AS REGRAS DE L'HOSPITAL

1. Introdução

Entre as propriedades operatórias dos limites, vimos que $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{A}{B}$ se $\lim_{x\to a} f(x) = A$ e $\lim_{x\to a} g(x) = B$. com $B\neq 0$. No caso em que B=0 e $A\neq 0$ o limite, quando existe é infinito. No caso A=B=0, o limite pode ter qualquer valor, ou não existir. usamos o símbolo $\frac{0}{0}$ para indicar esta situação, e dizemos que $\frac{0}{0}$ é uma indeterminação. Outras indeterminações são representadas por: $\frac{\infty}{\infty}$, $0\cdot\infty$, 0^0 , 1^∞ , ∞^0 e $\infty-\infty$, com interpretações semelhantes.

Exemplos 1.1.

a) $Se\ f(x) = kx$, $k \in \mathbb{R}\ e\ g(x) = x$, $ent\tilde{a}o\ \lim_{x\to 0} \frac{f(x)}{g(x)} = \lim_{x\to 0} \frac{kx}{x} = \lim_{x\to 0} k = k$.

b)
$$Se^{x} f(x) = x \ e \ g(x) = x^{3}, \ ent \tilde{a}o \ \lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{1}{x^{2}} = +\infty.$$

Vamos considerar apenas os casos $\frac{0}{0}$ e $\frac{\infty}{\infty}$, os outros casos podem, quase sempre, ser reduzidos a um desses dois.

Para isso, precisamos de uma generalização do Teorema do Valor Médio, devida a Cauchy.

Teorema 1.2. Sejam f e g, funções contínuas em [a,b] e diferenciáveis em]a,b[e suponhamos que $g'(x) \neq 0$ para todo $x \in]a,b[$. Então existe $c \in]a,b[$ tal que $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$.

Date: July 14, 2021.

Dem. Como $g'(x) \neq 0$ em]a, b[, segue do Teorema de Rolle que $g(b) \neq g(a)$. Portanto, podemos definir a função:

$$h(x) = \frac{f(b) - f(a)}{g(b) - g(a)}(g(x) - g(a)) - (f(x) - f(a))$$

Então h(a) = h(b) = 0. Do Teorema de Rolle, segue que existe $c \in]a, b[$, talque $h'(c) = 0 \Rightarrow \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$.

Vamos considerar o caso da indeterminação do tipo $\frac{0}{0}$. Vamos consderar apenas limites á direita, os outros casos são similares.

Teorema 1.3. (Regra de L'Hospital I) Sejam $-\infty \le a < b \le +\infty$ e suponhamos que f, g são diferenciáveis em $]a, b[, g'(x) \ne 0, para todo <math>x \in]a, b[$ e

$$\lim_{x \to a+} f(x) = \lim_{x \to a+} g(x) = 0.$$

Então temos:

$$\lim_{x \to a+} \frac{f'(x)}{g'(x)} = L \Rightarrow \lim_{x \to a+} \frac{f(x)}{g(x)} = L.$$

(O limite L pode ser finito ou infinito).

Dem. Vamos considerar o caso em que $L \in \mathbb{R}$. O caso de limites infinitos fica a cargo do leitor. Do Teorema do Valor Médio de Cauchy, temos, para $\alpha, x \in]a, b[$, com $a < \alpha < x < b$.

$$\frac{f(x) - f(\alpha)}{g(x) - g(\alpha)} = \frac{f'(\xi_x)}{g'(\xi_x)}, \ \xi_x \in]\alpha, x[.$$

Dado $\epsilon > 0$, seja $\delta > 0$ tal que $0 < x - a < \delta$ implica $\left| \frac{f'(x)}{g'(x)} - L \right| < \epsilon$. Como $a < \xi_x < x$, $g'(\xi_x) \neq 0$, temos

$$\left|\frac{f(x) - f(\alpha)}{g(x) - g(\alpha)} - L\right| < \epsilon.$$

Fazendo $\alpha \to 0$, obtemos $\left| \frac{f(x)}{g(x)} - L \right| < \epsilon$., se $0 < x - a < \epsilon$. Como $\epsilon > 0$ é arbitrário, segue o resultado.

Exemplos 1.4.

a)
$$\lim_{x\to 0} \frac{sen^2(x)}{x} = 0$$
.

a)
$$\lim_{x\to 0} \frac{\sin^2(x)}{x} = 0.$$

b) $\lim_{x\to 0} \frac{1-\cos(x)}{x^2} = 1/2.$

O caso de indeterminação do tipo $\frac{\pm \infty}{+\infty}$ é bastante similar.

Teorema 1.5. (Regra de L'Hospital II) Sejam $-\infty \le a < b \le +\infty$ e suponhamos que f, g são diferenciáveis em $]a, b[, g'(x) \neq 0, para$ $todo \ x \in]a,b[\ e$

$$\lim_{x \to a+} f(x) = \lim_{x \to a+} g(x) = \pm \infty.$$

Então temos:

$$\lim_{x \to a+} \frac{f'(x)}{g'(x)} = L \Rightarrow \lim_{x \to a+} \frac{f(x)}{g(x)} = L.$$

(O limite L pode ser finito ou infinito).

Exemplos 1.6.

- a) $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$. b) $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$.