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[CG] Introduction.

Explaining the Gibbs Sampler 
GEORGE CASELLA and EDWARD I. GEORGE* 

Computer-intensive algorithms, such as the Gibbs sam- 
pler, have become increasingly popular statistical tools, 
both in applied and theoretical work. The properties of 
such algorithms, however, may sometimes not be ob- 
vious. Here we give a simple explanation of how and 
why the Gibbs sampler works. We analytically establish 
its properties in a simple case and provide insight for 
more complicated cases. There are also a number of 
examples. 

KEY WORDS: Data augmentation; Markov chains; 
Monte Carlo methods; Resampling techniques. 

1. INTRODUCTION 

The continuing availability of inexpensive, high-speed 
computing has already reshaped many approaches to 
statistics. Much work has been done on algorithmic 
approaches (such as the EM algorithm; Dempster, Laird, 
and Rubin 1977), or resampling techniques (such as the 
bootstrap; Efron 1982). Here we focus on a different 
type of computer-intensive statistical method, the Gibbs 
sampler. 

The Gibbs sampler enjoyed an initial surge of pop- 
ularity starting with the paper of Geman and Geman 
(1984), who studied image-processing models. The roots 
of the method, however, can be traced back to at least 
Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller 
(1953), with further development by Hastings (1970). 
More recently, Gelfand and Smith (1990) generated 
new interest in the Gibbs sampler by revealing its po- 
tential in a wide variety of conventional statistical 
problems. 

The Gibbs sampler is a technique for generating ran- 
dom variables from a (marginal) distribution indirectly, 
without having to calculate the density. Although 
straightforward to describe, the mechanism that drives 
this scheme may seem mysterious. The purpose of this 
article is to demystify the workings of these algorithms 
by exploring simple cases. In such cases, it is easy to 
see that Gibbs sampling is based only on elementary 
properties of Markov chains. 

Through the use of techniques like the Gibbs sam- 
pler, we are able to avoid difficult calculations, replac- 
ing them instead with a sequence of easier calculations. 
These methodologies have had a wide impact on prac- 
tical problems, as discussed in Section 6. Although most 

applications of the Gibbs sampler have been in Bayesian 
models, it is also extremely useful in classical (likeli- 
hood) calculations [see Tanner (1991) for many ex- 
amples]. Furthermore, these calculational methodolo- 
gies have also had an impact on theory. By freeing 
statisticians from dealing with complicated calculations, 
the statistical aspects of a problem can become the main 
focus. This point is wonderfully illustrated by Smith and 
Gelfand (1992). 

In the next section we describe and illustrate the ap- 
plication of the Gibbs sampler in bivariate situations. 
Section 3 is a detailed development of the underlying 
theory, given in the simple case of a 2 x 2 table with 
multinomial sampling. From this detailed development, 
the theory underlying general situations is more easily 
understood, and is also outlined. Section 4 elaborates 
the role of the Gibbs sampler in relating conditional 
and marginal distributions and illustrates some higher 
dimensional generalizations. Section 5 describes many 
of the implementation issues surrounding the Gibbs 
sampler, and Section 6 contains a discussion and de- 
scribes many applications. 

2. ILLUSTRATING THE GIBBS SAMPLER 

Suppose we are given a joint density f(x, Yi, .. 

yp), and are interested in obtaining characteristics of 
the marginal density 

f(x) = J. f(x, Yi, , yp) dyi... dyp, (2. 1) 

such as the mean or variance. Perhaps the most natural 
and straightforward approach would be to calculate f(x) 
and use it to obtain the desired characteristic. However, 
there are many cases where the integrations in (2.1) are 
extremely difficult to perform, either analytically or nu- 
merically. In such cases the Gibbs sampler provides an 
alternative method for obtaining f(x). 

Rather than compute or approximate f(x) directly, 
the Gibbs sampler allows us effectively to generate a 
sample X1, . . . , Xi, - f(x) without requiring f(x). By 
simulating a large enough sample, the mean, variance, 
or any other characteristic of f(x) can be calculated to 
the desired degree of accuracy. 

It is important to realize that, in effect, the end result 
of any calculations, although based on simulations, are 
the population quantities. For example, to calculate the 
mean of f(x), we could use (1/m)Lm=1 Xi, and the fact 
that 

1 m 
lim- X- xf(x) dx = EX. (2.2) 

in- m - =1 Mx 
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[CG] Introduction.

“The Gibbs sampler is a technique for generating random vari-
ables from a (marginal) distribution indirectly, without having
to calculate the density. Although straightforward to describe,
the mechanism that drives this scheme may seem mysterious.
The purpose of this article is to demystify the workings of these
algorithms by exploring simple cases. In such cases, it is easy to
see that Gibbs sampling is based only on elementary properties
of Markov chains.

Through the use of techniques like the Gibbs sampler, we are
able to avoid difficult calculations, replacing them instead with
a sequence of easier calculations.”
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[RC] Introduction.

The name Gibbs sampling comes from the landmark paper by
Geman and Geman (1984), which first applied a Gibbs sampler
on a Gibbs random field. For good or bad, it then stuck de-
spite this weak link. Indeed, it is in fact a special case of the
Metropolis–Hastings algorithm as detailed in Robert and Casella
(2004, Section 10.6.1). The work of Geman and Geman (1984),
built on that of Metropolis et al. (1953), Hastings (1970) and
Peskun (1973), influenced Gelfand and Smith (1990) to write a
paper that sparked new interest in Bayesian methods, statisti-
cal computing, algorithms, and stochastic processes through the
use of computing algorithms such as the Gibbs sampler and the
Metropolis–Hastings algorithm. It is interesting to see, in retro-
spect, that earlier papers such as Tanner and Wong (1987) and
Besag and Clifford (1989) had proposed similar solutions (but
did not receive the same response from the statistical commu-
nity).
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[CG] Illustrating the Gibbs Sampler.

“Suppose we are given a joint density f(x, y1, . . . , yp), and are
interested in obtaining characteristics of the marginal density

f(x) =

∫
· · ·
∫

f(x, y1, . . . , yp)dy1...dyp, (1)

such as the mean or variance. Perhaps the most natural and
straightforward approach would be to calculate f(x) and use it
to obtain the desired characteristic. However, there are many
cases where the integrations in (1) are extremely difficult to per-
form, either analytically or numerically. In such cases the Gibbs
sampler provides an alternative method for obtaining f(x).”
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[CG] Illustrating the Gibbs Sampler.

“Rather than compute or approximate f(x) directly,
the Gibbs sampler allows us effectively to generate a
sample X1, . . . , Xm ∼ f(x) without requiring f(x). By
simulating a large enough sample, the mean, variance,
or any other characteristic of f(x) can be calculated
to the desired degree of accuracy.”
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[CG] Illustrating the Gibbs Sampler.

“It is important to realize that, in effect, the end
result of any calculations, although based on simula-
tions, are the population quantities. For example, to
calculate the mean of f(x), we could use (1/m)

∑
Xi,

and the fact that

lim
m→∞

1

m

m∑
i=1

Xi =

∫ ∞
−∞

xf(x)dx = E(X).

Thus, by taking m large enough, any population char-
acteristic, even the density itself, can be obtained to
any degree of accuracy.”
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[CG] Two-stage Gibbs Sampler.

“To understand the workings of the Gibbs sampler,
we first explore it in the two-variable case. Start-
ing with a pair of random variables (X,Y ), the Gibbs
sampler generates a sample from f(x) by sampling
instead from the conditional distributions f(x | y) and
f(y | x), distributions that are often known in statis-
tical models.”
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[CG] Two-stage Gibbs Sampler.

“This is done by generating a Gibbs sequence of random vari-
ables

Y0, X0, Y1, X1, Y2, X2, . . . , Yk, Xk. (2)
The initial value Y0 = y is specified, and the rest of (2) is ob-
tained iteratively by alternately generating values from

Xj ∼ f(x | Yj = yj), Yj+1 ∼ f(y | Xj = xj)

We refer to this generation of (2) as Gibbs sampling. It turns
out that under reasonably general conditions, the distribution of
Xk converges to f(x) (the true marginal of X) as k →∞. Thus,
for k large enough, the final observation in (2), namely Xk = xk,
is effectively a sample point from f(x).
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[RC] Two-stage Gibbs Sampler.

200 7 Gibbs Samplers

7.1 Introduction

Chapter 6 described some principles for simulation based on Markov chains,
as well as some implementation directions, including the generic random walk
Metropolis–Hastings algorithm. This chapter extends the scope of MCMC al-
gorithms by studying another class of now-common MCMC methods, called
Gibbs sampling. The appeal of those specific algorithms is that first they
gather most of their calibration from the target density and second they allow
us to break complex problems (such as high dimensional target distributions,
for which a random walk Metropolis–Hastings algorithm is almost impossible
to build) into a series of easier problems, like a sequence of small-dimension
targets. There may be caveats to this simplification in that the sequence of sim-
ple problems may take in fine a long time to converge, but Gibbs sampling is
nonetheless an interesting candidate when dealing with a new problem.

The name Gibbs sampling comes from the landmark paper by Geman and
Geman (1984), which first applied a Gibbs sampler on a Gibbs random field.
For good or bad, it then stuck despite this weak link. Indeed, it is in fact a
special case of the Metropolis–Hastings algorithm as detailed in Robert and
Casella (2004, Section 10.6.1). The work of Geman and Geman (1984), built
on that of Metropolis et al. (1953), Hastings (1970) and Peskun (1973), influ-
enced Gelfand and Smith (1990) to write a paper that sparked new interest
in Bayesian methods, statistical computing, algorithms, and stochastic pro-
cesses through the use of computing algorithms such as the Gibbs sampler
and the Metropolis–Hastings algorithm. It is interesting to see, in retrospect,
that earlier papers such as Tanner and Wong (1987) and Besag and Clifford
(1989) had proposed similar solutions (but did not receive the same response
from the statistical community).

7.2 The two-stage Gibbs sampler

The two-stage Gibbs sampler creates a Markov chain from a joint distribution
in the following way. If two random variables X and Y have joint density
f(x, y), with corresponding conditional densities fY |X and fX|Y , the two-stage
Gibbs sampler generates a Markov chain (Xt, Yt) according to the following
steps:

Algorithm 7 Two-stage Gibbs sampler
Take X0 = x0

For t = 1, 2, . . . , generate

1. Yt ∼ fY |X(·|xt−1);
2. Xt ∼ fX|Y (·|yt) .
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[CG] Two-stage Gibbs Sampler. Example 1. ([RC] Exam-
ple 7.2)

For the following joint distribution of X and Y ,

f(x, y) ∝
(n
x

)
yx+α−1(1− y)n−x+β−1, (3)

with x = 0,1, . . . , n, 0 ≤ y ≤ 1, suppose we are interested in
calculating some characteristics of the marginal distribution f(x)
of X. The Gibbs sampler allows us to generate a sample from
this marginal as follows. From (3) it follows (suppressing the
overall dependence on n, α, and β) that

f(x | y) ∼ B(n, y),

f(y | x) ∼ Beta(x+ α, n− x+ β).
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[CG] Two-stage Gibbs Sampler. Example 1. ([RC] Exam-
ple 7.2)

Gibbs sampling is actually not needed in this example, since f(x)
can be obtained analytically from (3) as

f(x) =
(n
x

)Γ(α+ β)

Γ(α)Γ(β)

Γ(x+ α)Γ(n− x+ β)

Γ(α+ β + n)
, (4)

with x = 0,1, . . . , n, the beta-binomial distribution. Here, char-
acteristics of f(x) can be directly obtained from (4), either an-
alytically or by generating a sample from the marginal and not
fussing with the conditional distributions. However, this simple
situation is useful for illustrative purposes.
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[CG] Two-stage Gibbs Sampler. Example 1. ([RC] Exam-
ple 7.2)

One feature brought out by Example 1 is that the Gibbs sampler
is really not needed in any bivariate situation where the joint
distribution f(x, y) can be calculated, since

f(x) = f(x, y)/f(y | x).

However, as the next example shows, Gibbs sampling may be
indispensable in situations where f(x, y), f(x), or f(y) cannot be
calculated.
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[CG] Two-stage Gibbs Sampler. Example 2.

“Suppose X and Y have conditional distributions that are expo-
nential distributions restricted to the interval (0, B), that is,

f(x | y) ∝ ye−yx, 0 < x < B <∞
f(y | x) ∝ xe−xy, 0 < y < B <∞ (5)

where B is a known positive constant. The restriction to the
interval (0, B) ensures that the marginal f(x) exists. Although
the form of this marginal is not easily calculable, by applying
the Gibbs sampler to the conditionals in (5) any characteristic
of f(x) can be obtained.”
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[CG] A simple convergence proof. It is not immediately
obvious that a random variable with distribution f(x) can be
produced by the Gibbs sequence of (2)

Y0, X0, Y1, X1, Y2, X2, . . . , Yk, Xk. (6)

or that the sequence even converges. That this is so relies on
the Markovian nature of the iterations, which we now develop
in detail for the simple case of a 2×2 table with multinomial
sampling. Suppose X and Y are each (marginally) Bernoulli
random variables with joint distribution

In Figure 2 we display a histogram of a sample of 
size m = 500 from f(x) obtained by using the final 
values from Gibbs sequences of length k = 15. 

In Section 4 we see that if B is not finite, then the 
densities in (2.8) are not a valid pair of conditional 
densities in the sense that there is no joint density 
f(x, y) to which they correspond, and the Gibbs se- 
quence fails to converge. 

Gibbs sampling can be used to estimate the density 
itself by averaging the final conditional densities from 
each Gibbs sequence. From (2.3), just as the values 
Xk = x4 yield a realization of X1, , -X f(x), the 
values Yk = yk yield a realization of Y1, Y Y, - 
f(y). Moreover, the average of the conditional densities 
f(x I Yk = yk) will be a close approximation to f(x), 
and we can estimate f(x) with 

I 1 m29 
f(x) =-E f(x I yi), (2.9) 

where Yl, , ym is the sequence of realized values of 
final Y observations from each Gibbs sequence. The 
theory behind the calculation in (2.9) is that the ex- 
pected value of the conditional density is 

E[f(x I Y)] = ff(x I y)f(y) dy = f(x), (2.10) 

a calculation mimicked by (2.9), since Yi, , ym ap- 
proximate a sample from f(y). For the densities in (2.8), 
this estimate of f(x) is shown in Figure 2. 

Example 1 (continued): The density estimate meth- 
odology of (2.9) can also be used in discrete distribu- 
tions, which we illustrate for the beta-binomial of Ex- 
ample 1. Using the observations generated to construct 
Figure 1, we can, analogous to (2.9), estimate the mar- 
ginal probabilities of X using 

m1 m 
P(X = x) = - E P(X = x I Y, = yi). (2.11) m i=1 
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Figure 2. Histogram for x of a Sample of Size m = 500 From 
the Pair of Conditional Distributions in (2.8), With B = 5, Obtained 
Using Gibbs Sampling With k = 15 Along With an Estimate of the 
Marginal Density Obtained From Equation (2.9) (solid line). The 
dashed line is the true marginal density, as explained in Section 
4.1. 
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Figure 3. Comparison of Two Probability Histograms of the Beta- 
Binomial Distribution With n = 16, ct = 2, and f3 = 4. The black 
histogram represents estimates of the marginal distribution of X 
using Equation (2.11), based on a sample of Size m = 500 from 
the pair of conditional distributions in (2.6). The Gibbs sequence 
had length k = 10. The white histogram represents the exact beta- 
binomial probabilities. 

Figure 3 displays these probability estimates overlayed 
with the exact beta-binomial probabilities for compar- 
ison. 

The density estimates (2.9) and (2.11) illustrate an 
important aspect of using the Gibbs sampler to evaluate 
characteristics of f(x). The quantities f(x I Yl), 
f(x I ym), calculated using the simulated values Yl, 

y y,m carry more information about f(x) than x1, . 

xm alone, and will yield better estimates. For example, 
an estimate of the mean of f(x) is (1/m) IT 1 xi, but a 
better estimate is (1/m) ET l E(X I yi), as long as these 
conditional expectations are obtainable. The intuition 
behind this feature is the Rao-Blackwell theorem (il- 
lustrated by Gelfand and Smith 1990), and established 
analytically by Liu, Wong, and Kong (1991). 

3. A SIMPLE CONVERGENCE PROOF 

It is not immediately obvious that a random variable 
with distribution f(x) can be produced by the Gibbs 
sequence of (2.3) or that the sequence even converges. 
That this is so relies on the Markovian nature of the 
iterations, which we now develop in detail for the simple 
case of a 2 x 2 table with multinomial sampling. 

Suppose X and Y are each (marginally) Bernoulli 
random variables with joint distribution 

x 
0 1 

0 Pi P2 

y 

1 P3 P4 

Pi 0, Pi + P2 + P3 + P4 1, 
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[CG] A simple convergence proof.

In terms of the joint probability function,(
fx,y(0,0) fx,y(1,0)
fx,y(0,1) fx,y(1,1)

)
=
(
p1 p2
p3 p4

)
The marginal distribution of X is

fx = [fx(0), fx(1)] = [p1 + p3, p2 + p4], X ∼ B(p2 + p4).

The conditional distributions of X | Y = y and Y | X = x are
straightforward to calculate All of the conditional probabilities
can be expressed in two matrices

Ay|x =

(
p1

p1+p3

p3

p1+p3
p2

p2+p4

p4

p2+p4

)
and Ax|y =

(
p1

p1+p2

p2

p1+p2
p3

p3+p4

p4

p3+p4

)
where Ay|x has the conditional probabilities of Y given X = x,
and Ay|x has the conditional probabilities of X given Y = y.
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[CG] A simple convergence proof.

We are interested in simulations of the sequence of X’s. Note
that to go from Xk to Xk+1 we pass through Yk+1. Thus the
transition probability, for any k ≥ 0,

P(Xk+1 = xk+1 | Xk = xk)

=
∑
y

P(Yk+1 = y | Xk = xk)P(Xk+1 = xk+1 | Yk+1 = y)

Thus the transition probability matrix for (Xk) is given by

Ax|x = Ay|xAx|y and P(Xk = xk | X0 = x0) = (Ax|x)
k
x0,xk
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[CG] A simple convergence proof.

It is straightforward to check that fx = [p1 + p3, p2 + p4] is sta-
tionary distribution for the matrix Ax|x:

[p1+p3, p2+p4]

(
p1

p1+p3

p3

p1+p3p2

p2+p4

p4

p2+p4

)(
p1

p1+p2

p2

p1+p2p3

p3+p4

p4

p3+p4

)
= [p1+p3, p2+p4]

“The algebra for the 2×2 case immediately works for any n×m
joint distribution of X’s and Y ’s. We can analogously define the
n× n transition matrix Ax|x whose stationary distribution will be
the marginal distribution of X.”
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[CG] A simple convergence proof.

“If either (or both) of X and Y are continuous, then the finite
dimensional arguments will not work. However, with suitable
assumptions, all of the theory still goes through, so the Gibbs
sampler still produces a sample from the marginal distribution
of X. The conditional density of Xk+1 given Xk could be written

fXk+1|Xk
(xk+1 | xk) =

∫
fXk+1|Yk+1

(xk+1 | y)fYk+1|Xk
(y | xk)dy.′′

The density fXk+1|Xk
(xk+1 | xk) represents a one-step transition.

Observe, that the following relationship holds true

fXk+1|X0
(xk+1 | x0) =

∫
fXk+1|Xk

(xk+1 | t)fXk|X0
(t | x0)dt, (7)

where fXk+1|X0
(xk+1 | x0) plays the role of fk+1, and fXk|X0

(xk | x0)
plays the role of fk. As k goes to infinity, it again follows that
the stationary point of (7) is the marginal density of X.
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[CG] Conditionals determine marginals.

“Gibbs sampling can be thought of as a practical
implementation of the fact that knowledge of the
conditional distributions is sufficient to determine a
joint distribution (if it exists!). In the bivariate case,
the derivation of the marginal from the conditionals
is fairly straightforward. Complexities in the multi-
variate case, however, make these connections more
obscure. We begin with some illustrations in the bi-
variate case and then investigate higher dimensional
cases.”
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[CG] Conditionals determine marginals. Bivariate case.

Suppose that, for two random variables X and Y ,we know the
conditional densities fX|Y (x | y) and fY |X(y | x). We can de-
termine the marginal density of X, fX(x), and hence the joint
density of X and Y , through the following argument.

fX(x) =

∫
fXY (x, y)dy =

∫
fX|Y (x | y)fY (y)dy

=

∫
fX|Y (x | y)

∫
fY |X(y | t)fX(t)dtdy

=

∫ (∫
fX|Y (x | y)fY |X(y | t)dy

)
fX(t)dt =:

∫
h(x, t)fX(t)dt,

defines a fixed point integral equation for which fX(x) is a
solution. The fact that it is a unique solution is explained
by Gelfand and Smith (1990). (PS: Gelfand and Smith (1990):
‘‘Exploiting standard theory of such integral operators, Tanner
and Wong (1987) showed that under mild regularity conditions this
iterative process has the following properties: uniqueness, mo-
notone convergence in L1, geometrical rate.)
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[CG] Conditionals determine marginals. Bivariate case.

fX(x) =

∫
h(x, t)fX(t)dt, h(x, t) :=

∫
fX|Y (x | y)fY |X(y | t)dy.

This equation is limiting form of Gibbs iteration scheme. As
k →∞

fXk|X0
(x | x0)→ fX(x) and fXk+1|Xk

(x | t)→ h(x, t).

“Although the joint distribution of X and Y determines all of the
conditionals and marginals, it is not always the case that a set of
proper conditional distributions will determine a proper marginal
distribution (and hence a proper joint distribution). The next
example shows this.”
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[CG] Conditionals determine marginals. Bivariate case.

Consider the previous example of exponential distribution sup-
posing now that B =∞

f(x | y) ∝ ye−yx, 0 < x <∞
f(y | x) ∝ xe−xy, 0 < y <∞ (8)

Applying fixed point integral equation defined above the marginal
distribution of X is the solution to

fX(x) =

∫ [∫
ye−yxte−tydy

]
fX(t)dt =

∫
t

(x+ t)2
fX(t)dt

Observe that fX(t) = 1/t provides the solution

1

x
=

∫
t

(x+ t)2

1

t
dt

but not density function.
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[CG] Conditionals determine marginals. Bivariate case.

“When the Gibbs sampler is applied to the conditional densities,
convergence breaks down. It does not give an approximation to
1/x, in fact, we do not get a sample of random variables from
a marginal distribution. ...

The Gibbs sampler fails when B =∞ above because
∫
fX(x)dx =

∞, and there is no convergence as described in fXk+1|Xk
(x | t)→

h(x, t). In a sense, we can say that a sufficient condition for
the convergence to occur is that fX(x) is a proper density, that
is
∫
fX(x)dx < ∞. One way to guarantee this is to restrict the

conditional densities to lie in a compact interval, as was done
in Example 2. General convergence conditions needed for the
Gibbs sampler (and other algorithms) are explored in detail by
Schervish and Carlin (1990), and rates of convergence are also
discussed by Roberts and Polson (1990).”
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[CG] Conditionals determine marginals. More than two
variables.

As the number of variables in a problem increase, the relationship
between conditionals, marginals, and joint distributions becomes
more complex. For example, the relationship

conditional × marginal = joint

does not hold for all of the conditionals and marginals. This
means that there are many ways to set up a fixed-point equa-
tion, and it is possible to use different sets of conditional distribu-
tions to calculate the marginal of interest. Such methodologies
are part of the general techniques of substitution sampling (see
Gelfand and Smith 1990, for an explanation).



Aula 9. Gibbs Sampler. 25

[CG] Conditionals determine marginals. More than two
variables.

“Suppose we would like to calculate the marginal distribution
fX(x) in a problem with random variables X, Y , and Z. A fixed-
point integral equation can be derived if we consider the pair
(Y, Z) as a single random variable. We have

fX(x) =

∫ (∫ ∫
fX|Y Z(x | y, z)fY Z|X(y, z | t)dydz

)
fX(t)dt.

Cycling between fX|Y Z(x | y, z) and fY Z|X(y, z | t) would again
result in a sequence of random variables converging in distribu-
tion to fX(x). This is the idea behind the Data Augmentation
Algorithm of Tanner and Wong (1987). By sampling iteratively
from fX|Y Z(x | y, z) and fY Z|X(y, z | t), they show how to obtain
successively better approximations to fX(x).”
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[CG] Conditionals determine marginals. More than two
variables.

“In contrast, the Gibbs sampler would sample iteratively from
fX|Y Z, fY |XZ, and fZ|XY . That is, the j-th iteration would be

Xj ∼ f(x | Yj = yj, Zj = zj)
Yj+1 ∼ f(y | Xj = xj, Zj = zj)
Zj+1 ∼ f(z | Xj = xj, Yj+1 = yj+1).

(9)

The iteration scheme of (9) produces a Gibbs sequence

Y0, Z0, X0, Y1, Z1, X1, Y2, Z2, X2, . . . ,

with the property that, for large k, Xk = xk, is effectively a
sample point from f(x). Although it is not immediately evident,
the iteration in (9) will also solve the fixed-point equation.”
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[CG] Conditionals determine marginals. More than two
variables. Generalization of Example 1.

In the distribution of Example 1 (3), we now let n be the real-
ization of a Poisson random variable with mean λ, yielding the
joint distribution

f(x, y, n) ∝
(n
x

)
yx+α−1(1− y)n−x+β−1e−λ

λn

n!
,

x = 0,1, . . . , n, 0 ≤ y ≤ 1, n = 1,2, . . .

Again, suppose we are interested in the marginal distribution of
X. Unlike Example 1, here we cannot calculate the marginal
distribution of X in closed form.
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[CG] Conditionals determine marginals. More than two
variables. Generalization of Example 1.

f(x, y, n) ∝
(n
x

)
yx+α−1(1− y)n−x+β−1e−λ

λn

n!
,

x = 0,1, . . . , n, 0 ≤ y ≤ 1, n = 1,2, . . .

However, it is reasonably straightforward to calculate the three
conditional densities. Suppressing dependence on λ, α, and β,

f(x | y, n) ∼ B(n, y),

f(y | x, n) ∼ Beta(x+ α, n− x+ β),

f(n | x, y) ∝ e−(1−y)λ((1− y)λ)n−x

(n− x)!
, n = x, x+ 1, . . . .
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[CG] Conditionals determine marginals. More than two
variables. Generalization of Example 1.

This model can have practical applications. For example, con-
ditional on n and y, let x represent the number of successful
hatchings from n insect eggs, where each egg has success prob-
ability y. Both n and y fluctuate across insects, which is modeled
in their respective distributions, and the resulting marginal dis-
tribution of X is a typical number of successful hatchings among
all insects.
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[CG] Detecting Convergence.

“The Gibbs sampler generates a Markov chain of random vari-
ables which converge to the distribution of interest f(x). Many
of the popular approaches to extracting information from the
Gibbs sequence exploit this property by selecting some large
value for k, and then treating any Xj, for j ≥ k as a sample
from f(x). The problem then becomes that of choosing the
appropriate value of k.”
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[CG] Detecting Convergence.

“A general strategy for choosing such k is to monitor the con-
vergence of some aspect of the Gibbs sequence. ... For exam-
ple, monitoring density estimates from m independent Gibbs se-
quences, and choosing k to be the first point at which these den-
sities appear to be the same under a ”felt-tip pen test.” Tanner
(1991) suggests monitoring a sequence of weights that measure
the discrepancy between the sampled and the desired distribu-
tion. Geweke (in press) suggests monitoring based on time series
considerations. Unfortunately, such monitoring approaches are
not foolproof, illustrated by Gelman and Rubin(1991). An alter-
native may be to choose k based on theoretical considerations,
as in Raftery and Banfield(1990). M.T.Wells (personal commu-
nication) has suggested a connection between selecting k and
the cooling parameter in simulated annealing.”
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