be viewed in terms of their increasing
order of complexity related to the measure of distance used in analysis. Euclidean
distance is used in PCA, chi-squared distance distance in CA, and Mahalanobis dis-
tance in LDA. Mahalanobis distance is the most complex (Sections 11.2 and C.2.3).

The three methods have, in common, the derivation of linear combinations
of the original variables, ordered by importance, the first two of which are used
for display purposes. Provided n > p (or I > J for CA) there are p (or J)
linear combinations that can be derived. In LDA, where G groups are assumed,
(G − 1) linear combinations can be defined, so that bivariate graphical display is
not available when G = 2 and univariate display is needed (e.g., Figure 11.6). A
brief methodological account of LDA is provided in (Section C.2.3).
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11.2 Mahalanobis distance

Mahalanobis distance (MD) has several uses in archaeology other than for discrim-
ination. Mathematical details are provided in Baxter and Buck (2000), Baxter
(2003: 69–72) and Section C.2.3. An important feature is that MD takes account
of group structure, in particular allowing for the possibility that groups may have
an ellipsoidal shape.

11.2.1 MD and confidence ellipsoids

To illustrate, Figure 11.1 reproduces, with enhancement, Figure 6.1 from Baxter
(2003) that was based on the analysis of lead isotope ratio data.
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Figure 11.1: 90% confidence ellipsoids for the Kea and Seriphos lead isotope fields
using the 208Pb/206Pb and 207Pb/206Pb ratios.

Measures on ore bodies (fields), mined in antiquity for copper, can be char-
acterized by three lead isotope ratios 208Pb/206Pb, 207Pb/206Pb and 206Pb/204Pb.
The idea is that different lead isotope fields can be distinguished on the basis of
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these ratios. Apart from looking at all pairwise possible plots (e.g., Figure 11.3)
they have sometimes been embellished with confidence ellipsoids, as shown. The
boundary of an ellipsoid is determined by points equidistant from the centroid in
terms of MD (Section C.2.3).

Ellipsoids can be used to delineate groups defined using archaeological criteria,
as above, or identified using statistical methods (e.g., PCA or cluster analysis)
plotted on pairs of PCs. Figures 6.4 and 6.5 illustrate this for the Pompeiian
loomweight data of Tables B.3 and B.4 where this was contrasted with the use of
convex hulls in Figure 6.5.

The rationale for using confidence ellipsoids is that the data are samples from
populations where the true extent of the field extends beyond that observed. Con-
vex hulls do not allow for this; confidence ellipsoids represent an attempt to es-
timate the true extent. A potential drawback of their use is that it needs to be
assumed that the population has a (multivariate) normal distribution and this is
sometimes obviously dubious. The construction of confidence ellipsoids, when the
assumption of normality is valid, is discussed in Section C.2.3.

11.2.2 MD, outliers, and allocation to groups

For the Seriphos field there is a case, 33, at the upper extreme of the ellipsoid
and lying just outside it. Visually it seems to belong with the Seriphos field, but
also seems further away from the centroid of that field than that of Kea. This is
confirmed if the Euclidean distance of the case to the two centroids is calculated,
after standardization. The distances are 2.33 and 1.20 for Seriphos and Kea.

If MD is calculated the conclusions are reversed and conform more closely with
the visual assessment of group assignment. The MDs to the centroids of Seriphos
and Kea are 5.76 and 10.29; these are squared quantities so their square-roots
of 2.40 and 3.21 may be compared more directly with Euclidean distance. The
MD calculations depend on both the centroid of a group and its covariance matrix
(Section C.2.3). If the latter is diagonal MD reduces to squared Euclidean distance.
Where the data exhibit strong covariances/correlations MD and Euclidean distance
calculations can produce rather different results, as shown, because MD but not
Euclidean distance allows for the elliptical nature of the groups.

A complication is that MD calculations depend on estimates of the centroid
and covariance matrix, the calculation of which is influenced by the case whose
membership is being assessed. An obvious idea here is to base calculations on what
have been called leave-one-out (LOO) methods, where calculations omit the case
of interest. Applying this idea to case 33 from the Seriphos field, the square-rooted
LOO MD value is 2.66 which exceeds the original value of 2.40, as expected, but
is still closer than the distance to the Kea centroid of 3.21 (calculations of which
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are unaffected). In R, and in the context of LDA, the term leave-one-out cross-
validation is used.

11.3 Linear discriminant analysis – examples

11.3.1 Lead isotope-ratio data – three groups

Data for three lead isotope fields are given in Table B.18 for three ratios. With
G = 3 two linear discriminant functions are defined which lends itself to the display
of results in two-dimensional plots. Figure 11.2 contrasts the results of applying
PCA and LDA to the three groups using all the ratio data. Remember that LDA
uses the information about groups to maximize the separation between them.
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Figure 11.2: Principal component and linear discriminant analyses of the lead
isotope-ratio data of Table B.18 using all three fields.

From Figure 11.1 it was seen that a plot based on two ratios is more than ad-
equate to establish the fact that the Seriphos and Kea fields are distinct. This is
also a feature of the PCA and DA plots. The presence of the Lavrion field compli-
cates matters; it is widely spread out on the PCA plot, showing some overlap with
the Seriphos field and more with that for Kea. The LDA, by contrast successfully
separates the three fields apart from one case each for the Kea and Lavrion fields
whose group membership is in doubt. This is a further clear illustration that PCA
and LDA can produce noticeably different results.

In practice, preliminary data inspection is sensible. A pairs plot of the ratios is
shown in Figure 11.3. It is clear that all three fields can be separated using just the
first two ratios; plots involving the third ratio confuse matters. This is reflected in
Figure 11.2 where PCA fails to show the field separation evident from the simple
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Figure 11.3: A pairs plot for the lead isotope ratio data. Labeling is as in Fig-
ure 11.2, green triangles for Lavrion, blue squares for Kea, red circles for Seriphos.

analyses. This points to the potential importance of variable selection when using
multivariate methods; the problem is that ‘non-structure-carrying’ variables can
obscure the lessons to be learned from variables that are revelatory of structure.

This will not be pursued in detail here; some of the issues are discussed in
Baxter (1994b). Examples there show that variable selection can improve the
success of allocation, though selection of the best discriminating variables is not
guaranteed. With two groups LDA can be formulated in terms of linear regression,
with methods based on stepwise selection procedures widely available in software
packages. Analogous stepwise procedures for LDA with more than two groups are
available in software packages such as SPSS and SAS. Stepwise selection methods
have been subjected to considerable criticism (failure to find ‘optimal’ solutions;
lack of generalizability; etc.). More modern methods are discussed in Chapter 3
of Hastie et al. (2009) but have had few archaeological applications.
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11.3.2 Neolithic pot dimensions

For a second example data from Table 1 of Madsen (1988b: 18), reproduced in
Tables B.19 and B.20, are used. They consist of 16 measurements on eight profile
points from pottery vessels from the the Early and earlier Middle Neolithic TRB
culture in Denmark.

Figure 11.4: Measurement points of Danish Neolithic pot profiles. (Source: Madsen
1988b: 16, after E.K.Nielsen.)

Each profile point is represented by vertical and horizontal components, so
there are 16 measurements in total (see Figure 11.4). The plots were classified
into three vessel forms, funnel beakers, bowls and flasks, with sample sizes of
81, 21 and 16. Classification was based on archaeological criteria and it was of
interest to see if this could be reproduced using multivariate methods. It is obvious
from simple bivariate plots (e.g., Madsen 1988b: 17) that flasks are dimensionally
distinct, and sensible to separate these out at an initial stage of analysis, though
they are retained for illustrative purposes in some of the examples to follow.

Madsen (1988b) concentrates on analyses of the funnel-beakers using PCA,
whereas we use the data to illustrate aspects of LDA. Initial analysis was domi-
nated by a size component – undesirable in the context of the aims of the analysis.
Madsen discusses various ways of removing this and we follow him in scaling ver-
tical measurements to pot height and horizontal measurements to rim width.
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Three groups

Figure 11.5 contrasts PCA and LDA analyses of the data for the three types1.
Both analyses separate out the flasks from the other forms, the separation being
much clearer for LDA. Neither analysis separates out the other two forms, though
LDA is a bit better. Both analyses suggest a small but distinctive group of six or
seven bowls.
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Figure 11.5: Principal component and linear discriminant analyses of the Neolithic
pot dimensions of Tables B.19 and B.20 using all three vessel types.

Two groups

It is often easier to discern pattern using a small number of groups for any one
analysis, and Figure 11.6 repeats the previous analysis after omitting the flasks.
There is only one discriminant function, so graphical display must be accomplished
using methods other than bivariate plots. Other options than that used, such as
boxplots, are available but don’t show the individual data points. The message
is the same as that derived from the three-group analysis, namely that with the
measurements used funnel beakers and bowls are not well discriminated. Using
LOO classification 85/102 (83%) of cases are successfully classified. The resubsti-
tution method,where statistics are influenced by the case to be classified, produces
over-optimistic assessments.

A more informative way of assessing success, though more time-consuming to
digest, is to examine the posterior probabilities of group membership, using leave-
one-out calculations. These are obtained from the lda function in R with the

1Case 112 (Id. 237 in Table B.20) was found to be a clear outlier in preliminary analysis and
omitted from this analysis.
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Figure 11.6: Principal component and linear discriminant analyses of the Neolithic
pot dimensions of Tables B.19 and B.20 using the first two types, beakers and bowls.

argument CV = TRUE. The outcome for a subset of the funnel-beaker and bowl
data is shown in Table 11.1.

If a ‘hard’ classification is needed a case would be assigned to the type with
highest probability. With the exception of vessels 307, 308, 311 and 329 the funnel-
beakers would mostly be convincingly classified as such, with probabilities close
to 1. Four beakers are classified as bowls, beaker 307 with a probability of 0.45 of
being a beaker and 0.55 of being a bowl only marginally so; the others are more
convincing. Of the six bowls shown, only two are classified as such, the remaining
four being classified as beakers with high or quite high probabilities.

A limitation of this kind of analysis is that results are presented in terms of
relative probabilities and assume that cases must belong to a group in the analysis.
This need not be the case; for example outliers may occur, or classes not recognized
in the analysis may be represented. In these circumstances a case will be assigned
to one of the assumed groups, possibly with high probability, even though the
reality is that it belongs to none.

Often this kind of issue will be recognized in preliminary data analysis, or from
the LDA itself. More formal methods exist; using normality assumptions MDs
can be converted to absolute probabilities that allow a more realistic assessment
of likely group membership. This is discussed in Section C.2.3.
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Predictions
Id. Actual Predicted Beaker Bowl

...
...

...
...

...
307 Beaker Bowl 0.45 0.55
308 Beaker Bowl 0.25 0.75
311 Beaker Bowl 0.14 0.86
312 Beaker Beaker 0.98 0.02
320 Beaker Beaker 0.93 0.07
321 Beaker Beaker 0.89 0.11
323 Beaker Beaker 0.98 0.02
324 Beaker Beaker 1 0
325 Beaker Beaker 0.92 0.08
326 Beaker Beaker 0.95 0.05
327 Beaker Beaker 0.99 0.01
328 Beaker Beaker 0.99 0.01
329 Beaker Bowl 0.33 0.67
336 Beaker Beaker 0.87 0.13

3 Bowl Bowl 0.03 0.97
33 Bowl Beaker 0.77 0.23
59 Bowl Beaker 0.78 0.22
60 Bowl Beaker 0.97 0.03
61 Bowl Bowl 0.01 0.99

131 Bowl Beaker 0.98 0.02
...

...
...

...
...

Table 11.1: Cross-validated estimates of the relative probabilities of belonging to a
group, after a two-group LDA for a subset of the Danish Neolithic pot data.

11.3.3 Practicalities

The normality assumption

The examples touch on a number of practical issues. Among them is the ques-
tion of normality – it is sometimes incorrectly asserted that LDA requires the
assumption that groups have a multivariate normal distribution. In fact Fisher’s
(1936) original derivation of LDA, subsequently developed by Rao (1948), made
no such assumption. A sensible measure of group separation is defined and op-
timized mathematically to determine the discriminant functions. For descriptive,
graphical analysis normality is not assumed. If normality can be assumed then
LDA has some optimal properties, but the lack of normality does not necessarily
compromise its practical utility. Normality does need to be assumed for proba-
bility calculations of the kind described in the previous section and Section C.2.3
but, as some of the examples suggest, it can be questionable.
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The equal covariance assumption – quadratic discriminant analysis

Applications so far have assumed that groups are sampled from separate popula-
tions having equal covariance matrices, allowing their estimates to be pooled and
leading to LDA. If the assumption is relaxed this gives rise to quadratic discrim-
inant analysis (QDA) (Venables and Ripley, 2002: 333–334) which, as the name
suggests, leads to quadratic boundaries between groups. A practical drawback of
QDA is the need to estimate separate covariance matrices within groups, which
requires more parameters and may be problematic with a reasonable number of
variables to deal with, so demands more data than LDA.

11.3.4 Example - Steatite compositions

The extended example in this section illustrates the kind of output produced by
R. It is based on compositional data for samples of steatite (soapstone) analyzed
by Truncer et al. (1998) in order to see if the method of chemical analysis used
succeeded in distinguishing between quarry sources more effectively than had pre-
viously been the case. The data are given in Tables B.21 to B.23.

There are six quarry sources used here with sample sizes between 24 and 31;
there was a considerable number of measurements below the level of detection and
only 6 of the 17 variables that were measured, for which complete information was
available, are used. The analysis in the original paper is not emulated, the data
are useful for illustrating aspects of LDA in this section, and classification trees in
Section 11.4.2. Data are logarithmically transformed, to base 10, before analysis.

The transformation St.log <- log10(steatite) is applied to the 159 × 6
data matrix, steatite. The vector of quarry identifiers is named St.type. With
this in place

library(MASS)

St.lda <- lda(St.log, St.type, CV = FALSE)

St.ld <- predict(St.lda)$x

sets up an object St.lda that can be used for interrogating the analysis, and St.ld

which is used for plotting purposes. The obvious thing to do, and one of the main
purposes of the exercise, is to look at the data graphically using a plot based on the
first two functions, as in Figure 11.72. This shows that discrimination is far from
perfect. Visually Lawrenceville seems most distinct, but there is overlap between
the predictions for all the quarries, particularly Susquehanna.

This can be investigated more closely using the ‘confusion’ table, which shows
the predictions for each quarry. In the lda function the argument CV = FALSE

2This is obtained using eqscplot(St.ld[,1], St.ld[,2]) where the arguments governing
the labeling have been omitted.
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Figure 11.7: LDA of the steatite compositional data of Tables B.21 to B.23.

was used. This is the default; if CV = TRUE is used LOO cross-validation is im-
plemented. This provides output in a different form; in particular St.lda$class

provides the LOO predictions and this can be cross-tabulated with St.type to get
the ‘confusion’ table (Table 11.2). The overall ‘success’ of classification is 113/159
= 71%, where 113 is the sum of the diagonal cells. If St.lda$posterior is ac-
cessed this provides posterior probabilities for the classes, of the kind shown in
Table 11.1. The success of classification is summarized in percentage terms for
each quarry in the third column of Table 11.3. This suggests that, for example,
the classification for Boyce Farm and Orr is not very impressive.

In fact these assessments may be rather pessimistic. In attempting to dis-
criminate between all six groups simultaneously the discriminant functions can be
thought of as ‘averaging’ over all the groups, producing results that fail to show
that good discrimination between pairs of groups may be possible. An alterna-
tive approach is to undertake LDAs on pairs of quarries. This is illustrated in
Table 11.3 where the LOO and resubstitution success rates for each possible pair
are given.

For the pairs the success rates are mostly noticeably greater than the global

179



Quarry Predicted quarry
B Ch Cl L O S n

B 13 1 2 0 4 4 24
Ch 0 23 0 2 0 1 26
Cl 2 0 19 0 0 5 26
L 0 5 0 24 0 2 31
O 1 0 2 1 15 6 25
S 2 2 4 0 0 19 27

Table 11.2: The ‘confusion’ table for LDA of the steatite data.

Pairwise comparisons
Quarry n CV (%) B Ch Cl L O S

Boyce Farm 24 54 98 90 96 82 88
Chula 26 88 98 90 84 94 89

Clifton 26 73 92 94 93 88 85
Lawrenceville 31 77 100 90 95 96 90

Orr 25 60 86 98 92 96 90
Susquehanna 27 70 90 96 87 93 94

Table 11.3: Classifications from LDAs of the steatite compositional data. The CV
is the percentage correctly classified using LOO methodology. The second part of
the table shows the success rate for pairwise comparisons; the upper triangle is for
LOO calculations, the lower triangle for the resubstitution approach.

rates and in excess of 90%. Although not pursued in detail here, this is because
the variables are weighted rather differently in the discriminant functions for pairs,
both from each other and from the global analysis.

11.4 Classification trees

11.4.1 Basic ideas

Classification trees have been used intermittently in archaeological applications
(Baxter, 2003: 116–118). They are an attractive alternative supervised learning
method for problems often tackled using (LDA), if sample sizes are large enough.
Venables and Ripley (2002: 331) state that ‘classical methods of multivariate
analysis [including LDA] have largely been superseded by methods from pattern
recognition’, and classification trees are one such ‘modern’ alternative.

Many of these modern methods are computationally complex, rather ‘black-
boxy’, and difficult for the non-specialist to understand. Classification trees, by
contrast, are conceptually simple and result in economical and elegant displays of
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the results that – with some caveats to be entered – can be readily understood.
Output is typically in the form of a tree diagram. The data are initially treated
as a single group that is successively sub-divided until some stopping criterion is
satisfied. The aim is to identify those variables that best separate the groups. This
is best illustrated by example in Section 11.4.2. Technical aspects of the method
are discussed in Section 11.5 with a further example in Section 11.6.

11.4.2 Example – Steatite compositions (continued)

The data on steatite compositions from Tables B.21 to B.23, used to illustrate
LDA in Section 11.3.4, are used. Figure 11.8, the same as Figure 9.2 in Baxter
(2003), shows the outcome of a classification tree analysis of the data.

|
V>=73.45

Sc< 11.84

Sc>=18.27

Co>=89.21

Fe< 8.93e+04

V>=94.1

Cr< 2823

Ch
0/21/2/1/0/1

Cl
4/0/8/0/1/1

B 
15/0/0/0/1/1

O 
2/0/0/0/7/0

O 
1/0/1/0/10/0

Cl
0/0/8/0/0/0

S 
2/1/6/0/3/21

L 
0/4/1/30/3/3

Figure 11.8: A classification tree for the steatite compositional data.

The starting point, the root node, based on all the data before group separation,
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is associated with a measure of purity (Section 11.5). The root node is split into
two groups/nodes on the basis of one variable, in order to increase the purity of the
tree by as much as possible. This (binary) splitting continues until some stopping
criterion is met.

Using the variable V (Vanadium) cases having V > 73.45 go to the left in the
first split. It happens that the node to the right, according to the criterion used,
is a terminal node and no further attempt is made to split it. The numbers below
a terminal node show how many cases from each group are assigned to that node;
30/41 come from the Lawrenceville quarry which is the dominant group identified
by the label L for the node. A pure terminal node is one where all the cases come
from a single group, and the ideal is that all terminal nodes are pure.

To the left, the second split is based on values of Scandium (Sc) that are less
than 11.844 and produces a second terminal node dominated by the Chula (Ch)
quarry. The third split is also based on Scandium, this time using the higher
values, Sc > 18.2695, without producing any further terminal nodes. As well as
the fact that a variable can be used more than once in the splitting process, note
that there are more terminal nodes (eight) than there are groups in the data. The
quarries Clifton (Cl) and Orr (O) each dominate two terminal nodes; this can
indicate either that there are distinct sub-compositions within the groups, or that
they are not compositionally well-defined.

Most of the terminal nodes are not pure, so that the classification is less than
perfect. The classification success can be assessed at 78% which compares favor-
ably with that for LDA, using leave-one-out classification, of 72%.

11.5 Methodology

The preceding section describes the bare outlines of the methodology, which is con-
ceptually straightforward. Implementation is computationally intensive, requiring
a number of choices to be made on the way. A brief, but more technical, discussion
of further aspects is provided in this section.

If the sample of size n is partitioned into G classes, with ni cases in class i,
the root node is defined by G probabilities (p1, p2, . . . , pG) where pi = ni/n. A
node is labeled according to the most dominant class. The misclassification rate
at a node is the number of cases not in the dominant class. For the root node
call this R0. Splitting occurs as discussed in the previous section and criteria for
what constitutes a terminal node need to be defined. In the example no attempt
has been made to split a node with fewer than 20 cases and a terminal node must
contain at least 7 cases.

The impurity of a node can be defined in different ways; in the example the
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Gini index
1−

∑
i

p2
i

was used. For a pure node this takes the value zero, and the smaller the value of
the index the purer the node. Assume continuous variables are used. Any one of
these, X say, can be ordered as (x(1) x(2) . . . x(n)). For i = 2, . . . , n, splits may
be contemplated such that cases with values less than x(i) are separated out from
cases with values greater than or equal to x(i). New nodes are defined by the two
subsets of cases thus defined, and the impurity of these, and hence their average
impurity, measured. All possible splits for all variables are examined and the split
that most reduces the average impurity is chosen. Each new node is treated in a
similar way and the process continues until terminal nodes are reached.

Clearly the appearance of the final tree depends on a variety of choices, in-
cluding that of the smallest node for which a split is allowed and the minimum
size of the terminal node. An understanding of this, and other aspects of the final
appearance that can be controlled by the user, is aided by looking at the code used
to obtain Figure 11.8.

library(rpart)

z.rp <- rpart(St.quarry ~ Co + Cr + Fe + Mn + Sc + V,

data = St.data, cp = .03, minsplit = 20, minbucket = 7)

plot(z.rp, uniform = T, margin = .05)

text(z.rp, use.n = T, cex = .7)

The rpart package needs to be loaded. In the arguments to the rpart function
minsplit and minbucket specify the minimum node size that can be split, and the
minimal terminal node size. The values given are the defaults; varying them will
change the appearance of the tree. The argument cp is a complexity parameter (of
which more below) for which the default is 0.01; reducing this will result in a larger
tree relative to the default, and increasing it will produce a smaller tree. For more
detailed information see the R help on rpart.control. The plot function prints
the tree. For large trees and/or those with many groups obtaining a satisfactory
appearance usually requires some experimentation. The last two lines of code use
arguments that affect the appearance; see the R help on plot.rpart for more
detail.

It is possible to get satisfactory results by ‘playing around’ with the arguments
in the rpart function, but different analysts may arrive at different trees. A more
‘principled’ approach to determining tree size is available in the rpart package. If
cp is too small the data may be ‘over-fitted’ and give an over-optimistic assessment
of the success of the classification. The tree in Figure 11.8 originally had 11
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terminal nodes using cp = .001 rather than the eight terminal nodes using cp =

0.03.
Cost-complexity pruning can be used to reduce the size of the tree. Let R(T )

be the number of misclassifications in a tree of size T as measured by the number
of terminal nodes, and let C be the cost-complexity parameter defined by cp. A
cost-complexity measure of the form

RC = R(T ) + CTR0

can be defined. As C increases, and leaves are pruned, T will decrease and R(T )
will increase. The degree of pruning is chosen to minimize RC .

To choose C cross-validation is used. The data are split into 10 groups of
roughly equal size. Nine of the groups are used to grow a tree and it is tested
out on the remaining group to obtain a measure of the error involved. This can
be done in 10 ways and the results averaged to get an estimate of the error and
its standard deviation. Results may be summarized graphically, as in Figure 11.9
based on the unpruned tree which, after pruning, led to Figure 11.8, obtained
using plotcp(z.rp).
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Figure 11.9: A plot of error-rate against tree size as determined by cp, based on
10-fold cross-validation. It leads to a pruned tree of size 8 which is that shown in
Figure 11.8.

Plotted points show the mean number of errors across the 10 analyses divided
by R0 (i.e. the vertical axis is scaled to lie between 0 and 1), with ‘one standard
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error’ bars for each mean. The horizontal reference line is located at the mean
error for the largest tree plus one standard error. The tree selected is the smallest
one whose mean error lies below and within one standard error of the line. In this
case this rule results in the unpruned tree of size 11 being pruned to one of size
8. Incidentally, the choice of cp in the original call to rpart can be thought of as
controlling pruning of the tree that takes place as the tree is grown; larger values
of cp have the effect of preventing the growth of branches likely to be ‘lopped-off’
when using the above selection procedure.

To the best of my knowledge this ‘rule’ is not justified theoretically. Therneau
and Atkinson (1997: 13), the originators of the rpart package, observe that this
method has proved good at screening out ‘pure noise’ variables. That is, the justi-
fication for its use is empirical. Classification trees can be viewed as an alternative
to variable selection methods in LDA, with several potential advantages. One is
the transparency of the method. Others are the fact that the method can handle
missing data (illustrated in Baxter and Jackson, 2001) or mixed data, and that
it is not necessary to worry about data transformation because of the monotonic
relationship between raw and log-transformed data.

11.6 Example 2 - North Apulian pottery

This analysis is based on that shown (with presentational modifications) in Figure
5 of Gliozzo et al. (2013). Chemical compositional data were available for pottery
from four late antique/early medieval sites (4th to early 7th centuries AD) in
northern Apulia, Italy. The main interest lay in seeing if two of the sites, Herdonia
and Canusium, produced pottery that was chemically distinguishable, but similar
data from two other sites, Posta Crusta and San Giusto, had previously been
investigated and the opportunity was taken to compare these with the newer data
sets. Data on two kinds of pottery were available, coarse table wares and fine
painted wares, and a 65× 36 table of results for the latter type – split into groups
defined by the four sites – is used here for further illustration. The data are similar
in nature to the previous example but far more variables are involved (Tables B.24
and B.25).

A classification tree is shown in Figure 11.10. Sample sizes for some of the
sites are quite small so splits of nodes with more than 10 cases, as opposed to the
default of 20, were allowed. This had the effect of making it much clearer that the
productions of the sites could largely be distinguished in terms of their chemistry.

What is worth noting about this is that only five splits are needed, involving
five of the 36 variables, a considerable ‘saving’ in terms of economy of description
and comprehension. There are six terminal nodes of which four are pure; two
sites, Herdonia and San Giusto split into two mostly quite small groups which are,
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however, almost completely distinct from other sites. Of the 65 cases just 3 are
misclassified, so the success of the classification is 95%.

|Yb>=2.2

Cu>=30.5

Ni< 51.5 Ba< 379.5

Al2O3>=13.52

C 
18/1/0/1

H 
0/3/0/0

H 
0/11/0/0

SG
1/0/0/6

P 
0/0/20/0

SG
0/0/0/4

Figure 11.10: A classification tree for the northern Apulian fine ware pottery data.

Given the success of classification there is little point in comparing it with the
results from pairwise comparisons. Results reported in Gliozzo et al. (2013) for the
coarse ware data noted that the success rate for classification with all four sites in
the analysis was 87%. For pairwise analyses the success rate varied between 90%
and 96%, with only one or two variables needed to achieve this, except for the
Posta Crusta and San Giusto comparison, which needed three. As with the fine
wares, therefore, chemical separation between the sites for the coarse wares wss
good; that in the latter case pairwise comparisons improved on the global analysis
mirrors what was observed for the LDA of the steatite compositional data, and for
analogous reasons.
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11.7 R notes

Figure 11.1

The data sets Kea, Seriphos and Lavrion need to have been created; the last of
these is not used for this figure, but is used in later examples.

library(car)

K <- Kea; S <- Seriphos; L <- Lavrion

plot(K[, 2], K[, 1], type = "n")

points(K[, 2], K[, 1]); points(S[, 2], S[, 1])

lines(dataEllipse(K[, 2], K[, 1], levels = c(0.9), plot.points = F,

center.pch = 17, center.cex = 2))

lines(dataEllipse(S[, 2], S[, 1], levels = c(0.9), plot.points = F,

col = "black", center.pch = 17, center.cex = 2))

If the dataEllipse function is used separately from the lines function it may be
necessary to include other arguments to get the desired effect: see the help facility.
The levels argument specifies that a 90% confidence ellipsoid is required; other
arguments dictate the color, plotting character and size of the group centroids and
are optional.

Figure 11.2

The three data sets are combined into LKS using the rbind function. The ob-
ject SymLKS needs to be created and defines the plotting symbols used in the pch

argument in eqsc but also doubles as the group identifier needed for the second ar-
gument of lda (presentational arguments are not shown). In the predict function
the argument dim = 2 extracts two functions (the maximum possible with three
groups). This allows a single argument, LKS.ld, to define the plotting positions;
in general, if more than two functions are extracted, the two columns to be used
for plotting need to be listed separately.

library(MASS)

LKS <- rbind(L, K, S)

LKS.lda <- lda(LKS, SymLKS, CV = F)

LKS.ld <- predict(LKS.lda, dim = 2)$x

eqscplot(LKS.ld)
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LKS.pca <- prcomp(scale(LKS))$x

x1 <- LKS.pca[, 1]; x2 <- LKS.pca[, 2]

eqscplot(x1, x2)

Figure 11.5

The data of Tables B.19 and B.20, excluding Id. and Type, are held in TRB.data.
They need to be transformed in the manner described in the text, as follows, with
the result in TRB.trans.

z1 <- TRB.data[, c(1, 3, 5, 7, 9, 11, 13, 15)]

z1 <- z1/z1[, 1]

z2 <- TRB.data[, c(2, 4, 6, 8, 10, 12, 14, 16)]

z2 <- z2/z2[, 1]

TRB.trans <- cbind(z1[, -1], z2[, -1])

Nothing really new is illustrated in the PCA below. An obvious outlier, case
112, was identified in preliminary analysis, and is omitted as shown. This needs to
be done, also, for the previously created colors (ColTRB) and plotting characters
(SymTRB) and this is shown in the call to eqsc for emphasis; other presentational
arguments and the legend are omitted.

TRB.pca <- prcomp(scale(TRB.trans[-112, ]))$x

x1 <- TRB.pca[, 1], x2 <- TRB.pca[, 2]

eqscplot(x1, x2, col = ColTRB[-112], pch = SymTRB[-112])

The commands for LDA are shown for completeness, but introduce nothing
new.

TRB.lda <- lda(TRB.trans[-112, ], SymTRB[-112], CV = F)

TRB.ld <- predict(TRB.lda, dim = 2)$x

eqscplot(TRB.ld, col = ColTRB[-112], pch = SymTRB[-112])

Figure 11.6

The left-hand graph introduces nothing new; all that needed is to select the first
two types (rows 1 to 102) from the original data and labeling variables, so anal-
ysis is based on TRB.trans[c(1:102), ] for the PCA. The first two lines in the
following code set up the results for the LDA plot, but the usual bivariate plots
are not available because there are only two groups and one discriminant function.
The remaining code produces the plot shown in the right-hand side of the figure.
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library(MASS)

TRB.lda <- lda(TRB.trans[c(1:102), ], SymTRB[c(1:102)], CV = F)

TRB.ld <- predict(TRB.lda, dim = 1)$x

id <- ifelse(SymTRB2 == 15, 2, 1)

plot(id, TRB.ld, xaxt = "n")

axis(1, at = c(1:2), labels = c("funnel beakers", "bowls"))

The variable id provides a convenient label for the two groups using the ifelse
function. Most of the plotting arguments are omitted. The xaxt = "n" suppresses
printing of the x-axis since its appearance is not as needed. It is replaced using the
axis function. The first argument, 1, specifies the side at which the new axis is to
be placed (bottom – see the help for axis for other placements); the at argument
provides the locations of new labels (replacing 1 and 2 in the original plot) whose
names are given in the labels argument.

Table 11.1

Replace the argument CV = F with CV = T in the above code; then

posteriors <- round(cbind(id, TRB.lda$class, TRB.lda$posterior), 2)

will produce the original and predicted groupings (id and TRB.lda$class), with
the posterior probabilities, TRB.lda$posterior, rounded to two decimal places.
This is for all the data; a certain amount of (straightforward) editing is needed to
get it in the format presented in the text.

The analyses for the steatite data use more groups but involve nothing new in
what is needed for the plot.
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Chapter 12

Statistical inference

12.1 Introduction

The development of statistical ideas in the first half of the 20th century, including
the ‘classical’ theory of statistical inference and hypothesis testing, was arguably
one of the greatest and possibly undersung intellectual achievements of that period.
The powerful ideas developed – endowing the treatment of problems involving
uncertainty with precision – are seductive and the ‘New Archaeologists’, from the
1960s on who promoted quantitative methodology, were accordingly seduced (see
Chapter 1 of Baxter, 2003).

The statistical landscape has changed since statistics acquired its cachet in
some archaeological circles, particularly with respect to the development of com-
puting power and the exploitation of computer-intensive methodologies. The effect
of these more recent computer-intensive techniques on statistical practice in ar-
chaeology merits a review, though this is not attempted here.

The main aim of this chapter is to provide a brief review of the ideas that
underpin hypothesis testing which, with variation in emphasis, form one of the
staples of quantitative archaeology texts. Their application using R is illustrated.

Central to the statistical theory is the idea of drawing inferences about popula-
tions from random samples. As discussed in many texts on quantitative methods in
archaeology, serious questions arise about the nature of the ‘population’ sampled,
the extent to which samples can be treated as ‘random’, and the implications this
has for the applicability of formal methods of statistical inference to archaeological
data. Attitudes have ranged from enthusiastic promotion of statistical inferential
methods to scepticism about its practical value – this latter among archaeologists
otherwise sympathetic to what statistics has to offer.

This ambivalence can be traced back to the early flourishing of quantitative
methodology in archaeology. Archaeologists who embraced statistical inferential
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ideas sometimes explicitly embedded their thinking within an overtly positivist
framework, promoting the approach as ‘scientific’ and ‘objective’. ‘Over-selling’ of
the ideas predictably generated negative reactions. At one extreme, rejection of
the New Archaeology led to wholesale rejection of statistical methodology. This is
not a logically defensible position; the use of statistical analysis can be decoupled
from any overarching philosophy attached to it. As Brandon later commented,
in the preface to Westcott and Brandon (2000), ‘during its heyday, statistics had
been waved above archaeologists’ heads as an “answer” to dealing with a multitude
of archaeological problems’ but ‘after much yelling and arm-waving, most agreed
that statistics were not an answer in themselves but . . . an extremely important
tool available for archaeological use’.

Doran and Hodson (1975), in a text sympathetic to the exploration of statistical
ideas, explicitly distanced themselves from New Archaeology, finding its claims
‘greatly exaggerated and therefore dangerous’ and ‘a bizarre mixture of naivety and
dogmatism’ (Doran and Hodson 1975: 5). Their treatment of statistical inference
was fairly short and ‘theoretical’ with few examples of applications; they suggested
that, compared to the classical statistical approach, ‘a rather different rationale
for disciplined inference in archaeology is required’ and that this ‘remains to be
devised’ (Doran and Hodson, 1975: 94–95).

Later textbooks have accorded more space to hypothesis testing and inference.
Shennan (1988, 1997) and Drennan (1996, 2009) are the most widely used. The
more recent text of VanPool and Leonard (2010) contains the most extensive treat-
ment of inferential procedures in introductory archaeology texts I know of but is
flawed in some respects (footnote 10).

The normal distribution is fundamental to the statistical theory. Though not
used directly for hypothesis testing as much as one might think, it leads to the
development of other distributions (t, F, chi-squared etc.) that are widely used
in practice. These are the subject of Sections 12.2.3 and 12.2.4. Sections 12.2.1
and 12.2.2 use the normal distribution to introduce ideas central to statistical
inference. The chapter misses out a lot; some omissions are noted in Section 12.4

12.2 Common hypothesis tests

12.2.1 The normal distribution

The intention here is to provide a condensed summary of some common hypothesis
tests, and associated ideas, along with their implementation in R. It is assumed that
the reader is acquainted with the idea of the normal distribution. Computational
formulae are not provided; they are widely available if needed. Software such
as R does the computation, leaving users to concentrate on underlying ideas and
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interpretation.
Mathematically, the normal distribution defines a curve with a total area of 1

beneath it. Distributions are characterized by parameters ; the normal depends on
only two, its mean, µ, and standard deviation, σ. The distribution is symmetrical
about its mean, and ‘bell-shaped’, so the mean is also the median and mode.
About 95% of the distribution lies within two standard deviations from the mean,
and 68% within one standard deviation.

If a random variable X has a normal distribution the notation

X ∼ N(µ, σ2)

is used to express this, where σ2 is the variance. Given a random sample of size n
from a normal distribution denote the estimated mean and standard deviation by
x̄ and s; the estimated standard error of the mean is s/

√
n. If σ is known σ/

√
n

can be used rather than its estimate.
With this notation in place, assuming known σ,

z =
x̄− µ
σ/
√
n
∼ N(0, 1)

has the standard normal distribution with mean zero and unit variance.
Many applications involve finding the probability in the tail of the distribution,

defined by some value of z. Output in R for analyses based on the normal and other
distributions often include the information needed, but functions exist allowing
their separate calculation if necessary.

Thus, the pnorm function, for z = −2.36 using pnorm(-2.36), returns the
value 0.009137468, the probability in the lower-tail of the distribution written
as P(z < −2.36) = 0.009. Replacing z with + 2.36 gives 0.9908625, or P(z <
+2.36) = 0.991. These are examples of a p-values.To get the upper-tail probability
P(z > +2.36) either subtract this from 1 or, more directly, use pnorm(2.36,

lower.tail = FALSE). In either case, given the symmetry of the distribution,
0.009137468 is obtained1.

These are examples of lower-tail and upper-tail probabilities. Often interest lies
in assessing how extreme the observed result is; that is, what is the (combined)
tail probability of getting a value either more negative than -2.36 or more positive
than +2.36. This is obtained by doubling the lower- or upper-tailed probability
calculated and is written as the two-sided p-value P(|z| > 2.36) = 0.018, or slightly
less than 2%. The p-value needs to be interpreted and this brings us on to the
subject of inference.

1This renders redundant the detailed tables of the normal and other distributions – once
essential – still to be found in the appendices of introductory texts.
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12.2.2 Inference

The value of z derived from a sample can be used in two ways. If µ and σ are
known for some population of interest, assumed to be normal, the p-value can be
used to assess if it is plausible that the sample is selected from the population
specified. If the p-value is ‘small’ it would be concluded that the sample is unlikely
to be from the population. In practice this kind of application is limited.

More usually, and the main idea in the tests used here, a value is assumed
for the mean µ, and the observed data are used, via the calculated z statistic, to
assess the plausibility of this assumption. A simple way of thinking about the more
basic inferential procedures is that they are employed in order to say something
useful about the true values of the unknown parameters; this includes the use of
confidence intervals (Section:12.2.5).

The null hypothesis states that µ equals some specified value, µ0. The notation
used to express this is H0 : µ = µ0. The z-statistic can be calculated using this
assumption. If it is ‘unusual’ as measured by the p-value then we reject the null
hypothesis, otherwise we do not reject it2.

Decisions need to be made on the part of the user. One is whether to use one- or
two-sided p-values. The choice amounts to specifying an alternative hypothesis ; for
example, if H0 : µ = 0 possible alternative hypotheses are H1 : µ < 0, H1 : µ > 0 or
H1 : µ 6= 0. The first two of these are examples of one-sided alternative hypotheses
where it is believed that, if the null hypothesis is incorrect, the true value differs
in a particular direction from that assumed; the third possibility, an instance of
a two-sided test, specifies that if the null hypothesis is incorrect the true value of
µ could lie either side of that hypothesized. Two-sided tests will be used below
unless otherwise stated.

The important question is ‘what constitutes a ‘small’ or ‘unusual’ p-value?’.
Some researchers are content to report the exact p-value, allowing others to decide
on their own interpretation. Commonly, though, a decision rule is used. These
are arbitrary; conventionally the use of rules based on p-values of 0.05 and 0.01
are widespread. If the p-value is less than 0.05, using a two-sided test, the null
hypothesis is rejected at the 5% level of significance or, more concisely is significant
at the 5% level. If the p-value is also less than 0.01 the null hypothesis is rejected
at the 1% level, providing stronger evidence against the null hypothesis.

2It is tempting to say, in the latter case, that the null hypothesis is ‘accepted’ and the
temptation should be resisted. A null hypothesis may not be rejected for a host of reasons,
of which the possibility that it is ‘true’ is only one. Small sample sizes and/or large sample
variability can both lead to non-rejection, even when the null hypothesis is false. Non-rejection
implies that there is not enough evidence with the data to hand to reject the null hypothesis; the
term ‘accepted’ carries connotations of establishing that the null hypothesis is ‘correct’ which is
not the case.
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As a ‘rule-of-thumb’, using p-values based on 0.05, 0.01, and 0.000, and reject-
ing the null hypothesis, implies ‘strong’, ‘very strong’ and ‘overwhelming’ evidence
against the null hypothesis. For the normal distribution the 5% and 1% levels of
significance correspond to values of |z| > 1.96 and |z| > 2.575. This means that,
given a z-score one looks to see if its modulus exceeds 1.96 or 1.575. These are
called critical values .

As a notational aside, α can be used for the associated p-values, with zα/2
being the z-score that ‘cuts off’ α/2 of the probability in the upper-tail. Thus,
z.025 = 1.96 defines a tail probability of 0.025 which, for a two-sided test, is doubled
to get the significance level of 0.05 (5%), that is, P(|z| > 1.96) = 0.05. Some help
is available in choosing α. It is the probability of incorrectly rejecting a correct
null hypothesis; this is a Type I error and the user controls the probability of this
in setting the decision rule. If it is important not to make this sort of error a
relatively small value of α would be set.

A Type II error , occurs when an incorrect null hypothesis is not rejected. Call
the probability of this β; the power of a test is defined as (1 − β) and is the
probability of correctly rejecting an incorrect null hypothesis. A balancing act
between the two types of error is implicit since reducing the size of α increases
the size of β and hence also reduces the power. Usually the focus of interest is on
controlling α and one ‘lives with’ the associated power; increasing the sample size
n is one way of improving the power. Other things (i.e. α) being equal, competing
tests that do the same job can be compared in terms of their relative power.

12.2.3 Tests of means – t-tests

The z-test is of limited use for practical purposes because of the ‘σ known’ assump-
tion; it usually isn’t. This is remedied in a straightforward way at the expense of
a little extra complexity. The z-statistic can be expressed in a general form as

z =
difference

SE

where ‘difference’ is the observed difference between x̄ and µ0, and SE is the
standard error which scales the statistic so it is dimensionless. The ‘obvious’
modification if σ is unknown is to use the estimated standard error, s/

√
n resulting

in the t-statistic

t =
x̄− µ
s/
√
n
.

The distribution of this (assuming independent random sampling from a normal
distribution) looks much like the normal but with thicker tails, the thickness of
which depends on the sample size, n, through a quantity known as the degrees of
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freedom (DF) which is (n− 1) for single-sample tests. As n gets larger s→ σ and
the t-distribution approaches the normal distribution.

The t-statistic is therefore most valuable when dealing with small samples. It
was for precisely this problem that the statistic was developed by W. G. Gosset,
published under the pseudonym ‘Student’ in the journal Biometrika in 1908 (hence
the terminology ‘Student’s t-test’ sometimes seen). The ideas of the previous
section carry through, but the critical value that varies with n is now denoted
tα/2.

In R suppose that, for a sample size n = 7 with 6 DF, t = −2.36 is obtained.
Using the pt function, pt(-2.31, 6) returns 0.0281, where the second argument
in the call to the function, 6, is the degrees of freedom. Doubling this to get the
two-sided p-value gives 0.056 so the null hypothesis would not be rejected at the
5% level of significance; for n = 17, 37 and 137 the respective probabilities are
0.031. 0.024, and 0.020. If a critical value, tα/2 is required use the qt function; for
a sample size of 7 and α = .025, qt(0.025, 6) gives |tα/2| = 2.45.

One-sample hypothesis tests are often uninteresting. The specification of a re-
alistic null hypothesis can be ‘artificial’ (where does it come from?). It is difficalt
to find examples in the literature where real data (i.e. with contextual informa-
tion) is confronted with a realistic problem requiring a one-sample test (see, also,
Section 12.2.5). Practically, the comparison of samples from two populations is
more likely to be of interest. Here there is a ‘natural’ null hypothesis to test.

The two-sample t-test has a similar structure to those already discussed. The
difference between the two sample means is (x̄1− x̄2) and the natural specification
of the null hypothesis is that the difference in population means is (µ1 − µ2) = 0
(note the use of subscripts to distinguish between the two populations/samples).
Extra complexity is introduced because the SE can be estimated in two ways. The
first of these – that usually described in introductory texts and the default in many
software packages – assumes that the population variances are equal, σ2

1 = σ2
2, and

the estimate of the SE is based on a weighted average of their estimates, with
DF = (n1 + n2 − 2). In the second case no such assumption is made and the SE
is estimated as the square-root of the sum of the squared SE estimates of the two
samples. In this case the DF needs to be approximated, and an approximate t-test
is carried out using this.

It’s possible to test the hypothesis that the variances are equal in advance of a
t-test – the subject of the following section. More simply, it is straightforward to
carry out tests with and without the assumption (Section 12.3.2). Minor numerical
differences apart results, in terms of the conclusions to be drawn, will often be the
same; if not there may be problems with the samples used that need addressing
before applying any formal test about the means. The difference in the definitions
of the estimated SEs is spelled out in the footnote; it is highly improbable that
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you will ever need to calculate these ‘by hand’3.

12.2.4 Tests of variances

The sum of squares of n independent identically distributed normal random vari-
ables has the chi-squared (χ2) distribution, which is asymmetrical and bounded
below by zero. The ratio of two chi-squared variables has the F -distribution; these
can be used directly for one- and two-sample hypothesis tests but arise in other
contexts as well.

The null hypothesis H0 : σ2 = σ2
0 can be tested using a chi-squared statistic,

but I cannot recall seeing any realistic application of this in the archaeological
literature and will not discuss it further. Chi-squared tests do have a useful role
in testing the hypothesis of no association between two categorical variables and
this is illustrated in Section 12.3.3.

The F-test is based on the ratio of two chi-squared random variables and may
be used for testing hypotheses about two population variances where the ‘natural’
null hypothesis is H0 : σ2

1 = σ2
2, or H0 : σ2

1/σ
2
2 = 1. This can be applied in advance

of a two-sample t-test to see if the equal variances assumption is reasonable. The
hypothesis is tested using the statistic

F = s2
1/s

2
2

which under the null hypothesis, follows the F -distribution with (n1− 1), (n2− 1)
DF, a little more complicated than the previous tests since it depends on two
separate degrees of freedom.

3In the first case the estimated SE is

s
√

(1/n1 + 1/n2)

where

s2 =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
.

. In the second case the estimated SE is

SE =

√
s21
n1

+
s22
n2
.

None of the quantitative archaeology texts I am familiar with give the formula for the approximate
DF in the second case so, for the record, here it is.

DF =
(s21/n1 + s22/n2)2

(s21/n1)2/(n1 − 1) + (s22/n2)2/(n1 − 1)
.

As commented you ought never need to have to calculate this yourself; you should know of the
two possibilities since the second case is the default in R.
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It is convenient to label the samples so that s2
1 > s2

2 and F> 1 so only the upper-
tail of the distribution is of concern. The decision rule for a 5% level of significance
requires that the critical values of F0.025 or F0.05 be determined, depending on
whether a two- or one-sided test is being used. For a problem where F = 2,
n1 = 7 and n2 = 9 there are (6, 8) DF. Using the qf function, qf(.025, 6,8,

lower.tail = F) gives F0.025 = 4.652, so the null hypothesis is not rejected at
the 5% level of significance using a two-sided test. Replacing 0.025 with 0.05 gives
F0.05 = 3.581, leading to the same conclusion as for a one-sided test. Replace 0.025
and 0.05 with 0.005 and 0.01 for tests at the 1% level.

The function pf, analogous to pnorm and pt is also available if one wishes to
avoid strict adherence to a decision rule. Thus, supposing F = 4.2 with (6, 8) DF,
pf(4.2, 6,8, lower.tail = F) gives a p-value of 0.033, which is significant at
the 5% level, but not at 1%, for a one-sided test. On doubling it, it is not significant
at either level for a two-sided test.

12.2.5 Confidence intervals

An ‘objection’ of sorts to the tests that have been described, already voiced –
even when the assumptions needed are valid – is that they are ‘uninteresting’.
Ultimately all they do is tell you whether the single value defined by the null hy-
pothesis is ‘plausible’ or not. No information is provided about what other values
are, or are not, plausible, or how precisely the sample statistics estimate the popu-
lation values. Confidence intervals provide the same information as an hypothesis
test, and much more besides. Attention is confined to problems involving means
using t-tests; similar ideas can be applied to problems concerning variances.

In a slight extension of notation let tcrit = |tdf,α/2| be the critical value of t for
a (two-sided) test at the α (or 100α%) level of significance, with df the degrees
of freedom. The formulae for both one- and two-sample tests can be rearranged
to get an expression for µ or µ1 − µ2 which can be evaluated at the positive and
negative values of tcrit to obtain a 100(1− α)% confidence interval.

For the single-sample problem this leads to

x̄− SE × tcrit ≤ µ ≤ x̄− SE × tcrit

and for the two-sample problem

(x̄1 − x̄2)− SE × tcrit ≤ ((µ1 − µ2) ≤ (x̄1 − x̄2) + SE × tcrit

where SE and df are the appropriate standard error and degrees of freedom that
would be used for the associated hypothesis test. The following may be noted.

1. There is no commitment to a particular null hypothesis.
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2. Any value contained in a 100(1 − α)% confidence interval would not be
rejected at the 100α% level of significance; if a value of µ is contained in a
95% confidence interval it would not be rejected as a null hypothesis at the
5% level of significance4.

3. A consequence of the above is that conclusions about any null hypothesis
of interest can be ‘read off’ from the confidence interval, so testing the null
hypothesis in the manner described in earlier sections is redundant.

4. The width of a confidence interval provides some indication of how good an
estimate the sample mean (or difference in means) is of the population means
(or their difference). A very narrow confidence interval, for example, ‘pin-
points’ the true value of the parameter of interest very well. An hypothesis
test, without elaboration, provides no such information.

Together these amount to a powerful argument for preferring confidence intervals
rather than hypothesis tests in many practical applications.

12.3 Examples of R use

12.3.1 Data

The data used are from Shennan (1997: 103). Twenty-four observations are avail-
able on the areas (square meters) of marae ceremonial enclosures of the Society
Islands in the Pacific, located in two different valleys. Interest lies in whether
or not there are differences between the valleys in terms of the mean size of the
enclosures as measured by area.

The data are given in Table 12.1 and have been reconstructed from Shennan
who provides log-transformed values because ‘a preliminary check indicated that
[area] was very skewed so it has been logged’ (Shennan, 1997: 102).

The reconstructed data for the two valleys are shown in the stripcharts/dotplots
of Figure 12.1, along with those for the log-transformed data.

4This is possibly the simplest way of thinking about the interpretation of confidence intervals.
Another way is that in a hypothetically large number of repeated samples the confidence intervals
will cover the true value 95% of the time; this is illustrative of the frequentist way of thinking
about probability which not all statisticians like (to put it mildly!). In practice one has a single
confidence interval to deal with, and it either does or doesn’t cover the true value – you don’t
know. It is tempting, and understandable, to say that you are 95% ‘confident’ that your interval
contains the true value, and is wrong. This use of the term ‘confidence’ can be taken to imply a
conception of probability as a ‘degree of belief’; this is outwith the frequentist paradigm though
employed in other approaches to inference.
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Area (square meters)
Valley 1 2.87 2.52 2.35 1.48 1.92 1.99 1.84 2.01 2.16 2.56 1.95 2.00 2.35 1.87
Valley 2 1.94 2.17 2.05 2.22 2.31 2.14 1.95 2.40 2.81 2.74

Table 12.1: The area (square meters) of marae ceremonial enclosures from two
regions (adapted from Shennan, 1997: 103).
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Figure 12.1: Stripcharts of the area and log-transformed area of marae enclosures
from two separate locations.

The most obvious feature of the plot for the untransformed data is the two
clear outliers for Valley 2, and an outlier for Valley 1 which might be interpreted
as evidence of skewness; the log-transform appears to ‘cure’ this problem for the
first valley, but not entirely so for the second5.

Looking at the plot for the log-transformed areas there is little obvious evidence
of serious differences in the location and spread of the data for the two valleys
and an experienced analyst might stop at this point; we shall proceed with more
formal tests by way of illustration. The estimated means and variances for the
log-transformed data are x̄1 = 2.13, x̄1 = 2.27, s2

1 = 0.128 and s2
2 = 0.091. For

illustrating one-sample t-tests the data for Valley 2 is used and it is assumed that
H0 : µ = 2.10 is of interest6.

5Since area is a squared quantity a square-root transformation is another possibility and
produces results very similar to the log-transformation.

6This kind of assumption is sometimes motivated in texts by assuming that previous study,
involving a large sample or a population, has suggested the null hypothesis.
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12.3.2 t-tests

For both one- and two-sample t-tests in R the t.test function is used. Defaults
are to carry out a two-sided test, reporting a 95% confidence interval. For tests
about the equality of variances the var.test function is used. The following six
tests were applied; the first three involve one-sample t-tests and illustrate typical
output and the use of arguments to the function. The fourth and fifth examples
illustrate the two versions of the two-sample t-test, and the sixth example involves
the F-test.

t.test(valley_2, mu = 2.1)

t.test(valley_2, mu = 2.0)

t.test(valley_2, mu = 2.0, conf.level = 0.99)

t.test(valley_1, valley_2)

t.test(valley_1, valley_2, var.equal = TRUE)

var.test(valley_1, valley_2)

The log-transformed data for the two sites are contained in the objects valley 1

and valley 2. For the one-sample tests the null hypothesis is specified using
the argument mu; for the two-sample t-tests equality of the population means is
the default null hypothesis, without assuming equality of population variances; for
var.test equality of population variances is the default null hypothesis (these can
be varied if necessary – use the help facility for details). The confidence interval
can be varied using the conf.level argument and will be illustrated; one-sided
tests are not shown but the arguments alternative = "less" or alternative

= "greater" are available, depending on which of µ < µ0 or µ > µ0 is of interest.
For the first test shown, where H0 : µ = µ0 with µ0 = 2.1, the following output

is obtained.

One Sample t-test

data: valley_2

t = 1.8119, df = 9, p-value = 0.1034

alternative hypothesis: true mean is not equal to 2.1

95 percent confidence interval:

2.057083 2.488317

sample estimates:

mean of x

2.2727

The p-value 0.1034 is greater than 0.05 so is not significant at the 5% or even
10% level (if it is not significant at 5% it cannot be significant at 1%). The 95%
confidence interval is (2.06, 2.49). Any value ouside this range will be rejected as
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a null hypothesis at the 5% level; this is illustrated in the second example where
µ0 = 2.0 is assumed for the null hypothesis. The following output excludes some
of the information identical to that from the first analysis.

t = 2.861, df = 9, p-value = 0.01875

alternative hypothesis: true mean is not equal to 2

95 percent confidence interval:

2.057083 2.488317

The t- and p-values change, the latter to 0.019. This can be reported by simply
noting it; observing that the test is (just) significant at the 2% level; or that the
null hypothesis is rejected at the 5% but not the 1% level. Information on the
confidence interval does not change and is shown here precisely to emphasize this
point; it does not depend on the value used for the null hypothesis. The third
example is identical to the second except for the confidence level

99 percent confidence interval:

1.962942 2.582458

where the 99% confidence interval, (1.96. 2.58) is (inevitably) wider than the 95%
interval. Note that the interval contains the value 2.0, another way of showing
that the null hypothesis H0 : µ0 = 2.0 would not be rejected at the 1% level of
significance.

For the first of the two-sample t-tests, not assuming equal variances, the output
is

Welch Two Sample t-test

data: valley_1 and valley_2

t = -1.026, df = 21.309, p-value = 0.3164

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.4193637 0.1421065

sample estimates:

mean of x mean of y

2.134071 2.272700

In the call to the t.test function separate listing of the data for the two groups
as the first two arguments alerts the function to the fact that a two-sample test is
intended.

The additional argument var.equal = TRUE in the fifth analysis specifies that
equal variances are to be assumed. The differences from the results from the
analysis that does not make this assumption are
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Two Sample t-test

data: valley_1 and valley_2

t = -0.9959, df = 22, p-value = 0.3301

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.4273128 0.1500556

There are minor differences in the numerical output but the conclusion that there
is no evidence of a difference in population means, with p-values of more than 0.3,
is the same in both cases. The ‘Welch’ in the heading to the output in the first
analysis pays tribute to one of the scholars responsible for the theory associated
with the unequal variances problem.

The results are so similar that the simpler and more widely advertized equal-
variances version is clearly acceptable for reporting purposes, and implies there
is no evidence to contradict this assumption. An experienced analyst familiar
with F-tests would recognize this by just looking at the variance estimates. More
formally, using the var.test function we get

F test to compare two variances

data: valley_1 and valley_2

F = 1.4132, num df = 13, denom df = 9, p-value = 0.6124

alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval:

0.3689233 4.6805505

sample estimates:

ratio of variances

1.413196

The p-value is so ‘large’ that the conclusion would often be expressed – a little
loosely – as ‘not significant’, with specific levels such as at 10%, 5% and 1% left
implicit.

12.3.3 Chi-squared tests

The chi-squared test arises naturally in the context of testing hypotheses about
single variances, but these are of limited interest and not discussed. The test is of
greater importance for testing the hypothesis of no association between categorical
variables displayed in a two-way contingency table. The left-hand side of Table 12.2
(Table 2 in VanPool et al., 2000), is an example. The entries show the frequencies
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Observed Expected
Room 1 Room 2 Room 3 Plaza Room 1 Room 2 Room 3 Plaza Total

Chert 86 21 38 97 81 23 31 106 242
Chalcedony 39 10 12 13 25 7 10 33 74
Obsidian 4 3 3 8 6 2 2 8 14
Quartzite 16 8 7 6 12 4 4 16 37
Igneous 217 63 81 353 238 69 93 314 714

Total 362 105 143 477 362 105 143 477 1085

Table 12.2: The observed and expected frequencies of flaked stone artifacts from
three room blocks and a plaza area at Galeana, a large pueblo-like settlement in
north-western Mexico. (Source: Table 2 in VanPool et al., 2000.)

of flake stone artifacts, categorized by material and location, found within a pre-
Hispanic settlement site in Mexico.

The chi-squared test is almost invariably covered in introductory texts so only
an outline is given here, the focus being on practical application. The table is
of size I × J , in this instance 5 × 4. There are thus 20 observations or cells
in the table with entries that will be denoted by Oij for row i and column j.
Another way of expressing the null hypothesis of no association between material
and location is that the distribution of frequencies across location (expressed as a
percentage) should be similar apart from random variation. Exploratory methods
for investigating this include barplots (Chapter 4) and correspondence analysis
(Chapter 9); the chi-squared test is a more formal means of investgation.

To proceed, the expected values, Eij, under the null hypothesis are needed and
these are given (rounded to integers for easier comparison) to the right-hand side
of Table 12.2, by

row total× column total

overall total
.

The chi-squared test statistic is then calculated as

X2 =
∑ (O − E)2

E

which follows the chi-squared distribution (χ2) (approximately) with (I−1)(J−1)
DF if the null hypothesis is true7. If the null hypothesis is incorrect some of the O
will differ noticeably from E so X2 will be ‘large’ and a one-sided test is called for
in using χ2 to make this assessment. It is fairly obvious from tabular inspection
(particularly if row percentages are used) that the distribution of materials across
locations varies, so a ‘significant’ result rejecting the hypothesis of no association
is expected.

7I use X2 for the test statistic to distinguish it from the theoretical χ2 value – this usage is
not universal.
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Using chisq.test(flakes, correct = F), where flakes is the name of the
data set, confirms this

Pearson’s Chi-squared test

data: flakes

X-squared = 49.1023, df = 12, p-value = 2.007e-06

Warning message:

In chisq.test(flakes) : Chi-squared approximation may be incorrect

The small p-value leads to clear rejection of the null hypothesis of no association.
This can also be obtained using pchisq(49.103, 12, lower.tail = F). If a de-
cision rule needs to be explicitly stated (as some journals require) qchisq(0.01,

12, lower.tail = F) gives the 1% critical value as 26.22.
Rather than relying on the p-value alone more detailed inspection of output

can be helpful. Use chisq.test(flakes, correct = F)$expected to obtain ex-
pected values; for residuals replace expected with residuals and for standardized
residuals use stdres instead of expected. The (Pearson) residuals are defined as
(O −E)/

√
E and the standardized residuals as (O −E)/s where s is an estimate

of the standard deviation of (O − E).
Values for the residuals, with and without standardization, are given in Ta-

ble 12.3. As a rule-of-thumb, absolute values of the standardized residuals in
excess of 2 draw attention to cells where departure from the null hypothesis is
most obvious. Several such values stand out in the table; these are mostly associ-
ated with the ‘Chalcedony’ and ‘Igneous’ categories, the ‘Plaza’ also standing out.
Examining Table 12.2 shows that ‘Chalcedony’ is under-represented in the Plaza
and over-represented in the rooms compared to the predictions of the hypothesis
of no association; the opposite is true for the ‘Igneous’ material.

Residuals Standardized residuals
Room 1 Room 2 Room 3 Plaza Room 1 Room 2 Room 3 Plaza

Chert 0.59 -0.5 1.17 -0.91 0.81 -0.6 1.42 -1.38
Chalcedony 2.88 1.06 0.77 -3.42 3.66 1.16 0.85 -4.74
Obsidian -0.82 0.95 0.43 0.03 -1.01 1.01 0.47 0.04
Quartzite 1.04 2.34 1 -2.55 1.3 2.5 1.09 -3.46
Igneous -1.37 -0.73 -1.22 2.21 -2.88 -1.32 -2.24 5.04

Table 12.3: Residuals, raw and standardized, from a chi-squared test of the data
in Table 12.2.

The warning message alerts you to the fact that some of the expected values
are small (less than 5) which may invalidate the approximation of the distribution
of the test statistic to χ2. The sample size for obsidian of 14 is quite small and
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two of the expected values are noticeably less than 5. It is not a problem here;
the cells affected do not contribute greatly to the highly significant value of X2

as the residuals in Table 12.3 show. This is not an inevitable outcome and small
expected values can be particularly problematic with small overall sample sizes8.

Small samples can be dealt with in a variety of ways. The example so far
used the argument correct = F in the call to chisq.test, which calculates X2

as defined. The default for 2 × 2 tables is actually correct = T which applies
Yates’s continuity correction, replacing (O−E) in the definition with |O−E|−0.5
with the intention of improving the approximation to χ2. Another alternative,
particularly useful for 2× 2 tables, is the Fiser exact test the details of which are
not entered into here. For illustrative purposes the data from the rows for ‘Chert’
and ‘Igneous’ and columns for ‘Room 2’ and ‘Room 3’ from Table 12.2, divided by
10 and rounded, will be used, giving

Room 2 Room 3 Total
Chert 4 8 12
Igneous 12 16 28

Total 16 24 40

Table 12.4: Artificial data. The observed frequencies of flaked stone artifacts have
been adapted from Table 12.2 using two rows and columns only and rescaling by
dividing by 10.

The p-values for the chi-squared test with and without the continuity correction
gives p-values of 0.83 and 0.57, both tests issuing a warning about the validity of the
chi-squared approximation. The Fisher test, implemented with the fisher.test

function, fisher.test(flakes), returns a p-value of 0.67. None of these values
are significant at the levels usually employed, but the example is sufficient to
demonstrate that they can give rise to different p-values so can potentially lead to
different conclusions about the null hypothesis.

It is difficult to advise on which test is ‘best’; opinions differ. For something
as apparently simple as a 2 × 2 table there is a considerable statistical literature
on the subject9. In R it is possible to use simulation to obtain a p-value without
assuming a chi-square distribution with the simulation.p.value = T argument.

8Some of the test statistics described so far are obviously dependent on sample size and in-
crease as n gets larger, resulting eventually and inevitably in the rejection of any null hypothesis.
The same is true, less obviously, for X2. If the observed values of O are scaled by a factor of k
the expected values follow suit and X2 → kX2. An implication of this is that such tests are of
limited value for very large samples, the ‘significance’ of any differences being a matter of expert
judgment rather than formal testing.

9Some of this is to do with practical performance; some to do with theoretical matters con-
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For the 5×4 Table 12.2 a p-value is 0.0005, which is different from that previously
obtained; for the 2×2 example with and without continuity correction the p-values
are 0.72 and 0.74. If simulation is used, continuity correction is only available for
the 2 × 2 case; the p-value will vary slightly if simulation is repeated, hence the
use of the term ‘a p-value’.

12.3.4 F-tests and ANOVA

Analysis of variance (ANOVA) techniques are important in a wide range of statis-
tical applications. They are not mentioned much, if at all, in quantitative archae-
ology texts (VanPool and Leonard, 2010, is an exception), possibly because the
applications are often ‘complex’ enough to be beyond the ambitions of such texts.
It is also the case that applications in the archaeological literature are not profuse
(though this is also true of less complex tests that are accorded space).

The general idea underpinning ANOVA is discussed briefly; the only application
considered in any detail is the problem of comparing more than two sample means
using one-way ANOVA. Models for data, where ANOVA is relevant, typically
assume that the data can be modeled as the sum of systematic and random (or
error) components, that is

Data = Systematic + Random

with a focus on whether or not the systematic component is, in some sense, ‘im-
portant’ compared to the random component. In general the systematic element
can itself consist of component parts, and interest may focus on whether or not
only a subset of these are required to explain variation in the data.

To test this, the total variation in the data is broken down into the contributions
of systematic variation and random variation or sums of squares (SS); the SS are
converted to variances by division by the appropriate degrees of freedom so MS =
SS/DF where MS is the mean square – call these MSS and MSR for the systematic
and random components – and their ratio is calculated as

F = MSS/MSR

where F is an F-statistic with degrees of freedom determined by the context. Under
the null hypothesis, which will also depend on context, and assuming normality of
the error term this should follow an F -distribution and the approach outlined for

cerning ‘experimental design’. Commonly Fisher’s test has been recommended when observed
values are small, but it has also been noticed that it often performs similarly to a chi-squared
test with a continuity correction. A preference for chi-squared without the continuity correction
is possibly a minority opinion among statisticians but sometimes the only version presented in
introductory texts. The continuity-corrected version is the default in R but other software can
differ.
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comparing two sample variances in Section 12.2.4 and at the end of Section 12.3.2
can be used.

To show what R output looks like, we revisit the two-sample t-test of Sec-
tions 12.2.3 and 12.3.2, reformulated as an ANOVA problem. The log-transformed
area data for both valleys need to be stacked as a single column of data (log area),
with a second column of equal length providing information on site location (valley).

Different ways of conducting the ANOVA are available of which the function
oneway.test is simplest. The test may be carried out with or without assuming
equal error variances within samples. The latter is the default. In the following
output the last two lines were obtained using var.equal = TRUE in the function
call. The p-values and their DF are identical to those from the t.test analysis.

oneway.test(log_area ~ valley, var.equal = FALSE)

One-way analysis of means (not assuming equal variances)

data: log_area and valley

F = 1.0527, num df = 1.000, denom df = 21.309, p-value = 0.3164

# Using var.equal = TRUE

One-way analysis of means

F = 0.9918, num df = 1, denom df = 22, p-value = 0.3301

The more general problem of comparing p > 2 means involves the null hypoth-
esis

H0 : µ1 = µ2 = . . . = µp.

For a second example data on the maximum flake length (mm) of 10 unbroken
flakes for each of four raw material types from Cerro del Diablo, a Late Archaic
Mexican site, given in Table 10.1 of VanPool and Leonard (2010), are reproduced
in Table 12.5.

Assuming these can be treated as random samples for the four material types
the null hypothesis is H0 : µ1 = µ2 = µ3 = µ4 (i.e. the mean population lengths
are the same) 10. It is obvious that H0 will be rejected (compare the lengths for
obsidian and rhyolite). A formal test of this is not really needed; the comparison

10It was noted in the introduction that VanPool and Leonard (2010) deal with hypothesis tests
at greater length than competing texts. It was also suggested that the treatment is flawed, and
this is an apposite point at which to elaborate. The fundamental problem is that, having alerted
the reader to the importance of distinguishing between population and sample quantities, the
authors ignore their own advice. The treatment of the way null hypotheses are expressed is
wrong. Thus, in the context of two-sample t-tests, the usual null hypothesis that the population
means are the same, H0 : µ1−µ2 = 0 in the example, is expressed incorrectly in terms of equality
of the sample means, H0 : X̄1− X̄2 = 0. This is a statement that the sample means are the same;
the observed data are used to test hypotheses about unknown population quantities and it does
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Chert Obsidian Rhyolite
Silicified

wood
41 30 135 113

110 53 141 111
73 45 138 97
52 34 175 70

176 105 143 117
61 102 132 48
69 51 130 134
40 47 109 115
64 71 125 103
48 58 120 106

Table 12.5: The maximum flake length (mm) of unbroken flakes for four raw ma-
terial types (Source: Table 10.1 in Van Pool and Leonard, 2010.)

between pairs of material types is of more interest and can be achieved using the
aov function, which is more general than oneway.test.

In the first instance it is sensible to look at the data graphically, which can be
done using boxplots as in Figure 12.2. That there are differences between material
types, implying that the null hypothesis will be rejected, is obvious. Flakes made
of rhyolite and silicified wood clearly tend to be longer than those of chert and
obsidian; it is less clear if chert and obsidian differ significantly (though probably
not) or if rhyolite and wood differ. There are some clear outliers within mate-
rial types that will be temporarily ignored in order to illustrate the mechanics of
application.

The basic analysis is as follows. The data are held in a data frame aov.data

with the columns labeled length and material. It is obvious from the p-values
(and the cues provided in the output) that the null hypothesis is comprehensively
rejected.

aov.example <- aov(length ~ material, data = aov.data)

summary(aov.example)

Df Sum Sq Mean Sq F value Pr(>F)

material 3 33156 11051.9 13.373 5.085e-06 ***

Residuals 36 29751 826.4

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

not makes sense to express the null hypothesis about unknowns in terms of known sample values.
This notational problem, arguably a conceptual one as well, is pervasive in the several chapters
dealing with hypothesis testing problems, including those on ANOVA and chi-squared tests.
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Figure 12.2: Boxplots of maximum flake lengths by material using the data of
Table 12.5.

To investigate which material types differ in their typical length in a formal way
the obvious thing to do is to undertake all possible pairwise comparisons; this
involves a multiple comparison test. The two-sample t-test is a candidate for
such testing but inflates the probability of finding a significant difference. There
are different approaches to ‘correcting’ for this; a popular one is Tukey’s HSD
(Honestly Significant Difference) test which, given the fitted aov model, can be
implemented using the TukeyHSD function so TukeyHSD(aov.example) returns

$material

diff lwr upr p adj

Obsidian-Chert -13.8 -48.424703 20.824703 0.7076807

Rhyolite-Chert 61.4 26.775297 96.024703 0.0001685

Wood-Chert 28.0 -6.624703 62.624703 0.1488159

Rhyolite-Obsidian 75.2 40.575297 109.824703 0.0000064

Wood-Obsidian 41.8 7.175297 76.424703 0.0127440

Wood-Rhyolite -33.4 -68.024703 1.224703 0.0620233
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Here diff is the difference in means and lwr and upr are lower and upper values of
a 95% confidence interval (the default). Superficially the p-values do not entirely
concur with the expectations raised by preliminary data analysis. In particular,
the wood-chert comparison is not significant at the 10% level, the wood-obsidian
comparison is significant at the 5% but not the 1% level, and the wood-rhyolite
comparison, with the least ‘predictable’ outcome, is not significant at the 5% level.

The term ‘superficially’ is used because the ANOVA assumes that the samples
within material types are from a normal distribution, and equal variances are
assumed. So far nothing has been done about the outliers, that for chert at 176
mm being particularly prominent. It is possible to test for equal variances using
bartlett.test(length ∼ material, data = aov.data) which gives a p-value
of 0.09 so, if a decision rule of 5% is used, the variances do not differ significantly
at this level. The problem here is that outliers will inflate the variances, possibly
quite considerably, and their effect on the test outcome is unpredictable.

If nothing else, the outliers also call into question the normality assumption.
This can, if one wishes, be tested for formally. Many such tests have been pro-
posed a large number of which are rarely used, if at all; the Shapiro-Wilk test,
implemented with the shapiro.test function in R, is widely-regarded as one of
the best. For chert, the first ten values in the stacked data set, produces a p-value
of 0.005 with shapiro.test(aov.data$length[1:10]) which is very strong evi-
dence against the normality assumption; repeating this for other materials gives
non-significant results at the 10% level, so chert is the main problem.

In the absence of archaeological knowledge that might dictate that the chert
outlier be treated separately, the sensible thing is to omit it to see if it affects
substantive conclusions. The Bartlett test now gives a p-value of 0.68 – much
larger than that originally used, so no hint that the equal variances assumption
may be wrong. For Tukey’s HSD test all the p-values change as follows.

$material

diff lwr upr p adj

Obsidian-Chert -2.4 -30.54352 25.743516 0.9956328

Rhyolite-Chert 72.8 44.65648 100.943516 0.0000002

Wood-Chert 39.4 11.25648 67.543516 0.0031873

Rhyolite-Obsidian 75.2 47.80711 102.592887 0.0000001

Wood-Obsidian 41.8 14.40711 69.192887 0.0012254

Wood-Rhyolite -33.4 -60.79289 -6.007113 0.0117777

Other than the obsidian-chert comparison the p-values are reduced; most notice-
ably the wood-chert comparison is now significant at the usual levels compared to
its previous non-significance, and wood-rhyolite now differs significantly at the 5%
level.
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If the more radical, and possibly less justifiable, omission of all three outliers
suggested by Figure 12.2 is contemplated there is relatively little change, the only
one worth noting being the fact that the wood-rhyolite comparison is now only
significant at the 9% level. This is not surprising since outliers that inflate the
mean for rhyolite and deflate it for wood are now omitted, so the mean difference
is reduced by about 10 mm to 20 mm.

This mixture of formal and informal analysis shows that there are highly sig-
nificant differences between length for material types; you don’t need the formal
testing to arrive at this conclusion. An outlier apart you can accept, quite happily,
a conclusion that chert and obsidian could be sampled from populations with the
same mean length, and the boxplots show that their dispersion is also similar. All
other pairwise comparisons, silicified wood and rhyolite apart, suggest highly sta-
tistically significant differences. Conclusions about the wood-rhyolite comparison
are equivocal – it depends on the attitude towards outliers, but the evidence for
a difference is not overwhelmingly significant whatever treatment is adopted. The
more important issue is whether or not the observed differences matter much in
terms of the archaeological aims driving the analysis. Is a difference of 20–30 mm
in the mean length of silified wood and rhyolite of any consequence, regardless of
statistical significance. If not, there is little point in worrying about the statistical
significance and you are spared the effort of further data collection, necessary if
differences of this magnitude are potentially important and you want to assert that
they are ‘real’.

12.4 Some omitted topics

As already noted, this chapter misses out a considerable amount. The focus has
been on ‘classical’ statistical inference, the ‘objectivity’ and ‘scientific rigor’ of
which first attracted the New Archaeologists and which, at an introductory level, is
the approach most archaeologists will have been exposed to in texts on quantitative
methodology currently in use.

Arguments about ‘theory’ in statistics have raged as much, and as fiercely, as
they have have in archaeology. Competing ‘theories’, of which Bayesian inference
is the most prominent, reject much of the conceptual machinery that underpins
classical theory, in the way that probability is to be understood, for example, and
how data should be interrogated and inferences drawn from them.

Bayesian thinking had its early advocates in archaeology (Cowgill, 1977b: 361–
62; Orton, 1980: 220; Orton, 1992: 139) but, except at a basic level, very little
was done about exploring the methodology. There is a good reason why this state
of affairs arose, which is that for the practical application of Bayesian ideas the
necessary computational power needed to be developed. This happened; Buck
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et al. (1996) was the first book-length treatment of the Bayesian Approach to
Interpreting Archaeological Data (to give the book its full title) and remains the
standard text. Nevertheless – with one major exception – Bayesian methods have
not yet come to be routinely used in statistical analyses of archaeological data.

The major exception – and it is difficult to over-emphasize its importance – is in
application to dating problems, and especially the calibration of radiocarbon dates
and their interpretation. Without going into detail, the software in common use
to provide these dates typically depends on Bayesian calculations, even if the user
does not always appreciate this. As examples of what has been achieved, recent
programmes of dating using Bayesian methods have produced important revisions
of the previously accepted chronology for the British Neolithic and Anglo-Saxon
periods (Whittle et al., 2011; Bayliss et al., 2013; see, also, Section 9.5). Despite its
ubiquity there is the suspicion that not all ‘consumers’ of radiocarbon dates fully
understand how they are to be interpreted, notwithstanding the literature that
exists to explain this; it is something that might usefully be included in future
texts on quantitative methodology.

Within the ‘classical’ paradigm more could have been said about significance
testing in the context of regression models – noted briefly in Section 5.1.1 and 5.1.4
and with a more detailed illustration in the third example of Section 5.2 – and more
complex ANOVA models (though these have had little archaeological use). Other
modeling methodologies, within the class of generalized linear models that depend
on inferential ideas and have attracted some archaeological use, have also not been
discussed. These include log-linear models (Lewis, 1986; Shennan, 1997: 201-13;
Baxter, 2003: 131–36) and logistic regression (Baxter, 2003: 60–62, 162–63).

Another topic omitted – on grounds of length rather than complexity – is
that of non-parametric hypothesis testing methods. Such methods do not assume
an underlying probability distribution for the sampled population, removing the
dependency on the normality assumption. Although parametric tests, such as the
t-test, are more powerful if the normality assumption is valid, non-parametric tests
that can be used as an alternative can also be competitive in terms of power and
would seem to be an attractive alternative when normality is in doubt.

Given this, I am a little surprised at the relative lack of space given to such
methods in the standard quantitative archaeology textbooks. For those wishing
to explore this further the R function wilcox.test does a similar job to t-test

using the Wilcoxon one- or two-sample tests (the latter also known as the Mann-
Whitney test). The Kruskal-Wallis test, kruskal.test, is the non-parametric
analog of oneway.test.
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12.5 Discussion

The question that motivated this chapter was ‘how useful are the ‘classical’ meth-
ods of statistical inference for archaeological purposes?’. I take it as axiomatic
that the ideas and methodologies of statistical inference are important. On the
‘horses for courses’ principle, however, it is not axiomatic that the methodologies
as originally developed are equally applicable to different domains of study.

There are at least two aspects involved; one concerns the correct use of method-
ology and the other its usefulness. Much of the critical commentary that emerged
in the 1970s and 1980s falls into the former category. Cowgill (1977b), for example,
identified several areas of mis-use and mis-understandings and offered corrective
advice. His appraisal of the value of statistical inferential methods in archaeology
was less negative than that of, for example, Doran and Hodson (1975).

In a spirit of what might seem deliberate provocation, Cowgill used the ad-
jectives ‘mind-boggling’ and ‘riduculous’ to characterize some uses of significance
testing. He commented (Cowgill, 1977b: 365) that it ‘seems so much more useful
that it seems incredible that the estimation approach [i.e. confidence intervals] is
not used more often [than significance] tests’ – a still pertinent view, endorsed in
this chapter. The emphasis on significance testing at the expense of estimation
was attributed to ’tradition’ in the social sciences, and an ‘uncritical’ acceptance
of the hypothesis testing framework. This, also, remains pertinent11.

The view that significance testing is frequently uninteresting and not of much
use has already been expressed. It is ‘usefulness’ that I would use as the main, and
pragmatic, criterion for judging the merits, in practice, of any particular method
of data analysis. Judgments need to be divorced from any irritation with abuse
of methodology, and not confused with ‘philospophical stances’ that involve the
wholesale rejection of ‘scientific’ methodology.

Generalization should be approached with trepidation. Mine would be that,
with some exceptions, I have been struck, whenever I have reviewed the literature,
by the paucity of widespread and what I’d regard as convincing uses of the methods
discussed in this chapter12. Some methods have been used hardly at all, or not to
the extent you might assume from their textbook treatments.

For example, VanPool and Leonard (2010: Chapter 10) observe that ANOVA,

11As an aside, at the time of writing, the journal Basic and Applied Social Psychology has just
‘banned’ the use of the null hypothesis significance test (and confidence intervals) from its pages
on the grounds that they are ‘invalid’. What is meant by ‘invalid’ is not very clear; it seems to
stem more from concerns about the misuse and misinterpretation of significance tests, a concern
many statisticians share.

12An exception that springs to mind is sampling theory, where random sampling (of regions
using test-pits, for example) leads naturally to the use of standard inferential ideas. This is not
typical of the manner in which archaeological ‘samples’ are usually acquired. The subject is quite
a specialized one; Orton (2000) is a thorough and accessible account for archaeologists.
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one of the ‘most powerful tools in the statistician’s toolkit’, ‘hasn’t been applied
as widely as it deserves to be in archaeological analysis’. Two-sample t-tests are
simpler but still not extensively used; graphical methods will often make it clear
whether there are substantively important differences or not, obviating the need for
formal tests. Should the data merit further scrutiny after graphical analysis then,
even if one has no qualms about the assumptions involved, sample-size effect need
to be borne in mind. With large enough samples any difference, however small, will
be found to be significant. The main merit of testing is for small samples where a
non-significant result guards against reading too much into apparent differences.

None of these observations are new; commentators such as Cowgill (1997b)
were saying this kind of thing from an early stage. I would add that it is probably
difficult to put together a convincing collection of case-studies based on the t-test
that lead to insights not more readily attainable by other means. The same is true,
only more so, of one-sample tests. It is difficult to think of examples, particularly
those in textbooks, that are other than illustrative and artificial.

Chi-squared tests for no association in contingency tables have probably been
more widely used than tests of means. Analyses often do not go beyond reporting
a statistically significant association or its lack. If detection of ‘significance’ is
the sole reason for analyzing a table it is tempting to suggest that much can
be achieved by judicious tabular inspection. This includes the scaling of rows
or columns to percentages, with the ordering chosen to highlight similarities or
differences where there is not a natural ordering. This is, of course, done, but not
necessarily consistently. The suspicion exists that, despite the ubiquity of tabular
presentation in archaeology, the widespread use of ill-chosen Excel bar- and pie-
charts in preference to such direct interpretation (Sections 4.2 and 4.3) testifies to
a certain discomfort with the latter.

The last few paragraphs express a view about the value of the standard and
‘classical’ methods of statistical methods for archaeological purposes. The impor-
tance of the theory per se is unquestionable, as is the beneficial impact it has had
in many areas of practical application. Whether archaeology is one of these areas
is the interesting question.
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Secondaires de Verriers du Second Millénaire av. J.-C. au Moyen-Age. Travaux

218



de la Maison de l’Orient Méditerranéen no. 33, 65–104.
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Appendix A

Getting R, getting started

A.1 Finding R

Either google CRAN R (the Comprehensive R Archive Network) or use

http://cran.r-project.org/

which is where to begin. You are directed to pages that tell you how to install R
on various platforms, and more information, if needed, is provided in the FAQs. R
is updated frequently.

Documentation on R is comprehensive and much of it is free. It is well worth
looking at what is available in CRAN at an early stage.

A.2 Data entry

For other than very small data sets it is best to import data from an external
source. This can be done in different ways. Although not the preferred method of
the developers of R, many users may find it simplest, if starting from scratch, to
create and import an Excel file.

Create the data file; it is assumed below that headers naming the columns
are given. Spaces in headers must be avoided (and if other illegal characters are
used an error message in R will inform you). Next, highlight the data you want to
import; copy it (to the clipboard) and go into R. The data file is named in R and
for illustration the data of Table B.1 is used, which will be named tubb in R. Type

tubb <- read.table(file = "clipboard", header = T)

and type tubb to see the result. Here <- is the assigment operator, and note
that clipboard must be enclosed in quotation marks or an error message results.
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If data are missing R requires that the offending cell be filled with NA. To use
read.table a rectangular table of data is expected. Commands are preceded by
the R prompt >.

It is best to keep headers informative but short (in writing-up an analysis or
captioning a figure a key can always be provided). Headers beginning with a
number are allowed, but column names in R may not be quite as you expect.

The writers of the R manual for data import/export prefer you to write the
Excel file to a Tab or comma-separated file and use read.delim or read.csv.
For most of the data used in these notes row names were not supplied, and the
default then produces case numbers as row names. For alternatives to this see
?read.table in R.

Once entered into R you may need to work with subsets of the data. Selecting
subsets is discussed in Section 2.6.

A.3 Packages

Packages are collections of functions that, together with arguments provided to
them, control the analyses undertaken1. Some packages are loaded automatically
with R and the functions in them are immediately accessible. Others are bundled
with R and must be loaded before use. Yet others need to be imported before they
can be loaded.

For illustration the bundled MASS package, associated with the book Modern
Applied Statistics with S (Venables and Ripley, 2002), is used. In the following
code comments follow #.

library(MASS) # loads MASS

library(help = MASS) # lists available functions

?kde2d # information on the function kde2

kde2d # prints source code for kde2

A list of available functions is provided by library(help = MASS) and ? lists the
documentation for the function specified, in the example kde2d for 2-dimensional
kernel density estimation. It is sometimes useful to look at the code to see what
is going on. It can be edited to suit individual requirements. The ‘?’ facility does
not always work as you wish. For example the function biplot is contained in the
stats package which is automatically loaded. If, however, ?biplot is typed then
the following is obtained.

function (x, ...)

1There are numerous examples in the text. Code can be typed in directly but it is often more
convenient to construct a function first. Further detail is given in Section 3.2.1.
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UseMethod("biplot")

<environment: namespace:stats>

That is, the code is invisible; typing stats:::biplot.default should reveal the
code. More generally, this requires the package where the function is located and
the function name to be specified as indicated.

There are an enormous number of user-contributed packages available. These
need to be imported before they can be used and this is done in two stages. In R

from the Packages menu select Set CRAN mirror to choose a site to import from
then, from the same menu, select Install package(s). The package then needs
to be loaded, using the library function as shown in the example above.

226



Appendix B

Data sets

Romano-British pottery compositions

Al Fe Mg Ca Na K Ti Mn Ba Region
18.8 9.52 2.00 0.79 0.40 3.20 1.01 0.077 0.015 1
16.9 7.33 1.65 0.84 0.40 3.05 0.99 0.067 0.018 1
18.2 7.64 1.82 0.77 0.40 3.07 0.98 0.087 0.014 1
17.4 7.48 1.71 1.01 0.40 3.16 0.03 0.084 0.017 1
16.9 7.29 1.56 0.76 0.40 3.05 1.00 0.063 0.019 1
17.8 7.24 1.83 0.92 0.43 3.12 0.93 0.061 0.019 1
18.8 7.45 2.06 0.87 0.25 3.26 0.98 0.072 0.017 1
16.5 7.05 1.81 1.73 0.33 3.20 0.95 0.066 0.019 1
18.0 7.42 2.06 1.00 0.28 3.37 0.96 0.072 0.017 1
15.8 7.15 1.62 0.71 0.38 3.25 0.93 0.062 0.017 1
14.6 6.87 1.67 0.76 0.33 3.06 0.91 0.055 0.012 1
13.7 5.83 1.50 0.66 0.13 2.25 0.75 0.034 0.012 1
14.6 6.76 1.63 1.48 0.20 3.02 0.87 0.055 0.016 1
14.8 7.07 1.62 1.44 0.24 3.03 0.86 0.080 0.016 1
17.1 7.79 1.99 0.83 0.46 3.13 0.93 0.090 0.020 1
16.8 7.86 1.86 0.84 0.46 2.93 0.94 0.094 0.020 1
15.8 7.65 1.94 0.81 0.83 3.33 0.96 0.112 0.019 1
18.6 7.85 2.33 0.87 0.38 3.17 0.98 0.081 0.018 1
16.9 7.87 1.83 1.31 0.53 3.09 0.95 0.092 0.023 1
18.9 7.58 2.05 0.83 0.13 3.29 0.98 0.072 0.015 1
18.0 7.50 1.94 0.69 0.12 3.14 0.93 0.035 0.017 1
17.8 7.28 1.92 0.81 0.18 3.15 0.90 0.067 0.017 1
14.4 7.00 4.30 0.15 0.51 4.25 0.79 0.160 0.019 2
13.8 7.08 3.43 0.12 0.17 4.14 0.77 0.144 0.020 2
14.6 7.09 3.88 0.13 0.20 4.36 0.81 0.124 0.019 2
11.5 6.37 5.64 0.16 0.14 3.89 0.69 0.087 0.009 2
13.8 7.06 5.34 0.20 0.20 4.31 0.71 0.101 0.021 2
10.9 6.26 3.47 0.17 0.22 3.40 0.66 0.109 0.010 2
10.1 4.26 4.26 0.20 0.18 3.32 0.59 0.149 0.017 2
11.6 5.78 5.91 0.18 0.16 3.70 0.65 0.082 0.015 2
11.1 5.49 4.52 0.29 0.30 4.03 0.63 0.080 0.016 2
13.4 6.92 7.23 0.28 0.20 4.54 0.69 0.163 0.017 2
12.4 6.13 5.69 0.22 0.54 4.65 0.70 0.159 0.015 2
13.1 6.64 5.51 0.31 0.24 4.89 0.72 0.094 0.017 2
12.7 6.69 4.45 0.20 0.22 4.70 0.73 0.394 0.024 2
12.5 6.44 3.94 0.22 0.23 0.81 0.75 0.177 0.019 2
11.6 5.39 3.77 0.29 0.06 4.51 0.56 0.110 0.015 2
11.8 5.44 3.94 0.30 0.04 4.64 0.59 0.085 0.013 2
18.3 1.28 0.67 0.03 0.03 1.96 0.65 0.001 0.014 3
15.8 2.39 0.63 0.01 0.04 1.94 1.29 0.001 0.014 3
18.0 1.50 0.67 0.01 0.06 2.11 0.92 0.001 0.016 3
18.0 1.88 0.68 0.01 0.04 2.00 1.11 0.006 0.022 3
20.8 1.51 0.72 0.07 0.10 2.37 1.26 0.002 0.016 3
17.7 1.12 0.56 0.06 0.06 2.06 0.79 0.001 0.013 3
18.3 1.14 0.67 0.06 0.05 2.11 0.89 0.006 0.019 3
16.7 0.92 0.53 0.01 0.05 1.76 0.91 0.004 0.013 3
14.8 2.74 0.67 0.03 0.05 2.15 1.34 0.003 0.015 3
19.1 1.64 0.60 0.10 0.03 1.75 1.04 0.007 0.018 3

Table B.1: Data on the chemical composition of a sample of Romano-British pot-
tery and region of origin (Source: Tubb et al., 1980.)
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Artefact counts in Early Iron Age tombs.

a b c d e f g h i j k l m n o p
0 0 0 0 0 0 2 2 1 1 0 0 0 1 5 3
0 0 0 0 0 0 1 0 0 1 1 7 0 0 0 0
0 2 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 8 0 2 3 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 4 0 0 2 0 0 1 0 0 0 0 1 0 2 0
0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0
0 7 6 1 2 0 0 0 0 1 3 3 0 0 1 1
3 6 1 1 3 3 2 6 2 2 12 5 2 1 2 1
0 8 0 4 4 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 2 0 0 1 0 0 0 0 0
0 2 12 0 0 0 1 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 2 0 0 2 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 0 7 3 4 2
1 1 0 0 0 1 2 0 1 0 4 1 9 4 0 0
0 0 0 0 0 0 0 0 0 0 7 0 0 0 1 0
2 2 0 0 0 1 0 0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 1 3 1 0 2 3 2 7 0
0 5 0 0 2 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 2 0 1 0 4 0
1 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0
0 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0
0 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0
1 8 26 3 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 2 1 2 0 0 13 1 4 4
1 4 0 0 0 2 0 1 2 4 14 2 1 3 0 0
1 1 13 1 0 2 0 0 0 0 0 0 0 0 0 0
0 3 14 0 0 0 1 0 0 0 1 0 0 0 0 0
1 6 0 0 0 1 1 1 0 0 4 0 0 0 1 1

10 14 2 0 0 11 6 16 3 5 24 27 4 5 2 2
1 0 0 0 0 3 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 5 2 0 0 0 0
0 4 0 0 0 1 0 0 0 0 4 1 2 1 7 0
4 5 0 0 0 1 0 1 0 0 3 0 0 0 0 0
0 0 0 0 0 0 1 0 1 1 1 0 0 2 2 1
0 0 0 0 0 0 0 0 3 0 0 1 1 4 0 1
0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
2 13 0 2 2 5 7 5 3 5 15 5 0 4 6 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1
5 9 3 4 0 5 7 7 11 9 13 13 14 8 11 12
0 1 0 0 0 0 0 0 0 1 0 0 8 0 1 1
0 0 0 0 0 0 1 2 1 2 0 0 0 0 0 0
0 0 0 0 0 0 1 5 0 1 0 3 0 0 0 0
0 0 1 0 0 1 0 2 1 1 2 2 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 5 0 0 1 2 0 0 0 0 2 0 0 0 2 0
1 3 1 0 1 5 2 5 0 0 9 2 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
1 7 0 1 1 3 1 4 3 3 9 2 1 2 4 4
3 12 0 0 2 1 0 7 1 1 1 2 0 0 0 0
0 1 0 0 0 1 1 2 0 0 3 0 0 0 0 0

Table B.2: Counts of pottery types in Early Iron Age tomb assemblages. Column
headings identify tombs; rows to pottery types; and table entries to counts (Source:
McClellan, 1979).
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Loomweights from Insula VI.1, Pompeii, I

height topmax topmin bottommax bottommin weight volume
93 23 23 35 35 222 475974
69 30 30 45 40 204 548550
98 30 30 40 40 260 725200

100 20 20 50 50 343 780000
107 25 20 55 55 283 1019175
70 38 25 48 35 173 545300

102 28 25 48 40 276 771120
98 20 20 40 35 267 499800

100 32 30 45 40 266 815000
100 25 25 40 40 257 645000
70 35 25 40 30 140 434000
99 30 30 57 50 318 1060290
88 30 28 48 48 242 798336
95 30 30 55 52 337 1019350

118 26 26 50 40 313 907656
127 47 47 80 72 737 2931414
97 30 25 40 40 306 669300
89 30 30 40 40 269 658600
65 30 30 35 35 137 412750

110 25 25 50 46 350 907500
71 21 21 50 50 166 566722
89 30 26 50 43 258 752050
66 30 30 38 38 170 459888
68 30 26 46 33 152 461176

100 27 27 50 50 324 915800
107 27 27 50 37 291 803249
64 32 24 48 27 118 393216
94 35 30 53 46 355 956544

103 25 20 45 45 297 728725
103 30 30 45 45 371 880650
72 20 20 45 45 159 478800

104 25 25 50 35 281 715000
107 26 26 45 40 286 766334
107 25 20 50 40 261 749000
94 30 30 45 40 273 747300

119 30 30 70 70 618 1880200
87 30 30 50 50 260 852600

107 30 30 55 55 342 1193050
64 35 20 50 30 139 412800
81 27 26 40 38 164 527310
69 35 30 42 42 171 576702
84 30 20 46 46 187 649488
64 50 23 50 23 163 441600
72 31 27 45 29 143 460656
70 33 31 51 46 316 688590

110 38 25 42 38 288 834460
104 39 33 48 46 327 1078272
87 34 34 46 17 202 523566

122 26 26 44 42 356 888648
128 25 25 56 47 420 1163392
100 26 26 42 39 256 673400
95 28 25 55 55 306 984675
99 28 28 46 45 233 817344

101 26 26 50 44 290 827796
71 33 25 43 34 112 480741
55 32 26 40 22 117 284240

100 28 28 30 30 239 504800
88 30 27 35 33 201 516120
86 29 26 33 26 163 415896
97 14 14 37 27 247 318742
74 23 23 38 38 142 421356
58 28 28 40 40 133 406464
56 44 24 44 24 119 354816
59 37 33 44 32 160 465746
57 38 21 46 17 107 272004
79 35 35 48 48 199 823022
58 35 35 34 34 136 414236
57 48 48 48 48 166 787968
97 22 22 32 32 193 429128

104 32 32 53 53 348 1150032
105 33 33 59 59 467 1368570

Table B.3: Loomweight dimensions from Pompeii. Continued – see Table B.4 for
details.
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Loomweights from Insula VI.1, Pompeii, II

height topmax topmin bottommax bottommin weight volume
81 27 27 45 45 202 642978

100 25 25 52 45 301 835500
61 32 27 41 32 146 395463
69 39 24 35 25 96 375153
95 30 30 36 33 202 593370
87 25 21 32 32 178 397590
96 23 13 44 37 228 506592
72 19 14 38 34 288 309168

116 36 36 57 55 484 1495704
111 31 31 52 52 383 1171494
67 26 21 36 36 134 360192
98 26 26 52 49 304 889252

118 30 30 50 41 391 1018340
112 23 17 58 47 328 929712
111 30 30 48 41 349 933066
101 20 20 54 54 374 887992
72 30 25 44 42 166 544032
78 32 26 55 47 235 761904
72 27 27 48 43 175 579096
91 23 23 45 45 198 653198

112 33 29 52 38 321 966336
116 29 24 58 52 420 1197584
83 24 21 44 34 159 476420
98 27 27 51 46 300 859362
70 35 25 45 28 133 446250
61 47 25 54 25 166 462075
89 20 20 49 42 211 599504

100 26 26 56 55 322 1039800
64 29 29 39 37 136 433408
68 24 21 42 36 182 392904
87 29 28 52 46 280 800226

114 24 24 48 34 296 727776
82 22 22 40 40 180 486096

103 23 23 48 40 255 712966
74 25 22 37 32 138 376068
36 12 9 20 20 15 51696
78 30 26 40 40 106 546000
62 30 23 40 30 111 347200
91 35 30 50 42 284 843570
87 35 35 53 53 343 1024686

118 25 25 50 50 340 1032500
97 28 28 45 45 314 789386
87 25 25 44 44 207 637014

112 29 29 53 53 373 1161888
108 28 28 55 55 383 1155384
99 31 31 51 51 296 1018314

116 22 22 42 42 290 735904
69 17 17 39 39 113 341274
88 20 20 37 37 180 441584
99 31 31 43 43 230 820314
79 21 21 34 34 143 365138
84 14 14 42 42 240 428064
99 23 23 58 58 388 1034946
60 33 33 39 39 133 467640
90 28 26 44 44 226 693360
91 32 32 52 52 351 981344

120 27 27 57 57 449 1324080
98 31 31 50 50 303 982156

100 24 24 40 40 216 627200
91 35 35 50 50 304 996450

114 36 36 66 66 564 1830384
87 28 28 36 36 214 537312
60 35 35 48 48 191 625080
88 25 25 39 39 189 549296
69 38 38 45 45 158 714702
97 30 30 50 50 298 950600

Table B.4: Data on loomweight dimensions from excavations at Pompeii, Insula
VI.1. Unpublished, but see Baxter and Cool (2008, 2010) and Baxter et al. (2010)
for previous analyses of these data. The first five variables are measured as mm;
weight as g. The terms ‘max’ and ‘min’ refer to the maximum and minimum side
lengths of the rectangular tops and bottoms of the loomweights.
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Post-medieval wine bottle dimensions

Date Height NH BH Width Base Kick
1652 233 140 93 137 67 8
1661 188 83 105 133 37 6
1680 150 66 84 110 60 11
1687 178 78 100 141 70 15
1688 150 65 85 134 77 7
1698 135 51 84 132 74 7
1700 170 77 94 146 96 23
1704 146 63 83 120 86 20
1708 156 62 94 150 100 33
1713 174 77 97 136 92 35
1713 164 84 80 153 113 25
1714 158 70 88 186 153 43
1721 178 82 96 135 101 45
1732 184 75 109 151 122 28
1733 195 88 107 144 113 25
1722 199 80 119 139 98 24
1727 131 52 79 100 82 21
1731 212 87 125 142 107 40
1734 166 81 85 96 77 29
1729 201 84 117 131 103 36
1735 189 77 112 136 106 47
1740 193 73 120 137 114 47
1734 230 99 131 122 90 30
1735 217 87 130 128 101 45
1736 209 84 125 127 98 21
1738 217 95 122 119 92 43
1739 228 96 132 125 102 41
1750 230 87 143 131 106 49
1751 238 98 140 126 106 51
1755 223 85 138 125 101 46
1756 227 104 123 129 102 51
1740 234 98 136 117 82 8
1770 197 71 126 102 85 27
1755 229 87 142 108 82 34
1757 234 89 145 105 85 38
1761 229 87 142 105 82 30
1765 234 87 147 112 83 27
1767 239 88 151 115 89 25
1772 221 77 144 111 91 36
1788 217 72 145 119 94 38
1804 213 66 147 115 84 26
1809 240 79 161 110 89 38
1761 268 88 180 99 77 27
1770 256 87 169 95 74 19
1783 258 93 165 95 73 49
1788 248 87 161 97 74 31
1798 261 89 172 99 74 29
1800 259 78 181 91 67 30
1834 271 92 179 103 75 19

Table B.5: Dimensions of post-medieval wine bottle data (mm). Height = NH +
BH, where NH is neck height and BH body height (Source: Robertson, 1976).
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Stone ‘circle’ diameters

Northern Britain Southern England
Diameter (ft) Deviation (ft) Diameter (ft) Deviation (ft)

86.0 1.0 81.0 0.5
59.5 1.5 104.5 2.0
58.0 1.5 114.5 1.0
45.0 1.0 72.0 0.5
59.0 1.6 100.0 1.0
63.5 1.0 109.0 1.0
84.5 2.5 78.5 1.0
75.5 1.5 130.0 2.5
67.5 1.5 67.5 6.5
34.0 0.5 142.5 5.6

115.0 3.0 81.5 9.5
76.5 2.4 140.0 12.0
47.5 6.5 48.0 2.0
43.5 4.0 151.0 6.9
63.5 4.0 23.0 1.0
68.5 5.0 17.0 2.0
84.0 3.5 38.5 5.0
21.5 1.0 29.0 3.0
75.0 3.5 82.0 5.0
76.0 5.0
53.5 3.0

107.0 9.0
29.0 2.0
95.5 4.5
37.5 2.0

103.5 8.5
50.5 11.5
62.5 4.5
23.5 2.5
42.0 10.5
25.5 4.5
53.5 3.0

143.0 13.0
28.0 3.5
38.0 3.0
70.0 10.0
32.5 4.5
13.5 1.0
93.5 6.5
28.0 3.5
57.0 3.0
24.0 3.5
87.5 7.5
86.0 8.5
44.5 3.5
54.5 10.5
85.0 5.0
68.0 3.5
67.5 4.0

153.0 17.0

Table B.6: Neolithic stone ‘circle’ diameters from northern Britain and southern
England. The ‘circles’ are not ‘true’ circles; ‘deviation’ is the difference between
the maximum and minimum diameters (Source: Barnatt and Moir, 1984).
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Waste glass compositions I

Site Al Fe Mg Ca Na K Ti P Mn
Mancetter 2.51 0.53 0.56 6.98 17.44 0.73 0.09 0.15 0.58
Mancetter 2.36 0.49 0.53 6.71 17.69 0.68 0.09 0.13 0.40
Mancetter 2.30 0.36 0.49 8.10 15.94 0.68 0.07 0.13 0.77
Mancetter 2.42 0.52 0.56 6.93 17.59 0.72 0.09 0.14 0.47
Mancetter 2.32 0.37 0.51 7.51 16.27 0.69 0.07 0.13 0.21
Mancetter 2.34 0.56 0.52 6.10 18.61 0.69 0.10 0.11 0.30
Mancetter 2.50 0.46 0.50 6.83 17.46 0.79 0.08 0.15 0.40
Mancetter 2.47 0.53 0.55 6.55 18.55 0.75 0.09 0.12 0.35
Mancetter 2.41 0.67 0.62 6.18 18.33 0.81 0.12 0.14 0.52
Mancetter 2.64 0.50 0.63 7.76 15.66 0.63 0.08 0.16 0.21
Mancetter 2.77 0.58 0.50 7.33 16.10 0.68 0.08 0.14 0.57
Mancetter 2.43 0.69 0.72 6.27 17.84 0.98 0.12 0.22 0.63
Mancetter 2.50 0.36 0.53 8.51 15.46 0.60 0.07 0.16 0.45
Mancetter 2.63 0.46 0.47 7.25 16.26 0.59 0.07 0.12 0.30
Mancetter 2.66 0.41 0.50 7.35 17.12 0.63 0.07 0.15 0.11
Mancetter 2.43 0.62 0.52 6.89 17.17 0.69 0.08 0.13 0.44
Mancetter 2.55 0.53 0.52 7.91 16.20 0.62 0.07 0.15 0.38
Mancetter 2.44 0.54 0.56 6.65 17.68 0.97 0.10 0.12 0.40
Mancetter 2.22 0.34 0.46 7.08 16.14 0.63 0.06 0.15 0.12
Mancetter 2.59 0.37 0.46 7.57 15.71 0.56 0.07 0.16 0.07
Mancetter 2.45 0.48 0.55 6.84 17.73 0.76 0.09 0.14 0.62
Mancetter 2.42 0.49 0.51 7.00 16.32 0.93 0.08 0.14 0.42
Mancetter 2.27 0.38 0.48 7.88 16.28 0.52 0.07 0.14 0.26
Mancetter 2.48 0.55 0.55 6.64 18.76 0.75 0.09 0.12 0.36
Leicester 2.27 0.32 0.39 6.75 17.95 0.75 0.07 0.12 0.18
Leicester 2.32 0.84 0.55 6.19 19.78 0.70 0.10 0.11 0.24
Mancetter 2.46 0.49 0.54 6.82 18.07 0.75 0.08 0.13 0.60
Mancetter 2.67 0.34 0.49 6.94 18.04 0.54 0.06 0.11 0.44
Mancetter 2.47 0.42 0.51 7.57 17.94 0.76 0.07 0.14 0.41
Mancetter 2.40 0.45 0.54 7.62 17.76 0.64 0.08 0.13 0.40
Mancetter 2.41 0.36 0.54 8.15 16.65 0.54 0.07 0.13 0.44
Mancetter 2.68 0.38 0.59 8.47 16.14 1.54 0.07 0.14 0.42
Mancetter 2.41 0.63 0.53 6.84 17.77 0.76 0.08 0.16 0.45
Mancetter 2.38 0.55 0.55 6.73 17.37 0.76 0.08 0.16 0.44
Leicester 2.50 0.78 0.56 6.40 18.35 0.73 0.11 0.11 0.27
Leicester 2.38 0.84 0.54 6.17 18.05 0.70 0.10 0.11 0.26
Mancetter 2.50 0.54 0.58 7.21 16.86 1.05 0.09 0.14 0.57
Mancetter 2.35 0.43 0.51 8.02 17.52 0.56 0.07 0.14 0.29
Leicester 2.31 0.74 0.54 6.26 18.59 0.69 0.10 0.10 0.25
Mancetter 2.42 0.36 0.47 7.31 17.76 0.62 0.07 0.13 0.24
Leicester 2.34 0.54 0.54 6.76 17.62 0.68 0.09 0.13 0.42
Leicester 2.21 0.85 0.56 6.21 19.64 0.71 0.09 0.11 0.25
Leicester 2.17 0.56 0.56 6.22 20.03 0.69 0.10 0.10 0.23
Mancetter 2.40 0.54 0.54 7.14 16.87 0.79 0.08 0.13 0.56
Mancetter 2.58 0.37 0.49 7.36 16.58 0.65 0.07 0.13 0.47
Leicester 2.45 0.89 0.55 6.19 18.30 0.71 0.11 0.12 0.26
Leicester 2.24 0.52 0.52 6.36 18.69 0.60 0.09 0.11 0.29
Mancetter 2.49 0.48 0.55 7.32 18.14 1.00 0.08 0.14 0.40
Mancetter 2.40 0.50 0.54 6.70 18.85 0.70 0.09 0.12 0.39
Leicester 2.27 0.75 0.55 6.24 19.53 0.67 0.09 0.11 0.25
Leicester 2.27 0.87 0.56 6.39 18.98 0.68 0.09 0.11 0.29
Leicester 2.34 0.43 0.58 9.42 15.72 0.59 0.08 0.13 0.14
Leicester 2.49 0.85 0.54 6.36 18.01 0.73 0.11 0.11 0.27
Leicester 2.43 0.44 0.50 6.77 17.70 0.74 0.08 0.15 0.48
Leicester 2.25 0.59 0.56 5.52 20.55 1.01 0.12 0.09 0.26

Table B.7: Romano-British waste glass major oxide compositions (%) from two
sites. Continued – see Table B.8 for details.
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Waste glass compositions II

Site Al Fe Mg Ca Na K Ti P Mn
Mancetter 2.33 0.37 0.52 7.31 16.75 0.49 0.06 0.11 0.90
Mancetter 2.46 0.47 0.52 7.03 17.48 0.67 0.08 0.14 0.49
Leicester 2.55 0.56 0.58 7.17 17.34 0.72 0.09 0.14 0.69
Mancetter 2.38 0.64 0.61 5.99 19.63 0.79 0.12 0.14 0.50
Mancetter 2.38 0.47 0.52 6.79 17.36 0.67 0.08 0.13 0.45
Mancetter 2.71 0.37 0.47 7.50 16.57 0.48 0.07 0.13 0.21
Leicester 2.23 0.73 0.54 6.07 18.58 0.64 0.10 0.10 0.23
Leicester 2.45 0.77 0.56 6.41 19.07 0.73 0.11 0.11 0.28
Mancetter 2.58 0.37 0.54 7.57 16.11 0.61 0.07 0.14 0.14
Leicester 2.46 0.35 0.51 7.72 16.51 0.56 0.07 0.12 0.17
Leicester 2.17 0.54 0.57 6.23 19.98 0.67 0.10 0.10 0.21
Mancetter 2.59 0.58 0.56 7.61 16.74 0.68 0.08 0.17 0.50
Leicester 2.22 0.48 0.52 6.44 18.66 0.62 0.09 0.11 0.31
Leicester 2.52 0.86 0.56 6.45 18.32 0.74 0.12 0.12 0.26
Leicester 2.34 0.78 0.58 6.37 19.34 0.73 0.10 0.11 0.26
Leicester 2.64 1.11 0.59 7.89 17.78 0.75 0.12 0.15 0.26
Leicester 2.32 0.64 0.58 5.66 20.08 0.79 0.13 0.12 0.31
Leicester 2.73 0.74 0.55 6.12 18.83 0.77 0.11 0.10 0.29
Leicester 2.51 0.78 0.55 6.44 18.30 0.73 0.11 0.12 0.26
Leicester 2.37 0.81 0.55 6.38 19.03 0.70 0.10 0.11 0.24
Leicester 2.31 0.88 0.57 6.42 18.90 0.76 0.10 0.12 0.28
Leicester 2.50 0.78 0.56 6.46 18.57 0.73 0.11 0.12 0.26
Leicester 2.57 0.80 0.56 6.43 18.41 0.75 0.12 0.12 0.26
Leicester 2.24 0.84 0.56 6.26 19.49 0.73 0.09 0.12 0.23
Leicester 2.37 0.44 0.50 6.78 17.15 0.70 0.08 0.15 0.45
Leicester 2.48 0.77 0.55 6.36 18.30 0.73 0.11 0.12 0.26
Leicester 2.26 0.58 0.61 6.16 19.47 0.74 0.10 0.11 0.21
Leicester 2.59 0.48 0.60 8.76 14.50 0.51 0.07 0.13 0.27
Leicester 2.25 0.66 0.52 6.20 18.06 0.64 0.09 0.11 0.24
Leicester 2.43 0.48 0.56 7.60 15.57 0.62 0.08 0.16 0.49
Leicester 2.49 0.93 0.55 6.18 16.54 1.10 0.12 0.13 0.25
Leicester 2.46 0.76 0.55 6.37 17.95 0.72 0.11 0.12 0.26
Leicester 2.47 1.05 0.56 7.62 17.02 0.70 0.11 0.14 0.26
Leicester 2.16 0.74 0.53 6.09 17.25 0.65 0.09 0.11 0.25
Leicester 2.26 0.58 0.52 6.41 17.28 0.67 0.09 0.13 0.28
Leicester 2.29 0.78 0.56 6.24 18.45 0.70 0.10 0.11 0.26
Leicester 2.30 0.78 0.53 6.28 18.20 0.65 0.10 0.11 0.25
Leicester 2.52 0.65 0.55 6.16 18.69 0.74 0.11 0.10 0.29
Leicester 2.28 0.68 0.55 6.37 18.60 0.68 0.10 0.11 0.24
Leicester 2.25 0.62 0.56 5.55 19.47 0.74 0.13 0.11 0.31
Leicester 2.32 0.80 0.54 6.34 18.25 0.66 0.10 0.11 0.25
Leicester 2.35 0.74 0.55 6.54 18.44 0.71 0.10 0.11 0.26
Leicester 2.45 0.42 0.61 9.79 16.22 0.62 0.08 0.13 0.14
Leicester 2.19 0.84 0.54 6.13 17.99 0.69 0.10 0.11 0.24
Leicester 2.62 0.82 0.54 6.25 17.79 0.73 0.11 0.09 0.29
Leicester 2.35 0.65 0.54 6.73 17.91 0.72 0.10 0.12 0.28
Leicester 2.44 0.35 0.51 7.70 16.27 0.62 0.07 0.13 0.16
Leicester 2.42 0.68 0.53 6.15 17.19 0.77 0.13 0.11 0.27
Leicester 2.52 0.79 0.56 6.37 18.11 0.74 0.12 0.11 0.26
Leicester 2.37 0.75 0.55 6.33 18.55 0.69 0.10 0.11 0.25

Table B.8: Romano-British waste glass major oxide compositions (%) from two
sites. The source is an unpublished University of Sheffield, UK, PhD thesis by Dr.
Caroline Jackson. They are given in Table A.1 of Baxter (1994).
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Stone axe dimensions I

L1 L2 B1 B2 B3 WC DC TH L3 T1 T2 Type
164.0 53.0 54.7 40.5 53.4 43.7 12.6 36.2 43.2 32.9 33.3 3
42.3 1.0 34.3 20.6 33.0 34.3 1.0 10.4 12.9 6.5 7.7 5
48.1 5.2 36.7 26.6 36.3 36.7 5.2 13.4 12.2 10.7 10.6 5
40.6 10.1 23.0 17.0 22.8 19.8 2.8 9.5 14.0 6.9 8.0 5
65.6 2.7 43.7 26.1 42.2 43.7 2.7 18.0 30.5 15.2 12.3 5

105.7 7.7 47.9 29.3 46.9 47.9 7.7 22.1 50.9 20.0 17.3 5
105.0 43.1 76.0 63.3 71.4 63.4 13.3 38.4 54.3 35.1 29.3 5
75.1 27.1 38.0 28.4 36.9 31.2 5.3 28.4 35.4 25.5 22.4 1
56.4 16.7 36.0 26.0 35.6 31.9 3.9 21.3 28.8 18.4 15.6 1
55.0 6.1 32.3 23.4 32.2 32.3 6.1 19.0 26.0 15.9 13.7 2

108.4 15.1 53.6 30.3 53.0 53.6 15.1 24.4 67.2 20.8 20.7 1
60.0 29.6 31.4 27.9 26.0 15.1 1.8 20.9 29.3 18.0 14.4 3
57.0 3.0 42.9 35.8 42.6 42.9 3.0 13.9 13.6 11.9 10.4 5
83.0 25.9 44.8 27.5 43.1 42.1 16.9 19.0 51.6 17.4 12.0 1
59.2 6.4 36.9 30.0 36.7 36.9 6.4 17.4 24.0 15.1 12.8 5
46.7 8.5 21.2 16.6 21.5 19.0 0.1 10.3 22.3 7.1 7.2 5
23.9 7.3 18.2 15.9 18.4 16.2 0.0 9.0 10.5 6.9 6.3 5
24.5 2.9 23.2 15.0 23.2 23.2 2.9 5.9 9.8 4.6 5.1 5
29.1 3.2 26.9 17.0 26.7 26.9 3.2 7.8 13.5 6.3 4.9 4
51.5 2.0 34.0 20.9 32.3 34.0 2.0 9.8 13.5 8.3 7.5 5
44.5 5.2 41.6 28.2 41.2 41.6 5.2 11.0 16.6 8.9 7.9 5
42.2 7.0 34.0 17.6 33.3 32.4 4.4 11.8 19.3 10.2 8.9 1

150.0 38.8 65.3 42.5 65.0 61.0 12.0 40.7 52.5 32.7 33.1 1
36.9 2.3 25.6 15.5 25.4 25.6 2.3 6.0 16.8 4.7 4.8 1
31.7 5.9 27.9 22.9 27.8 27.0 2.8 8.6 10.4 7.6 7.8 5
37.0 9.7 28.3 20.9 28.3 26.4 2.5 7.9 15.4 6.9 6.9 5
39.7 18.6 32.2 28.0 28.6 24.2 3.7 14.8 20.3 13.9 10.3 4
48.6 2.7 25.0 20.2 24.7 25.0 2.7 11.7 14.5 9.3 9.8 3
23.2 1.1 13.2 10.8 12.9 13.2 1.1 6.4 7.2 4.8 4.9 5

280.0 98.5 75.1 49.6 72.8 57.0 10.7 55.1 126.3 43.9 48.7 1
151.5 57.7 92.0 66.4 91.3 88.0 14.3 32.0 91.9 25.8 26.5 5
189.5 12.9 68.1 38.5 68.1 68.1 12.9 44.8 80.4 33.8 41.3 1
189.0 60.0 59.8 41.9 57.4 40.5 5.0 38.9 57.9 25.3 37.4 1
128.7 7.5 60.5 34.4 59.4 60.5 7.5 41.5 51.0 30.7 35.0 1
235.0 73.0 56.4 38.7 55.5 46.2 6.8 50.1 82.9 37.0 44.3 1
116.1 25.6 74.6 56.0 74.3 70.9 12.6 14.7 27.3 11.7 13.8 3
88.2 11.8 72.8 51.2 71.9 72.8 11.8 15.9 39.1 12.0 14.1 5

117.5 33.3 62.4 42.7 62.4 57.7 7.9 19.4 56.4 15.4 16.1 4
123.6 42.7 43.2 28.7 42.8 39.3 3.7 37.4 40.2 27.4 31.8 1
54.5 3.7 50.9 37.6 50.9 50.9 3.7 14.4 17.0 11.0 12.1 5
96.4 21.5 53.3 31.3 52.9 48.9 3.1 36.8 44.0 27.8 28.3 1
82.8 8.7 48.8 28.9 48.6 48.8 8.7 33.6 32.2 25.1 26.3 1
66.0 26.3 49.5 40.7 47.7 44.0 10.0 26.6 25.1 23.1 20.0 5
55.0 22.9 34.5 28.9 33.3 30.2 3.6 16.7 17.2 13.7 14.7 5

108.6 28.6 47.5 34.4 46.7 42.8 16.1 35.2 41.3 26.9 29.6 1
76.1 21.0 40.4 33.1 40.3 39.0 4.2 26.0 30.8 22.2 21.4 3
78.8 25.3 43.8 31.3 44.6 35.3 7.5 28.7 37.5 24.6 22.3 3

106.2 17.9 54.4 37.2 54.9 47.8 6.6 26.4 31.8 20.8 24.2 1
73.4 11.4 60.0 47.9 59.7 58.8 3.0 14.0 34.8 11.6 12.4 5

104.1 27.3 52.7 36.4 52.4 48.0 11.4 34.1 49.2 27.4 26.6 1
39.5 15.4 37.0 30.7 36.0 33.8 5.2 16.7 24.4 15.3 12.0 5
98.8 1.4 34.8 23.5 33.4 34.8 1.4 12.6 43.7 10.8 11.8 3
61.8 3.4 46.6 32.2 45.0 46.6 3.4 11.5 21.4 10.1 10.2 5
38.6 9.0 19.8 17.1 19.7 8.1 1.5 7.2 14.0 6.4 6.5 5
33.0 11.4 13.8 11.1 13.3 11.8 3.3 7.8 13.2 5.8 6.7 2
33.3 1.8 24.6 18.4 24.0 24.6 1.8 7.5 13.2 5.6 6.5 4
35.8 9.8 22.9 16.2 21.0 21.1 11.0 3.3 8.1 3.2 3.0 5
72.5 19.7 46.0 29.3 45.8 41.4 5.3 29.1 37.6 24.0 22.2 1
46.2 2.1 40.0 24.8 38.7 40.0 2.1 11.1 18.4 8.9 9.1 5
35.1 5.9 28.7 17.9 28.4 28.7 5.9 9.0 11.3 6.7 7.8 1
45.3 10.7 34.0 17.5 32.2 34.0 9.4 10.7 42.8 10.4 8.7 1
55.1 21.2 17.9 16.3 17.0 15.2 1.0 6.1 14.5 5.5 5.5 3
97.8 69.1 13.9 13.8 10.4 3.9 0.5 9.9 18.9 10.0 8.1 5
69.3 40.0 20.2 19.3 16.5 9.2 0.4 7.0 35.7 6.4 5.6 5
37.3 10.0 27.7 21.3 25.4 25.2 0.9 10.8 16.7 10.4 7.3 5
76.9 7.1 40.2 34.2 40.0 40.2 7.1 23.0 57.8 22.2 18.7 4
72.1 19.9 47.2 41.4 45.9 39.4 10.1 23.9 36.2 20.6 19.2 3
80.5 18.1 41.2 33.7 41.2 32.6 3.7 26.4 36.1 22.7 20.0 3

112.0 22.8 51.4 44.0 51.0 47.6 6.1 32.0 56.1 28.1 27.8 3
123.0 36.2 56.2 38.7 55.3 43.0 3.1 38.7 51.2 30.3 30.7 1
73.8 20.7 55.1 44.4 54.8 51.8 6.1 16.9 22.4 14.0 14.5 4

100.0 29.0 51.7 31.3 51.3 39.0 9.4 33.6 35.8 27.1 26.0 1
52.3 12.7 35.5 27.2 35.5 33.0 3.2 16.8 18.0 13.6 13.0 5

Table B.9: Stone axe dimensions. Continued – see TableB.11 for details.
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Stone axe dimensions II

L1 L2 B1 B2 B3 WC DC TH L3 T1 T2 Type
55.4 5.7 45.5 30.5 44.4 45.5 5.7 14.1 12.9 11.4 12.0 5
71.8 4.3 47.5 26.8 47.5 43.5 4.0 18.8 42.7 18.4 14.8 2
34.1 6.4 32.4 18.2 32.1 29.5 8.0 8.1 9.2 5.7 7.7 3
51.0 8.0 27.7 23.2 27.3 26.2 2.2 11.9 17.5 10.5 10.7 3
65.0 16.0 32.8 20.3 32.7 30.8 2.3 16.4 28.5 14.6 13.9 1
68.2 10.5 53.7 36.4 52.2 53.7 9.2 18.0 31.3 14.7 12.5 5
63.8 6.5 45.9 27.9 45.2 45.9 6.5 11.2 27.3 7.7 9.7 3
57.1 10.3 53.8 37.9 53.0 53.8 10.3 14.4 20.7 11.3 10.9 5
61.6 5.5 46.8 30.4 46.4 46.8 5.5 17.0 33.5 13.4 12.8 5
90.5 28.7 44.4 30.1 43.7 37.5 6.4 33.9 33.5 26.9 29.3 4

133.1 36.4 78.8 57.0 78.5 73.2 5.7 39.7 53.8 44.1 39.7 3
41.2 3.8 31.1 21.7 31.2 31.1 3.8 8.8 17.5 7.0 7.9 3
27.5 1.4 22.5 17.0 22.3 22.5 1.4 6.4 12.2 4.0 5.9 5
78.9 37.6 42.1 37.4 39.0 25.8 6.0 16.7 22.6 16.2 14.8 5
92.0 18.8 59.1 44.9 58.8 59.1 18.8 37.7 40.3 34.0 30.3 3

125.7 37.2 77.5 61.3 76.0 69.9 12.3 37.7 49.6 32.8 32.1 5
42.4 7.0 42.7 34.0 42.5 39.8 2.1 12.1 15.1 9.6 9.8 5

120.2 12.8 55.5 36.1 54.2 55.5 12.8 35.1 35.2 27.7 30.5 3
96.9 28.2 43.3 24.8 41.8 36.6 10.5 30.3 38.4 19.4 24.6 1

169.0 35.2 61.9 40.9 61.2 53.8 9.0 46.6 73.4 36.8 36.8 1
132.4 30.9 65.6 39.3 65.6 62.0 7.6 39.1 47.0 31.0 33.7 1
52.4 15.6 38.1 24.8 37.8 35.3 5.9 10.1 21.0 7.6 7.4 5
67.9 8.0 31.1 21.7 30.7 31.1 8.0 12.7 27.4 9.1 10.9 1

134.5 17.6 74.1 39.5 71.2 74.1 17.6 19.3 37.0 12.8 17.0 1
68.0 10.7 43.4 35.6 42.9 43.4 10.7 19.2 26.4 14.1 16.5 5
33.0 2.4 31.4 23.1 31.1 31.4 2.4 11.4 9.2 7.6 9.1 5
64.9 7.1 42.3 30.2 40.5 42.3 7.1 14.5 17.1 10.0 13.6 5
15.3 3.0 16.4 14.2 16.4 13.9 0.0 4.6 4.0 3.8 3.5 5
31.8 10.0 27.4 22.6 27.0 24.4 2.4 8.5 13.9 23.0 26.6 5
79.5 7.1 58.2 46.4 58.1 58.2 7.1 41.5 36.3 35.7 32.6 3
92.3 10.0 49.2 35.7 47.9 49.2 10.0 25.9 24.2 22.3 22.5 3
60.5 13.0 42.1 34.7 42.0 39.2 4.2 18.6 29.9 13.3 15.4 5

126.5 34.8 50.5 32.0 49.2 41.0 10.1 37.4 62.4 27.6 29.2 1
141.0 44.8 62.5 38.6 62.0 56.7 12.2 41.5 66.6 31.3 33.4 1
121.8 23.6 50.1 38.1 50.0 42.9 9.5 36.4 53.8 29.6 28.9 1
122.3 14.6 59.3 39.0 58.8 56.2 9.2 30.6 44.3 27.1 24.5 1
111.9 33.5 48.7 33.1 47.5 39.4 6.1 36.7 45.5 26.8 29.0 1
109.7 33.9 54.5 32.0 53.9 44.8 6.0 28.1 45.8 21.8 22.3 1
108.0 31.2 43.1 27.5 42.4 36.4 7.1 35.6 50.7 25.3 25.8 1
94.2 21.1 45.5 32.6 45.1 38.0 4.7 32.0 45.4 27.8 27.0 1
95.2 24.9 48.7 35.1 48.3 39.6 8.2 31.9 40.4 25.1 23.5 3
97.6 10.3 62.2 30.0 61.6 62.2 9.5 22.1 31.2 17.0 18.7 1
81.3 32.9 47.7 38.0 46.7 42.7 10.3 26.8 32.4 25.0 21.2 5
77.3 24.9 45.7 37.9 44.8 37.2 4.4 26.0 45.8 24.9 18.0 3
78.9 22.7 47.5 34.1 47.3 41.1 5.7 35.2 34.2 29.0 25.9 3
74.0 6.8 37.7 26.5 37.4 37.7 6.8 17.1 32.0 14.4 13.9 5
71.6 7.1 39.5 25.5 39.3 39.5 7.1 22.5 35.0 18.9 17.9 1

185.0 56.6 58.1 41.4 57.4 79.1 6.9 43.0 77.2 31.7 36.4 1
120.8 51.2 42.4 34.8 40.0 28.1 4.8 32.5 64.8 29.2 25.0 5
110.5 53.1 50.5 42.5 41.2 26.6 3.2 27.2 43.3 23.9 23.1 3
121.3 39.5 50.4 36.0 48.7 39.3 5.5 36.9 62.3 30.9 29.7 1
117.3 48.0 48.3 36.8 45.1 38.1 9.7 37.1 44.7 29.8 31.1 1
117.9 45.2 47.6 36.0 44.3 28.1 1.4 38.2 59.8 33.1 26.9 2
113.1 28.7 49.4 39.2 48.8 42.0 3.5 41.7 61.2 36.2 27.2 5
71.9 19.1 45.1 29.4 44.6 42.4 4.9 29.3 29.3 24.2 22.5 1

137.0 47.6 54.5 44.4 52.9 42.8 4.8 45.8 83.2 42.3 36.5 2
131.7 47.8 45.5 34.0 43.5 31.4 2.0 37.8 57.2 30.4 31.3 1
101.9 10.7 48.4 39.8 48.0 45.8 4.0 29.1 39.9 25.6 23.6 4
85.8 18.0 42.5 27.6 42.4 38.4 7.0 22.9 33.0 16.9 19.8 1

182.5 47.3 76.7 48.1 75.7 67.6 14.2 50.6 67.8 38.1 46.4 1
177.5 19.1 112.7 61.6 112.1 112.7 19.1 30.0 61.9 24.3 26.0 1
162.0 18.0 66.2 39.2 65.8 63.3 10.7 36.9 59.5 26.4 31.2 1
139.0 43.6 60.1 45.9 58.8 53.0 11.6 45.0 66.9 37.9 35.1 2
191.0 72.7 53.3 36.3 49.0 33.9 5.9 37.9 86.5 24.3 28.9 1
115.2 34.6 44.9 28.9 44.2 38.0 6.4 34.6 47.7 25.4 28.2 1
101.6 29.1 51.7 36.0 51.0 45.2 7.3 31.5 48.3 26.6 26.1 1
100.1 12.0 46.8 30.0 46.4 45.5 5.7 28.1 48.3 24.6 21.4 2
100.6 13.3 44.7 26.7 44.1 43.3 6.7 28.1 44.6 21.3 21.8 1

Table B.10: Stone axe dimensions. Continued – see Table B.11 for details.
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Stone axe dimensions III

L1 L2 B1 B2 B3 WC DC TH L3 T1 T2 Type
96.7 33.2 43.9 29.0 41.6 30.8 0.0 27.8 42.4 21.8 22.2 1
85.2 26.9 36.7 24.5 35.8 31.3 7.4 25.1 37.1 18.7 20.3 1
84.2 7.9 41.7 27.0 41.5 41.7 7.9 30.0 36.4 23.6 25.7 1
90.2 6.9 43.1 25.8 43.0 43.1 9.5 28.8 39.2 23.0 22.7 1
85.8 26.3 56.0 45.8 53.3 56.0 26.3 20.1 46.7 18.0 17.3 3
74.0 25.1 51.3 40.8 47.5 43.0 15.2 22.6 40.5 18.8 16.9 3
54.3 23.7 34.5 31.0 32.1 27.5 6.4 15.4 11.0 13.6 14.5 3

126.4 36.2 47.0 35.5 46.1 36.7 6.4 28.5 86.0 26.4 23.8 2
94.0 42.3 38.8 33.3 35.5 26.8 7.8 28.9 41.8 21.5 22.3 3

108.6 46.6 41.0 34.1 37.9 28.0 5.0 31.6 51.5 28.9 21.4 3
99.5 25.7 45.9 30.5 46.1 43.5 8.5 29.6 41.6 23.4 24.3 1
81.4 16.5 42.7 26.6 42.7 38.9 8.7 28.3 35.3 21.5 21.8 1
47.0 21.6 32.9 28.9 30.9 28.4 6.5 14.7 20.4 11.2 12.1 5
52.0 9.5 38.0 24.4 37.7 36.0 5.2 16.5 23.4 11.9 11.2 2
47.4 15.8 29.6 20.6 28.2 24.0 7.1 10.4 6.1 8.0 10.2 3
51.2 6.0 30.7 20.9 30.2 30.7 6.0 15.7 16.5 13.5 14.8 2
94.4 47.6 60.7 50.3 57.3 50.9 9.0 32.0 43.6 23.5 25.1 5

165.0 36.3 67.3 48.7 67.1 61.4 12.0 45.2 66.0 36.2 37.4 2
105.0 14.0 47.0 37.0 47.0 46.0 13.0 31.0 58.0 26.0 23.0 4
97.0 43.0 37.0 31.0 35.0 33.0 7.0 30.0 45.0 26.0 26.5 2

114.0 37.0 45.0 30.0 40.0 37.0 5.0 38.0 57.0 28.0 30.0 1
98.0 18.0 40.0 15.0 39.0 39.0 15.0 17.0 78.0 16.0 12.0 1

113.0 7.3 49.6 35.0 49.2 49.6 7.3 16.8 39.3 12.7 13.3 2
82.6 17.9 45.9 30.5 45.7 45.9 17.9 14.8 15.2 12.2 13.0 5
86.4 11.7 50.7 30.5 50.0 48.6 11.3 29.0 38.4 23.3 23.4 2

140.0 44.8 64.4 50.7 62.9 51.7 5.1 14.0 19.6 10.7 13.0 5
78.4 9.1 36.0 25.8 35.8 36.0 9.1 15.6 19.2 10.8 13.7 4
92.3 24.5 44.3 28.1 44.4 39.6 7.0 25.4 34.1 17.8 19.9 1
88.8 12.3 41.9 24.0 41.5 36.5 3.6 26.8 37.1 21.5 22.1 1
76.5 22.8 52.0 39.0 51.6 47.3 4.1 23.5 44.3 19.0 18.8 5

121.1 7.3 71.4 45.2 69.1 71.4 7.3 16.6 33.3 13.5 15.7 5
143.0 20.3 61.3 42.6 61.5 51.2 3.5 31.8 37.2 26.7 29.3 2
44.0 5.8 31.3 21.8 31.0 29.7 3.5 16.3 17.9 12.7 11.5 1
42.4 3.8 31.7 15.9 30.3 31.7 3.8 11.6 14.2 8.7 8.4 1
82.8 10.8 42.5 25.8 41.9 42.5 10.8 22.7 35.7 16.7 18.6 1
71.0 21.6 34.8 24.8 34.3 31.5 6.0 19.1 30.4 14.8 15.0 1
52.4 10.0 41.0 26.7 40.9 37.6 4.2 11.5 23.1 8.8 9.0 5

117.0 12.1 57.7 35.4 57.6 57.7 12.1 23.9 38.7 15.4 19.5 1
80.0 14.5 58.6 35.8 57.4 58.6 14.5 23.0 22.2 18.1 22.5 5
73.5 27.0 39.4 29.8 38.3 34.1 8.4 26.0 35.3 20.6 18.9 3

104.5 23.4 54.0 29.4 54.8 51.2 7.5 16.5 43.9 15.8 13.5 1
96.0 32.1 46.0 28.7 45.4 41.9 8.2 32.9 43.9 26.1 23.8 1
67.6 12.1 39.0 24.9 38.8 25.5 0.0 14.7 23.9 13.6 12.2 3

127.8 16.3 63.0 34.7 60.2 63.0 16.3 36.7 56.2 26.9 33.7 1
79.8 24.4 44.1 34.7 43.2 37.7 9.6 17.5 34.7 14.5 15.2 3
31.9 1.9 26.3 15.4 25.5 26.3 1.9 7.0 14.4 5.2 5.1 2
58.0 4.2 52.1 31.5 52.2 52.1 4.2 11.2 17.4 10.9 11.2 5
78.9 8.7 40.1 23.5 39.7 37.8 3.8 18.9 38.3 13.0 15.4 5

107.5 37.1 51.0 33.7 49.7 44.1 6.9 33.2 45.2 27.1 25.2 1
91.9 13.9 50.9 41.2 51.1 49.1 14.9 30.4 27.1 26.2 26.7 3

153.0 25.6 70.8 54.2 70.9 67.3 14.8 28.9 42.2 22.3 25.9 1
100.4 12.3 55.5 40.6 54.3 55.0 10.3 36.3 54.0 30.0 28.3 3
88.1 9.8 48.1 30.0 48.0 48.1 9.8 25.9 40.7 20.3 20.7 1
83.5 14.2 43.5 23.1 42.9 40.8 5.2 18.7 33.7 14.3 15.1 1
81.6 10.4 41.5 25.7 40.9 40.3 7.5 23.1 36.8 16.7 19.5 1
80.3 19.4 44.3 27.8 43.6 35.1 3.7 21.2 20.8 14.8 19.2 5
78.7 28.0 38.0 27.8 37.4 33.8 4.6 20.2 28.3 15.9 17.2 3
75.2 13.9 39.1 24.3 39.4 33.7 1.6 24.7 32.7 17.4 19.4 1
75.5 24.9 37.5 26.8 36.5 29.8 3.9 26.7 32.9 20.0 20.5 5
57.5 9.0 38.8 25.7 38.6 35.7 5.1 17.0 28.0 14.5 12.3 2
56.7 4.0 49.7 28.3 48.5 49.7 4.0 17.0 24.4 13.4 12.0 1
46.5 17.8 28.5 21.9 26.2 18.0 1.3 14.6 25.6 12.6 10.0 4
98.6 22.3 42.8 29.8 42.5 37.0 5.0 29.3 38.3 20.7 23.8 1
97.7 6.0 44.0 24.1 42.2 44.0 6.0 28.5 34.0 21.8 23.9 1
89.5 34.2 39.5 28.4 38.0 32.6 7.3 25.3 42.6 20.3 19.8 1
88.8 12.0 46.1 28.3 46.2 42.7 6.0 28.0 33.3 22.5 21.6 1
87.3 9.5 50.9 32.5 49.2 49.0 10.9 28.5 34.8 22.5 22.7 5
89.3 30.8 42.8 29.1 42.6 39.4 6.0 31.7 31.5 23.0 25.9 1

Table B.11: Dimensions (mm) of polished Neolithic stone axes from southern Italy.
‘L‘, ‘B’ and ‘T’ are length, breadth and thickness variables; WC and DC are the
width and depth of the cutting edge. ‘Type’ is a classification by butt shape; 1 =
pointed, 3 = rounded, 5 = square, 2 and 4 are intermediate types (Source: O’Hare,
1990).
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Zooarchaeological species assemblages

Type Region Cow Sheep Pig
T B 54 19 27
V B 57 31 12
H B 56 30 14
R B 47 41 12
L B 63 16 21
A B 65 22 13
T G 54 11 35
V G 61 12 27
H G 45 20 35
R G 73 17 10
L G 54 12 34
A G 57 13 30
T P 21 41 38
V P 24 52 24
H P 24 52 24
R P 16 60 24
T T 34 18 48
V T 50 24 26
H T 44 20 36
R T 38 26 36

Table B.12: Average percentages of species from four regions (B = Roman Britain,
G = Roman Germany, P = Roman Provence, T = The Three Gauls) and six site
types (T = Town, V = Vici, H = Villae, R = Rural settlements, L = legionary
sites, A = Auxiliary sites. The data are derived from Figures 1-4 in Hesse (2011),
who presented the data in the form of clustered barplots, based on numerical infor-
mation from King (1999).
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Romano-British vessel glass of the 1st-3rd

centuries A.D.

Site Date (AD) Cup Bowl Jar Flask Jug Bottle
EVE
total

London 75-90 36 20 1 14 17 12 21.04
Castleford 70-95 19 21 4 18 6 33 16.06
Gloucester 70-98 24 17 3 13 10 33 13.92
Caerleon TS 74-100 25 36 0 7 6 25 7.14
Carlisle 70-105 15 29 2 7 7 40 18.32
Chester 70-120 28 24 5 6 11 26 14.47
York 70-120 32 30 7 11 4 15 19.96
Colchester 65-150 34 21 7 6 11 21 26.84
Dorchester 70-150 27 9 11 22 11 19 13.11
Wroxeter 80-150 31 13 3 11 14 27 16.62
Castleford 140-80 54 3 0 8 6 30 26.54
Verulamium 150-60 47 11 3 4 10 24 10.57
Towcester 155-65 28 19 16 7 17 13 8.45
Harlow 160-70 33 14 16 19 6 12 17.10
Pentre Farm 120-200 56 14 0 6 5 19 10.32
Caerleon 130-200 62 9 0 4 3 22 4.49
Rocester 140-200 9 3 9 3 11 65 6.52
Catterick 150-200 52 5 2 1 5 35 10.48
Housesteads 150-500 76 0 14 0 8 2 7.10
Lincoln 160-230 45 4 4 7 15 25 9.33
Wroxeter 175-225 47 11 5 12 11 15 7.30
York 175-250 42 14 4 6 11 23 9.99
York 160-280 73 0 3 4 3 17 9.90
Caersws 70-130 39 19 7 10 17 27 15.83
Wilcote 70-150 7 37 0 3 18 37 2.76

Table B.13: Site by type data for Romano-British vessel glass. Numbers are ex-
pressed as percentages and define, in percentages, the profile of a row. The EVE
totals allow these to be converted to EVEs, and this has been done for analyses
in the text. The first 10 and last two sites are classified as first- to (mid) second
century and labels 1 to 12 in the figures in the text; remaining sites are (mid)
second- to third century and labeled 1 to 13 in the relevant figures (Source: Cool
and Baxter, 1999).
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Romano-British Flavian drinking vessels

Site Order Sport Tall Rib Hof Ind FC WC EVEs
Percentage Total

Carlisle 1 29 7 36 0 7 7 14 2.8
York 2 0 0 8 92 0 0 0 2.4
Castleford 3 0 17 58 0 8 8 8 2.4
Wroxeter 4 0 0 43 29 0 14 14 1.4
Caersws 5 0 7 20 73 0 0 0 3.0
Colchester 6 18 0 0 55 14 9 5 4.4
Gloucester 7 0 18 0 82 0 0 0 3.4
Caerleon 8 0 0 0 25 21 38 17 4.8
London 9 15 8 0 22 23 25 8 13.0
Fishbourne 10 0 14 0 0 29 57 0 1.4

Table B.14: Assemblage profiles for seven drinking vessel types, from the Flavian
period in England. ‘Order’ is geographical from north to south. ‘Sport’, ‘Rib’ and
‘Hof’ refer to mould-blown sport cups, mould-blown ribbed cups and Hofheim cups;
‘Tall’, ‘Ind’, ‘FC’ and ‘WC’ are beaker types, tall mould-blown, indented, facet-cut
and wheel-cut respectively (Source: Cool and Baxter, 1999).
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La Tène fibulae from Münsingen

FL BH BFA FA CD BRA ED FEL C BW BT FEW Coils Length
93 24 7 10 16 1 13 31 47 3.5 3.5 * 4 114
21 7 6 9 6 5 2 11 10 3.5 1.7 * 12 35
33 15 2 8 7 3 8 10 20 3.9 3.2 * 4 60
23 26 4 7 9 5 12 1 16 6.2 7.7 2.8 4 74
20 23 2 8 7 1 8 5 16 7.7 5.2 2.6 6 68
27 15 6 8 7 5 3 11 11 3.7 3.5 1.8 4 55
10 16 1 10 9 1 7 0 11 6.1 4.1 0 4 45
15 18 1 10 10 1 5 0 15 3.5 3.5 0 4 40
31 13 4 9 7 4 5 11 18 17.6 1.4 3.6 6 54
19 17 1 7 6 2 6 10 12 9.2 6.6 3.9 6 39
41 23 3 8 11 3 14 15 24 7.3 5.8 8.6 6 71
47 17 5 9 10 4 8 14 26 5.8 4.7 6 6 78
29 15 3 8 6 3 6 10 17 11.7 3.9 6.4 6 47
23 13 3 8 6 2 10 7 15 5.2 2.7 5.4 12 41
20 15 1 7 5 1 12 4 12 4.7 4.8 3.5 6 38
17 16 1 7 7 1 8 3 11 5.1 3.5 2.2 6 44
20 15 2 7 7 3 6 10 12 5.5 3.8 3.9 6 50
20 13 5 8 5 2 10 5 10 4.4 4.4 5.1 6 36
21 18 2 9 9 1 5 6 15 8.1 2.3 1.9 4 49
28 17 1 10 10 2 8 6 20 2.5 2.6 2.2 4 53
94 15 7 10 12 5 11 31 50 4.3 4.3 * 6 128
22 18 1 8 7 1 5 8 17 8.8 3 2.4 6 59
20 14 1 8 6 1 3 4 14 14.3 1.4 1.7 6 44
22 15 3 8 7 3 13 1 17 5 4.6 2.5 10 47
12 22 1 6 9 1 9 0 11 6.8 6.4 0 4 45
27 15 1 8 10 2 9 11 19 8.2 4 7.6 4 53
15 19 2 8 7 3 3 4 12 3.7 3.5 1.9 4 56
10 10 2 10 6 2 2 - 9 2 2.3 2.2 3 26
9 13 3 10 4 4 9 0 8 9.6 5 0 22 28

68 18 7 9 9 7 3 50 18 9.3 6.5 * 4 110

Table B.15: Measurements on Bronze Age fibulae from Münsingen, Switzerland.
FL = foot length, BH = bow height, BFA = bow foot angle, FA = foot angle, CD
= coil diameter, BRA = bow rear angle, ED = element diameter, FEL = foot
extension length, C = catchplate, BW = bow width, BT = bow thickness, FEW
= foot extension width, Coils = Number of coils. Angles in intervals of 10o and
dimensions are in millimetres. The data are from Table 9.1 of Doran and Hodson
(1975) with fibulae illustrated in their Figure 9.1.
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Medieval glass compositions

Na Mg Al P K Ca Mn Fe Cu Zn Pb

16.2 2.1 2.9 0.3 2.8 5.2 0.42 0.47 0 0.01 0.13
16.3 2.2 2.9 0.3 2.7 5.2 0.42 0.46 0 0.01 0.12
12.3 3.1 1.7 0.8 4.7 9.5 0.60 0.40 0.11 0.02 0.14
16.6 2.2 2.7 0.4 2.7 5.1 0.42 0.46 0 0.01 0.14
16.2 2.1 2.9 0.3 2.7 5.3 0.43 0.49 0 0.01 0.15
15.2 2.5 3.1 0.4 2.6 5.3 0.40 0.47 0.03 0.01 0.11
17.0 1.1 1.1 0.2 1.1 7.8 0.50 0.35 0.21 0.01 0.09
16.5 1.1 1.2 0.2 1.3 8.0 0.51 0.36 0.22 0.01 0.12
16.5 2.3 2.8 0.4 2.7 5.1 0.42 0.47 0 0.01 0.14
12.2 3.2 1.5 0.9 5.0 9.7 0.61 0.39 0.11 0.02 0.16
12.6 3.4 1.5 0.9 4.8 9.5 0.60 0.39 0.11 0.02 0.16
12.5 3.1 1.6 0.8 4.5 9.2 0.58 0.39 0.11 0.02 0.16
12.5 3.2 1.6 0.9 4.9 9.8 0.60 0.39 0.11 0.02 0.14
12.8 3.2 1.6 0.8 4.7 9.5 0.60 0.40 0.11 0.02 0.14
12.5 3.1 1.6 0.8 4.5 9.5 0.61 0.40 0.11 0.02 0.14
15.8 1.2 1.3 0.3 1.1 7.7 0.50 0.34 0.21 0.01 0.10
17.3 0.8 1.0 0.3 0.5 7.2 0.51 0.34 0.23 0.02 0.13
12.1 3.0 1.5 0.9 4.0 9.7 0.62 0.41 0.14 0.03 0.14
12.2 3.2 1.5 0.9 4.2 9.9 0.62 0.39 0.14 0.02 0.14
15.0 1.5 0.9 0.5 1.6 8.7 0.54 0.36 0.23 0.02 0.22
14.8 0.8 0.8 0.3 1.1 8.6 0.50 0.32 0.19 0.02 0.17
13.9 2.2 0.9 0.7 2.4 10.1 0.54 0.38 0.20 0.02 0.13
16.5 0.6 0.8 0.3 0.4 7.9 0.48 0.34 0.24 0.02 0.17
17.4 0.6 0.8 0.3 0.4 7.4 0.54 0.36 0.22 0.02 0.13
16.8 0.5 1.1 0 0.2 7.1 0.47 0.34 0.21 0.01 0.11
16.6 0.5 1.2 0 0.2 7.1 0.48 0.35 0.21 0.01 0.11
16.8 0.3 1.1 0 0.2 7.3 0.47 0.33 0.20 0.01 0.12

Table B.16: The compositions are for blue medieval glass from York Minster and
various archaeological excavations. The full data are in Cox and Gillies (1986) of
which the above is used in Baxter (1989).
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Levantine glass compositional data

SiO2 Al2O3 FeO MgO CaO Site SiO2 Al2O3 FeO MgO CaO Site
70.27 2.74 0.33 0.51 8.52 1 71.09 2.62 0.42 0.69 8.48 1
69.37 2.64 0.31 0.66 8.77 1 68.87 2.97 0.50 0.48 8.10 1
71.35 2.60 0.32 0.70 7.60 1 67.28 3.14 1.42 0.49 8.27 1
69.55 2.91 0.42 0.90 8.90 1 68.52 2.66 0.35 0.50 8.29 1
70.48 2.64 0.39 0.75 8.90 1 69.65 3.00 0.32 0.57 8.50 1
68.52 2.74 0.41 0.64 8.07 1 68.73 2.44 0.42 0.48 8.43 1
71.08 2.78 0.32 0.59 8.83 1 72.36 2.65 0.32 0.52 7.81 1
69.38 2.96 0.35 0.66 10.50 1 71.12 2.65 0.25 0.52 8.36 1
69.68 2.65 0.36 0.54 9.15 1 70.04 2.62 0.36 0.62 7.97 1
71.53 2.86 0.35 0.52 8.62 1 68.11 2.88 0.86 0.66 8.92 1
70.39 2.73 0.39 0.57 8.70 1 69.98 2.69 0.40 0.66 8.53 1
71.13 3.00 0.39 0.57 9.56 1 69.76 2.87 0.44 0.69 8.51 1
71.85 2.72 0.29 0.46 8.42 1 67.76 3.01 0.50 0.78 8.67 1
68.34 2.83 0.44 0.67 10.30 1 68.19 2.75 0.36 0.55 9.18 1
69.44 2.79 0.38 0.63 8.06 1 67.12 2.71 0.39 0.52 9.91 1
71.54 2.64 0.27 0.41 8.14 1 67.73 2.64 0.34 0.51 8.96 1
71.23 2.63 0.28 0.45 8.02 1 68.50 2.56 0.39 0.45 8.41 1
69.48 2.87 0.38 0.80 10.50 1 67.20 2.61 0.46 0.56 8.80 1
68.74 2.97 0.36 0.92 8.95 1 66.26 2.76 0.61 0.61 9.11 1
72.81 2.44 0.28 0.43 8.17 1 69.75 2.43 0.37 0.71 6.61 2
68.47 2.76 0.50 0.87 9.25 1 70.60 3.03 0.43 0.72 8.81 2
71.75 2.56 0.29 0.50 8.68 1 70.80 3.16 0.39 0.72 8.81 2
67.44 2.84 0.52 0.35 8.07 1 69.89 2.76 0.37 0.74 9.17 2
71.63 2.60 0.28 0.53 8.27 1 69.48 2.72 0.35 0.77 9.25 2
70.13 2.55 0.33 0.56 8.48 1 70.46 2.92 0.54 0.76 10.20 2
69.50 2.75 0.34 0.46 8.72 1 66.23 2.83 0.32 0.52 9.29 2
66.63 2.93 0.89 0.38 8.42 1 64.85 2.81 0.24 0.57 11.28 2
71.22 2.64 0.32 0.46 8.10 1 65.93 2.91 0.24 0.58 9.29 2
70.73 2.64 0.32 0.56 8.53 1 65.80 2.85 0.35 0.51 9.54 2
69.45 2.81 0.46 0.64 9.81 1 66.25 3.19 0.34 0.52 11.47 2
71.27 2.54 0.32 0.48 8.47 1 66.83 3.28 0.40 0.61 11.11 2
71.76 2.82 0.36 0.60 8.77 1 67.42 3.22 0.32 0.53 10.90 2
69.62 2.65 0.34 0.48 9.38 1 67.30 3.26 0.30 0.50 10.08 2
72.07 2.60 0.42 0.68 7.97 1

Table B.17: Roman Levantine glass compositions. This is a subset of data ana-
lyzed, but not published, in Baxter and Freestone (2006). The intention there was
to contrast log-ratio analysis with other methods; the purpose to which the data
are put here is different. Professor Ian Freestone of University College London
is thanked for making the data available; other analyses and the archaeological
background are discussed in Freestone et al. (2000).
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Lead isotope ratio data

Kea Lavrion Seriphos
Id. 208/206 207/206 206/204 208/206 207/206 206/204 208/206 207/206 206/204
1 2.06847 0.83232 18.886 2.05822 0.83201 18.808 2.06377 0.83069 18.888
2 2.06854 0.83236 18.881 2.05748 0.83177 18.846 2.06431 0.83079 18.898
3 2.06666 0.83199 18.860 2.05659 0.83100 18.834 2.06432 0.83087 18.901
4 2.06732 0.83191 18.883 2.05785 0.83148 18.823 2.06323 0.83061 18.888
5 2.06703 0.83186 18.871 2.05690 0.83135 18.827 2.06370 0.83066 18.893
6 2.06614 0.83209 18.866 2.05803 0.83151 18.823 2.06441 0.83080 18.899
7 2.06796 0.83230 18.883 2.05768 0.83147 18.841 2.06653 0.83121 18.916
8 2.06553 0.83160 18.868 2.05713 0.83216 18.873 2.06401 0.83088 18.897
9 2.06556 0.83159 18.859 2.05805 0.83187 18.817 2.06384 0.83075 18.879

10 2.06469 0.83179 18.860 2.05720 0.83140 18.832 2.06520 0.83094 18.909
11 2.06389 0.83150 18.848 2.05785 0.83184 18.818 2.06340 0.83063 18.895
12 2.06383 0.83122 18.856 2.05662 0.83172 18.838 2.06213 0.83033 18.879
13 2.06456 0.83169 18.846 2.05634 0.83106 18.832 2.06255 0.83057 18.893
14 2.06594 0.83205 18.853 2.05816 0.83166 18.819 2.06121 0.83032 18.899
15 2.06494 0.83192 18.852 2.05883 0.83161 18.818 2.06486 0.83095 18.908
16 2.06510 0.83156 18.871 2.05801 0.83142 18.835 2.06512 0.83081 18.906
17 2.06767 0.83205 18.896 2.06375 0.83216 18.844 2.06489 0.83092 18.904
18 2.06492 0.83139 18.876 2.05526 0.83086 18.840 2.06521 0.83081 18.908
19 2.06423 0.83133 18.868 2.05776 0.83208 18.824 2.06349 0.83044 18.897
20 2.06338 0.83165 18.839 2.05785 0.83199 18.818 2.06202 0.83029 18.892
21 2.06544 0.83207 18.858 2.06287 0.83203 18.886 2.06238 0.83026 18.885
22 2.06456 0.83138 18.864 2.06375 0.83271 18.846 2.06280 0.83030 18.890
23 2.06662 0.83180 18.883 2.05850 0.83191 18.822 2.06529 0.83090 18.909
24 2.06712 0.83197 18.874 2.05499 0.83183 18.776 2.06618 0.83105 18.916
25 2.06724 0.83189 18.886 2.05676 0.83117 18.882 2.06454 0.83079 18.899
26 2.06720 0.83207 18.873 2.05951 0.83127 18.857 2.06323 0.83061 18.888
27 2.06620 0.83167 18.873 2.05902 0.83043 18.911 2.06512 0.83081 18.906
28 2.06660 0.83191 18.878 2.05857 0.83214 18.851 2.06529 0.83090 18.909
29 2.06452 0.83164 18.858 2.06124 0.83194 18.868 2.06618 0.83105 18.916
30 2.06775 0.83181 18.905 2.05671 0.83210 18.791 2.06520 0.83094 18.909
31 2.06644 0.83216 18.880 2.05891 0.83196 18.821 2.06288 0.83055 18.907
32 2.06720 0.83228 18.881 2.05978 0.83210 18.791 2.06437 0.83059 18.920
33 2.06587 0.83226 18.852 2.05846 0.83224 18.824 2.06731 0.83143 18.923
34 2.06438 0.83159 18.874 2.05537 0.83042 18.845 2.06660 0.83121 18.922
35 2.06723 0.83252 18.866 2.05521 0.83038 18.897 2.06570 0.83117 18.902
36 2.06537 0.83168 18.856 2.05616 0.83120 18.847 2.06401 0.83088 18.897
37 2.06569 0.83223 18.851 2.05789 0.83103 18.868 2.06384 0.83075 18.879
38 2.06549 0.83168 18.864 2.06219 0.83177 18.888
39 2.06316 0.83136 18.846 2.05626 0.83077 18.838
40 2.06648 0.83217 18.862 2.05850 0.83191 18.822
41 2.06579 0.83168 18.868 2.05499 0.83183 18.776
42 2.06624 0.83177 18.872 2.06020 0.83134 18.875
43 2.06607 0.83175 18.868 2.06184 0.83167 18.886
44 2.06684 0.83188 18.875 2.06110 0.83067 18.910
45 2.06721 0.83193 18.879 2.05548 0.83038 18.885
46 2.06648 0.83173 18.868 2.05825 0.83161 18.830
47 2.06646 0.83184 18.872 2.06046 0.83173 18.820
48 2.06670 0.83185 18.881 2.06359 0.83163 18.923
49 2.06338 0.83182 18.861 2.06150 0.83122 18.897
50 2.06461 0.83170 18.864 2.06194 0.83187 18.903
51 2.06390 0.83158 18.861 2.05951 0.83127 18.857
52 2.06531 0.83181 18.861 2.05926 0.83149 18.898
53 2.06565 0.83183 18.869 2.05919 0.83227 18.847
54 2.06757 0.83194 18.890 2.06119 0.83139 18.906
55 2.06589 0.83165 18.873 2.06338 0.83207 18.901
56 2.06784 0.83201 18.892 2.05867 0.83127 18.865
57 2.06597 0.83170 18.865 2.05871 0.83104 18.895
58 2.06512 0.83219 18.836 2.05552 0.83126 18.915
59 2.06710 0.83257 18.864 2.06206 0.83198 18.906
60 2.06751 0.83226 18.875
61 2.06625 0.83192 18.872
62 2.06391 0.83162 18.830

Table B.18: Lead isotope-ratio data for three sources in the Aegean (Source: Stos-
Gale et al., 1996).
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Neolithic pot dimensions I

Id. Type AX AY BX BY CX CY DX DY EX EY FX FY GX GY HX HY
15 A 4.32 8.65 3.92 7.25 3.72 5.75 3.82 4.95 4.22 4.07 4.32 3.22 3.10 0.92 0 0
23 A 11.40 20.00 10.37 17.42 9.60 15.20 9.60 15.20 10.20 13.95 10.37 11.87 8.77 5.35 4.37 0.10
32 A 8.15 17.00 7.35 15.70 6.65 12.82 7.02 11.42 7.92 9.67 8.20 7.87 5.80 1.95 0 0
37 A 10.60 19.20 9.50 17.05 9.03 14.07 9.33 12.33 10.27 10.97 10.43 9.37 7.83 2.67 0 0
38 A 7.53 14.20 6.67 11.40 6.40 8.72 6.45 7.90 7.00 6.90 7.17 5.92 5.97 2.75 2.32 0.05
43 A 6.80 12.10 6.27 10.33 5.97 7.83 6.10 7.30 6.40 6.20 6.55 5.10 5.70 2.00 3.50 0.30
45 A 8.05 15.60 7.52 12.67 7.20 10.20 7.35 9.52 8.30 7.97 8.60 6.65 7.17 2.55 3.97 0.22
46 A 8.80 13.77 8.22 12.45 7.70 11.15 7.70 11.15 7.80 10.87 7.90 10.55 6.25 4.37 2.47 0.35
52 A 7.53 17.20 6.67 15.13 6.00 10.02 6.42 9.02 7.10 8.05 7.40 6.55 6.10 2.95 2.37 0.10
65 A 8.40 14.82 7.97 13.10 6.85 10.35 6.85 10.35 7.52 8.70 7.75 6.97 6.45 2.80 4.07 0.20
82 A 9.30 18.70 8.37 16.20 8.00 13.27 8.62 10.27 9.42 9.37 9.70 8.20 7.65 3.75 2.10 0.10
86 A 6.97 15.90 6.40 14.17 5.87 11.93 5.93 11.77 6.83 10.00 7.30 6.73 6.17 2.70 3.60 0.20
87 A 6.35 14.20 5.95 11.65 5.63 9.17 5.77 8.77 6.37 7.77 6.65 6.07 5.45 2.52 2.75 0.07
88 A 10.43 18.20 9.27 15.50 8.93 13.93 9.23 12.47 9.67 11.50 9.90 9.27 8.50 4.05 4.43 0.07
91 A 8.25 16.50 7.70 14.55 7.25 12.05 7.85 8.95 8.65 7.70 8.95 6.15 7.40 2.20 3.75 0.05
93 A 7.90 16.20 7.10 14.00 6.80 11.33 7.22 9.27 7.85 8.15 8.12 6.27 6.40 2.40 2.40 0
94 A 8.50 19.07 8.00 16.93 7.73 14.63 8.10 10.87 8.90 9.60 9.27 7.77 7.53 3.10 2.82 0.30
99 A 4.50 10.20 4.07 7.95 3.90 6.57 4.00 6.10 4.45 5.20 4.62 4.17 3.92 1.77 2.10 0

181 A 7.82 16.30 7.05 14.35 6.75 12.80 6.85 12.07 7.37 10.35 7.57 8.27 6.22 3.37 3.02 0.20
182 A 5.70 13.20 5.12 10.65 5.00 9.02 5.32 7.50 5.82 6.75 6.00 5.70 4.75 2.10 2.07 0.20
183 A 8.47 18.90 7.63 15.77 7.40 14.10 7.47 13.43 8.63 11.73 9.12 8.82 7.45 3.82 3.57 0.25
184 A 6.77 14.20 5.90 11.77 5.50 10.27 5.62 9.77 6.40 8.20 6.62 6.47 5.37 2.52 2.80 0.03
185 A 5.10 8.10 4.32 5.92 4.10 5.15 4.10 5.15 4.10 5.15 4.10 5.15 2.90 1.47 0 0
186 A 6.60 16.50 6.10 14.00 5.90 11.60 6.07 11.40 6.97 10.00 7.40 7.50 6.02 2.77 2.95 0
187 A 9.23 20.00 8.53 18.03 8.03 15.33 8.03 15.33 9.27 13.40 9.60 10.87 7.95 5.02 3.80 0.12
188 A 8.20 14.10 7.67 12.10 7.22 9.92 7.47 9.42 7.80 8.65 7.92 7.32 6.63 3.00 3.00 0.02
189 A 3.70 8.30 3.30 6.95 3.10 5.40 3.25 4.20 3.65 3.65 3.85 2.90 2.95 0.90 1.20 0
190 A 5.33 10.20 5.07 8.77 4.87 7.40 5.00 4.90 5.30 4.33 5.43 3.70 4.10 1.27 1.30 0.03
196 A 8.92 16.10 7.60 13.10 6.80 9.95 7.05 9.22 7.72 7.97 7.95 6.62 5.40 1.75 0.00 0
200 A 5.43 8.20 4.50 6.80 4.20 5.83 4.17 5.60 4.30 5.15 4.32 4.57 3.67 1.97 1.55 0.30
201 A 6.30 14.00 6.00 12.20 5.17 9.80 5.17 9.80 6.20 8.63 6.83 6.43 5.60 2.80 2.57 0.12
202 A 5.00 7.60 4.40 6.50 4.00 5.70 4.00 5.70 4.10 5.60 4.10 5.40 3.30 2.30 1.70 0.00
205 A 14.10 28.30 12.70 23.40 12.40 20.70 12.53 19.70 13.67 17.73 14.05 14.82 11.10 5.77 5.32 0.40
207 A 4.70 10.00 4.15 8.00 4.00 6.55 4.10 4.80 4.45 4.40 4.55 3.60 3.85 1.45 1.80 0.10
209 A 12.42 20.40 11.12 16.95 10.60 14.52 10.87 13.17 11.87 11.80 12.27 9.67 8.52 2.52 0 0
210 A 4.60 9.70 3.90 8.00 3.62 6.45 3.72 5.67 4.07 4.97 4.20 4.12 3.55 1.85 1.70 0.02
214 A 6.25 11.00 5.72 9.75 5.47 8.97 5.55 8.77 5.57 8.40 5.60 8.15 4.32 3.17 1.52 0.15
221 A 12.67 23.10 11.57 20.10 11.02 16.75 11.70 13.92 12.97 12.02 13.23 10.37 10.72 3.90 5.37 0.05
222 A 13.67 27.00 12.10 22.67 11.57 19.20 11.95 16.87 12.87 14.60 13.13 12.27 10.40 4.90 4.60 0
223 A 12.83 22.00 11.87 18.87 11.57 16.40 11.77 14.97 12.63 13.60 12.87 11.87 10.03 4.73 4.80 0.13
225 A 4.97 9.00 4.35 7.70 4.10 6.72 4.10 6.70 4.27 6.42 4.35 5.82 3.65 2.57 2.02 0.02
227 A 7.33 13.90 6.47 11.53 6.10 8.53 6.17 7.93 6.63 7.23 6.85 5.92 5.70 2.85 2.52 0.05
229 A 4.62 9.60 4.12 8.17 3.92 6.67 3.97 6.00 4.45 5.07 4.65 4.02 3.85 1.70 1.77 0.02
230 A 10.50 23.50 9.15 19.22 8.50 16.55 8.50 16.55 10.07 14.47 10.65 11.47 8.72 4.85 3.82 0.05
249 A 8.37 16.40 7.37 13.17 6.92 10.15 7.00 9.57 7.52 8.52 7.72 7.22 6.50 3.25 3.12 0.13
250 A 18.20 32.50 16.35 30.40 14.75 26.10 14.90 25.30 15.40 23.70 15.55 22.10 12.10 8.00 5.10 0.40
251 A 13.05 25.20 11.85 21.75 10.70 19.25 11.15 18.75 11.40 17.85 11.45 16.30 8.75 8.40 6.00 0.50
255 A 17.55 32.50 15.30 29.20 14.60 25.95 14.80 25.35 15.55 23.60 16.00 21.10 12.55 7.60 5.60 0.05
259 A 9.10 18.40 8.20 15.35 7.85 13.95 8.20 13.55 8.75 12.20 9.00 10.20 6.95 4.15 3.40 0
260 A 6.10 11.30 5.70 9.90 5.20 8.50 5.25 8.30 5.60 7.55 5.80 6.90 4.60 3.05 1.85 0
262 A 8.60 13.80 7.55 11.90 7.20 10.70 7.20 10.40 7.35 9.90 7.40 9.20 5.75 4.15 2.30 0.20
267 A 6.43 14.50 6.00 11.97 5.80 10.47 6.10 8.97 8.60 7.73 6.15 6.62 5.35 2.57 2.52 0.20
268 A 9.87 18.10 9.30 16.30 9.07 14.80 9.17 14.07 9.33 13.37 9.43 12.20 7.97 5.23 4.03 0.17
271 A 14.83 26.60 13.17 23.87 12.57 22.33 12.57 22.20 13.53 19.87 13.73 18.33 11.10 7.50 5.17 0.07
272 A 4.30 9.40 3.70 7.60 3.40 5.70 3.80 5.00 4.20 4.50 4.40 3.60 3.60 1.80 1.85 0
273 A 11.00 20.60 10.40 18.30 9.60 15.40 9.80 14.20 10.50 13.00 10.90 10.00 8.40 3.60 4.30 0
274 A 5.90 11.70 5.60 10.10 5.07 8.63 5.17 8.40 5.47 7.17 5.63 5.80 4.67 2.27 2.12 0.20
278 A 15.50 29.50 13.90 24.25 13.40 20.20 13.90 19.10 15.60 16.45 16.25 13.25 12.70 4.80 6.00 0.20
279 A 10.60 22.40 9.37 18.85 8.92 16.50 9.22 16.10 9.80 14.43 10.20 11.45 8.25 4.55 3.85 0.25
281 A 4.50 8.60 3.90 7.20 3.65 5.82 3.70 5.12 4.20 4.47 4.45 3.40 3.75 1.45 2.00 0.10
283 A 10.80 22.40 9.73 19.87 9.07 17.93 9.37 16.90 10.10 15.57 10.32 13.22 8.82 5.85 4.52 0.22
288 A 13.85 22.60 12.10 19.10 11.30 17.07 11.40 16.13 11.90 13.70 12.03 11.60 10.50 5.80 4.07 0.30

Table B.19: Dimensions of Early and early Middle Neolithic pot vessels. Continued – see
Table B.20 for details.
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Neolithic pot dimensions II

Id. Type AX AY BX BY CX CY DX DY EX EY FX FY GX GY HX HY
290 A 12.80 22.90 11.80 19.65 11.47 17.72 11.92 15.37 12.95 13.30 13.25 11.37 10.57 4.67 4.90 0.25
293 A 12.90 22.00 11.20 17.70 10.70 14.90 11.00 13.30 12.10 11.20 12.40 7.50 10.90 3.40 5.10 0
294 A 10.70 19.90 9.20 16.30 8.80 14.10 8.90 13.75 9.65 12.20 9.85 10.40 7.70 3.55 3.75 0.05
300 A 10.20 15.10 9.70 13.10 9.37 11.57 9.45 10.02 9.62 9.70 9.75 9.05 6.87 3.70 3.12 0.07
305 A 9.20 15.10 7.57 11.50 6.72 8.17 15.75 8.10 7.35 7.07 7.51 5.87 6.75 3.30 3.60 0.00
307 A 12.77 21.10 11.17 17.13 10.27 13.10 10.53 11.10 11.03 10.00 11.23 8.80 9.20 3.93 4.02 0.12
308 A 8.35 14.10 7.50 10.90 6.95 8.60 7.10 7.80 7.45 7.05 7.45 6.05 6.35 3.10 3.45 0.20
311 A 9.53 15.00 8.47 12.05 8.07 8.87 8.10 8.30 8.22 7.80 8.25 7.17 6.50 2.67 2.62 0.05
312 A 6.95 15.90 6.45 12.87 6.17 10.87 6.27 9.92 7.25 8.20 7.42 6.90 6.30 3.17 3.17 0.15
320 A 14.77 28.00 13.47 23.20 12.92 19.55 13.15 16.67 14.20 14.87 14.57 12.52 12.22 5.97 5.00 0.27
321 A 4.40 10.20 3.92 8.10 3.75 6.07 3.77 5.57 4.20 5.02 4.45 3.72 3.07 1.05 0 0
323 A 16.20 31.20 15.40 26.53 15.03 23.03 15.13 22.27 16.17 19.71 16.53 16.23 13.20 6.60 3.87 0
324 A 6.37 11.60 5.83 9.80 5.57 8.65 5.72 8.15 6.10 7.20 6.30 6.10 5.10 2.12 2.65 0.17
325 A 20.30 31.50 18.00 27.35 16.15 23.90 16.20 23.45 16.75 21.35 16.97 18.60 13.12 8.05 5.95 0.27
326 A 4.80 11.20 4.53 9.33 4.40 7.55 4.70 6.52 4.97 6.00 5.13 4.73 4.23 2.03 2.22 0.05
327 A 11.05 24.80 10.17 21.67 9.92 19.97 10.42 18.60 11.22 16.75 11.57 14.62 9.80 7.22 4.20 0.32
328 A 10.47 23.00 9.77 19.83 9.27 17.30 9.50 16.62 10.40 14.70 10.85 11.45 9.02 5.32 3.87 0.07
329 A 12.35 22.20 12.10 19.97 11.85 16.62 12.05 15.17 12.50 14.70 12.67 14.10 9.10 5.35 3.25 0
336 A 7.00 12.10 5.70 9.45 5.32 7.95 5.37 7.80 5.42 6.95 5.45 5.95 4.50 2.60 2.50 0.27

3 B 9.63 18.73 6.87 14.40 5.52 8.97 5.52 8.97 6.52 8.10 6.90 6.90 5.62 3.72 2.10 0.15
33 B 14.40 29.20 13.75 26.35 13.50 23.20 13.95 20.20 14.55 19.25 14.75 17.55 12.50 9.05 5.85 0
59 B 11.92 22.10 10.45 17.30 9.90 14.22 9.90 14.22 10.32 12.97 10.45 10.70 8.00 4.57 3.20 0.05
60 B 8.40 14.40 7.85 11.85 7.60 9.65 7.65 9.15 7.85 8.65 7.90 8.00 6.35 2.85 3.50 0.25
61 B 13.20 23.10 12.50 19.90 12.10 16.90 12.10 16.90 12.70 15.40 12.80 13.60 11.40 9.20 4.20 0

131 B 11.60 23.00 10.77 19.77 9.90 16.67 10.25 15.27 11.22 13.87 11.70 11.82 9.12 5.22 4.97 0.30
195 B 9.40 16.30 8.32 13.25 8.05 11.47 8.17 10.37 8.57 9.37 8.70 8.00 7.17 3.52 2.97 0
211 B 7.27 12.80 5.62 10.30 4.52 7.02 4.55 6.60 5.12 5.97 5.35 5.17 4.30 2.30 1.67 0.05
212 B 8.27 14.70 7.97 13.13 7.60 10.47 7.65 9.27 7.77 8.97 7.82 8.60 6.52 3.92 3.10 0.03
213 B 6.50 14.00 5.00 11.00 4.00 6.83 4.00 6.70 4.77 6.07 5.07 4.97 4.10 2.10 2.17 0
216 B 7.00 14.70 5.95 12.10 4.57 7.15 4.57 7.15 5.17 6.15 5.42 5.17 4.67 3.07 1.45 0.05
218 B 8.70 16.00 8.43 13.70 8.30 12.43 8.37 11.90 8.60 11.27 8.73 10.63 6.60 5.13 2.75 0.05
226 B 6.22 15.30 5.07 9.60 4.60 6.25 4.62 6.17 5.10 5.12 5.30 4.22 4.42 2.12 2.37 0.02
233 B 9.77 18.90 9.15 15.70 9.00 13.42 9.15 11.85 9.30 11.55 9.37 11.15 7.02 3.72 3.85 0.27
234 B 10.80 18.80 9.70 15.90 9.03 10.93 9.10 10.87 9.43 10.27 9.60 9.00 7.27 3.53 3.23 0.03
236 B 9.90 17.20 8.40 13.55 7.70 10.33 7.83 9.97 8.10 9.03 8.20 8.22 6.92 3.80 3.52 0.20
286 B 12.02 22.50 11.42 19.65 11.27 17.20 11.37 14.97 11.57 14.60 11.62 14.20 9.47 6.80 3.50 0.15
292 B 15.10 24.20 13.17 19.97 12.27 15.87 12.43 14.97 12.77 14.03 12.92 12.45 10.32 5.72 4.55 0.20
306 B 20.23 39.40 18.17 34.20 17.53 27.93 18.17 24.03 19.10 22.63 19.50 21.23 14.63 9.47 4.33 0.07
309 B 11.43 14.40 10.17 11.27 9.77 10.00 9.80 9.83 9.90 9.47 9.97 9.07 8.93 5.17 3.60 0.07
322 B 11.00 21.20 8.00 16.90 6.20 10.57 6.20 10.57 7.15 9.20 7.45 7.87 6.42 4.72 2.77 0.07
17 C 7.90 32.80 7.35 27.80 7.02 23.17 7.37 22.75 11.57 19.32 13.47 12.25 10.92 4.15 4.82 0.17
26 C 4.80 17.65 4.50 15.47 4.25 11.70 4.97 10.72 6.67 9.12 7.22 6.87 6.07 3.07 2.77 0.18
28 C 3.70 14.30 3.23 11.77 3.20 8.90 3.20 8.90 5.33 6.83 5.93 4.83 5.07 2.30 2.53 0.20
42 C 2.13 14.60 2.07 14.00 2.32 8.87 3.02 7.50 4.50 6.85 5.20 5.35 3.55 1.37 0 0
56 C 7.60 26.70 7.30 23.00 7.00 20.10 7.10 16.90 9.80 13.70 10.60 10.00 8.70 4.30 4.05 0.20

110 C 4.10 16.50 4.00 14.40 4.20 11.30 5.10 10.42 6.52 9.10 7.05 6.85 5.62 2.50 2.80 0.10
113 C 4.00 18.50 3.40 18.50 3.70 16.55 3.80 14.75 6.35 11.85 7.00 7.35 5.60 2.30 3.70 0.15
117 C 6.70 21.50 6.05 19.45 5.70 14.85 5.70 14.85 8.65 12.25 9.30 9.30 7.05 3.20 2.15 0
219 C 4.95 17.60 4.35 14.82 4.12 13.05 4.65 11.87 6.55 9.77 7.27 7.07 6.10 3.12 2.82 0.07
237 C 1.27 12.90 1.17 11.20 1.57 9.07 2.55 8.22 5.05 6.65 6.10 4.97 4.25 1.42 0.72 0
238 C 4.45 21.10 4.15 18.97 3.95 15.02 5.00 11.30 7.92 8.97 8.72 6.80 7.10 3.37 3.37 0.12
239 C 3.60 19.90 3.20 16.50 3.10 13.63 4.53 10.60 6.40 8.40 6.93 5.93 5.83 2.20 3.13 0
240 C 4.47 24.50 3.90 21.77 3.67 18.50 4.25 13.55 8.00 11.05 9.40 7.82 6.95 2.47 1.22 0
241 C 4.42 23.40 3.70 19.45 3.42 13.50 4.90 9.95 7.75 8.65 8.52 7.07 6.92 2.87 2.95 0.03
242 C 4.55 22.00 4.32 19.75 4.10 16.20 4.60 12.40 7.60 10.30 8.72 6.85 7.17 2.57 3.40 0.10
245 C 4.95 22.00 4.65 20.10 4.37 17.85 5.60 14.00 8.17 11.40 9.17 8.63 7.37 3.73 3.20 0.03

Table B.20: Dimensions of Early and early Middle Neolithic pot vessels. Types are A = funnel
beakers, B = bowls and C = flasks. The data are given in Madsen (1988b: 18) from an
unpublished thesis by Eva Koch Nielsen.
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Steatite (soapstone) compositions I

Co Cr Fe Mn Sc V source
79.922 3651.09 85046.8 1974.9 28.718 136.6 B
85.987 3048.68 81645.0 1080.8 18.842 98.3 B
55.996 3715.52 67993.0 1086.1 19.929 87.8 B
84.972 2692.54 87749.5 1994.5 44.837 90.3 B
54.895 4377.54 85050.6 765.5 25.098 114.9 B
86.328 3126.59 76897.8 1723.8 28.278 109.5 B
98.446 3161.21 97033.0 1059.3 44.330 183.7 B
72.584 2498.93 93137.6 1477.9 31.388 179.4 B
85.537 3377.98 87725.7 1106.2 43.713 140.1 B
88.970 2496.70 85346.6 1449.3 36.250 94.3 B
81.500 2806.32 83937.6 1452.2 20.607 106.7 B
87.819 3639.65 72122.3 1570.2 38.688 108.4 B
95.089 2433.46 78117.3 2736.2 18.656 94.6 B
66.747 4140.51 81671.2 1628.6 17.693 109.5 B
82.174 2869.83 84889.0 1271.2 22.632 123.4 B
74.482 3773.00 77696.4 1034.3 38.099 134.4 B

186.279 4241.28 82515.4 769.8 35.676 116.6 B
77.931 3190.86 73053.4 984.5 33.541 120.8 B
88.912 2560.53 78735.9 1366.1 35.176 101.1 B
82.011 2234.10 71537.6 1719.1 32.274 125.2 B

120.568 2751.49 88574.6 1005.1 40.898 168.7 B
81.017 3988.95 77190.7 1589.8 19.510 135.0 B
82.411 2421.41 79235.4 1319.4 31.036 103.9 B
77.020 4472.66 72434.2 960.2 16.496 133.6 B
87.675 3035.39 60636.0 986.2 8.351 77.7 Ch
81.600 4407.28 66807.5 1043.3 9.330 86.0 Ch
73.759 3717.79 68003.5 1168.6 10.115 78.3 Ch
70.814 4113.90 63823.5 760.9 13.223 97.0 Ch
72.729 3281.03 74038.8 1030.3 10.991 101.9 Ch
66.888 4433.68 71142.0 1034.8 11.607 108.1 Ch
86.635 3653.33 58785.4 919.1 9.768 76.5 Ch
89.540 3708.10 65341.5 1075.8 10.352 76.5 Ch
64.606 4291.03 66308.3 832.8 10.733 103.9 Ch
73.728 2874.23 71408.8 1431.5 9.603 92.8 Ch
82.703 2126.38 68577.2 1222.0 7.957 48.2 Ch
61.868 2775.08 70254.7 1127.7 11.205 63.3 Ch
82.426 4421.77 74533.8 1221.2 10.009 104.3 Ch
67.676 3639.89 67706.8 1199.0 11.457 87.7 Ch
73.770 3866.04 65228.5 1106.9 9.965 94.7 Ch
69.097 4225.50 60646.9 707.9 8.454 114.8 Ch
77.361 3802.93 72153.7 1149.0 8.656 111.0 Ch
83.165 3654.83 61353.1 877.6 8.991 79.5 Ch
67.761 3829.01 64021.9 840.3 9.928 118.1 Ch
63.633 2778.38 77672.0 1047.6 9.415 90.1 Ch
88.000 3120.50 54605.0 801.9 8.925 63.6 Ch
85.000 3170.20 43014.2 657.9 6.816 66.7 Ch
66.410 3462.40 59068.0 974.8 6.432 84.0 Ch
65.170 3655.30 60649.6 1077.0 7.123 98.5 Ch
72.310 3739.40 63223.7 1153.5 11.400 84.3 Ch

138.890 3913.20 71468.7 1826.8 11.812 114.2 Ch

Table B.21: Steatite compositions. Continued – see Table B.23 for details.
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Steatite (soapstone) compositions II

Co Cr Fe Mn Sc V Source
92.040 2451.40 76451.8 819.1 20.923 108.6 Cl
82.840 2378.00 64386.4 1938.3 14.768 75.3 Cl

100.680 3079.80 103244.6 528.2 14.278 108.9 Cl
89.230 2195.50 60465.3 559.9 19.088 78.0 Cl
98.410 2761.70 76687.8 1010.4 20.677 102.2 Cl
98.830 2346.40 80684.0 2425.2 14.867 91.1 Cl
89.800 2789.30 75676.5 464.7 16.385 111.5 Cl
84.430 2042.30 75668.8 409.2 17.883 93.5 Cl
95.360 1819.20 67577.3 486.3 26.087 91.9 Cl

102.830 2341.40 91330.0 1612.7 23.380 136.0 Cl
100.500 3051.90 90766.7 1348.6 17.624 119.8 Cl
107.310 2390.90 93048.6 913.6 8.369 101.6 Cl
116.080 3001.10 54015.5 1999.2 11.415 51.4 Cl
117.490 2600.20 85841.7 1155.5 14.136 99.1 Cl
98.350 3049.80 99653.6 2276.3 14.120 100.5 Cl

115.950 2159.90 75418.0 2458.6 23.301 91.2 Cl
95.470 1333.70 62553.7 1293.0 19.199 79.5 Cl

120.050 2959.00 88593.6 861.9 13.152 90.7 Cl
98.750 1974.40 61930.7 1168.1 16.894 90.7 Cl
88.270 2321.60 108413.8 1283.6 40.643 183.2 Cl
99.790 2128.10 105636.3 1900.5 46.700 178.7 Cl

101.750 2353.50 83656.8 1704.0 15.008 117.3 Cl
82.990 1486.70 73714.6 1579.1 12.377 129.3 Cl

107.740 3850.20 67945.4 464.7 11.876 184.2 Cl
114.660 3711.90 67114.3 483.7 9.490 136.3 Cl
105.360 4002.20 65773.2 661.8 12.216 81.2 Cl
68.220 1778.00 43286.4 766.3 7.514 48.0 L
65.820 1392.40 72872.7 3023.4 9.179 64.3 L
79.400 1817.20 56212.5 2463.8 13.139 25.7 L
78.510 1849.40 44407.9 727.7 7.786 29.8 L
77.280 2650.30 60557.9 468.4 13.422 60.0 L
79.950 1752.60 61094.1 483.8 7.880 44.6 L
41.240 2396.20 59655.5 318.0 5.032 26.8 L
67.640 3652.90 43790.2 466.3 2.577 67.6 L
80.700 2238.20 53133.4 562.5 11.908 37.2 L
60.680 2227.30 47506.0 688.1 8.508 54.1 L
74.620 2784.60 56947.0 730.9 8.826 68.2 L
67.240 1616.50 39345.7 1072.4 12.101 47.4 L
45.560 1554.10 40783.0 444.4 6.076 44.7 L
75.700 2140.80 51960.6 523.9 8.533 42.4 L
77.280 1926.40 47027.3 666.2 8.111 28.8 L
78.220 1842.80 48426.6 496.0 6.923 37.5 L

130.330 3833.90 78915.2 1764.1 14.447 45.6 L
68.710 2566.90 57777.7 824.5 11.586 74.6 L
97.450 3108.50 67163.9 993.5 10.638 52.5 L
65.400 1543.00 44103.7 776.8 21.566 54.7 L
73.800 1108.50 28853.5 591.0 6.678 22.9 L
78.560 2316.90 56192.8 380.9 8.993 35.6 L
67.730 2507.30 55955.9 830.8 16.484 72.7 L
56.530 2243.80 55195.2 695.1 11.890 60.6 L
55.810 2769.20 39754.2 432.0 4.772 37.9 L
66.300 1942.10 39032.9 492.5 6.234 33.4 L
71.530 1917.60 45460.6 768.2 8.581 43.0 L

Table B.22: Steatite compositions. Continued – see Table B.23 for details.
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Steatite (soapstone) compositions III

Co Cr Fe Mn Sc V Source
58.040 2527.40 47353.1 762.1 5.538 70.1 L
54.350 2701.00 63554.1 736.9 10.207 68.1 L
70.950 1766.00 47650.6 393.7 7.719 48.6 L
75.100 2132.80 42379.7 407.1 8.985 59.2 L
90.072 3824.31 76071.8 1433.6 18.106 72.2 O
89.183 4005.69 73403.6 1280.0 20.187 74.4 O
71.795 3756.80 107389.4 857.7 53.524 132.3 O
80.309 4404.39 94794.9 810.2 15.956 102.1 O
86.367 3888.40 72182.4 1164.0 20.318 86.7 O
77.380 2470.15 90857.9 2771.1 40.485 75.0 O
85.727 3963.24 82954.1 1004.9 33.330 90.5 O
76.624 4254.53 96869.4 846.0 40.523 114.5 O
84.134 4265.30 93321.0 1217.5 28.727 102.4 O
83.055 4451.62 69344.3 941.6 30.615 84.7 O
67.739 1430.23 108572.9 2662.6 39.545 130.5 O
87.746 3894.78 78481.5 1571.3 30.218 77.6 O
79.231 3062.89 73564.9 845.1 39.042 55.2 O
59.658 3444.40 107507.3 3490.2 47.306 143.8 O
85.141 3849.75 90248.4 1346.4 17.641 95.2 O
65.271 2043.88 80796.1 1715.7 90.449 106.9 O
75.200 2858.29 86502.4 1798.2 47.077 93.9 O
83.711 3838.21 91770.1 1002.2 38.903 119.3 O
75.153 2402.87 91478.2 877.1 19.886 105.8 O
96.053 2180.93 91864.7 828.6 33.932 104.3 O
76.352 4399.33 90425.5 806.6 14.782 121.1 O
77.250 2185.84 81638.4 1652.4 21.609 89.4 O
75.982 585.32 136444.8 3842.4 51.701 326.6 O
88.929 2261.14 61838.2 956.3 9.122 45.2 O
78.656 4167.74 110293.6 912.0 26.532 133.5 O
72.955 3197.77 58609.2 714.9 15.859 78.8 S
82.164 3337.16 78199.5 982.0 17.649 98.2 S
73.678 2856.82 71380.8 1250.2 15.000 74.2 S
91.021 2927.90 70001.5 888.1 15.403 77.6 S
91.118 2879.10 65949.1 2236.0 20.177 111.0 S
78.231 3568.37 76089.6 1100.5 12.244 90.2 S
80.324 3709.52 85105.9 1266.1 15.387 108.8 S

112.139 3442.62 83422.4 994.8 13.954 104.5 S
78.521 3010.26 73176.3 1096.7 15.206 95.9 S
86.799 3324.53 78478.9 1217.0 13.850 94.5 S
81.734 3208.94 77612.1 1566.9 21.609 96.6 S

138.492 3706.58 90452.5 813.6 16.296 120.8 S
96.085 3528.38 81847.7 811.2 16.824 107.9 S

102.407 3245.50 66971.5 596.5 14.161 67.5 S
84.873 3149.49 68530.2 1643.1 15.034 91.1 S
98.672 2796.14 71192.6 1214.7 11.339 94.0 S
89.922 2852.13 70818.1 1371.5 13.107 68.9 S
92.321 3059.89 83270.9 1290.7 15.167 103.2 S

106.716 3549.32 73392.0 1154.1 16.797 97.1 S
93.940 3150.30 65742.7 1107.3 15.070 94.2 S
64.510 3653.20 81583.4 962.6 13.279 107.0 S
95.450 3000.50 63977.9 1387.6 14.778 95.7 S
87.350 3723.30 83794.5 909.8 16.130 104.9 S

111.510 5760.00 96060.2 1665.9 16.351 121.9 S
86.610 3439.30 76397.3 619.9 17.872 97.1 S

113.980 3485.30 72656.0 1129.4 16.418 102.6 S
71.410 2433.50 59932.4 1465.1 11.051 64.4 S

Table B.23: Chemical composition (in parts per million) of Steatite from six quarry
sites. The data are a subset of those published in Truncer et al. (1998).
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North Apulian fineware compositions I

Sample SiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O TiO2 P2O5 Ba Sr Y Zr V
C 01 57.347 16.314 6.272 0.106 2.830 11.393 0.919 3.421 0.770 0.401 452 390 26 150 125
C 02 56.468 15.066 5.835 0.089 2.285 14.722 0.743 3.062 0.742 0.810 396 387 26 147 122
C 03 58.536 15.542 6.004 0.064 2.374 12.252 0.894 2.863 0.762 0.554 353 308 30 166 106
C 04 58.596 15.649 5.824 0.064 2.295 11.992 1.019 3.035 0.765 0.601 324 299 26 175 109
C 05 61.276 16.750 6.479 0.072 2.402 7.757 0.858 3.127 0.821 0.296 361 263 30 183 133
C 06 58.692 15.956 6.005 0.097 2.189 11.083 0.841 3.471 0.739 0.755 401 411 27 142 122
C 07 56.531 15.193 5.992 0.109 2.349 14.595 0.859 2.969 0.744 0.489 389 376 27 151 122
C 08 56.951 15.833 6.606 0.102 2.642 12.566 1.014 3.011 0.753 0.358 349 376 29 158 123
C 09 58.455 15.766 5.891 0.054 2.358 11.997 1.002 2.962 0.748 0.603 330 296 30 171 108
C 10 56.811 16.462 6.443 0.105 2.803 12.038 0.868 3.242 0.773 0.293 355 394 28 151 118
C 11 59.130 15.787 6.118 0.085 2.343 10.942 0.838 3.160 0.790 0.636 399 353 29 165 106
C 12 56.546 15.899 6.245 0.095 2.689 12.861 0.921 3.303 0.749 0.498 350 432 27 142 111
C 13 61.925 14.104 5.284 0.096 2.283 10.825 1.040 3.076 0.648 0.536 455 356 23 146 105
C 14 59.927 15.469 6.707 0.085 2.267 8.720 1.430 3.835 0.716 0.636 488 427 26 165 121
C 15 61.156 14.639 5.157 0.096 2.078 10.644 1.225 3.409 0.684 0.714 449 437 24 167 122
C 16 58.029 16.235 6.198 0.097 2.488 11.281 0.887 3.440 0.760 0.389 431 408 25 140 133
C 17 60.285 15.878 5.994 0.065 2.278 10.178 0.806 3.280 0.766 0.294 362 290 28 164 124
C 18 62.364 15.580 5.972 0.095 2.273 7.811 1.131 3.351 0.739 0.497 454 336 28 168 140
C 20 56.071 15.302 5.857 0.087 2.247 15.204 0.796 2.890 0.748 0.611 396 397 27 153 134
H 01 56.356 14.827 5.966 0.087 2.589 15.165 0.852 2.994 0.686 0.306 333 356 24 144 98
H 02 57.289 15.545 6.088 0.087 2.370 12.849 1.098 3.479 0.754 0.283 280 327 26 144 128
H 03 57.593 15.543 6.035 0.086 2.369 12.713 1.168 3.259 0.742 0.332 293 349 27 153 111
H 04 56.850 14.198 5.463 0.112 2.245 15.930 1.039 3.005 0.658 0.346 285 332 23 134 99
H 05 54.835 16.191 6.338 0.096 3.355 12.942 0.937 3.877 0.750 0.490 384 484 26 141 118
H 06 54.839 16.001 6.333 0.105 3.125 13.956 1.269 3.083 0.739 0.377 343 387 26 141 128
H 07 65.580 14.952 5.509 0.063 1.857 6.188 1.096 3.527 0.712 0.376 304 240 22 168 96
H 08 57.332 15.820 5.983 0.089 2.139 12.600 1.070 3.688 0.733 0.390 288 303 24 140 122
H 09 57.870 13.800 4.571 0.086 1.718 16.253 1.135 3.307 0.603 0.486 372 343 23 163 94
H 10 57.535 15.208 5.528 0.096 2.167 13.255 1.323 3.533 0.689 0.491 360 390 25 153 112
H 11 56.495 16.783 6.199 0.074 2.498 12.271 0.928 3.489 0.759 0.337 329 392 24 129 111
H 12 58.757 15.427 5.968 0.097 2.378 12.011 0.854 3.222 0.688 0.432 339 309 24 144 112
H 13 57.693 14.568 5.359 0.087 1.947 15.159 1.017 3.008 0.656 0.350 277 336 23 137 105
H 14 59.372 17.173 6.201 0.085 2.645 8.867 0.825 3.513 0.750 0.402 307 268 24 135 133
H 15 59.779 13.771 4.381 0.087 1.659 14.422 1.149 3.448 0.596 0.542 364 305 22 165 99
P 21 59.785 14.210 5.262 0.098 2.131 13.329 1.316 2.816 0.675 0.217 405 316 27 179 84
P 23 55.016 15.491 5.944 0.113 2.409 15.479 1.160 3.141 0.733 0.315 590 418 24 139 120
P 24 53.680 16.591 6.358 0.107 2.772 15.146 1.049 2.997 0.766 0.343 462 475 26 130 127
P 25 54.625 14.375 5.512 0.102 2.094 18.076 1.087 2.920 0.677 0.351 541 321 24 140 102
P 26 54.686 13.903 5.219 0.101 2.414 18.776 0.984 2.761 0.665 0.313 459 439 23 120 109
P 27 55.787 14.561 5.180 0.111 2.634 16.117 1.089 3.146 0.674 0.511 503 440 24 139 116
P 28 55.904 14.163 5.997 0.101 2.495 16.166 1.096 2.875 0.654 0.347 671 420 23 128 101
P 29 56.912 15.864 5.884 0.110 2.316 13.525 1.230 3.041 0.748 0.209 351 321 27 143 118
P 30 53.852 14.344 5.538 0.100 2.116 18.453 1.418 2.957 0.682 0.354 603 373 25 137 93
P 31 57.757 14.495 5.487 0.089 2.488 14.684 0.900 2.899 0.704 0.322 509 364 24 116 115
P 32 57.669 14.546 5.455 0.120 2.629 13.823 1.413 3.089 0.694 0.372 499 457 25 157 110
P 33 58.216 15.326 6.546 0.103 2.563 12.012 1.184 2.789 0.732 0.360 409 418 27 141 116
P 34 54.723 16.728 6.417 0.127 2.535 13.556 1.199 3.331 0.780 0.414 511 409 27 149 129
P 35 52.996 15.142 6.214 0.129 2.800 16.886 1.292 3.123 0.709 0.517 537 481 25 120 122
P 36 57.209 14.520 5.222 0.099 2.038 16.150 1.102 2.556 0.691 0.242 453 361 24 154 77
P 37 55.477 14.252 5.819 0.109 2.352 16.669 1.367 2.811 0.668 0.306 457 402 25 134 96
P 38 53.480 15.387 6.636 0.141 2.819 15.788 1.030 3.470 0.719 0.336 517 453 24 120 112
P 39 56.429 15.086 6.191 0.097 2.436 14.604 1.084 2.908 0.717 0.279 398 400 25 136 105
P 40 57.682 16.499 6.281 0.104 2.271 11.489 1.094 3.281 0.784 0.333 476 397 27 155 135
P 41 53.188 14.437 6.174 0.113 3.522 16.649 1.242 3.477 0.680 0.327 500 464 24 124 104
S 51 51.956 12.121 4.398 0.106 2.790 23.938 1.084 2.656 0.535 0.232 377 497 18 125 77
S 52 55.694 12.506 4.451 0.127 1.825 20.734 1.081 2.510 0.547 0.325 578 442 19 120 82
S 53 54.773 13.146 4.838 0.106 2.380 19.983 1.066 2.627 0.583 0.315 434 413 21 122 86
S 54 51.959 12.554 4.387 0.120 2.582 23.576 1.063 2.657 0.557 0.318 649 558 20 124 75
S 55 54.218 14.746 5.677 0.102 2.383 17.578 1.208 2.789 0.674 0.440 387 431 23 133 115
S 56 55.651 13.913 5.245 0.127 2.068 17.943 1.145 2.792 0.618 0.292 607 397 24 130 91
S 57 57.742 15.415 5.543 0.097 2.414 13.228 1.223 3.042 0.698 0.400 516 366 25 157 126
S 58 54.126 14.466 5.540 0.122 2.638 17.840 1.022 3.078 0.643 0.342 452 421 23 127 81
S 59 58.797 15.586 5.955 0.104 2.621 11.410 1.151 3.100 0.707 0.395 424 329 26 153 115
S 60 55.082 16.255 5.825 0.080 2.554 14.631 1.079 3.238 0.730 0.309 635 480 24 129 126
S 61 59.287 14.503 5.274 0.111 2.105 13.727 1.170 2.754 0.655 0.245 416 360 26 163 90

Table B.24: North Apulian fineware compositions. Continued – see Table B.25 for details.
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North Apulian fineware compositions II

Sample As Co Cr Cs Hf Rb Sb Sc Th U La Ce Nd Sm Eu Yb Lu Cu Ni Pb Zn
C 01 12 13 83 5.8 3.2 100 0.6 10.3 8.0 3.5 28.5 41 22 2.9 1.0 2.5 0.20 519 42 17 96
C 02 14 12 94 4.8 3.9 80 0.6 10.9 9.2 9.9 29.8 45 22 3.6 1.2 2.7 0.20 39 37 13 93
C 03 9 10 80 4.4 3.8 80 0.4 9.8 7.8 8.5 27.1 42 18 3.3 1.2 2.7 0.36 36 40 15 93
C 04 12 11 95 4.3 4.4 70 0.7 11.0 9.6 9.6 30.6 49 26 3.7 1.2 3.0 0.27 52 41 15 106
C 05 7 15 122 7.7 5.1 90 0.9 13.5 11.6 6.2 37.6 61 24 4.5 1.5 3.4 0.30 38 48 14 109
C 06 10 10 79 4.6 3.0 70 0.5 9.8 8.0 3.2 26.9 45 22 3.0 1.0 2.3 0.19 41 41 16 106
C 07 10 12 86 5.0 3.9 70 0.4 9.9 8.1 6.7 27.1 43 17 3.3 1.0 2.3 0.18 38 39 17 91
C 08 10 15 103 5.9 4.2 90 0.9 12.2 10.1 4.1 34.3 54 30 4.0 1.4 3.0 0.22 31 44 12 99
C 09 21 14 99 6.3 4.6 80 0.9 12.8 10.8 8.7 35.2 57 27 4.1 1.5 2.9 0.26 46 41 16 109
C 10 12 12 88 6.0 3.5 80 0.6 11.0 9.0 3.5 31.0 47 22 3.3 1.2 2.6 0.18 34 40 17 90
C 11 14 14 101 6.8 4.7 80 0.6 11.8 10.2 6.4 34.0 54 28 3.9 1.3 3.2 0.26 43 39 14 99
C 12 14 18 149 10.9 5.9 150 1.1 17.7 14.8 6.3 49.9 80 33 5.7 2.0 4.1 0.58 53 48 15 102
C 13 18 16 116 8.1 6.2 110 0.9 14.7 11.9 5.4 43.1 68 26 5.0 1.9 3.8 0.30 32 36 16 94
C 14 30 16 143 8.5 6.6 130 1.3 16.3 14.8 5.9 46.9 66 27 5.5 1.9 4.2 0.59 45 42 12 105
C 15 33 16 112 7.8 6.2 120 0.8 14.5 13.7 6.0 42.4 74 28 5.0 1.7 4.0 0.28 35 39 15 89
C 16 17 17 121 7.7 5.6 130 0.8 15.5 13.2 4.3 42.5 67 27 4.8 1.6 3.6 0.49 37 40 16 94
C 17 15 18 114 5.7 5.4 90 0.8 14.5 11.9 10.4 41.1 64 41 4.5 1.6 3.4 0.30 57 40 15 93
C 18 36 15 114 8.4 6.6 100 1.3 14.5 11.9 5.4 41.4 62 35 4.6 1.6 3.9 0.36 29 41 16 98
C 20 28 15 108 6.7 4.8 90 1.1 14.0 11.5 12.2 37.5 62 26 4.5 1.6 2.9 0.50 44 37 16 87
H 01 8 16 130 8.6 5.0 110 0.8 13.2 11.9 5.3 39.3 55 32 4.2 1.5 3.4 0.20 25 51 16 80
H 02 15 13 120 7.0 4.2 70 0.4 13.7 11.2 3.1 37.4 62 34 4.1 1.7 2.9 0.29 26 38 15 80
H 03 11 14 102 6.6 4.6 100 0.7 12.8 11.0 4.3 36.3 60 27 4.2 1.4 2.7 0.26 27 40 13 91
H 04 13 12 88 5.3 4.0 80 0.5 10.7 9.2 3.7 29.5 46 28 3.5 1.2 2.6 0.13 29 36 13 88
H 05 11 14 116 7.6 3.6 100 0.4 12.1 9.4 5.4 32.1 51 20 3.4 1.2 2.7 0.20 49 58 18 112
H 06 11 15 137 9.6 4.7 100 0.8 14.5 11.7 5.8 40.2 63 30 4.6 1.6 3.6 0.19 29 49 10 91
H 07 10 12 94 5.4 4.9 100 0.7 11.0 9.3 3.1 30.3 47 23 3.5 1.3 2.9 0.31 24 38 26 82
H 08 11 14 91 5.1 3.8 70 0.7 11.1 9.4 3.6 30.5 50 22 3.3 1.3 2.5 0.21 32 38 18 112
H 09 12 14 98 7.6 5.5 120 0.7 12.1 11.3 3.8 38.2 61 29 4.4 1.5 3.4 0.46 30 33 11 79
H 10 17 14 113 7.2 4.4 90 0.9 12.6 11.4 3.3 37.7 61 31 4.4 1.4 3.0 0.20 26 42 33 80
H 11 11 14 111 8.7 4.3 110 0.7 13.3 11.1 5.1 35.9 50 29 3.9 1.4 2.8 0.24 23 44 14 93
H 12 8 14 119 7.5 3.4 120 0.4 11.5 9.8 3.9 33.2 46 18 3.6 1.4 2.6 0.12 39 55 12 97
H 13 12 14 100 6.3 4.7 80 0.9 13.2 9.9 5.5 36.4 56 29 4.2 1.5 3.5 0.24 26 36 17 92
H 14 9 19 136 8.9 4.3 140 0.5 15.2 12.5 4.5 40.6 56 31 4.4 1.6 3.4 0.23 37 61 17 104
H 15 14 13 108 7.5 5.9 100 0.6 12.4 12.6 5.2 40.6 59 32 4.6 1.6 3.3 0.24 28 31 24 75
P 21 9 12 71 4.4 4.0 80 0.6 9.8 7.2 2.9 27.1 48 18 4.1 0.9 2.1 0.31 25 36 32 76
P 23 11 11 89 4.4 3.1 70 0.6 10.4 6.6 2.5 26.5 47 17 4.0 0.9 1.9 0.32 24 43 14 91
P 24 10 12 102 5.9 2.9 100 0.5 11.8 7.3 2.8 29.8 52 17 4.2 0.9 2.0 0.32 26 49 15 100
P 25 10 10 80 4.5 2.9 70 0.6 9.7 6.7 1.9 25.6 45 15 3.8 0.8 1.8 0.27 31 41 15 87
P 26 13 10 82 4.2 3.0 60 0.5 9.4 6.5 2.8 24.9 44 14 3.7 0.8 1.6 0.27 22 43 17 78
P 27 20 11 85 4.4 2.9 80 0.4 9.9 6.6 2.6 25.7 44 17 3.8 0.9 1.8 0.30 23 44 18 84
P 28 14 9 76 4.1 3.1 80 0.7 9.2 6.3 3.5 25.6 45 15 3.7 0.8 1.7 0.28 24 38 17 80
P 29 8 12 85 4.6 3.1 80 0.7 11.1 7.4 2.2 28.2 48 16 4.2 0.9 1.9 0.32 31 47 25 99
P 30 13 11 83 4.3 2.9 70 0.6 9.8 6.8 2.4 26.0 44 14 3.9 0.9 1.9 0.29 25 42 15 78
P 31 11 9 87 4.7 2.7 70 0.5 9.9 6.7 2.6 25.5 44 14 3.8 0.9 1.8 0.30 20 37 16 91
P 32 16 10 82 4.6 3.2 80 0.5 9.9 6.8 2.0 25.9 45 16 3.9 0.9 2.0 0.28 21 43 23 92
P 33 11 11 95 5.4 3.2 100 0.7 10.9 7.6 1.9 28.9 50 18 4.3 0.9 2.0 0.31 26 45 11 98
P 34 10 14 99 5.3 2.9 90 0.7 12.0 8.1 2.1 31.8 55 20 4.5 1.0 2.0 0.31 33 54 19 111
P 35 16 11 98 5.0 2.7 80 0.7 10.7 7.0 2.5 27.2 49 17 4.1 0.9 1.8 0.28 22 46 13 89
P 36 15 11 76 4.5 3.5 70 0.7 9.4 6.9 2.0 26.0 47 16 3.9 0.9 1.8 0.31 35 40 31 90
P 37 15 10 80 4.0 2.8 50 0.6 9.5 6.4 2.1 25.5 45 15 3.8 0.8 1.7 0.27 25 41 11 84
P 38 16 13 105 5.3 2.7 90 0.8 11.0 7.4 1.6 26.5 47 18 4.0 0.9 1.8 0.30 31 60 18 99
P 39 11 11 92 5.1 3.0 90 0.7 10.6 7.2 2.5 27.9 49 18 4.1 0.9 2.0 0.30 28 51 19 90
P 40 24 12 100 5.4 3.5 90 0.8 11.6 8.0 2.3 31.6 54 20 4.7 1.0 2.0 0.33 37 50 15 93
P 41 13 12 84 4.4 2.7 80 0.6 9.9 6.9 2.3 24.9 45 16 3.7 0.8 1.8 0.31 25 53 18 82
S 51 13 10 61 4.0 3.0 59 0.6 8.7 8.1 2.8 24.8 46 20 3.8 1.0 1.8 0.27 22.3 29.7 31.8 68.9
S 52 22 13 64 4.5 3.2 100 0.7 9.4 8.8 2.8 26.2 49 18 4.1 1.0 1.9 0.30 25.6 33.0 19.7 73.3
S 53 71 12 82 5.6 2.7 92 0.4 10.5 8.7 2.9 28.3 50 20 4.3 1.0 2.0 0.31 28.5 39.7 16.6 77.5
S 54 13 11 59 4.2 2.6 81 0.5 8.9 7.5 3.6 24.8 44 17 3.8 0.8 1.7 0.25 25.6 32.8 18.0 77.6
S 55 23 13 95 6.9 3.3 104 0.8 12.5 10.7 6.3 33.9 59 30 5.2 1.2 2.4 0.35 28.7 48.6 19.2 103.4
S 56 12 13 81 4.7 3.3 88 0.7 11.0 9.9 4.0 30.7 57 26 4.6 1.0 2.3 0.35 28.7 41.6 19.7 81.3
S 57 26 13 98 6.8 3.7 128 0.7 13.1 12.0 2.8 35.3 64 33 5.3 1.0 2.6 0.36 25.2 42.0 22.0 99.4
S 58 15 13 94 5.5 2.9 108 0.7 12.2 9.8 2.5 30.4 55 22 4.7 1.1 2.3 0.35 24.5 49.4 15.3 88.4
S 59 15 14 92 6.7 3.4 101 0.6 13.1 11.4 2.8 34.6 62 28 5.3 1.2 2.3 0.35 27.9 42.3 10.5 103.3
S 60 10 13 107 7.8 3.1 142 0.9 13.9 11.7 3.1 35.6 64 28 5.3 1.1 2.3 0.35 28.0 46.1 18.1 97.7
S 61 9 15 84 5.8 4.1 103 0.6 12.0 11.1 3.0 33.4 61 26 5.2 1.1 2.3 0.35 31.4 42.6 8.2 90.3

Table B.25: North Apulian fineware compositions. Sample site identifiers are C = Canusium,
H = Herdonium, P = Posta Crusta and S = Santa Giusto. Sources, with analyses and
discussion, are Gliozzo et al. (2013) for Canusium and Herdonium, Gliozzo et al. (2010) for
Posta Crusta, and Gliozzo et al. (2005) for Santa Giusto.
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Appendix C

Covariance and correlation

The ideas of correlation and covariance are important in the use of several methods
covered elsewhere in these notes (e.g., regression, principal component analysis and
linear discriminant analysis). Some of the ideas involved are summarized here to
avoid repetition in the relevant chapters. Any good intermediate/advanced text
that deals with the topics involved will provide a more thorough treatment of the
mathematics involved.

Measures of covariance and correlation are designed to provide information
about the strength of a linear relationship between two variables. More than
one way of defining such measures exist; apart from passing mention only the
‘standard’ definitions are used here. This is covered in Section C.1; Section C.2
refers back to earlier chapters with additional detail added in some cases.

C.1 Definitions and notation

Suppose we have n observations x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) on
two variables, and wish to measure the strength of the linear relationship between
them. For the purposes of this section define

Xi = xi − x̄ Yi = yi − ȳ

where x̄ and ȳ are the means of the variables, so Xi and Yi are centered on zero.
The estimated covariance between the variables is defined as

sxy =

∑n
i XiYi
n− 1

and is a measure of the linear relationship between the variables. That it is a
sensible measure of linearity can be seen from Figure C.1
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Figure C.1: Artificial data showing a positive correlation for two variables. The
population correlation coefficient from which the data are sampled is ρxy = 0.90.

The plot is based on artificial data constructed to show a strong positive rela-
tionship. In the definition of sxy the numerator is just the sum of terms of the form
XiYi. It can be seen from the figure that for a strong positive linear relationship
these terms lie mostly in the upper-right and lower-left quadrants and are positive
(remembering that the product of two negative numbers is positive) so that their
sum, and hence sxy, will be positive. If there is a negative relationship points
will lie mostly in the upper-left and lower right quadrants, so if Xi is positive Yi
will tend to be negative (and vice versa) and their product will be negative. This
implies that sxy will be negative; if the plot is random points will be scattered
around the quadrants and their effects will tend to cancel, so sxy should be close
to zero.

It should be obvious that the value of the numerator will be dependent on the
sample size, n, and the divisor of (n−1) in the definition removes this effect1. The
other feature of a covariance, for descriptive purposes, is that the numerical result
depends on the scale of the data. This means that you can’t tell, just by looking

1The unbiased sample estimate of the population covariance is defined here, hence the divisor
of (n − 1). Some treatments use n as the divisor which gives the definition of the population
covariance. The distinction is not of great importance here except to note that the numerator is
being adjusted for sample size.
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at the value, whether the covariance is ‘large’ or ‘small’, and a comparison of the
strength of relationship between two sets of data may not be easy. To get round
this problem it is necessary to scale the covariance so it does not depend on the
units of measurement.

If the covariance of a variable with itself is measured, write sxx = s2
x, by

convention, then this is the estimated variance of x, with s2
y similarly defined. This

gives sx and sy as the estimated standard deviations. The correlation between x
and y is then defined as2

rxy =
sxy
sxsy

with −1 ≤ rxy ≤ 1, and the correlation of a variable with itself is 1. The correlation
coefficient is an estimate of the population correlation ρxy.

It is not necessary to assume that the population from which the data are
drawn has a bivariate normal distribution for r (dropping the subscripts) to be
useful. The assumption is necessary if formal tests of the null hypothesis Ho : ρ = 0
are used, but these are often not useful. If n is large then small correlations of
little interest will be statistically significant. For small samples formal tests can
guard against reading too much into apparently ‘large’ observed correlations, but
usually graphical inspection is more than adequate to identify any problems.

The chapters on PCA through to that on LDA involve the analysis of multi-
variate data, where p > 2 variables are involved. All possible pairwise covariances
can be calculated and summarized in the form of a p × p covariance matrix , S,
given by

S =


s11 s12 . . . s1(p−1) s1p

s21 s22 . . . s2(p−1) s2p
...

...
...

...
...

s(p−1)1 s(p−1)2 . . . s(p−1)(p−1) s(p−1)p

sp1 sp2 . . . sp(p−1) spp


which is symmetric since sij = sji. The correlation matrix, R, is similarly defined
to be the p × p matrix with typical element rjk. The diagonal elements of R are
all equal to 1; otherwise the rij lie between -1 and +1.

The total variance in a data set can be defined as the sum of the individual
variances s2

1 + s2
2 + . . . + s2

p which is just the sum of the diagonal elements of
S. We can write this as tr(S), where tr(.), the trace operator, is just the sum

2‘Correlation’ as defined here is shorthand for the Pearson product-moment correlation co-
efficient, to give it its full name. This is sometimes needed to distinguish the coefficient from
other definitions of correlation such as the non-parametric Spearman’s or Kendall’s rank order
correlations. Usually, though, the shorthand suffices. It may be noted that if the data are ranked
and the definition of rxy applied to the ranks Spearman’s rank-correlation coefficient is obtained.
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of the diagonal elements of a square matrix. From this definition it follows that
tr(R) = p, since each of the p diagonal elements of R is equal to 1.

Suppose X is an n× 2 data matrix, so that its correlation matrix, R, is 2× 2.
The data set is said to be two-dimensional. If, however, X1 and X2 are perfectly
correlated then the true dimensionality is really 1 since, givenX1, we know whatX2

is. If X1 and X2 are highly correlated then, in a sense, the data are ‘approximately’
one-dimensional. More generally, if X is a p×p matrix, but the variables are highly
correlated, then the true dimensionality of the data will be somewhat less than p
and it can be expected that low-dimensional representations of the data (which is
what PCA and correspondence analysis attempt) will be quite successful.

C.2 Applications

C.2.1 Linear regression analysis

Linear regression analysis is covered in Chapter 5. The simplest practical linear
regression model is

y = α + βx+ ε

where α and β are unknown parameters and ε is the error term. This is equa-
tion (5.1); interest commonly centers on obtaining β̂, an estimate of β. The model
can be given wider application by allowing simple transformations, such as loga-
rithmic, of y and x as in equations (5.6) and (5.7).

Chapter 5 eschewed mathematical details in favor of proceeding by example.
Introductory quantitative methods for archaeology texts intended for teaching pur-
poses usually deal with simple linear regression (e.g., Shennan, 1997; Drennan,
2009). The texts cited do not derive the formula for β̂ (which can, however, be
obtained using basic calculus) but do give formulae, including computationally
efficient versions. Shennan (1997: 137) gives

β̂ =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2

which in our notation is

β̂ =

∑
XiYi∑
X2
i

=
sxy
s2
x

and, if nothing else, is a neater way of expressing the result and makes explicit the
role that covariance plays.

The correlation coefficient has been presented in various ways, among them

rxy =

∑
(xi − x̄)(yi − ȳ)√∑
(xi − x̄)2(yi − ȳ)2

=
n
∑
xiyi − (

∑
xi)(

∑
yi)√

[n
∑
x2
i − (

∑
xi)2][n

∑
y2
i − (

∑
yi)2]

=
sij
sisj

.
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Following the first‘=’ the two expressions are the formula for rxy usually presented
and a computationally efficient equivalent version if you must do calculations ‘by
hand’ (e.g., Shennan, 1997: 140). The final version, apart from being more com-
pact, makes it clear that the correlation is the covariance rescaled to allow for the
different ‘spread’ of the variables.

Software output for regression analyses typically report an R2 value – the
coefficient of determination. For the special case of simple linear regression R2 is
just the square of the correlation coefficient, r2

xy, and can be interpreted as the
amount of variation in y ‘explained’ by variation in x.

C.2.2 Principal component analysis

Chapter 7 dealt with PCA largely by illustration. The mathematics is dealt with
in more detail in Appendix D; here only brief notice is provided of the role played
by the covariance matrix.

If S is the covariance matrix of Y, the data matrix used for analysis,

S = VD2V′

where Vand D2 = Λ are p × p matrices, and the latter is diagonal with the
diagonal elements, assuming they are ordered, corresponding to the variance of
the PCs. The elements of the latter, λi, are eigenvalues – a term that features
in some software output. The columns of V are eigenvectors and contain the
coefficients of the PCs. Thus, all the ingredients for the practical analysis and
interpretation of a PCA can be obtained from the covariance matrix S (or R if the
data are standardized). Principal component scores are also required and these
are obtained from the n× p matrix YV.

C.2.3 Mahalanobis distance and LDA

More on MD and notation

Define p to be a vector with p terms, with q similarly defined. Mahalanobis
distance (MD) can be defined as

d̃2 = (p− q)′S̃−1(p− q)

where definition of the terms depends on the particular version of MD used. If
there are G groups denote the estimated covariance matrix of group g as Sg, using
S for the situation where there is just one group. Assuming common population
covariance matrices a weighted average can be defined as

Sw =
G∑
g=1

(ng − 1)Sg
(N −G)
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where N = (n1 + n2 + . . .+ nG) is the sum of the sample sizes, ng, for each group.
The term Sw is the within-group covariance matrix. It can be thought of as a
measure of the ‘compactness’ of the groups. A particular case is when there are
two groups, where

Sw =
(n1 − 1)S1 + (n2 − 1)S2

(n1 + n2 − 2)
.

If x̄1 and x̄2 are the means for the two groups, MD as defined earlier becomes

d2
12 = (x̄1 − x̄2)′S−1

w (x̄1 − x̄2).

The other case of interest here is that of the MD of a single case, wi, from a group
with mean x̄ and covariance matrix S; this can be written as

d2
i = (wi − x̄)′S−1(wi − x̄).

Two situations can be distinguished; the first is that wi is not a member of the
reference group, the second is that wi = xi is a member of the group. The
latter situation introduces the complication that xi influences the calculation of
the group statistics x̄ and S. This has the effect of reducing the size of the MD
compared to calculations that omit it. The obvious way to remedy this is to use
leave-one-out (LOO) calculations (Section 11.2.2) where d2

(i), x̄(i)) and S(i) replace

corresponding terms in the above formula, the (i) subscript indicating that case
i has been omitted from calculations3. The implication would seem to be that to
use LOO calculations n separate analyses are needed as the mean and covariance
calculations change for each case. This is not necessary because it is possible to
convert d2

i to d2
(i) without the need for such calculations (e.g., Section 6.4.3 of

Baxter, 2003).

MD in LDA

So far MD has simply been defined; some insight into, and ‘justification’ for, it can
be gained by considering LDA for the two-group case assuming equal population
covariance matrices. With G = 2 there is one discriminant function that, for case
i, gives rise to scores of the form a′xi and the task is to determine the p elements
of a that maximize group separation on the transformed scale.

The within-group sample covariance matrix, Sw, has been defined above for
two groups. It can be thought of as an averaged ‘measure’ of the ‘compactness’ of
the groups. It is also possible to define a between-groups sample covariance matrix
which, in weighted form and for two groups can be written as

Sb = n1(x̄1 − x̄)(x̄1 − x̄)′ + n2(x̄2 − x̄)(x̄2 − x̄)′

3The term jackknife is also sometimes used for LOO calculations.
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where x̄ is the mean of all the data. This can be thought of as a ‘measure’ of the
‘separation’ of the two groups.

After performing a discriminant analysis, which requires a to be determined,
the centroids of the two groups of transformed data can be denoted as z̄1 and z̄2.
We want the distance between these to be as large as possible, and this depends on
Sb, but this needs to be balanced against the wish to keep the groups as compact
as possible which depend on Sw. Fisher’s (1936) idea, which does not depend on
distributional assumptions, was to determine a to maximize the ratio

a′Sba/a
′Swa.

Thus the initial idea of LDA, with the desire to transform the data so that the pre-
defined groups are as distinct has possible, has been converted to a mathematical
problem the solution of which is to obtain a from the eigenvectors of

S−1
w Sb.

It further transpires that the Euclidean distance betwwen the transformed group
means, z̄1 and z̄2, is given by

(x̄1 − x̄2)′S−1
w (x̄1 − x̄2)

which is just the MD as defined, for the comparison of group means, but with-
out explanation, at the start of this section. Here we have seen how MD arises
‘naturally’ as a measure of distance in the context of LDA.

Constructing confidence ellipsoids

For a single group, when LOO calculations are appropriate, the set of values for
which d2

i = c, where c is a constant, define ellipsoidal contours. To assign a
confidence level to the contours it is necessary to assume bivariate normality for
two-dimensional plots. Theory exists that shows that a suitable transformation
of d2

i exists that is approximately distributed as an F-statistic with (p, n− p− 1)
degrees of freedom, or a chi-squared statistic with p degrees of freedom if n is large
in relation to p The choice of a value for F or chi-squared determine the confidence
level, The formulae are given in Baxter (2003: 71) with references to the original
theoretical derivations.

It can be noted that such calculation allow probabilities of group membership
to be assigned to individual cases, so it can be judged if they are plausible group
members or not. This differs from the usage in Table 11.1 where results are
presented in terms of relative probabilities that assume cases must belong to one
or other of the groups included in an analysis.
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Appendix D

More on PCA and factor analysis

D.1 Introduction

This chapter provides an account of some of the mathematics that underlies the
derivation of principal components, and factors in factor analysis. It providea a
source of reference for Chapter 7 and 8 without burdening those chapters with too
much algebraic detail. There are fundamental differences between factor analysis
and PCA that can be presented in starker relief than is possible using purely
verbal descriptions, among them the dependence of factor analysis on a model for
the data, and the role that rotation plays in applications of the methods. Rotation
is central to factor analysis and an option in PCA, not exercised that much except,
perhaps, in papers that confuse the two methodologies (Section 8.4).

A reservation often expressed about the use of factor analysis is what might be
called the ‘unavoidable indeterminacy’ of factor analysis solutions. The model that
forms the basis of factor analysis is expressed in terms of unknown parameters that
must be estimated to obtain a ‘solution’. A variety of choices need to be made
to obtain a specific solution, among them distributional assumptions about the
nature of random variation in the model, the method of factor extraction adopted,
the number of factors selected for subsequent rotation, and the choice of method
of rotation itself. What has been published in archaeological applications is often
a matter of convention and convenience (e.g., what has gone before, often dictated
by defaults in software packages). Earlier applications were dominated by PCA
with varimax rotation, wrongly regarded as ‘factor analysis’ (Section 8.4). It is
not an accident that these were the default options in widely-used commercial
statistical software packages.

Any model-based method of statistical analysis involves similar kinds of choices
(e.g., distributional assumptions, method of estimation) but the outcome of a fac-
tor analysis is perhaps more subject to the choices made than other methods. By
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contrast, PCA depends on the method of data pre-treatment chosen (Section 7.2)
but, given this and as usually employed, the results from a PCA are obtained by
mathematical means, leading to a unique ‘solution’ that does not involve assump-
tions about random variation, the need for estimation and so on. As emphasized
in comparative reviews such as the statistical texts of Krzanowski (1985), Everitt
and Dunn (2001) and Jolliffe (2002), the methods have different aims and should
not be viewed as ‘competitors’.

The issue of the indeterminacy of factor analysis solutions has generated a con-
siderable literature. The choices made may sometimes not matter much, though
this an empirical matter best resolved on a case-by-case basis. Some scholars
are not troubled by such indeterminacy, but sceptics express concern that it al-
lows unwarranted latitude in selecting outcomes that conform with ‘theoretical’
preconceptions about the phenomenon studied.

Whatever the view taken, it is a fact that any data set can be subjected to a
large number of different specific factor analyses. The fa function from the psych

package, used in the examples of Section 8.3.2, has the option of six different
methods of factor extraction and 15 methods of rotation – eight orthogonal and
seven oblique (Section D.3.2) – so 90 in all. Some of these can be expected to
produce similar results, but scope for variation exists. The illustrative examples of
Section 8.3.2 show some of the variation that can occur. Other (non-archaeological)
illustrations are provided by Jolliffe (2002: 161–65). For convenience of reference
Section D.4 summarizes some of the possible sources of indeterminacy in factor
analysis applications; these are referred to in Section 8.3.2 without much additional
discussion.

D.2 The singular value decomposition

For p variables, (Y1, Y2, . . . , Yp), define p principal components, (Z1, Z2, . . . , Zp),
where component j is

Zj = a′y = aj1Y1 + aj2Y2 + . . .+ ajpYp

and a = (aj1 aj2 . . . ajp) is a (p × p) column vector with transpose a′, a (p × 1)
column vector, and y = (Y1 Y2 . . . Yp) a p× 1 column vector. Define Y and Z as
n× p matrices of the data and component score with typical elements yij and zij
with A the p× p matrix of coefficients with typical element aij; then

Z = YA′. (D.1)

The data matrix Y can be factorized, using the singular value decomposition
(SVD), as

Y = UDV′ (D.2)
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where U is n× p, V is p× p and U′U = V′V = I the p× p identity matrix. The
matrix D is diagonal; the diagonal elements are the singular values, σi, and their
squares, λi = σ2

i are eigenvalues . The matrix with diagonal elements given by the
eigenvalues is Λ.

Let yij = (xij − x̄j)/(n− 1)−1/2 (i.e. it is centered, but not standardized, and
rescaled for convenience). Then

Y′Y = S = VΛV′ (D.3)

where S is the covariance matrix of the data (Appendix C)1. It follows from
equation (D.3), on post-multiplication by V, that

SV = VΛ.

By definition the columns of V are the eigenvectors of S, with the diagonal ele-
ments of Λ the associated eigenvalues.

From equations (D.1) and (D.2) Y = ZA′ = UDV′ define Z = UD and
V = A. Thus column j of V = A is the jth eigenvector of the estimated covariance
matrix S and λj is the jth eigenvalue. Furthermore, if SZ is the covariance matrix
of Z,

SZ = Z′Z = DU′UD = D2 = Λ.

The sum of the diagonal elements of Λ (the eigenvalues) is the total variance of
the variables defined by Z. It can be shown that this is the same as the sum
of the variances of Y – that is, the sum of the diagonal elements of S (Baxter,
2003: 68). This shows that the linear combinations, Zj, are uncorrelated (because
Λ is diagonal); that the variances of the Zj are the eigenvalues of S; and that
(by arrangement) the Zj are ordered in terms of importance as measured by the
variances. The variances of the Zj ‘redistribute’ the variances of the original data.

These are the properties required of principal components2. Numerical values
for the aij, component variances and so on can be obtained by extracting eigen-
vectors and eigenvalues via the SVD. The necessary computations are applied in
prcomp and other functions in R.

D.3 The factor analysis model

D.3.1 The model

The fundamental difference between factor analysis and PCA in that a statistical
model needs to be formulated for the data in factor analysis whereas PCA as

1Note: Y′Y = VD′U′UDV′ = VD2V′ = VΛV′ from previous results/definitions.
2This development uses the covariance matrix (i.e. unstandardized data). For standardized

data the covariance matrix is the correlation matrix R, and defining yij = (xij−x̄j)/sj(n−1)−1/2

so that S = R does not affect the development.
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usually applied implies no such model (Jolliffe, 2002: 151)). From equation (D.1),
Z = YA′; from the SVD of equation (D.2) V′V = I; and following from these
V = A so A′A = I. Thus, on post-multiplying both sides of the expression for Z
by A

Y = ZA (D.4)

or
Yj = a1jZ1 + a2jZ2 + . . .+ apjZp.

This might be thought of as a ‘model’ for the data, but in fact is simply a mathe-
matical consequence of the way that components are defined as linear function of
the variables, showing that the latter can be expressed as linear functions of the
components. This does not involve distributional assumptions of the kind typically
associated with models.

In contrast, factor analysis involves a model

Yj = b1jF1 + b2jF2 + . . .+ bqjFq + εj

where εj is an error term with variance ψj. The matrix formulation for this is

Y = FB + ε. (D.5)

There are important differences between this and the PCA formulation of equa-
tion (D.4).

1. Unlike PCA, factor analysis involves a statistical model for the data, ex-
pressed as the sum of a systematic and random component.

2. In equation (D.4) F is an n × q matrix of unobserved factor scores where
q < p. If p is large q will typically be a lot smaller. The Fj are common
factors. In PCA the number of components, p, is known; in factor analysis
q is not, and determining or confirming a suitable value is an aspect of the
analysis.

3. In equation (D.4) B is a q× p matrix of parameters that must be estimated.
Determining coefficients in the PCs is a mathematical exercise.

4. Assumptions are needed for estimation; minimally, that errors are uncorre-
lated and common factors are uncorrelated with the errors and each other.
This last assumption can be relaxed, giving rise to oblique factors.
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D.3.2 Rotation

There is another additional and important difference between the two methods. As
seen from equation (D.3) the PCs and their variances can be determined by finding
the eigenvectors and eigenvalues of the covariance matrix of the data, Y′Y = S.
Subject to the constraint imposed on the eigenvectors and the properties required
of the PCs this leads to a unique solution.

Given the assumptions of factor analysis the covariance matrix can be written
as

S = B′B + Ψ (D.6)

where Ψ is a diagonal matrix with diagonal elements ψi. If T is a p×p orthogonal
matrix (i.e. T′T = I) then, defining B̃ = TB it follows that

B̃′T′TB̃ = B′B

and TB is as valid a solution to equation (D.6) as B. This solution is called an
orthogonal rotation and it can be obtained in innumerable ways.

To obtain specific solutions for the factor loadings some choice of T is needed
which requires the imposition of constraints on the factor loadings. Almost in-
variably ‘simple structure’ is aimed for, ideally resulting in factor loadings that
are either ‘high’ or close to zero. Ideally a variable will have a high loading with
respect to only one factor. Factor analysis, and ideas of rotation are driven by the
desire for ‘interpretability’; the assumption is that the covariances/correlations
between observable variables reflect their relationship with a smaller number of
common factors (or latent variables) or constructs that can be assigned some sort
of (theoretical) ‘meaning’ within the domain of study involved.

Matters are complicated by the view that if factors do represent some aspect
of an unobservable ‘reality’ there is no particular reason to expect them to be
uncorrelated (Cattell, 1978, 128; cited in Jolliffe, 2002: 152). That is, orthogonal
rotation does not lead to the identification ‘of correct factor structure’. To allow
for this, methods of oblique rotation have been developed where the constraint
that T′T = I is dropped, leading to the identification of correlated factors3.

An obvious question is ‘how should the choice of rotation method be made?’.
There is no prescriptive answer to this question

D.3.3 Factor extraction

No attempt is made here to provide a comprehensive mathematical account of
methods of factor extraction, which necessarily precede rotation. The references

3The notion of ‘correct’ factor structure, explicit here, leads to the thought there is no obvious
logical reason why ‘correct’ structure should also be ‘simple’ – that is, just because a factor is
‘interpretable’, and why simple structure is sought, doesn’t make it ‘real’ or ‘correct’.
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given at the end of the chapter may be pursued for technical details. Binford
and Binford’s (1966) seminal paper that popularized the use of ‘factor analysis’ in
archaeology was, in fact, PCA with rotation, as was the majority of ‘factor analysis’
applications to the mid-1980s when usage began to decline. It is a commonplace
observation in the statistical literature that treating unrotated PCA as factor
analysis is wrong. The same is true of PCA with rotation since it takes no account
of the error structure which is one of the distinguishing features of the factor
analysis model (Section 8.4).

It is, however, possible to use principal component ideas applied to the ‘reduced
covariance matrix’ found from equation (D.6).

B′B = S−Ψ

as a starting point in iterative methods of estimation. This requires an estimate
of Ψ, leading to many specific varieties of factor analysis, none of which have any
great claim to ‘absolute validity’ (Jolliffe, 2002: 159). This method of principal
axis factor analysis has been one of the most commonly used methods of factor
extraction when not confused with PCA.

Extraction methods do not necessarily require distributional assumptions to be
made about the error terms, other than that they are independent with zero mean.
The statistically more ‘thoroughgoing’ method of maximum-likelihood does, how-
ever, require the strong assumption that the errors have a multivariate normal
distribution. The method has the advantage, unlike PCA and unlike other meth-
ods of factor analysis, that results do not depend on data standardization; it also
facilitates the use of inferential methods to assess the quality of results obtained.
The ‘downside’ is that the multivariate normality assumption might often be con-
sidered to be unrealistic, though the estimates have some reasonable properties
even when normality does not hold4.

Jolliffe (2002: 156–57) draws an analogy with least squares regression which
can be applied regardless of distributional assumptions, but produces maximum-
likelihood estimates and inherits their optimality properties if normality (of the
errors) can be assumed. A variety of least squares methods exist for parameter

4One quite often reads the assertion that factor analysis and PCA require normality assump-
tions. Other than MLE this is not a requirement in most applications. There is sometimes
confusion between normality of the error terms and ‘normality’ of the variables. As far as the
former is concerned the usual PCA formulation does not even involve an error term. As with the
commoner applications of regression analysis, where the same erroneous statement is sometimes
found, there is no requirement of a normal distribution for the variables. What is the case is that
if the observed distribution of variables is ‘badly-behaved’, containing clear outliers for example,
this may unduly affect results, and the problem(s) need to be identified and remedial action
taken. This is a matter of practical data analysis rather than the imposition of unnecessary
distributional requirements. Variables can be perfectly ‘well-behaved’ for the purposes of data
analysis without approaching a normal distribution.
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estimation in factor analysis, several of which are available in the fa function in
the psych package for R. The default method of factor extraction in fa, minres
– ‘minimum residual’ using Ordinary Least Squares estimation – is noted in the
documentation to produce ‘solutions very similar to maximum-likelihood even for
badly behaved matrices’, and weighted and generalized least squares (wls and
gls) methods are also available. The documentation also states that maximum-
likelihood ‘is probably preferred’ provided the data are well-behaved.

The default method of rotation in fa, oblimin, is oblique, replacing the or-
thogonal method, varimax, that was the default in earlier versions. Varimax is
the most widely used method in published applications, probably for historical
reasons (Jolliffe, 2002: 153–54; Section 8.4).

D.4 Discussion

Here and in Chapter 8 it has been emphasized that PCA and factor analysis are
different methods of analysis that should be clearly distinguished. The distinction
has not always troubled practitioners and comment to the effect that the methods
will often ‘produce similar results’ is not uncommon (see Section 8.4).

The choices leading to indeterminacy in factor analysis are mostly not relevant
in PCA and may produce substantively different interpretations. What are the
important choices?

1. Factor extraction can make a difference. It might be expected that those
methods that require prior estimation of Ψ will, if the factor model is rea-
sonable and a sensible method of estimation used, produce fairly similar re-
sults (Jolliffe, 2002: 159). If, as the fa documentation claims, least-squares
methods approximate maximum-likelihood it may not be worth troubling
too much about which is used unless the latter is wanted for inferential pur-
poses. The example in Section 8.3.2 contrasts methods towards either end of
the ‘spectrum’ in terms of the assumptions needed – principal factor analysis
and maximum-likelihood – to see if the choice makes much difference.

2. Rotation of factors can be undertaken in many different ways. Jolliffe (2002:
271) suggests, within the class of orthogonal rotations, the choice ‘often
makes little difference to the results’. The choice between orthogonal and
oblique rotation presumably matters; there would otherwise be no reason for
developing the latter. Section 8.3.2 provides an example comparing varimax
and oblimin rotations.

3. The number of factors to rotate is a choice that Jolliffe suggests may be more
important than the factor extraction and rotation methods used. Kaiser’s
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rule and variants of it is a commonly used factor selection method. Where
the choice of factors to rotate is not obvious experimenting with different
choices, to see if interpretation is much affected, seems sensible.

Interrogating data using different methods and different variants of a method
can lay one open to the accusation of being ‘unscientific’ and ‘fishing’ for palatable
interpretations compatible with initial preconceptions. This is a danger. An im-
plication – this is something of a caricature, but not entirely so – is that the proper
approach is to make a principled choice of method and live with the consequences.
This is a counsel of perfection open to the possible counter-accusation that such a
‘principled choice’ may itself conceal a variety of strongly held preconceptions and
methodological/philosophical views.

The view adopted in these notes is that the exploration of different methods
of data analysis is legitimate and sensible. It is in the selective reporting only of
those results palatable to the investigator that the danger lies. The dictates of
publication doubtless produce pressure to concentrate only on ‘significant’ results,
but it would be helpful for potential consumers of a method to be made aware of
circumstances when they don’t ‘work’ and why.

Early developments of factor analysis occurred in the psychometric literature
(e.g., Spearman, 1900). Statistician’s came late the subject; the date and title
of the first edition of Lawley and Maxwell’s (1963) text, Factor Analysis as a
Statistical Method, with the emphasis on as a Statistical Method, testifies to this.
The development of efficient computational software during and either side of the
1960s promoted the wider use of factor analysis, archaeology not excluded. The
popular SPSS package first surfaced in 1968; from some perspectives this popularity,
and its longevity, has not necessarily been beneficial. The treatment of PCA as a
particular case of factor analysis has engendered confusion and is to be regretted.

General statistical texts on multivariate analysis begin to appear in any pro-
fusion round about this period. Anderson’s (1958) early text was a theoretical
treatment and other texts such as Morrison (1967) appear in the 1960s. A ‘flurry’
of books appeared in the late-1970s to mid-1980s, among them Mardia et al.
(1979), Chatfield and Collins (1980), Seber (1984) and Krzanowski (1988). The
first edition of Jolliffe (2002), with its more specialized focus on PCA, appeared
in 1986. Other texts noted elsewhere in these notes that include comparisons of
PCA and factor analysis are Krzanowski and Marriott (1995) and Everitt and
Dunn (2001). None of these can be described as ‘recent’ but the underlying math-
ematics and ideas don’t change. What has changed is the ease and flexibility of
implementation in packages such as R. Statistical developments, of more complex
and computer intensive methods with essentially similar aims, have taken place
but not yet influenced archaeological practice much. The framework that supports
most archaeological applications of PCA, factor analysis and other multivariate
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methods was in place well before the turn of the century and remains valid.
Chatfield and Collins’ (1980) take on factor analysis is, as already noted, a

negative one (Section 8.4). Other statistical treatments have been more even-
handed. Jolliffe’s (2002) emphasis that factor analysis and PCA are different
rather than competing methods, and that factor analysis, if appropriate to an
analysis and properly executed, has its place as part of the analyst’s ‘toolkit’, is
echoed in similar statistical texts.

The questions for archaeologists are whether factor analysis is an appropriate
tool for much of what they want to do and, if so, has its value in application
been convincingly demonstrated? The first question is an interesting one, and for
archaeologists rather than statisticians to address. My own view on the second
question, nearly 50 years on from the publication of Binford and Binford (1966),
it that is difficult to answer in the affirmative.
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Index

analysis of variance (ANOVA), see hy-
pothesis tests

Bayesian, 145, 160, 165, 211
biplots, see graphical methods
bootstrapping, 92, 99, 141
boxplots, see graphical methods

chi-squared tests, 196
examples

contingency tables, 202–206
for small samples

Fisher’s test as alternative, 205
of no association, 202
of variance, 196
Yates continuity correction, 205

classification trees, 186
binary splitting, 182
cost complexity pruning, 184
nodes

purity of – Gini index, 183
types of, 182

cluster analysis, 18–21, 91, 148–165
average link, 153
Bayesian, 165
dendrogram, 19, 150, 153

manipulation in R, 167
fuzzy clustering, 162–164
hierarchical, 152–153

average-link, 150–151, 154
complete link, 153
single link, 152
single-linkage, 153
Ward’s method, 153

k-means, 160–162
scree plots, 161

model-based, 158, 159
and Ward’s method, 159

similarity, 152
single link, 20
Ward’s method, 19, 92, 158

confidence ellipsoids, see graphical meth-
ods

confidence intervals, 197–198
in t-tests, 200
relation to hypothesis tests, 198

contingency tables
analysis of, 202–206

correlation, see also covariance
and regression analysis, 70
biplot approximation, 13
definition of, 254
diagrams, 94, 115

correspondence analysis, 16–18, 133–147
and PCA, 134–136
biplots, 17–18
convex hulls, 92
history of, 133
inertia, 135
mass, 135
seriation, 17, 31, 133

chronological, 144–147
spatial, 141–144

covariance, see also correlation
definition of, 252
martix, 254
matrix, 261
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cross-validation
in classification trees, 184
in linear discriminant analysis, 172,

176, 179

data set analyses
Marae enclosure size

ANOVA, 207
F-test of variances, 202
one-sample t-test, 199
stripcharts, 198
two-sample t-test, 201

assemblages from Ksar Akil
ternary diagrams, 96–97

Bronze Age fibulae
factor analysis, 126–129

flake frequencies by material and site
chi-squared, 204–206

flake length by material
ANOVA, 208–211
boxplots, 208
Shapiro-Wilk normality test, 210

Flavian drinking vessels
correspondence analysis, 142–144

glass vessel assemblages
correspondence analysis, 136–141

hairpin lengths
boxplots, 34
dotplots, 34
histograms, 34
kernel density estimates, 37–42

Kastritsa assemblages
barplots, 54

lead isotope ratios
confidence ellipsoids, 170
linear discriminant analysis, 172–

173
pairs plot, 172

Levantine glass compositions
cluster analysis, 153–158
fuzzy clustering, 162

k-means clustering, 160–162
loomweight dimensions

barplots, 51
confidence ellipsoids, 91–93
contour plots, 91–93
convex hulls, 91–93
histograms, 51
kernel density estimates, 89–90

Medieval glass compositions
cluster analysis, 149–151
fuzzy clustering, 163–164

Neolithic pot dimensions
discriminant analysis, 175–176
principal component analysis, 175

Philistine tomb assemblages
correspondence analysis, 16–18

pillar-moulded bowl chronology
barplots, 52

polished stone axe dimension
rotated PCA, 124–126

polished stone axe dimensions
correlation diagrams, 94
PCA, 113–119

pot frequency – distance decay
linear regression, 68, 76–77

regional distribution of monuments
pie-charts, 57

Roman glass compositions
PCA, 106–112

Roman pottery compositions
biplot, 12
Chernoff faces, 99
cluster analysis, 18–21
linear discriminant analysis, 21–22
pairs plots, 88
principal component analysis, 12–

16
summary statistics of, 16

steatite source characterization
classification trees, 181–182
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linear discriminant analysis, 178–
180

stone axe frequency – distance decay
linear regression, 67, 75–76

stone circle diameters
linear regression, 77–79
non-parametric regression, 80–81

wine bottle dimensions
non-parametric regression, 81–82
pairs plots, 74
regression analysis, 64–65, 72–74

zooarchaeology species assemblages
ternary diagrams, 97–99

data sets
Marae enclosure size

prehistoric Polynesia, 198
analyses of, see data set analyses
assemblages from Ksar Akil

Palaeolithic – Lebanon, 96
Bronze Age fibulae

Bronze Age Switzerland, 241
fineware compositions

late-antique/early-medieval Italy, 250
flake frequencies by material and site

pre-Hispanic Mexico, 203
flake length by material

Late Archaic Mexico, 207
Flavian drinking vessel assemblages

Romano-British, 240
Flavian drinking-vessels

Romano-British, 142
glass vessel assemblages

Romano-British, 239
hairpin lengths

Romano-British, 34
Kastritsa assemblages

Palaeolithic, Greece, 54
lead isotope ratios

Bronze Age Aegean, 244
Levantine glass compositions

Roman Levant, 243
loomweight dimensions

Roman Italy (Pompeii), 229–230
Medieval glass compositions

Medieval British, 242
Neolithic pot dimensions

Neolithic Denmark, 245–246
Philistine tomb assemblages

Early Iron Age, 228
pillar-moulded bowl chronology

Romano-British, 53
polished stone axe dimensions

Neolithic Italy, 235–237
pot frequency – distance decay

Iron Age British, 68
regional distribution of , 57
Roman pottery compositions

Romano-British, 227
Roman waste glass compositions

Romano-British, 233–234
steatite source characterization

Prehistoric North America, 247–
249

stone axe frequency – distance decay
Neolithic British, 67

stone circle diameters
British Neolithic, 232

wine bottle dimensions
Post-medieval British, 231

zooarchaeology species assemblages
Roman - various countries, 238

data sets analysis
Anglo-Saxon burials

correspondence analysis, 144–147
data transformation

centered, 106
in cluster analysis, 20, 150
in PCA, 12, 106–107
log-ratios, 109–111
logarithmic, 38
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and normality, 107
in regression analysis, 67–68, 75–

77
to improve symmetry, 36, 198

rank, 109
ssuare-root, 199
terminological confusion, 107
to [0,1] range, 109

data types
abundance matrix, 144
compositional

sub-compositional, 110
contingency tables, 50
continuous

interval-scaled, 33
or qualitative, 33
ratio-scaled, 33

cross-classified, 50
cross-tabulated, 50
discrete, 33, 50
incidence matrix, 144
matrix

dimensionality, 12
terminology, 12

ordinal, 52
dendrogram, see cluster analysis
descriptive statistics

geometric mean, 110
interquartile range (IQR), 16, 36

in boxplots, 35
mean, 192

limitations, 105
mean (arithmetic), 16, 42
measures of dispersion, 16
measures of location, 16
median, 16, 42

in boxplots, 35
modes, 89

bimodality, 37
multimodality, 38

unimodal, 34
standard deviation, 16, 192
standard deviation., 42
standard error, 192

discriminant analysis, 21–22, 169–189
classification rule

leave-one-out method, 175, 257
resubstitution, 175

quadratic, 178
variable selection, 173

distance
and multivariate methods, 169
chi-squared, 135

in correspondence analysis, 169
weighted Euclidean distance, 135

Euclidean, 112, 150, 171
and principal components, 169
squared, 158

Mahalanobis, 170–172, 256–257
confidence ellipsoids, 171
definition of, 256
in linear discriminant analysis, 169,

257–258
outliers, 171–172

distributions
t distribution, 194
chi-square (χ2), 196
F, 196
normal, 34

assumptions in linear discriminant
analysis, 177

bivariate, 92
in cluster analysis, 159
inference, 193
properties of, 191–192
standard, 192

dotplots, see graphical methods

eigenvalues, 261
of principal components, 114

F-tests
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comparison of means
analysis of variance (ANOVA), 206–

211
examples

equality of variances, 202
of variances, 196–197

factor analysis, 121–132
component selection

Kaiser’s rule, 127
distributional assumptions, 264
factor extraction, 263–265

least squares methods, 265
maximum-likelihood, 127, 264
minres, 128
principal axis, 127, 264

factor selection
Kaiser’s rule, 266

model, 261–262
rotation, 263

oblimin, 127
oblique, 127, 263
orthogonal, 127, 263

functions, 42–45
kmeans, 161
IQR, 30
TukeyHSD, 209
abline, 28, 32, 64
aov, 208
apply, 44
as.dendrogram, 166
axis, 189
barplot, 52, 59–61

arguments to, 61
legend, 62
used in screeplot, 120

bartlett.test, 210
biplot, 12, 14, 225
boxplot, 46, 48
ca, 18, 136
cbind, 42, 44, 188

chisq.test, 204
chull, 92, 101
clr, 120
cmeans, 162, 168
colors, 26
colours, 26
contour, 101
cooks.distance, 83
corresp, 17, 31
cutree, 150, 166
c – combine, 25
dataEllipse, 187
dendrapply, 167
density, 37, 47
dim, 30
dist, 20
dotplot.mtb, 46
edit, 42
eqscplot – equal scaling, 15, 21, 30,

32
exp, 84
faces, 99
fanny, 162
fa, 127, 260

defaults, 265
fisher.test, 205
for, 44
hclust, 20, 166
hist, 46, 51, 59
ifelse, 189
influence.measures, 83
jitter, 83
kde2d, 91
kmeans, 162, 168
kruskal.test, 212
lda, 21, 178, 187

with cross-validation, 189
legend, 28

in barplot, 62
placement of, 166
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length, 44
letters, 32
library, 17, 225
lines, 28, 83
list, 43, 61
lm.influence, 83
lm, 64
loadings, 128
loess.smooth, 86
loess, 86, 87
log10, 47, 84
log, 47
mean, 30
median, 30
names, 44
oneway.test, 207
order.dendrogram, 167
p.chisq, 204
pairs, 15, 74, 166
par, 48, 60
oma argument, 166
xpd argument, 166

pf, 197
pie3D, 62
pie, 62
plot.acomp, 97, 104
plotcp, 184
plot, 25

in cluster analysis, 150
using hclust, 20
using rpart, 183

pnorm, 192
points, 83, 85
prcomp, 12, 29, 187, 261
predict, 87

using lda, 22, 24, 178, 187
principal, 125
print, 30

for loadings, 128
pt, 195

qchisq, 204
qf, 197
qt, 195
rbind, 44, 187
read.csv, 225
read.delim, 225
read.table, 225
rep, 17, 25
round, 30, 43
row.names, 44
rpart.control, 183
rpart, 183

complexity parameter cp, 183
scale, 20
scatterplot3d, 97, 104
scatterplotMatrix, 15
scatterplotmatrix, 88
screeplot, 120
sd, 30
seq, 44
shapiro.test, 210
sm.density, 101
stripchart, 46, 48
studres, 83
summary, 64
t.test, 200
table, 44
text, 30, 31

using rpart, 183
triangle.plot, 97, 98, 104
triax.plot, 97, 104
truehist, 47
t – for ‘transpose’, 61
var.test, 200
varimax, 125
vioplot, 37, 48
wilcox.test, 212
win.graph, 46

graphical methods
barplots, 54–57
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and ternary diagrams, 99
difference from histograms, 51

biplots
interpretation of, 134

boxplots, 41
definition, 35
outliers, 35
unsuited to multimodal data, 35

Chernoff faces, 99
contour plots, 91–93
convex hulls, 91–93

peeling, 93
correlation diagrams, 94
discrete data, 57
dotplots, 34
ellipses, 91–93

confidence ellipsoids, 91–93, 170–
171, 258

correlation diagramss, 94
normality assumptions, 171

histograms, 34–37
bin-widths, 34
definition, 34
difference from barplots, 51
issues of comparison, 39
probability scale, 34
unequal bin-widths, 52

kernel density estimates
bandwidth, 37
multi-group comparison, 39–42
smoothing issues, 37
univariate, 37–42

pairs plots, 88–89
in PCA, 118

pie-charts, 57–59
three-dimensional, 58

scree plots, 117, 161
stripcharts, 41, 198
ternary diagrams, 95–99

seriation, 96

violin plots, 36, 41

histograms, see graphical methods
hypothesis tests, 190–214

p-value, 192
t-tests, 194–196
alternative hypothesis, 193
and confidence intervals, see confi-

dence intervals
chi-squared, see chi-squared tests
critical values, 194
F-tests, see F-tests
Fisher’s exact test, 205
null hypothesis, 193
one-sided, 193
power, 194
significance, 193
two-sided, 193
type I error, 194
type II error, 194

Kaiser’s rule, 117, 125, 266
kernel density estimates, see also graph-

ical methods
2-dimensional, 89–90

contour plots, 90
perspective plots, 90

and pairs plots, 88
confidence bands, 90

lead isotope ratios, 172–173
leave-one-out methods, 171

maximum-likelihood estimation, 159
measure of dispersion, 16
measure of location, 16
multivariate methods, 11

Chernoff faces, 99
classification trees, see classification

trees
cluster analysis, see cluster analysis
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correspondence analysis, see corre-
spondence analysis

discriminant analysis, see discrimi-
nant analysis

factor analysis, see factor analysis,
see principal component analy-
sis

principal component analysis, see fac-
tor analysis, see principal com-
ponent analysis

outliers, 34
and Mahalanobis distance, 171–172
in ANOVA, 210
in boxplots, 35, 36
in cluster analysis, 163–164
in dotplots, 34
in histograms, 34
in loomweight dimensions, 89
in regression analysis, 65, 68

misuse of terminology, 71
in stripcharts, 199

p-value, see hypothesis tests
packages

Hotelling, 120
MASS, 17, 21, 47, 83, 91, 101, 102,

147, 178, 187, 225
Rcmdr, 9
ade4, 97, 98, 104
aplpack, 99
car, 88, 118, 187
ca, 136, 147
cluster, 162
compositions, 97, 104
dendextend, 167
dendroextras, 167
e1071, 162
ellipse, 95, 101, 102
mclust, 159
plotrix, 46, 62, 97, 104

psych, 125, 260
rpart, 183
scatterplot3d, 104
sm, 90, 101
stats, 225
vioplot, 37

pairs plots, see graphical methods
also called scatterplot matrices, 88

pie-charts, see graphical methods, 59
principal component analysis, 12–16, 91,

105–120, 256
and cluster validation, 150, 156–157
and correspondence analysis, 134–136
and factor analysis, 115, 121–132
biplots, 12

interpretation of, 13, 109
coefficients

loadings as alternative term, 114
constraints on, 114

component selection, 118
Kaiser’s rule, 117, 125

data standardization, 12
definition and properties of, 114–115
distributional assumptions, 264
equal scaling of axes, 14
interpretation of PCs, 115
outliers, 15
rotation, 115, 124–126

varimax, 125
size and shape interpretation, 94, 115–

116, 125
provenance studies, 91

R, see software
rants

don’t use pie-charts, 59
misnaming chart types, 51
misuse of 3-D plots, 56

regression analysis, 63–87
coefficient of determination, 70
inference, 73–74
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least squares estimates, 69
linear models, 63–66, 74, 83, 255–

256
dummy variable use, 77–79

linearizable models, 66–68, 75–77
exponential, 68, 84
power law, 67, 84

model checking, 69–73
non-parametric, 79–82, 85–87

loess smoothing, 80–82, 86–87
residuals

properties of, 71
terminology varies, 71

scree plots
in k-means cluster analysis, 161, 168
in PCA, 117
limitations of, 162

seriation, 141–147
using ternary diagrams, 96

singular value decomposition, 123, 260
software

CLUSTAN, 158
Excel, 56

barplots – problems with, 56
import data from, 224

MINITAB, 46, 71
R

access to, 224
data entry, 224
functions, 225, see functions
initial examples, 11
missing data – use of NA, 225
packages, 225, see packages
using functions, 42–45

R graphics
labels in plots, 25
legend construction, 28
line types in plots, 28
plotting symbols, 25
use of color, 26

SAS, 173
SPSS, 173

factor analysis and PCA, 114, 122,
266

S, 9
spatial clustering, 160
supervised learning methods

classification trees, 180
discriminant analysis, 169

t-tests, see also hypothesis tests
examples, 200–202

ternary diagrams, see graphical meth-
ods

unsupervised learning methods, 169
cluster analysis, 169
correspondence analysis, 169
principal component analysis, 169
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