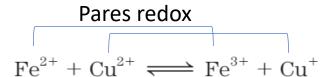

QBQ0204 – Fosforilação oxidativa

Felipe Jun Fuzita

O fluxo de elétrons é capaz de gerar trabalho

-Os elétrons fluem espontaneamente entre duas espécies químicas com diferentes afinidades.


-É gerada uma força eletromotriz (fem).

-Em organismos vivos heterotróficos o alimento reduzido é oxidado.

-O aceptor final de elétrons é o oxigênio (aeróbicos) e a reação exergônica.

Metano	H: :: :: :: :: :: :: :: :: :: :: :: :: :	8	Acetaldeído (aldeído) $ \begin{array}{c} H \\ H : C : C \\ H \end{array} $	3
Etano (alcano)	Н Н Н:С:С:Н Н Н	7	Acetona $H: C: C: C: H$ $H: H$	2
Eteno (alceno)	$\overset{H}{\mathop{:}} C :: \overset{C}{\mathop{:}} \overset{H}{\underset{H}{}}$	6		2
Etanol (álcool)	H H H: C: C: O: H H H	5	Monóxido : C : : : O : de carbono	2
Acetileno (alcino)	H:C:::C:H	5		1
Formaldeído	$\overset{\mathbf{H}}{\underset{\mathbf{H}}{:}}\overset{\mathbf{C}}{:}:\overset{\mathbf{O}}{:}$	4	Dióxido de carbono $0 :: C :: 0$	0

Estados de oxidação do carbono. Significa o quanto os elétrons compartilhados de uma ligação "pertencem" ao carbono ou ao outro átomo da ligação, sendo a eletronegatividade relativa que dita isso.

pode ser descrita nos termos de duas semirreações:

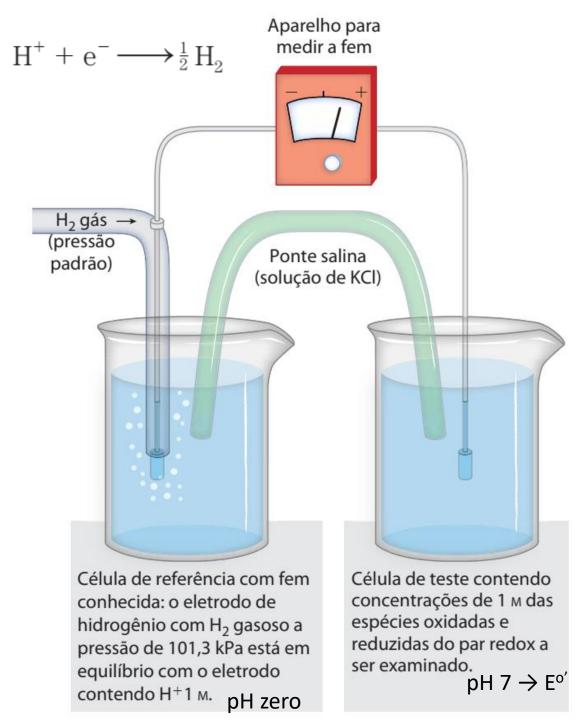
(1)
$$\operatorname{Fe}^{2+} \iff \operatorname{Fe}^{3+} + e^{-}$$

(2)
$$Cu^{2+} + e^{-} \rightleftharpoons Cu^{+}$$

$$R-C H + 4OH^{-} + 2Cu^{2+} \rightleftharpoons R-C O + Cu_{2}O + 2H_{2}O$$

(1)
$$R-C$$
 $+ 2OH^- \rightleftharpoons R-C$ $OH + 2e^- + H_2O$

(2)
$$2Cu^{2+} + 2e^{-} + 2OH^{-} \rightleftharpoons Cu_2O + H_2O$$


$$Fe^{2+} + Cu^{2+} \Longrightarrow Fe^{3+} + Cu^{+}$$

$$AH_2 \rightleftharpoons A + 2e^- + 2H^+$$

$$AH^2 + B \Longrightarrow A + BH^2$$

$$R-CH_3 + \frac{1}{2}O_2 \longrightarrow R-CH_2 \longrightarrow OH$$

Em sistemas biológicos a unidade de oxidação mais comum é a transferência de 2 elétrons (e⁻).

Potencial de redução padrão Eº (Volts)

Os elétrons migram para o eletrodo com maior potencial de redução.

Valor *positivo* para quem *doa*, *negativo* para quem *recebe*.

$$E = E^{\circ} + \frac{RT}{n\mathcal{J}} \ln \frac{\text{[elétron aceptor]}}{\text{[elétron doador]}}$$

$$\Delta G^{\prime \circ} = -n \, \mathcal{J} \Delta E^{\prime \circ}$$

 $\Delta E^{o'} = E^{o'}$ do oxidante — $E^{o'}$ do redutor

TABELA 13-7 Potenciais de redução padrão de algumas semirreações de importância biológica

Semirreação	<i>E</i> ′°(V)
$\frac{1}{2}O_2 + 2H^+ + 2e^- \longrightarrow H_2O$	0,816
$Fe^{3+} + e^{-} \longrightarrow Fe^{2+}$	0,771
$NO_3^- + 2H^+ + 2e^- \longrightarrow NO_2^- + H_2O$	0,421
Citocromo f (Fe ³⁺) + $e^- \longrightarrow$ citocromo f (Fe ²⁺)	0,365
Fe (CN) ₆ ³⁻ (ferricianeto) + $e^- \longrightarrow$ Fe (CN) ₆ ⁴⁻	0,36
Citocromo a_3 (Fe ³⁺) + $e^- \longrightarrow$ citocromo a_3 (Fe ²⁺)	0,35
$O_2 + 2H^+ + 2e^- \longrightarrow H_2O_2$	0,295
Citocromo a (Fe ³⁺) + $e^- \longrightarrow$ citocromo a (Fe ²⁺)	0,29
Citocromo c (Fe ³⁺) + $e^- \longrightarrow$ citocromo c (Fe ²⁺)	0,254
Citocromo c_1 (Fe ³⁺) + $e^- \longrightarrow$ citocromo c_1 (Fe ²⁺)	0,22
Citocromo b (Fe ³⁺) + $e^- \longrightarrow$ citocromo b (Fe ²⁺)	0,077
Ubiquinona + $2H^+ + 2e^- \longrightarrow$ ubiquinol + H_2	0,045
$Fumarato^{2-} + 2H^{+} + 2e^{-} \longrightarrow succinato^{2-}$	0,031
$2H^+ + 2e^-$ → H_2 (em condições padrão, pH 0)	0,000

Crotonil-CoA + $2H^+ + 2e^- \longrightarrow butiril$ -CoA	-0,015
Oxaloacetato ²⁻ + $2H^+ + 2e^- \longrightarrow malato^{2-}$	-0,166
$Piruvato^{-} + 2H^{+} + 2e^{-} \longrightarrow lactato^{-}$	-0,185
Acetaldeído + $2H^+ + 2e^- \longrightarrow etanol$	-0,197
$FAD + 2H^{+} + 2e^{-} \longrightarrow FADH_{2}$	-0,219*
Glutationa + $2H^+ + 2e^- \longrightarrow$ 2 glutationas reduzidas	-0,23
$S + 2H^+ + 2e^- \longrightarrow H_2S$	-0,243
Ácido lipoico + $2H^+ + 2e^- \longrightarrow$ ácido di-hidrolipoico	-0,29
$NAD^+ + 2H^+ + 2e^- \longrightarrow NADH$	-0,320
$NADP^+ + H^+ + 2e^- \longrightarrow NADPH$	-0,324
Acetoacetato $+ 2H^+ + 2e^- \longrightarrow \beta$ -hidroxibutirato	-0,346
α -cetoglutarato + CO^2 + $2H^+$ + $2e^- \longrightarrow$ isocitrato	-0,38
$2H^+ + 2e^- \longrightarrow H_2 \text{ (em pH 7)}$	-0,414
Ferredoxina (Fe ³⁺) + $e^- \longrightarrow$ ferredoxina (Fe ²⁺)	-0,432

NAD⁺ + 2 e⁻ + 2H⁺
$$\Longrightarrow$$
 NADH + H⁺ $E^{o'} = -0.32 \text{ V}$

(ox)

COO⁻

C=O + 2 e⁻ + 2H⁺ \Longrightarrow H-C-OH

CH₃

Piruvato

(ox)

COO⁻

CH₃

Cired)

COO⁻

$$\begin{array}{c} \text{COO}^- & \text{COO}^- \\ \text{NADH} + \text{H}^+ + \text{C=O} \longrightarrow \text{NAD}^+ + \text{H-C-OH} \\ \text{CH}_3 & \text{CH}_3 \end{array}$$

 $\Delta E^{o'} = E^{o'}$ do oxidante $-E^{o'}$ do redutor

$$\Delta E^{o'} = -0.19 - (-0.32)$$

$$\Delta E^{o'} = + 0.13 \text{ V}$$

$$\Delta G^{o'} = -n \mathcal{F} \Delta E^{o'}$$

$$\Delta G^{0'} = -2 \times 96,5 \times 0,13$$

 $\Delta G^{0'} = -25,09 \text{ kJ} \cdot \text{mol}^{-1}$

Pyruvate + 2 H⁺ + 2 e⁻ \rightarrow lactate $E'_0 = -0.19 \text{ V}$ (B)

$$NAD^{+} + H^{+} + 2e^{-} \rightarrow NADH \qquad E'_{0} = -0.32 \text{ V}$$
 (C)

Pyruvate + 2 H⁺ + 2 e⁻
$$\rightarrow$$
 lactate $E'_0 = -0.19 \text{ V}$ (B)
NADH \rightarrow NAD⁺ + H⁺ + 2 e⁻ $E'_0 = +0.32 \text{ V}$ (D)

$$\Delta G^{\circ\prime} = -2 \times 96.48 \text{ kJ mol}^{-1} \text{ V}^{-1} \times -0.19 \text{ V}$$

$$= +36.7 \text{ kJ mol}^{-1} (+8.8 \text{ kcal mol}^{-1})$$

$$\Delta G^{\circ\prime} = -2 \times 96.48 \text{ kJ mol}^{-1} \text{ V}^{-1} \times +0.32 \text{ V}$$

$$= -61.8 \text{ kJ mol}^{-1} (-14.8 \text{ kcal mol}^{-1})$$

$$\Delta G^{\circ\prime} = \Delta G^{\circ\prime}$$
 (for reaction B) + $\Delta G^{\circ\prime}$ (for reaction D)
= +36.7 kJ mol⁻¹ + (-61.8 kJ mol⁻¹)
= -25.1 kJ mol⁻¹ (-6.0 kcal mol⁻¹)

Calcule a variação de energia livre padrão, $\Delta G'^{\circ}$, para a reação em que o acetaldeído é reduzido pelo transportador de elétron biológico NADH:

Acetaldeído + NADH +
$$H^+ \longrightarrow etanol + NAD^+$$

Em seguida, calcule a variação de energia livre real, ΔG , quando a [acetaldeído] e a [NADH] forem de 1 m, e a [etanol] e a [NAD⁺] forem de 0,1 m. As semirreações relevantes e seus valores de E'° são:

(1) Acetaldeído +
$$2H^+ + 2e^- \longrightarrow etanol$$

 $E'^{\circ} = -0.197 \text{ V}$

(2)
$$NAD^{+} + 2H^{+} + 2e^{-} \longrightarrow NADH + H^{+}$$

 $E'^{\circ} = -0.320 \text{ V}$

Lembre-se que, por convenção, $\Delta E'^{\circ}$ é o valor de E'° do aceptor de elétrons menos o E'° do doador de elétrons.

Solução: Como o acetaldeído é o aceptor dos elétrons (n=2) vindos do NADH, $\Delta E'^{\circ}=-0.197~{\rm V}-(-0.320~{\rm V})=0.123~{\rm V}.$ Portanto,

$$\Delta G^{\prime \circ} = -\text{n } \mathcal{J} \Delta E^{\prime \circ} = -2(96.5 \text{ kJ/V} \cdot \text{mol})(0.123 \text{ V})$$

= -23.7 kJ/mol

Esta é a variação de energia livre para a reação de oxidaçãoredução a 25°C e pH 7, quando acetaldeído, etanol, NAD⁺ e NADH estão presentes em concentrações de 1,0 m.

Para calcular o ΔG quando a [acetaldeído] e a [NADH] forem de 1 m e a [etanol] e a [NAD⁺] forem de 0,1 m, utilizam-se a Equação 13-4 e a variação de energia livre padrão calculada acima:

$$\Delta G = \Delta G'^{\circ} + \text{RT In} \frac{[\text{etanol}][\text{NAD}^{+}]}{[\text{acetalde\'(do]}[\text{NADH}]]}$$

$$= -23,7 \text{ kJ/mol} +$$

$$(8,315 \text{ J/mol} \cdot \text{K})(298 \text{ K}) \ln \frac{(0,100 \text{ M})(0,100 \text{ M})}{(1,00 \text{ M})(1,00 \text{ M})}$$

$$= -23,7 \text{ kJ/mol} + (2,48 \text{ J/mol}) \ln 0,01$$

$$= -35,1 \text{ kJ/mol}$$

Esta é a variação de energia livre real dos pares redox nas concentrações especificadas.

Calcule a variação de energia livre padrão, $\Delta G'^{\circ}$, para a reação em que o acetaldeído é reduzido pelo transportador de elétron biológico NADH:

$$Acetaldeído + NADH + H^{+} \longrightarrow etanol + NAD^{+}$$

Em seguida, calcule a variação de energia livre real, ΔG , quando a [acetaldeído] e a [NADH] forem de 1 m, e a [etanol] e a [NAD $^+$] forem de 0,1 m. As semirreações relevantes e seus valores de E'° são:

(1) Acetaldeído +
$$2H^+ + 2e^- \longrightarrow etanol$$

 $E'^{\circ} = -0.197 \text{ V}$

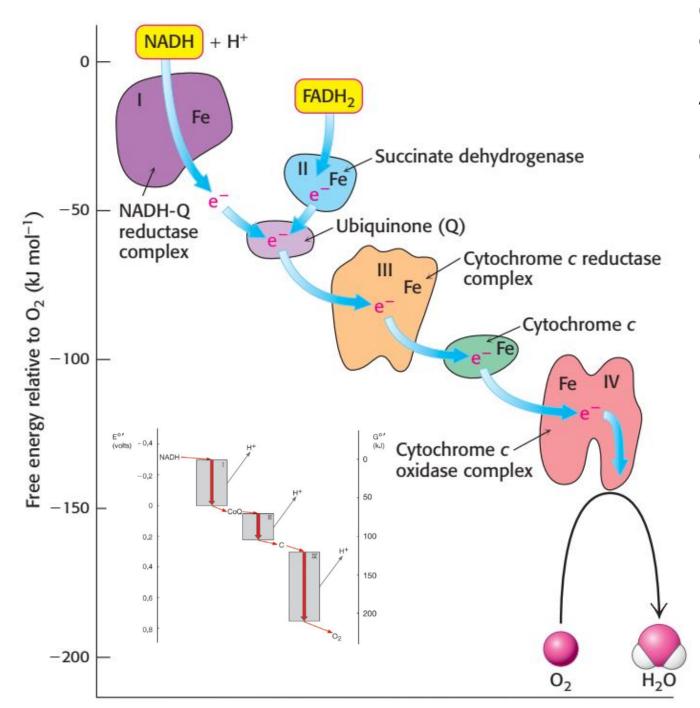
(2)
$$NAD^+ + 2H^+ + 2e^- \longrightarrow NADH + H^+$$

 $E^{\prime \circ} = -0.320 \text{ V}$

Lembre-se que, por convenção, $\Delta E'^{\circ}$ é o valor de E'° do aceptor de elétrons menos o E'° do doador de elétrons.

$$^{1}/_{2}O_{2} + 2 H^{+} + 2 e^{-} \rightarrow H_{2}O$$
 $E'_{0} = +0.82 V$ (A)
 $NAD^{+} + H^{+} + 2 e^{-} \rightarrow NADH$ $E'_{0} = -0.32 V$ (B)

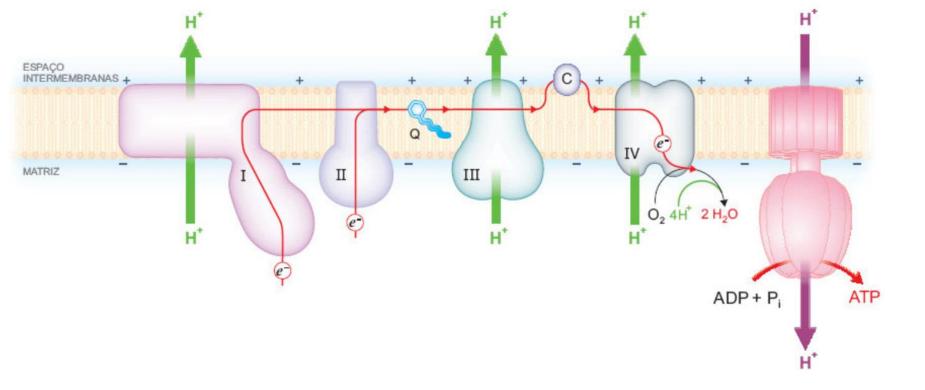
The combination of the two half-reactions, as it proceeds in the electron-transport chain, yields


$$1/_2 O_2 + NADH + H^+ \rightarrow H_2O + NAD^+$$
 (C)

The standard free energy for this reaction is then given by

$$\Delta G^{\circ\prime} = (-2 \times 96.48 \text{ kJ mol}^{-1} \text{ V}^{-1} \times +0.82 \text{ V}) - (-2 \times 96.48 \text{ kJ mol}^{-1} \text{ V}^{-1} \times 0.32 \text{ V})$$
$$= -158.2 \text{ kJ mol}^{-1} -61.9 \text{ kJ mol}^{-1}$$
$$= -220.1 \text{ kJ mol}^{-1} (-52.6 \text{ kcal mol}^{-1})$$

O valor para a *síntese* de ATP é 31 kJ/mol.

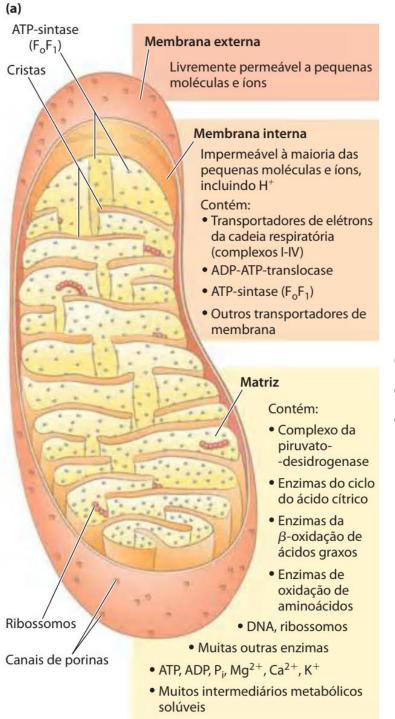

A <u>transferência</u> de elétrons das <u>coenzimas reduzidas</u> até o <u>oxigênio</u> ocorre em <u>etapas</u>.

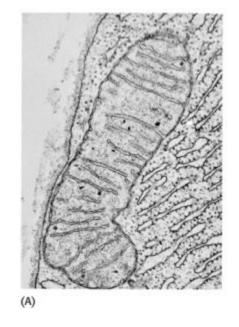
Os complexos da cadeia de transporte de elétrons se encontram na membrana interna da mitocôndria.

A energia da transferência de elétrons é utilizada para o bombeamento de prótons da matriz mitocondrial para o espaço intermembranas.

	Par oxidado/reduzido	E°9 (volts)
	NAD+/NADH	- 0,32
Complexo I	FMN/FMNH ₂	- 0,30
	Centros Fe-S ox/red ¹	- 0,38 a - 0,27
	Fumarato/Succinato	+ 0,03
Complexo II	FAD/FADH ₂	- 0,04
	Centros Fe-S ox/red	- 0,03 a 10,06
	Citocromo <i>b</i> ox/red	- 0,08
	CoQ/CoQH ₂	+ 0,05
Complexo III	Heme b 566 ox/red ²	- 0,03
	Heme <i>b</i> ₅₆₂ ox/red	+ 0,03
	Centros Fe-S ox/red	+ 0,28
	Citocromo c 10x/red	+ 0,22
	Citocromoc ox/red	+ 0,24
Complexo IV	Citocromo a ox/red	+ 0,29
	Cu^{2+}/Cu^{1+}	+ 0,34
	Citocromo a 30x/red	+ 0,55
	0 ₂ /H ₂ 0	+ 0,82

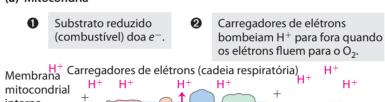
Q = ubiquinona (coenzima Q)

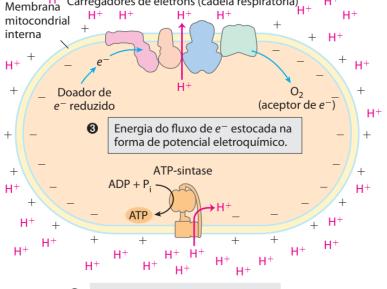

C = citocromo C

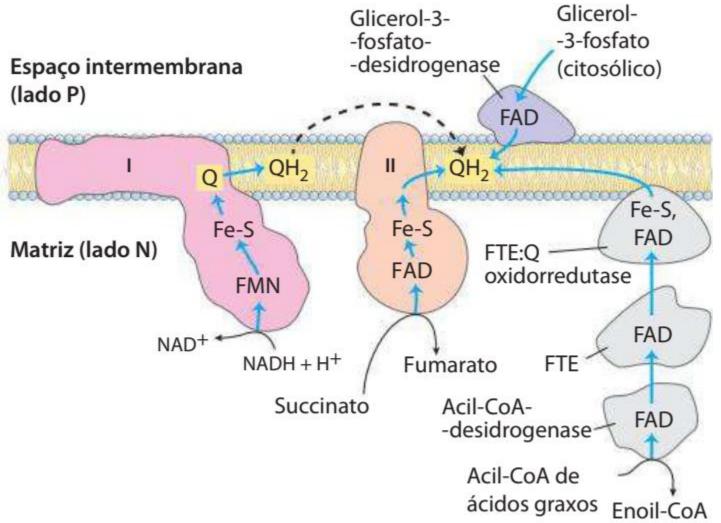

TABELA 19-3 Os componentes proteicos da cadeia mitocondrial de transferência de elétrons

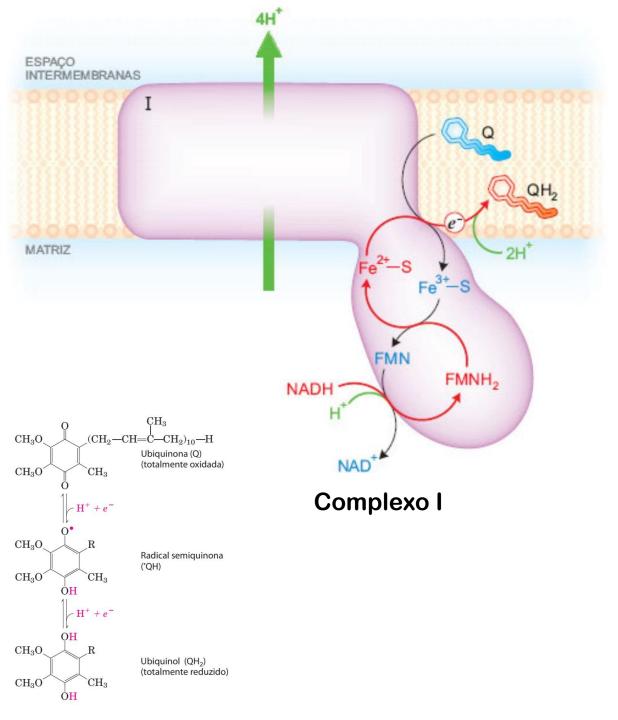
Proteína/complexo enzimático	Massa (kDa)	Número de subunidades*	Grupo(s) prostético(s)	
I NADH-desidrogenase	850	43 (14)	FMN, Fe-S	
II Succinato-desidrogenase	140	4	FAD, Fe-S	
III Ubiquinona: citocromo c -oxidor redutase	250	11	Hemes, Fe-S	
Citocromo c^{\dagger}	13	1	Heme	
IV Citocromo-oxidase	160	13 (3-4)	$Hemes; Cu_{A}, Cu_{B}$	

^{*}Número de subunidades em equivalentes bacterianos entre parênteses.


 $^{^{\}dagger}$ O citocromo c não é parte do complexo enzimático; ele se move entre os complexos III e IV como proteína livremente solúvel.




O *gradiente de prótons* é formado entre o espaço *intermembranas* (↑) e a matriz *mitocondrial* (↓).



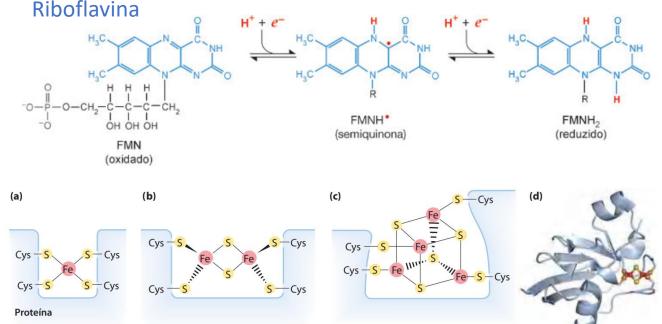
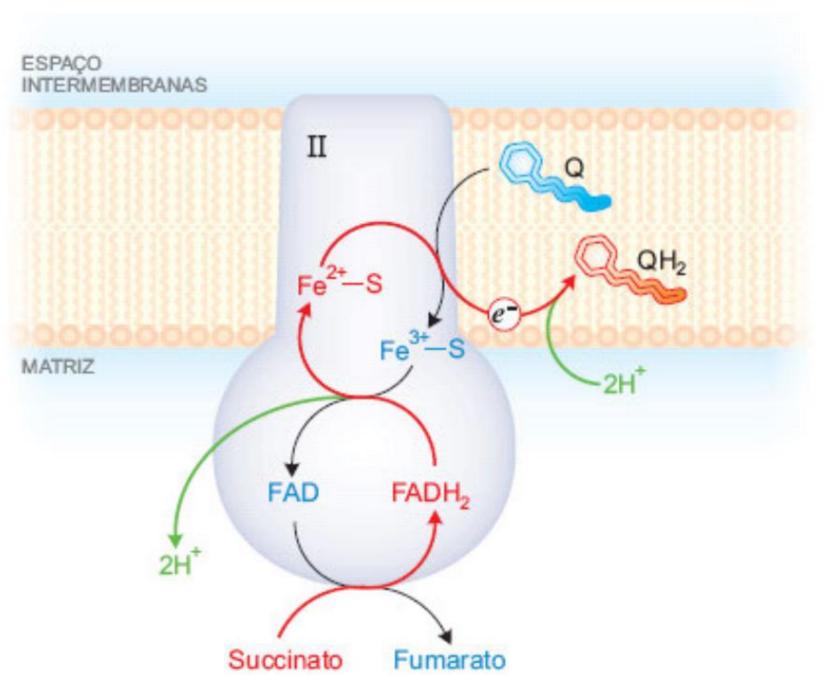
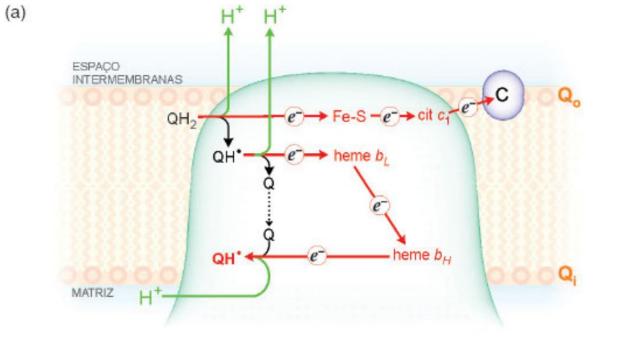

A ATP-sintase usa o potencial eletroquímico para sintetizar ATP.

FIGURA 19-8 Via dos elétrons de NADH, succinato, acil-CoA de ácidos graxos e glicerol-3-fosfato para a ubiquinona. Ubiquinona (Q) é o ponto de entrada para os elétrons derivados das reações do citosol, a partir de

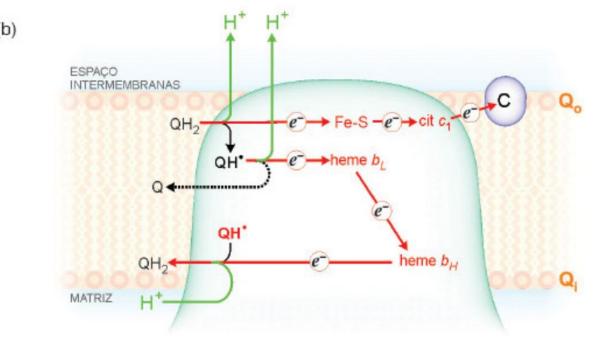
Quando a coenzima é o *FAD*, *não* há passagem pelo *complexo I*.

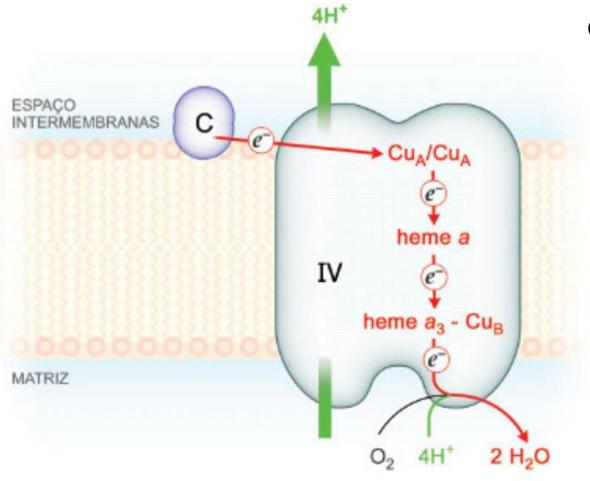

Citocromos
$$a$$
 e a_3 : $-C_{17}H_{29}$ $-CH=CH_2$ $-CH_3$

Citocromos c_1 e c : $-CH-CH_3$ $-CH-CH_3$


Citocromos c_1 e c : $-CH-CH_3$ $-CH-CH_3$

Proteína


Grupo heme


O complexo II é a succinato desidrogenase do Ciclo de Krebs.

Complexo III

Complexo IV

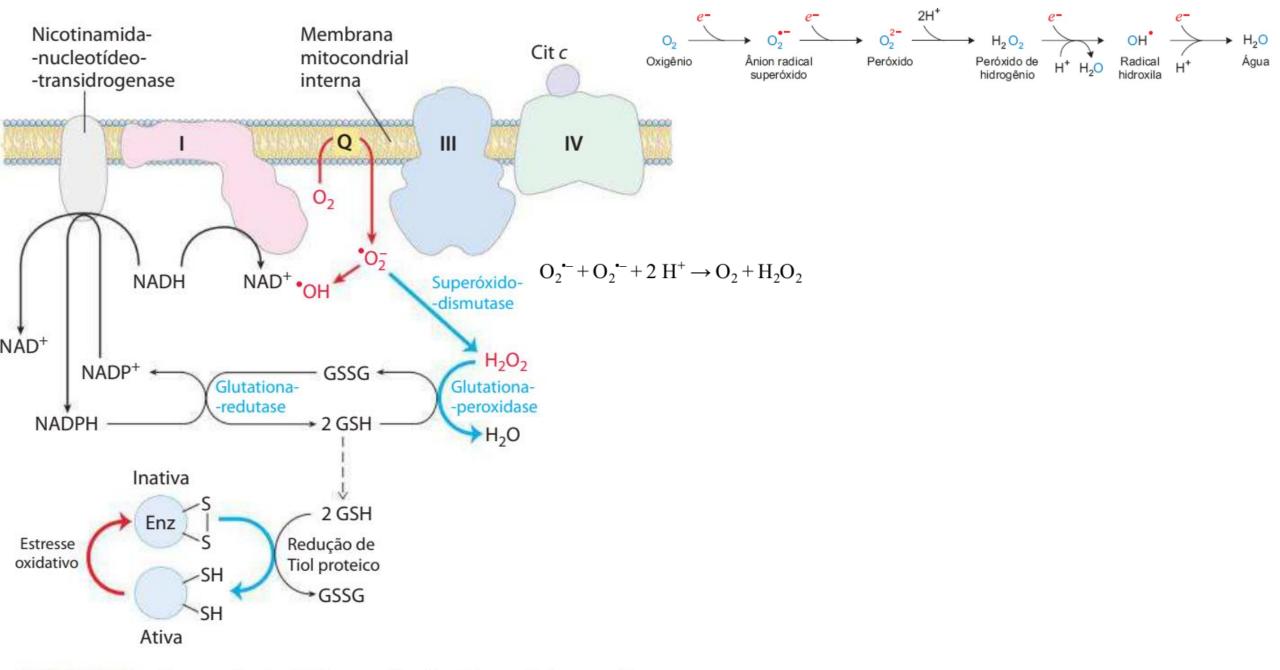
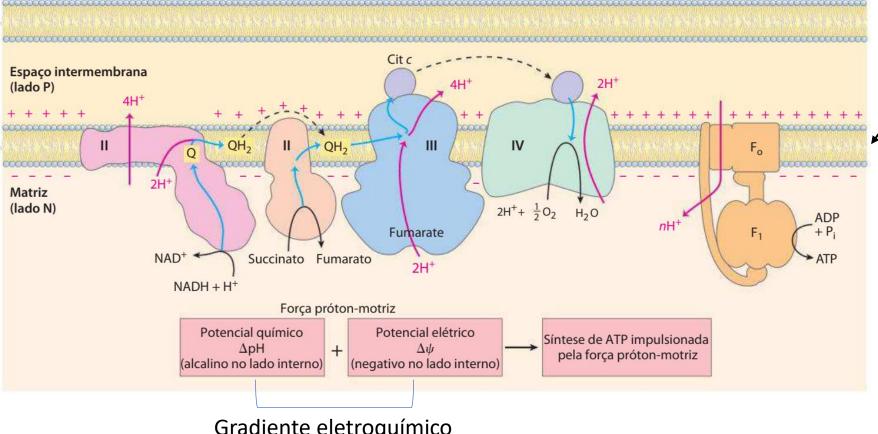
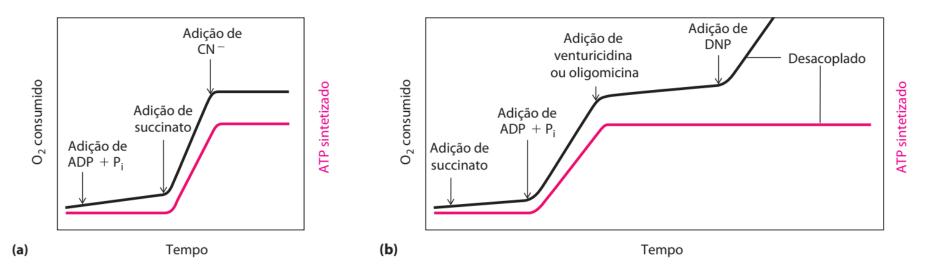



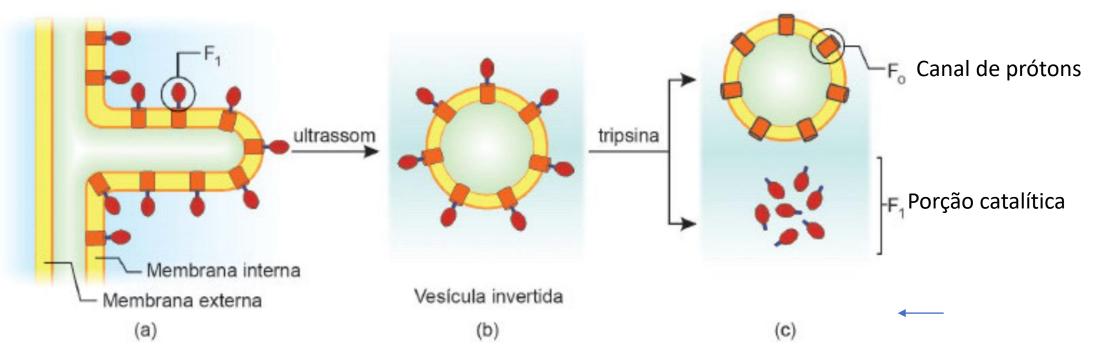
FIGURA 19-18 Formação de ERO nas mitocôndrias e defesas mitocondriais. Quando a taxa de entrada de elétrons na cadeia respiratória

NADH
$$\longrightarrow$$
 Q \longrightarrow Cyt b \longrightarrow Cyt c_1 \longrightarrow Cyt c \longrightarrow Cyt $(a + a_3)$ \longrightarrow O₂

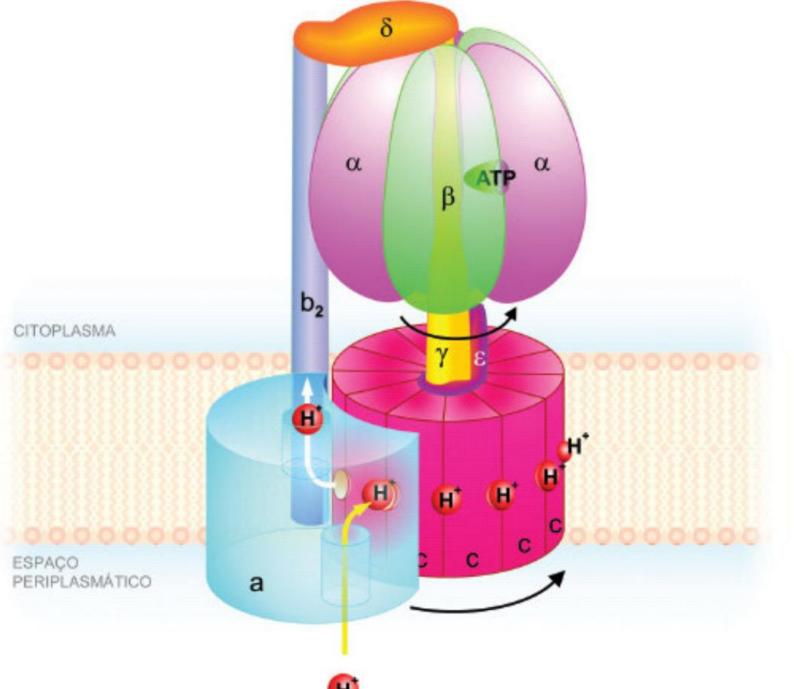

Gradiente eletroquímico

Quanto maior o gradiente, mais "difícil" energeticamente a transferência de elétrons na cadeia.

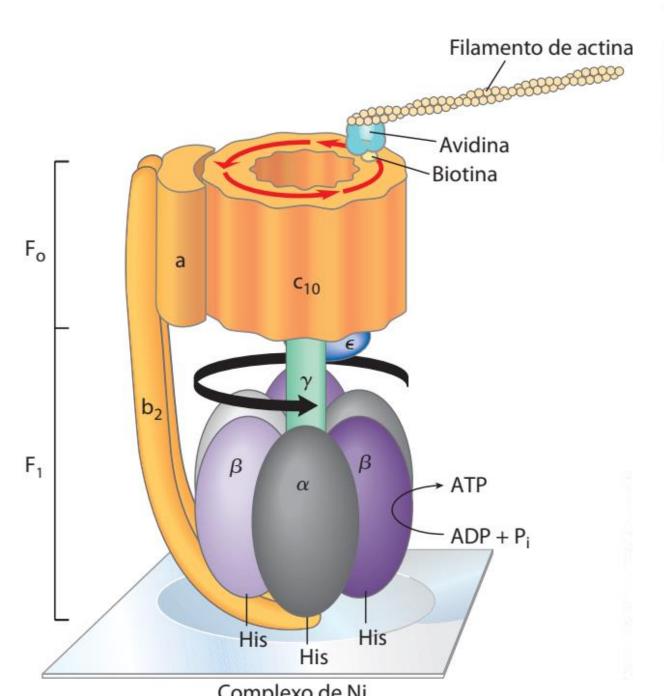
Impermeável a prótons.


Retorno dos prótons é espontâneo, ocorre pela *ATP-sintase* gerando energia para síntese de ATP.

Acoplamento quimiosmótico.


FIGURA 19-20 Acoplamento da transferência de elétrons e da síntese de ATP em mitocôndrias. Em experimentos para a demonstração do acoplamento, as mitocôndrias são suspensas em um meio tamponado, e um eletrodo de O_2 monitora o consumo de O_2 . Em intervalos, amostras são removidas e analisadas para a presença de ATP. (a) A adição isolada de ADP e P_i resulta em pequeno ou nenhum aumento da respiração (consumo de O_2 ; em preto) ou da síntese de ATP (em cor-de-rosa). Quando succinato é adicionado, a respiração inicia imediatamente e ATP é sintetizado. A adição de

cianeto (CN⁻), que bloqueia a transferência de elétrons entre a citocromooxidase (complexo IV) e o O₂, inibe tanto a respiração quanto a síntese de ATP. **(b)** Mitocôndrias providas de succinato respiram e sintetizam ATP somente quando ADP e P_i são adicionados. A adição posterior de venturicidina ou oligomicina, inibidores da ATP-sintase, bloqueia a síntese de ATP e a respiração. Dinitrofenol (DNP) é um desacoplador, permitindo que a respiração continue sem a síntese de ATP.



Síntese de ATP ocorre mesmo na ausência de transporte de elétrons, desde que haja gradiente de pH (vesículas invertidas em meio alcalino).

A membrana interna precisa estar intacta e capaz de formar o gradiente.

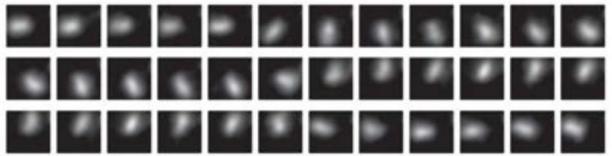
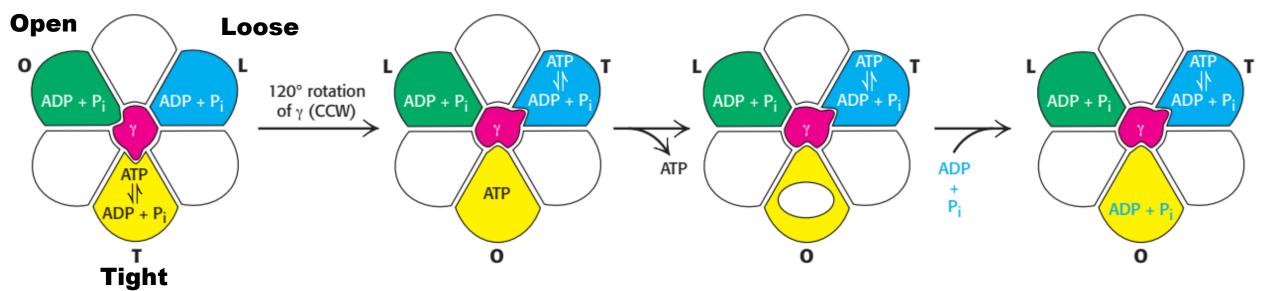



FIGURA 19-27 Demonstração experimental da rotação de F_o e γ . F_1 geneticamente modificado para conter uma sequência de resíduos de His adere-se firmemente a uma lâmina de microscópio coberta com um complexo de Ni; a biotina é covalentemente ligada a uma subunidade c de F_o . A proteína avidina, que liga firmemente a biotina, está covalentemente ligada a longos filamentos de actina marcada com uma sonda fluorescente. A ligação biotina-avidina agora liga filamentos de actina à subunidade c. Quando o ATP é fornecido como substrato para a atividade ATPásica de F_1 , observa-se o filamento marcado rodar continuamente em uma direção, provando que o cilindro F_o de subunidades c gira. Em outro experimento, um filamento de actina fluorescente foi ligado diretamente à subunidade γ . A série de micrografias fluorescentes (ler da esquerda para a direita) mostra a posição do filamento de actina em intervalos de 133 ms. Observe que, à medida que o filamento gira, ele faz um salto discreto a cada cerca de 11 quadros de imagens. Presumivelmente, o cilindro e o eixo se movem como uma unidade.

Figure 18.28 Binding-change mechanism for ATP synthase. The rotation of the γ subunit interconverts the three β subunits. The subunit in the T (tight) form interconverts ADP and P_i and ATP but does not allow ATP be released. When the γ subunit is rotated by 120 degrees in a counterclockwise (CCW) direction, the T-form subunit is converted into the O form, allowing ATP release. ADP and P_i can then bind to the O-form subunit. An additional 120-degree rotation (not shown) traps these substrates in an L-form subunit.

Rendimento da oxidação da glicólise.

Etapas	1	II	Ш	1+11+111	IV	Mols de ATP formados
Coenzimas produzidas	2 NADH	2 NADH	6 NADH 2 FADH ₂	10 NADH 2 FADH ₂	30 ATP 4 ATP	30 4
Fosforilação no nível do substrato	2 ATP	_	2 ATP	4 ATP	_	4
Total						38

- I. Glicose a 2 piruvato
- II. 2 piruvato a 2 acetil-CoA
- III. 2 acetil-CoA pelo ciclo de Krebs
- IV. NADH e FADH₂ pela cadeia de transporte de elétrons e fosforilação oxidativa.

Razão P/O – ATPs formados por átomoms de oxigênio consumido

NADH + H⁺ + 10 H⁺ (matriz) + 1/2 O₂ + 3 ADP + 3 P_i + 3 H⁺
$$\longrightarrow$$
 NAD⁺ + 10 H⁺ (espaço intermembranas) + 3 ATP + 4 H₂O FADH₂ + 6 H⁺ (matriz) + 1/2 O₂ + 2 ADP + 2 P_i + 2 H⁺ \longrightarrow FAD + 6 H⁺ (espaço intermembranas) + 2 ATP + 3 H₂O

Esses valor varia por diversos fatores, não é trivial de calcular.

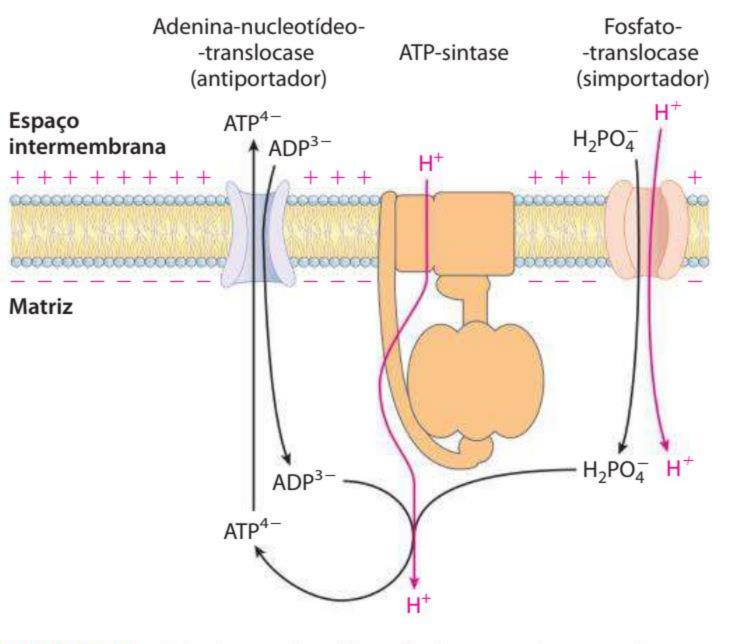
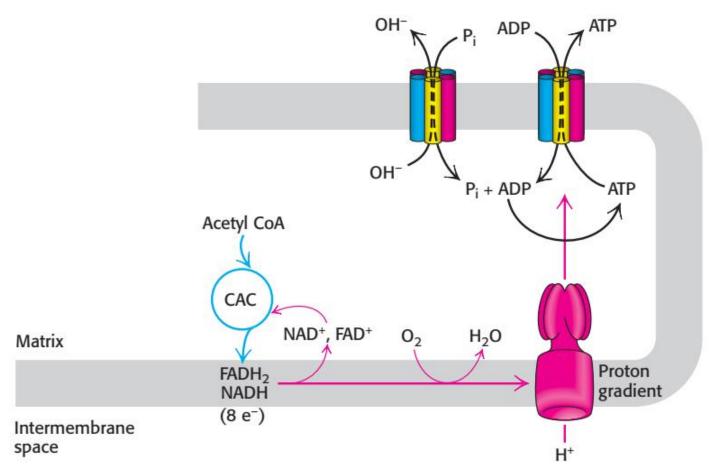
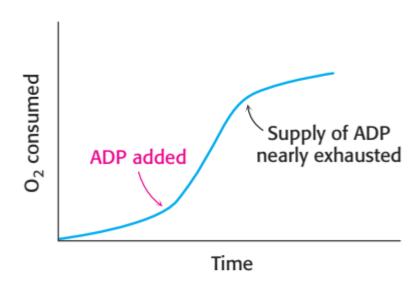
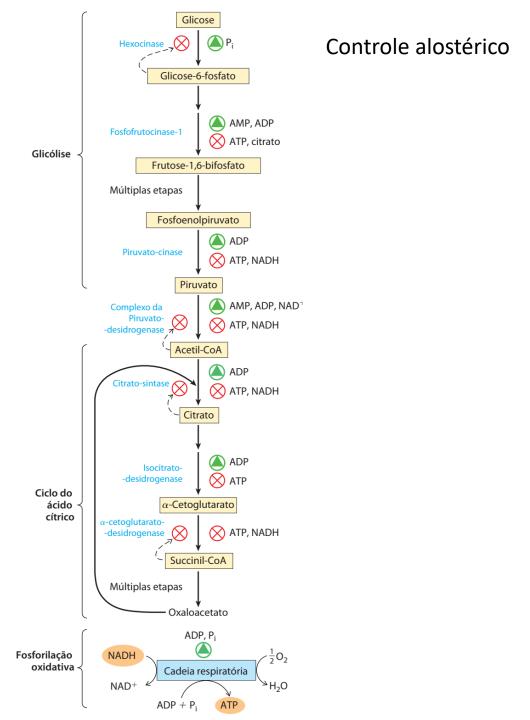
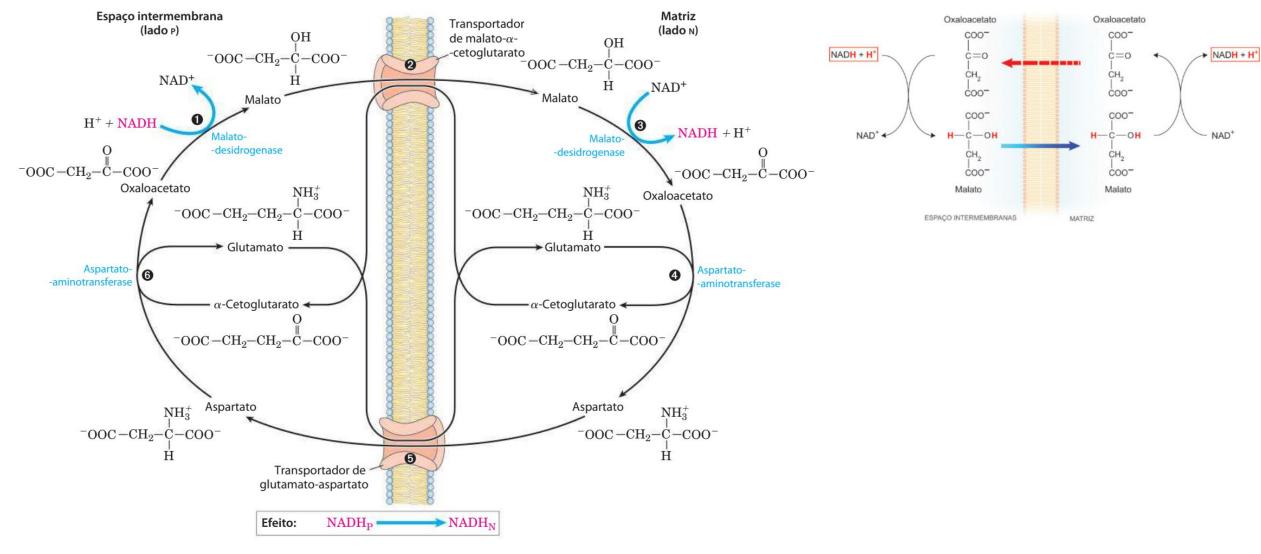



FIGURA 19-30 Adenina-nucleotídeo e fosfato-translocases. Sistemas

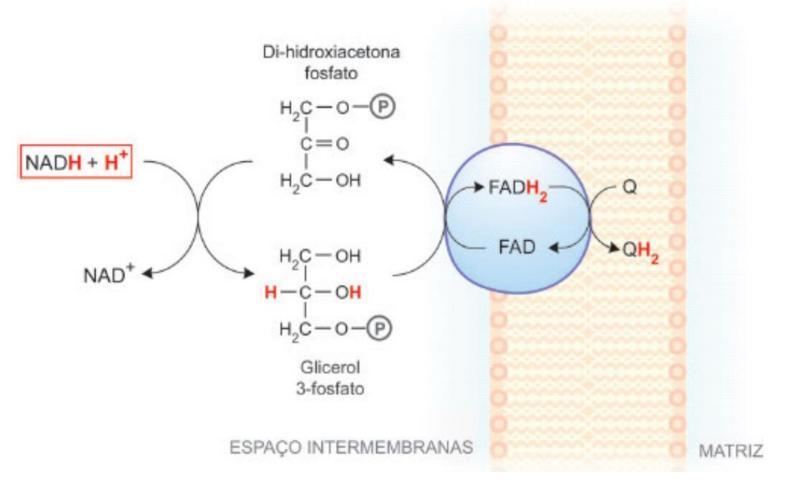


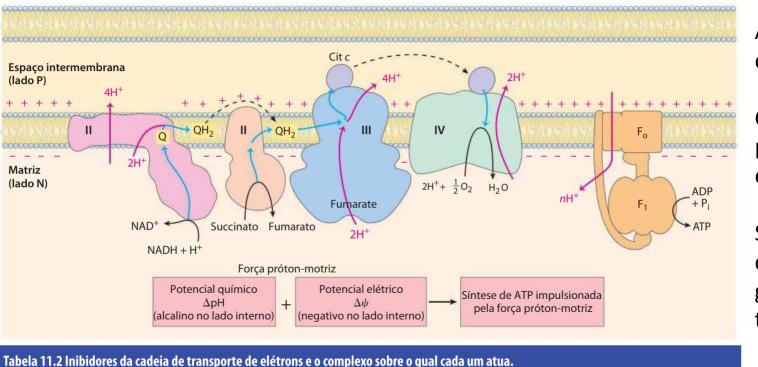
Controle respiratório:


ATP-sintase requer **ADP** como **substrato** para que os **prótons passem** por ela.


Alta demanda de ATP: ↑ADP; ↓Gradiente; ↑Cte-; ↑Glicól. e Krebs (inib alost)

Baixa demanda ATP: ↓ADP; ↑Gradiente; ↓ Cte-; ↓ Glicól. e Krebs (inib alost)


Figure 18.39 Respiratory control. Electrons are transferred to O_2 only if ADP is concomitantly phosphorylated to ATP.



Oxidação do NADH citosólico – Lançadeiras (malato-aspartato)

Membrana interna da mitocôndria *não transporta NADH*.

Oxidação do NADH citosólico – Lançadeiras (glicerol-fosfato)

Inibidores	Complexo	
Barbituratos (hipnóticos)	I	
Rotenona (inseticida)	1	
Malonato (inibidor da succinato desidrogenase)	II	
Antimicina A (antibiótico)	III	

Oligomicina inibe a ATP-sintase.

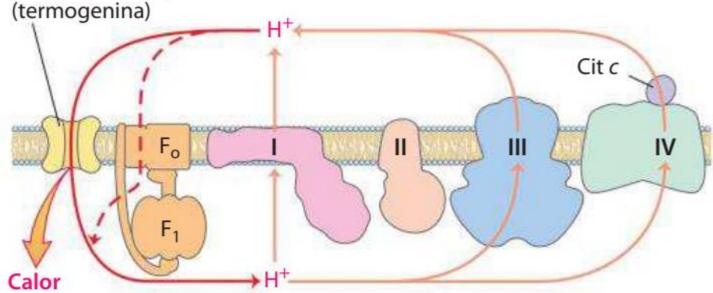

Cianeto (CN⁻), monóxido de carbono (CO), azida (N³-)

A inibição de qualquer complexo desativa a cadeia de transporte de elétrons.

Consequentemente, a síntese de ATP também não procede (acoplamento) → Ausência de gradiente eletroquímico.

Se ATP-sintase estiver inibida (oligomicina). A cadeia de transporte de elétrons também para → gradiente muito alto energeticamente impede a transferência.

Desacoplador: desfaz o gradiente de prótons



DNP (dinitrofenol) é um desacoplador.

Na presença de DNP e oligomicina (inibidor ATP-sintase), ocorre a respiração celular (cadeia de transporte de elétrons) sem a síntese de ATP.

Espaço intermembrana (lado P)

Proteína desacopladora

Matriz (lado N)

FIGURA 19-36 Geração de calor por mitocôndrias desacopladas. A proteína desacopladora (termogenina) nas mitocôndrias do tecido adiposo marrom, ao fornecer uma via alternativa para os prótons reentrarem na matriz mitocondrial, faz a energia conservada pelo bombeamento de prótons ser dissipada como calor.

<u>Proteínas desacopladoras</u>: formação de <u>calor</u> (termogênese no tecido adiposo marrom).