O TEOREMA DO VALOR MÉDIO

1. Introdução

O Teorema do Valor Médio é um dos resultados mais importantes do Cálculo Diferencial, especialmente por suas diversas aplicações, que incluem o estudo do gráfico de funções, pesquisa de extremos, obtenção de desigualdades e outras, como veremos.

Lembremos que, se $f:A\subset\mathbb{R}\to\mathbb{R}$, dizemos que um ponto x_0 é um máximo de f em $B\subset A$ se $f(x)\leq f(x_0)$, para todo $x\in B$. Analogamente, definimos ponto de mínimo de f em $B\subset A$.

Definição 1.1. Seja $f: A \subset \mathbb{R} \to \mathbb{R}$ e $a \in A$. Dizemos que x_0 é **ponto de máximo local** de f, se x_0 existe uma vizinhança V de x_0 , tal que f é máximo de f em $V \cap A$. Dizemos que x_0 é **ponto de mínimo local** de f, se x_0 existe uma vizinhança V de x_0 , tal que f é mínimo de f em $V \cap A$. Se x_0 é ponto de máximo ou mínimo local, dizemos que x_0 é um **ponto de extremo local**.

Proposição 1.2. Se I um intervalo e f : $I \to \mathbb{R}$ uma função. Se a \acute{e} um **ponto interior** de I que \acute{e} extremo local de f e f \acute{e} derivável em a então f'(a) = 0.

Dem.

Date: July 11, 2021.

Observação 1.3. (1) Um ponto onde a derivada se anula é denominado um **ponto crítico** de f. A proposição diz, portanto, que todo ponto de extremo local no interior é ponto crítico. O exemplo da função $f(x) = x^3$, mostra que a recíproca é falsa.

(2) Nas aplicações, é importante lembrar que o resultado não vale se a é ponto extremo do intervalo ou se f não é derivável em a.

Uma consequência direta da proposição 1.2 é o seguinte resultado importante.

Teorema 1.4. (Teorema de Rolle) Se f : [a,b] é contínua em [a,b], derivável no intervalo aberto I =]a,b[e f(a) = f(b) então existe um ponto $c \in]a,b[$ tal que f'(c) = 0.

Dem.

Teorema 1.5. (Teorema do Valor Médio - TVM) Se f:[a,b] é contínua em [a,b] e derivável no intervalo aberto I=]a,b[então existe um ponto $c\in]a,b[$ tal que $f'(c)=\frac{f(b)-f(a)}{b-a}.$ Ou seja, f(b)-f(a)=f'(c)(c-a).

Dem. Basta considerar a função $g(x) := f(x) - \frac{f(b) - f(a)}{b - a}(x - a)$ e aplicar o Teorema de Rolle.

2. Aplicações do TVM

Uma primeira consequência importante do TVM é a seguinte

Teorema 2.1. Se $f:[a,b] \to \mathbb{R}$ é contínua em [a,b] e derivável no intervalo aberto I=]a,b[com f'(x)=0 em]a,b[, então f é constante em [a,b].

Dem.

Corolário 2.2. Se $f, g : [a, b] \to \mathbb{R}$ são contínuas em [a, b] e deriváveis no intervalo aberto I =]a, b[com f'(x) = g'(x) em]a, b[, então existe uma constante C, tal que f = g + C em [a, b].

Dem.

П

Lembremos agora que uma função $f:A\subset\mathbb{R}\to\mathbb{R}$ é **crescente** em $B\subset\mathbb{R}$ se $f(x)\leq f(y)$, sempre que $x,y\in B$ e x< y e **estritamente crescente** em $B\subset\mathbb{R}$ se f(x)< f(y), sempre que $x,y\in B$ e x< y. Analogamente, definimos função **crescente** e **estritamente decrescente**.

Valem então os seguintes resultados:

Proposição 2.3. Seja $f: I \to \mathbb{R}$ uma função derivável no intervalo aberto I. Então temos

- a) f é crescente no intervalo I se e somente se $f'(x) \ge 0$ em I. Se f'(x) > 0 em I então f é estritamente crescente em I.
- b) f é decrescente no intervalo I se e somente se $f'(x) \leq 0$ em I. Se f'(x) < 0 em I então f é estritamente decrescente em I.

Dem.

Corolário 2.4. (Critério para extremantes em um intervalo) Sejaf função derivável no intervalo I =]a, b[. Seja $c \in I$. Então

- a) Se $f'(x) \ge 0$ em]a, c[e $f'(x) \le 0$ em]c, b[, então c é ponto de máximo de f em I.
- a) Se $f'(x) \leq 0$ em]a, c[e $f'(x) \geq 0$ em]c, b[, então c é ponto de mínimo de f em I.

Dem.

O TVM também é frequentemente usado para demonstração de desigualdades. Vamos considerar alguns exemplos:

1) (Desigualdade de Bernoulli generalizada), Se $\alpha > 1$ então $(1+x)^{\alpha} \ge 1 + \alpha x$, para todo x > -1.

2) $\frac{1}{x+1} \le \ln(x+1) - \ln x \le \frac{1}{x}$, para todo x > 0. (Aplicação: A série $\sum_{n=1}^{\infty} \ln(1+\frac{1}{n^p})$ converge se e somente se p > 1).