Chapter 13

Thermal Properties

What happens in these Lattices when Heat
Transports Vibrations through a solid mass?

T = 3Nk is much too neat,

A rigid Crystal’s not a fluid Gas.

Debye in 1912 proposed Elas-

Tic Waves called phonons that obey Max Planck’s
E = hv. Though amorphous Glass,

Umklapp Switchbacks, and Isotopes play pranks
Upon his Formulae, Debye deserves warm Thanks.

John Updike, The Dance of the Solids'

13.1 Introduction

As a consequence of their brittleness and their low thermal conductivities.
ceramics are prone to thermal shock; i.e., they will crack when subjected to
large thermal gradients. This is why it 1s usually not advisable to pour a
very hot liquid into a cold glass container, or cold water on a hot ceramic
furnace tube — the rapidly cooled surface will want to contract, but will
be restrained from doing so by the bulk of the body, so stresses will develop.
If these stresses are large enough, the ceramic will crack.

Thermal stresses will also develop because of thermal contraction
mismatches in multiphase materials or anisotropy in a single phase. It thus
follows that thermal stresses exist in all polycrystalline ceramics with noncu-
bic structures that undergo phase transformations or include second phases
with differing thermal expansion characteristics. These stresses can result in
the formation of stable microcracks and can strongly influence the strength
and fracture toughness of ceramics. In a worst-case scenario. these stresses
can cause the total disintegration of a ceramic body. Used properly. however.
they can enhance the strength of glasses. The purpose of this chapter is to

" J. Updike, Midpoint and other Poems. A. Knopf. Inc.. New York. New York. 1969. Reprinted
with permission.
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explore the problem of thermal residual stresses, why they develop and how
to quantify them.

Another important thermal property dealt with in Sec. 13.6 is thermal
conductivity. It is the low thermal conductivity of ceramics, together with
their chemical inertness and oxidation resistance, that renders them as a
class of materials uniquely qualified to play an extremely demanding and
critical role during metal smelting and refining. Many ceramics such as
diaspore, alumina, fosterite, and periclase are used for the fabrication of
high-temperature insulative firebrick without which the refining of some
metals would be impossible.

13.2 Thermal Stresses
The Origin of Thermal Residual Stresses

As noted above, thermal stresses can be induced by differential thermal
expansion in multiphase materials or anisotropy in the thermal expansion
coefficients of single-phase solids. The latter is treated in Sec. 13.4. To best
illustrate the idea of how differential thermal expansion in multiphase
materials leads to thermal stresses, consider the simple case shown schemati-
cally in Fig. 13.1a, where a solid disk is placed inside of a ring of a different
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Figure 13.1 Steps involved in Eshellby’s method. (@) Initial configuration. (») Cutting and
allowing for free expansion of both inclusion and matrix as a result of heating. Note that
the radius of the outside ring increases upon heating. (¢) Application of surface forces
needed to restore elements to original shape. (d) Weld pieces together. (e) Allow the
system to relax. Note displacement of original interface as a result of relaxation.
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material. To emphasize the similarity of this problem to that of an inclusion
in a matrix, which was discussed in Chap. 11 and is one of practical
significance, the disk will henceforth be referred to as the inclusion. and the
outside ring as the matrix, with thermal expansion coefficients «; and a,,.
respectively.

Before one attempts to find a quantitative answer, it is important to
qualitatively understand what happens to such a system as the temperature
is varied. Needless to say, the answer will depend on the relative values of
«; and «,,, and whether the system is being heated or cooled. To illustrate.
consider the case where a; > a,, and the system is heated. Both the inclusion
and the matrix will e:xpand231 (Fig. 13.1b); however, given that a; > a,,. the
inclusion will try to expand at a faster rate, but will be radially restricted from
doing so by the outside ring. It follows that upon heating, both the inclusion
and the matrix will be in radial compression. It is left as an exercise to the
reader to show that if the assembly were cooled, the inclusion would develop
radial tensile stresses. It should be noted here, and is discussed in greater
detail below, that stresses other than radial also develop.

The quantification of the problem is nontrivial and is usually carried out
today by using finite-element and other numerical techniques. However. for
simple geometries, a powerful method developed by Eshellby>* exists. which
in principle is quite simple, elegant, and ingenious. The problem is solved by
carrying out the following series of imaginary cuts. strains. and welding
operations illustrated in Fig. 13.1:

1. Cut the inclusion out of the matrix.

2. Allow both the inclusion and the matrix to expand or contract as a result
of either heating or cooling (or as a result of a phase transformation)
(Fig. 13.1b).

3. Apply sufficient surface traction to restore the elements to their original
shape (Fig. 13.1c¢).

4. Weld the pieces together (Fig. 13.1d).

5. Allow the system to relax (Fig. 13.1e).

To apply this technique to the problem at hand, do the following:
1. Cut the inclusion, and allow both it and the matrix to freely expand
(Fig. 13.1b). The thermal strain in the inclusion is given by [Eq. (4.2)]:
AL

—L_ =g = ;AT = ai(Tﬁnal — Tinit)
0

€ = ai(Tﬁnal - Tinit) “31)

21 Note that the expansion of the matrix implies that the internal diameter of the ring increases

with increasing temperature.
232 J. D. Eshellby. Proc. Rov. Soc.. A241:376-396 (1957).
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Similarly, for the matrix
Em = AT (13.2)

Note that as defined here, AT is positive during heating and negative
during cooling. On cooling, T§,,; is usually taken to be room temperature;
T..i, however, is more difficult to determine unambiguously, but it is the
highest temperature below which the residual stresses are not relieved,
which, depending on the material in question, may or may not be identical
to the processing or annealing temperature. At high enough temperatures,
stress relaxation by diffusive or viscous flow will usually relieve some, if
not most, of the residual stresses; it is only below a certain temperature
that these stress relaxation mechanisms become inoperative and local
elastic residual stresses start to develop from the contraction mismatch.

2. Apply a stress to each element to restore it to its original shape®”
(Fig. 13.1¢). For the inclusion,

g; = —Yigi: ”‘“Y,'Q’.,'AT <133)
where Y is Young’s modulus. For the matrix:
ai]? = )IIHE:I’H = YmamAT (13'4)

Note that the applied stress needed to restore the inclusion to its original
shape is compressive (see Fig. 13.1¢), which accounts for the minus sign
in Eq. (13.3).

3. Weld the two parts back together (Fig. 13.1d), and allow the stresses to
relax. Since the stresses are unequal, one material will “push” into the
other, and the location of the original interface will shift by a strain 6
in the direction of the larger stress until the two stresses are equal
(Fig. 13.1¢). At equilibrium the two radial stresses are equal and are
given by

Oieq = Yi[gi + 5] = Omeq = Y, [5111 - é} (135)

Solving for 4, plugging that back into Eq. (13.5), and making use of
Egs. (13.1) to (13.4), one can show (see Prob. 13.2) that

Oieq = Omeq = AaAT (o, — o)AT (13.6)
= Tnes = Ty 1Y, 1Y, 1 1)Y, o

This is an important result which predicts that

e If Awiszero, no stress develops, which makes sense since the matrix and
the inclusion would be expanding at the same rate.

e For a; > «,,, upon heating (positive AT), the stresses generated in the
inclusion and matrix should be compressive or negative, as anticipated.

33 Equations (13.2) and (13.3) are strictly true only for a one-dimensional problem. Including
the other dimensions does not generally greatly affect the final result [see Eq. (13.8)].
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e Iftheinclusion is totally constrained from moving (that is, a,, = 0 and Y,
is infinite), then Eq. (13.6) simplifies to the more familiar equation

U,‘_eq = "Y,‘Q,‘AT (]37)

which predicts that upon heating, the stress generated will be compres-
sive, and vice versa upon cooling.

In treating the system shown in Fig. 13.1, for simplicity’s sake, only the
radial stresses were considered. The situation in three dimensions is more
complicated, and it is important at this stage to be able to at least qualita-
tively predict the nature of these stresses. Since the problem is no longer
one-dimensional, in addition to the radial stresses, the axial and tangential
or hoop stresses have to be considered.

To qualitatively predict the nature of these various stresses, a useful
trick is to assume the lower thermal expansion coefficient of the two compo-
nents to be zero and to carry out the Eshellby technique. To illustrate,
consider the nature of the thermal residual stresses that would be generated
if a fiber with expansion coefficient a, were embedded in a matrix (same
problem as the one shown in Fig. 13.1, except that now the three-dimen-
sional state of stress is of interest), densified, and cooled from the processing
temperature for the case when «,, > a,. Given that «,,, > o, and by making
use of the aforementioned trick, i.e., by assuming ar =0 (which implies its
dimension does not change with temperature changes). it follows that
upon cooling, the matrix will shrink both axially and radially (the hole will
get smaller). Consequently, the stress required to fit the matrix to the fiber
will have to be axially tensile; when the matrix 1s welded to the fiber and
allowed to relax, this will place the fiber in a state of axial residual compres-
sive stress, which, in turn, is balanced by an axial tensile stress in the matrix.
Radially, the matrix will clamp down on the fiber. resulting in radial
compressive stresses in both the fiber and the matrix. in agreement with
the conclusions drawn above. In addition, the system will develop tensile
tangential stresses, as shown in Fig. 13.2a.>** These stresses. if sufficiently
high, can cause the matrix to crack radially as shown in Fig. 13.2¢. It is
left as an exercise to readers to determine the state of stress when q,, < a;.
and to compare their results with those summarized in Fig. 13.25.

Finally, in this section the problem of a spherical inclusion in an infinite
matrix is considered. It can be shown that the radial (o,,q) and tangential
(0an) stresses generated for a spherical inclusion of radius R at a distance

234 To appreciate the nature of tangential stresses. it helps to go back to the Eshellby technique
and ask, What would be required to make the hole in the matrix, which is now smaller than
the fiber it surrounds, larger? The answer is., One would have to stretch the matrix in a
manner similar to fitting a smaller-diameter hose around a larger-diameter pipe. This
naturally results in a tangential stress in the hose. Experience tells us that if the hose is too
small, it will develop radial cracks similar to the one shown in Fig. 13.2¢.
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Radial compressive Radial tensile
Tangential Tangential
tensile compressive
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Oy > O f Oy < OLf
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Figure 13.2 Radial and tangential stresses developed upon cooling of a fiber embedded in
a matrix for (a) o, < oy and (b) o, > ay. (¢) Micrograph of radial cracks generated
around a fiber upon cooling when «,,, > «;.

r away from the interface are given by:

(Oém - a,)AT R 3 .
= 2. = 13.8
Traa = =200 = (T Y T4 ) /(Yo \r T R (138)

where v; and v, are, respectively, Poisson’s ratio for the inclusion and matrix.
The stress is a maximum at the interface, i.e., at » = 0, and drops rapidly with
distance. Note that the final form of this expression is similar to Eq. (13.6). It
is worth noting here that the Eshellby technique is not restricted to calculat-
ing thermal stresses; also, it can be used to calculate transformation stresses.

13.3 Thermal Shock

Generally speaking, thermal stresses are to be avoided since they can signi-
ficantly weaken a component. In extreme cases, a part can spontaneously
crumble during cooling. As noted earlier, rapid heating or cooling of a
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ceramic will often result in its failure. This kind of failure is known as thermal
shock and occurs when thermal gradients and corresponding thermal stresses
exceed the strength of the part. For instance, as a component is rapidly
cooled from a temperature T to T, the surface will tend to contract but
will be prevented from doing so by the bulk of the component that is still
at temperature 7. By using arguments similar to the ones made above, it is
easy to appreciate that in such a situation surface tensile stresses would be
generated that have to be counterbalanced by compressive ones in the bulk.

Experimental Details: Measuring Thermal Shock Resistance

Thermal shock resistance is usually evaluated by heating samples to various
temperatures T,,,,. The samples are rapidly cooled by quenching them from
T,ax Into a medium, most commonly ambient temperature water. The post-
quench retained strengths are measured and plotted versus the severity of the
quench, or AT = Tax — Tamsi- Typical results of such experiments are
shown in Fig. 13.3a, where the salient feature is the occurrence of a rapid
decrease in retained strength around a critical temperature difference AT,
below which the original strength is retained. As the quench temperature is
further increased, the strength decreases but more gradually. Actual data
for single-crystal and polycrystalline alumina are shown in Fig. 13.35.

00
3 O Single-crystal sapphire
Constant strength &S © 10um grain size alumina
p 400
5 LAl
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-e— Crack o -
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7] Caonstant str 2
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AT,
Gradual decrease in strength 0 .
Temperature difference 0 200 400 600 800 1000
of thermal shock AT
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Figure 13.3 (a) Schematic of strength behavior as a function of severity of quench AT. (b)
Actual data for single-crystal and polycrystalline alumina™*® (error bars were omitted for
the sake of clarity).

35 T. K. Gupta. J. Amer. Cer. Soc.. 55:249 (1972).
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From a practical point of view, it is important to be able to predict AT..
Furthermore, it is only by understanding the various parameters that affect
thermal shock that successful design of solids which are resistant to it can
be carried out. In the remainder of this section, a methodology is outlined
for doing just that, an exercise that will by necessity highlight the important
parameters that render a ceramic resistant to thermal shock.

To estimate AT,, the following assumptions are made?*®

1. The material contains N identical, uniformly distributed, Griffith flaws
per unit volume.

2. The flaws are circular with radii ¢;.

3. The body is uniformly cooled with the external surfaces rigidly con-

strained to give a well-defined triaxial tensile state of stress given by**’
aYAT
T e 13.9
Othe (1 . 2V) ( )

4. Crack propagation occurs by the simultaneous propagation of the N
cracks, with negligible interactions between the stress fields of neighbor-
ing cracks.

The derivation 1is straightforward and follows the one carried out in
deriving Eq. (11.9). The total energy of the system can be expressed as

Utot = UO - Ustrain + Usurf

where U is the energy of the stress- and crack-free crystal of volume Vy; Ugy¢
and Uy, are, respectively, the surface and strain energies of the system.
Since it was assumed that the stress fields were noninteracting, in the presence
of N cracks U, is modified to read

V()Utzher No %her 47"“?

where the third term on the right-hand side represents the strain energy
released by the existence of the cracks and the last term is the energy
needed to extend them. G, is toughness of the material (Eq. (11.11)).

Differentiating this expression with respect to ¢;, equating the resulting
expression to zero, and rearranging terms, one can easily show (see Prob.
13.6a) that for AT > AT,, where AT, is given by

G.(1 —2v)?

AT. >
‘= (.Yz YC','

(13.11)
the cracks will grow and release the strain energy. Conversely, for
AT < AT,, the strain energy that develops is insufficient to extend the

3 The derivation shown here is a simplified version of one originally outlined by D. P. H.
Hasselman, J. Amer. Cer. Soc., 46:453 (1963) and 52:600 (1969).
27 Note similarity of this equation to Eq. (13.7).
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cracks, which in turn implies that the strength should remain unchanged. as
experimentally observed.

In contrast to the situation of a flaw propagating as a result of a constant
applied stress, in which the flaw will extend indefinitely until fracture, the
driving force for crack propagation during thermal shock is finite. In the
latter case, the cracks will only extend up to a certain length ¢, that is
commensurate with the strain energy available to them and then stop. To
estimate c,, one simply equates the strain energy available to the system to
the increase in surface energy, or

NG (c; — ¢7) -_—M (13.12)
‘ 2(1 = 2v)”
For short initial cracks, that is, ¢, > c;. substituting for the value of AT,
from Eq. (13.11), one obtains

1
7TN(','

cp (13.13)

which interestingly enough does not depend on any material parameters.

For the sake of clarity, the model used to derive Eqs. (13.11) and (13.13)
was somewhat simplified. Using a slightly more sophisticated approach.
Hasselman obtained the following relationships:

7G.(1 = 2v)° 16Nc} (1 — v)?
AT, = 1
‘ \/Yaz(l —1/2)6,[ o0 ) (13.14)

31 = 2w)
= 8(1 — ?)N¢; (13.15)

And while at first glance these expressions may appear different from those
derived above, on closer examination, their similarity becomes obvious.
For example, for small cracks of low density, the second term in brackets
in Eq. (13.14) can be neglected with respect to unity, in which case, but for
a few terms including Poisson’s ratio and =, Eq. (13.14) is similar to
Eq. (13.11). The same is true for Eqs. (13.13) and (13.15).

Before one proceeds further, it is worthwhile to summarize the physics
of events occurring during thermal shock. Subjecting a solid to a rapid
change in temperature results in differential dimensional changes in various
parts of the body and a buildup of stresses within it. Consequently, the strain
energy of the system will increase. If that strain energy increase is not too
large, i.e., for small AT values, the preexisting cracks will not grow and
the solid will not be affected by the thermal shock. However, if the thermal
shock is large, the many cracks present in the solid will extend and absorb
the excess strain energy. Since the available strain energy is finite. the
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cracks will extend only until most of the strain energy is converted to surface
energy, at which point they will be arrested. The final length to which the
cracks will grow will depend on their initial size and density. If only a few,
small cracks are present, their final length will be large and the degradation
in strength will be high. Conversely, if there are numerous small cracks, each
will extend by a small amount and the corresponding degradation in strength
will not be that severe. In the latter case, the solid is considered to be thermal-
shock-tolerant.

It is this latter approach that is used in fabricating insulating firebricks
for furnaces and kilns. The bricks are fabricated so as to be porous and
contain many flaws. Because of the very large number of flaws and pores
within them, the bricks can withstand severe thermal cycles without struc-
tural failure.

Inspecting Eq. (13.11) or (13.14), it is not difficult to conclude that a
good figure of merit for thermal shock resistance 1s

Ry = (const)(AT,) = (const)\/ g" = f’)‘/ (13.16)
o

from which it is clear that ceramics with low thermal expansion coefficients,
low elastic moduli, but high fracture toughnesses should be resistant to
thermal shock.

Kingery’s**® approach to the problem was slightly different. He postu-
lated that failure would occur when the thermal stress, given by Eq. (13.7),
was equal to the tensile strength o, of the specimen (see Prob. 13.4). By

equating the two, it can be shown that the figure of merit in this case is

(1 = 2v)o,

Rtg = (const)(AT,) = (const) 7
X

(13.17)
However, given that o, is proportional to (G, Y /¢pax) '2 it is an easy exercise
to show that Rrg is proportional to Ry/ cfn/fx, implying that the two criteria
are related.”*”

One parameter which is not included in either model, and which clearly
must have an important effect on thermal shock resistance, is the thermal
conductivity of the ceramic ky, (see Sec. 13.6). Given that thermal gradients
are ultimately responsible for the buildup of stress, it stands to reason that
a highly thermally conductive material would not develop large gradients
and would thus be thermal shock resistant. For the same reason, the heat
capacity and the heat-transfer coefficient between the solid and the environ-
ment must also play a role. Thus an even better indicator of thermal shock

% W. D. Kingery, J. Amer. Cer. Soc., 38:3-15 (1955).
23 1t is interesting to note that the Hasselman solid is a highly idealized one where all the flaws
are the same size.



452 Fundamentals of Ceramics

Table 13.1 Comparison of thermal shock parameters for a number of ceramics. Poisson’s
ratio was taken to be 0.25 for all materials

Material MOR, Y, «, k(h, Klv klhRTS~ RHklh~ AT‘
MPa GPa 10°K™' W/(m-K) MPa-m'> W/m W'm> exper.
SiAION 945 300 3.0 21 7.7 16.500 180 900
HP'-Si;N, 890 310 32 15-25 5.0 16.800 126  500-700
RB*-Si;N, 240 220 3.2 8-12 2.0 2,557 28 ~500
SiC (sintered) 483 410 4.3 84 3.0 17.300 143 300-400
HP'-ALLO; 380 400 9.0 6-8 3.9 633 8 200
HP'-BeO 200 400 8.5 63 2,800
PSZ 610 200 10.6 2 ~10.0 435 9 500
Ti5SiC, 300 320 9.1 43 ~10.0 149 > 1400

' Hot-pressed
* Reaction-bonded
§ Partially stabilized zirconia

resistance is to multiply Eq. (13.16) or (13.17) by k. These values are
calculated for a number of ceramics and listed in Table 13.1 in columns 7
and 8. Also listed in Table 13.1 are the experimentally determined values.
A correlation between the two sets of values is apparent, giving validity to
the aforementioned models.

Note that in general the nitrides and carbides of Si, with their lower
thermal expansion coefficients, are more resistant to thermal shock than
oxides. In theory, a material with zero thermal expansion would not be
susceptible to thermal shock. In practice, a number of such materials do
actually exist commercially, including some glass-ceramics that have been
developed which, as a result of thermal expansion anisotropy, have extremely
low a’s (see Ch. 4). Another good example is fused silica which also has an
extremely low « and thus is not prone to thermal shock.

13.4 Spontaneous Microcracking of Ceramics

In the previous section, the emphasis was on thermal shock, where failure
was initiated by a rapid andjor severe temperature change. This is not
always the case; both single- and multiphase ceramics have been known to
spontaneously microcrack upon cooling. Whereas thermal shock can be
avoided by slow cooling, the latter phenomenon is unavoidable regardless
of the rate at which the temperature is changed.

Spontaneous microcracking results from the buildup of residual stresses
which can be caused by one or more of the following three reasons:

¢  Thermal expansion anisotropy in single-phase materials
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Table 13.2 Thermal expansion coefficients for some ceramic crystals with anisotropic
thermal expansion behavior

Material Normal to ¢ axis Parallel to ¢ axis
Al,O4 8.3 9.0
AL TiO; -2.6 11.5
3A1,0;5 - 2810, (mullite) 4.5 5.7
CaCO; —6.0 25.0
LiAlIS1,04 (3-spodumene) 6.5 -2.0
LiAISiO4 (B-eucryptite) 8.2 —-17.6
NaAlSi; 04 (albite) 4.0 13.0
Si0, (quartz) 14.0 9.0
TiO, 6.8 8.3
ZrSi0, 3.7 6.2

e  Thermal expansion mismatches in multiphase materials
e  Phase transformations and accompanying volume changes in single- or
multiphase materials

In the remainder of this section each of these cases is explored in some
detail.

13.4.1 Spontaneous Microcracking due to Thermal Expansion Anisotropy

Noncubic ceramics with high thermal expansion anisotropy have been
known to spontaneously microcrack upon cooling.?*® The cracking, which
occurs along the grain boundaries, becomes progressively less severe with
decreasing grain size, and below a certain ‘“‘critical” grain size, it is no
longer observed. The phenomenon has been reported for various solids
such as Al,Oj, graphite, Nb,Os, and many titania-containing ceramics
such as TiO,, Al,TiOs, Mg,TiOs, and Fe,TiOs. Data for some anisotropic
crystals are given in Table 13.2.

Before one attempts to quantify the problem, it is important once again
to understand the underlying physics. Consider the situation shown in
Fig. 13.4a, where the grains, assumed to be cubes, are arranged in such a
way that adjacent grains have different thermal expansion coefficients
along their x and y axes as shown, with a; < a;. To further elucidate the
problem, use the aforementioned trick of equating the lower thermal expan-
sion to zero, i.e. pretend «; = 0. If during cooling the grains are uncon-
strained, the shape of the assemblage would be that shown in Fig. 13.4b.
But the cooling is not unconstrained, which implies that a buildup of stresses

2, . . . . . . J_—
40 The thermal expansion coefficients of cubic materials are isotropic and hence do not exhibit
this phenomenon.
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(a)

(b)

Figure 13.4 Schematic of how thermal expansion anisotropy can lead to the development
of thermal stresses upon cooling of a polycrystalline solid. (a) Arrangement of grains prior
to cooling shows relationship between thermal expansion coefficients and grain axis. (b)
Unconstrained contraction of grains. Here it was assumed that a; = 0.

at the boundaries will occur. It is this stress that is ultimately responsible for
failure.

To estimate the critical grain size above which spontaneous microcrack-
ing would occur, the various energy terms have to be considered. For the
sake of simplicity, the grains are assumed to be cubes with grain size d in
which case the total energy of the system is>*'

Ur = U, = NUd" + 6Nd*G.. g, (13.18)

where N is the number of grains relieving their stress and G, g, is the grain
boundary toughness; U, is the energy of the unmicrocracked body. and U,
is the strain energy per unit volume stored in the grains. Differentiating
Eq. (13.18) with respect to d and equating to zero yields the critical grain size
4G,
dcrit = _L;]g_tz

£

(13.19)

U, is estimated as follows: For a totally constrained grain, the stress devel-
oped is given by Eq. (13.7). Extending the argument to two adjacent
grains, the residual stress can be approximated by

o =3 YA AT (13.20)

where Ao, is the maximum anisotropy in thermal expansion between two
crystallographic directions. Substituting Eq. (13.20) in the expression for the

*4! The treatment here is a slightly simplified version of that carried out by J. J. Cleveland and
R. C. Bradt. J. Amer. Cer.. 61:478 (1978).
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strain energy per unit volume, that is, U, = o?/(2Y). and combining with
Eq. (13.19), one obtains

32G, 4
Aoy = A 13.21
YAk AT? ( )
In general, however,
Ggb
d.;y = (const o8 13.22
crit ( ons ) YACY‘ZﬂaxATz ( )

where the value of the numerical constant one obtains depends on the details
of the models. This model predicts that the critical grain size below
which spontaneous microcracking will not occur is a function of the thermal
expansion anisotropy, the grain boundary fracture toughness, and Young’s
modulus. Experimentally, the functional relationship among d_;, AT, and
A,y 18 reasonably well established (see Prob. 13.8).

Experimental Details: Determination of Microcracking

Unless a ceramic component totally falls apart in the furnace as the sample is
cooled from the sintering or processing temperature, it is experimentally
difficult to observe directly grain boundary microcracks. There are, however,
a number of indirect techniques to study the phenomenon. One is to fabricate
ceramics of varying grain sizes and measure their flexural strengths after
cooling. A dramatic decrease in strength over a narrow grain size variation
is usually a good indication that spontaneous microcracking has occurred.

13.4.2 Spontaneous Microcracking due to Thermal Expansion Mismatches in
Multiphase Materials

Conceptually there is little difference between this situation and the preceding
one; the similarity of the two cases is easily appreciated by simply replacing
one of the grains in Fig. 13.4 by a second phase with a different thermal
expansion coefficient from its surroundings.

13.4.3 Spontaneous Microcracking due to Phase-Transformation-Induced
Residual Stresses

Here the residual stresses do not develop as a result of thermal expansion
mismatches or rapid variations in temperature, but as a result of phase trans-
formations. Given that these transformations entail atomic rearrangements,
they are always associated with a volume changes (e.g., Fig. 4.5). Con-
ceptually, the reason why such a volume change should give rise to residual
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stresses should at this point be obvious. Instead of using Aa, however, the

resultant stresses usually scale with AV/V,, where AV is the volume

change associated with the transformation. The stresses approximated by
Y AV

T T (13.23)

can be quite large. For example, a 3 percent volumetric change in a material
having a Y of 200 GPa and Poisson’s ratio of 0.25 would provide a stress of
about 4 GPa!

Residual stresses are generally deleterious to the mechanical properties
and should be avoided. This is especially true if a part is to be subjected to
thermal cycling. In some situations, however, residual stresses can be used
to advantage. A case in point is the transformation toughening of zirconia
discussed in Chap. 11, and another excellent example is the tempering of
glass discussed in the next section.

13.5 Thermal Tempering of Glass

Because of the transparency and chemical inertness of inorganic glasses.
their uses in everyday life are ubiquitous. However, for many applications.
especially where safety is concerned, as manufactured, glass is deemed to
be too weak and brittle. Fortunately, glass can be significantly strengthened
by a process referred to as thermal tempering, which introduces a state of
compressive residual stresses on the surface (see Sec. 11.3.3).

The appropriate thermal process, illustrated in Fig. 13.5. involves
heating the glass body to a temperature above its glass transition
temperature, followed by a two-step quenching process. During the first
quenching stage, initially the surface layer contracts more rapidly than
the interior and becomes rigid while the interior is still in a viscous state.
This results in a tensile state of stress at the surface, shown in Fig. 13.5¢.
However, since the interior is viscous these stresses will relax, as shown in
Fig. 13.5d.

During the second quenching step, the entire glass sample is cooled to
room temperature. Given that on average the glass interior will have
cooled at a slower rate than its exterior, its final specific volume will be smal-
ler than that of the exterior.>*? The situation is shown in Fig. 13.5¢ and leads
directly to the desired final state of stress (Fig. 13.5/) in which the external
surfaces are in compression and the interior is in tension.

242 This effect was discussed briefly in Sec. 9.4.1 and illustrated in Fig. 9.8a. Simply put. the more
time the atoms have to arrange themselves during the cooling process (slow cooling rate). the
denser the glass that results.



Thermal Properties 457

i
O j——
et

S S S
t 1 t o
IR R
S S S ° a ° p
. —— | O r O | —— . ’ "
1 % | % |Quench| 1 | m |1 S1 ¢ |8
F F F to e e € ! $ !
r r r |11 <Tg| T r o S N
; n 1 n
e e e
o
[+ [ <
n
Tl < Tg
(a) (&) (¢) l
c|l |c
o (4]
m T m L S L Quench Stresses
p € p a m a to relax as
r n r . a T, <I a result
¢ s e | | T -—— of flow
S i s & 1 g of the
e e
s o s . e . glass
1 n 1 r , interior
o o AV AV AV
n n
I <Th
N (e) (d)

Figure 13.5 Thermal process that resuits in tempered glass. («) Initial configuration. (b)
The glass is quenched to a temperature that is below 7,, which results in the rapid
contraction of the exterior. (¢) Resulting transient state of stress. (d) The relaxation of
these stresses occurs by the flow and deformation of the interior. (¢) Second quenching
step results in a more rapid cooling rate for the exterior than for the interior. This results
in a glass with a smaller specific volume in the center than on the outside. (/) Final state of
stress at room temperature.

By using this technique, the mean strength of soda-lime silicate glass can
be raised to the range of 150 MPa, which is sufficient to permit its use in large
doors and windows as well as safety lenses. Tempered glass is also used for
the side and rear windows of automobiles. In addition to being stronger,
tempered glass is preferred to untempered glass for another reason: the
release of large amounts of stored elastic energy upon fracture tends to
shatter the glass into a great many fragments which are less dangerous
than larger shards. Windshields, however, are made of two sheets of
tempered glass in between which a polymer layer in embedded. The function
of the latter is to hold the fragments of glass together in case of fracture and
to prevent them from becoming lethal projectiles.
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13.6 Thermal Conductivity

The conduction of heat through solids occurs as a result of temperature
gradients. In analogy to Fick’s first law, the relationship between the heat
flux and temperature gradients 37 /0x is given by

80 0T
o0~ kA 5o

where 0Q/0t is the heat transferred per unit time across a plane of area A
normal to the flow of the thermal energy; and &, is a material property
(analogous to diffusivity) that describes the ability of a material to transport
heat. Its units are J/(s-m-K) or equivalently W/(m-K). Approximate
values for k,, for a number of ceramics are listed in Table 13.3.

(13.24)

Thermal conduction mechanisms

Describing the mechanisms of conduction in solids is not easy. Here only a
brief qualitative sketch of some of the physical phenomena is given. In
general, thermal energy in solids is transported by lattice vibrations. i.e.
phonons, free electrons, and radiation. Given that the concentration of
free electrons in ceramics is low and that most ceramics are not transparent.
phonon mechanisms dominate and are the only ones discussed below.
Imagine a small region of a solid being heated. Atoms in that region will
have large amplitudes of vibration and will vibrate violently around their
average positions. Given that these atoms are bonded to other atoms. it
follows that their motion must also set their neighbors into oscillation. As
a result the disturbance, caused by the application of heat. propagates
outward in a wavelike manner.**> These waves, in complete analogy to
electromagnetic waves, can be scattered by imperfections. grain boundaries.

Table 13.3 Approximate values for thermal conductivities of selected ceramic materials

Material kg, W/(m-K) Material ky, Wi(m-K)
Al O, 30.0-35.0 Spinel (MgAl,0,) 12.0
AIN 200.0-280.0 Soda-lime silicate glass 1.7
BeO 63.0-216.0 TiB, 40.0
MgO 37.0 Ti3SiCs 43.0
PSZ 2.0

SiC 84.0-93.0 Cordierite (Mg-aluminosilicate) 4.0
SiAION 21.0 Glasses 0.6-1.5
Si0, 1.4 Forsterite 30
Si3Ny 25.0

243 A situation not unlike the propagation of light or sound through a solid.
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and pores or even reflected at other internal surfaces. In other words, every
so often the disturbance will have the direction of its propagation altered.
The average distance that the disturbance travels before being scattered 1s
analogous to the average distance traveled by a gas molecule and is referred
to as the mean free path A\y,.

By assuming the number of these thermal energy carriers to be Ny, and
their average velocity vy, it is reasonable to assume that, in analogy to the
electrical conductivity equation of o = nug, ky, is given by

ki = (const)( Ny Apvw)

In general, open, highly ordered structures made of atoms or ions of
similar size and mass tend to minimize phonon scattering and result in
increased values of ky,. An excellent example is diamond, which has one of
the highest thermal conductivity values of any known material. Other
good examples are SiC, BeO, and AIN. More complex structures, such as
spinels, and ones where there is a large difference in mass between ions,
such as UO, and ZrO,, tend to have lower values of ky,. Similar arguments
suggest that the thermal conductivity of a solid will be decreased by the
addition of a second component in solid solution. This effect is well
known, as shown, ¢.g., by the addition of NiO to MgO or Cr,0; to Al,O;.

Furthermore, the lack of long-range order in amorphous ceramics
results in more phonon scattering than in crystalline solids and consequently
leads to lower values of ky,.

Finally, it 1s important to mention the effect of porosity. Since the
thermal conductivity of air is negligible compared to the solid phases, the
addition of large (>25 percent) volume fractions of pores can significantly
reduce ky,. This approach is used in the fabrication of firebrick. As noted
above, the addition of large-volume fractions of porosity has the added
advantage of rendering the firebricks thermal-shock-tolerant. Note that
heat transfer by radiation across the pores, which scales as 7°, has to be
minimized. Hence for optimal thermal resistance, the pores should be
small and the pore phase should be continuous.

Experimental Details: Measuring Thermal Conductivity

Several techniques are used to measure k. One method that has gained
popularity recently 1s the laser flash technique. In principle the technique
attempts to measure the time evolution of the temperature on one side of
the sample as the other side is very rapidly heated by a laser pulse. As it
passes through the solid, the signal will be altered in two ways: There
will be a time lag between the time at which the solid was pulsed and the
maximum in the response. This time lag is directly proportional to the
thermal diffusivity, D, of the material. The second effect will be a reduction
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in the temperature spike, which is directly related to the heat capacity, c,. of
the solid. The heat capacity, thermal diffusivity. and thermal conductivity
and density, o, are related by:

ki = PCpo

Hence &y, can be calculated if the density of the solid is known and D, and ¢,
are measured.

13.7 Summary

Temperature changes result in dimensional changes which result in thermal
strains. Isotropic, unconstrained solids subjected to uniform temperatures
can accommodate these strains without the generation of thermal stresses.
The latter will develop, however, if one or more of the following situations
are encountered:

Constrained heating and cooling.

Rapid heating or cooling. This situation can be considered a variation of
that above. By rapidly changing the temperature of a solid, its surface
will usually be constrained by the bulk and will develop stresses. The
magnitude of these stresses depends on the severity of thermal shock
or rate of temperature change. In general, the higher the temperature
from which a ceramic is quenched the more likely it is to fail or thermal
shock. Thermal shock can be avoided by slow heating or cooling. Solids
with high thermal conductivities, fracture toughnesses and/or low
thermal expansion coefficients are less prone to thermal shock.

e  Heating or cooling of multiphase ceramics in which the various constitu-
ents have differing thermal expansion coefficients. The stresses generated
in this case will depend on the mismatch in thermal expansion coefficients
of the various phases. These stresses cannot be avoided by slow heating
or cooling.

e Heating or cooling of ceramics for which the thermal expansion is
anisotropic. The magnitude of the stresses will depend on the thermal
expansion anisotropy, and can cause polycrystalline bodies to sponta-
neously microcrack. This damage cannot be avoided by slow cooling,
but can be avoided if the grain size is kept small.

e  Phase transformations in which there is a volume change upon trans-
formation. In this case, the stresses will depend on the magnitude of
the volume change. They can only be avoided by suppressing the trans-
formation.

If properly introduced, thermal residual stresses can be beneficial, as in
the case of tempered glass.
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Finally, in the same way that solids conduct sound, they also conduct

heat, i.e., by lattice vibrations. Heat conduction occurs by the excitation
and interaction of neighboring atoms.

Problems

13.1. Give an example for each of (a) thermal strain but no stress, (b)
thermal stress but no strain, and (c¢) a situation where both exist.

13.2. (a) Derive Eq. (13.6).

(h) A metallic rod (o = 14 x 107°°C™", ¥ = 50 GPa at 800°C) is
machined such that it perfectly fits inside an alumina tube. The
assembly is then slowly heated; at 800°C the alumina tube
cracks. Assume Poisson’s ratio to be 0.25 for both materials.

(i) Describe the state of stress that develops in the system as it is
heated.

(i) Estimate the strength of the alumina tube.

Answer: 170 MPa
(ii1) In order to increase the temperature at which this system can

go, several strategies have been proposed (some of which are
wrong): Use an alumina with a larger grain size; use another
ceramic with a higher thermal expansion coefficient; use a
ceramic that does not bond well with the metal; and use a
metal with a higher stiffness at 800°C. Explain in some
detail (using calculations when possible) which of these
strategies you think would work and which would not.
Why?

(iv) If the situation were reversed (i.e., the alumina rod were
placed inside a metal tube), describe in detail the three-
dimensional state of stress that would develop in that
system upon heating.

(v) It has been suggested that one way to bond a ceramic rotor
to a metal shaft is to use the assembly described in part (iv).
If you were the engineer in charge, describe how you would
do it. This is not a hypothetical problem but is used com-
mercially and works quite well.

13.3. Consider a two-phase ceramic in which there are spherical inclusions

B. If upon cooling, the inclusions go through a phase transformation
that causes them to expand, which of the following states of stress
would you expect, and why?

(a) Hydrostatic pressure in B; radial, compressive, and tangential
tensile hoop stresses.
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13.4.

13.5.

13.6.

13.7.

(b)
(c)

(d)
()

(a)

(b)
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Debonding of the interface and zero stresses everywhere.
Hydrostatic pressure in B; radial, tensile, and tangential
compressive hoop stresses.

Hydrostatic pressure in B; radial, compressive. and tangential
compressive hoop stresses.

Hydrostatic pressure in B; radial. tensile, and tangential tensile
hoop stresses.

Plot the radial stress as a function of r for an inclusion in
an infinite matrix, given that Aa =5 x 107% AT = 500°C.
Y, = 300GPa, Y,, = 100 GPa, and v; = v,, = 0.25.

If the size of the inclusions were 10 um, for what volume fraction
would the “infinite’” matrix solution be a good one? What do you
think would happen if the volume fraction were higher? State all
assumptions.

Answer: =5 to 10 vol.% depending on assumptions

(@)
(b)

Is thermal shock more likely to occur as a result of rapid heating
or rapid cooling? Explain.

A ceramic component with Young’s modulus of 300 GPa and a
Ki. of 4MPa- m'/? is to survive a water quench from 500°C. If
the largest flaw in that material is on the order of 10 um. what
1s the maximum value of a for this ceramic for it to survive the
quench? State all assumptions.

Answer: 5 x 10°¢-C™!

(a)
(b)

Denive Eq. (13.11).

Which of the materials listed below would be best suited for an
application in which a part experiences sudden and severe
thermal fluctuations while in service?

Material MOR. Kin. Modulus. K. a.

MPa W/(m-K)  GPa MPa.m'® K'
1 700 290 200 8 9x10°°
2 1000 50 150 4 4% 10°°
3 750 100 150 4 3Ix10°°

(a)

(b)

Explain how a glaze with a different thermal expansion can
influence the effective strength of a ceramic component. To
increase the strength of a component., would you use a glaze
with a higher or lower thermal expansion coefficient than the
substrate? Explain.

Fully dense, 1-cm-thick alumina plates are to be glazed with a
porcelain glaze (Y = 70 GPa. v = 0.25) of 1-mm thickness with
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a thermal expansion coefficient of 4 x 107°°C. Assuming the
“stress-freezing” temperature of the glaze to be 800°C, calculate
the stress in the glaze at room temperature.

13.8. Using acoustic emission and thermal contraction data, Ohya er al.”
measured the functional dependence of the microcracking tempera-
ture of aluminum titanate ceramics on grain size as the samples
were cooled from 1500°C. The following results were obtained:

Grain size, um 3 5 9
Microcracking temperature upon cooling, “C 500 720 900

(a) Qualitatively explain the trend observed.

(b) Are these data consistent with the model presented in Sec. 13.4.1?
If so, calculate the value of the constant that appears in
Eq. (13.22), given that G4 = 0.5J/m’, ¥ =250GPa, and
A, = 15%x107°°C.

Answer: =~ 337 (°C)™*

(¢) Based on these results, estimate the grain size needed to obtain a

crack-free aluminum titanate body at room temperature. State
all necessary assumptions.

Answer: = 1.47 um

13.9. Explain why volume changes as low as 0.5 percent can cause
grain fractures during phase transformations of ceramics. State all
assumptions.

13.10. (a) If a glass fiber is carefully etched to remove “‘all” Griffith flaws
from its surface, estimate the maximum temperature from
which i1t can be quenched in a bath of ice water without failure.

State all assumptions. Information you may find useful:
Y = 70GPa, v = 0.25, v = 0.3J/m?, and o = 10 x 107°°C,

Answer: 5000°C
(b) Repeat part («) assuming 1-pm flaws are present on the surface.
Answer: 82°C

(c) Repeat part (b) for Pyrex, a borosilicate glass for which
@~ 3 x 107°°C. Based on your results, explain why Pyrex is
routinely used in labware.

13.11. Qualitatively explain how the following parameters would affect the
final value of the residual stresses in a tempered glass pane: (a) thick-
ness of glass, (») thermal conductivity of glass, (¢) quench tempera-
ture, (d) quench rate.

2%y Ohya, Z. Nakagawa, and K. Hamano, J. Amer. Cer. Soc., 70:C184-C186 (1987).
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13.12. Rank the following three solids in terms of their thermal conductivity:
MgO, MgO - Al,O;, and window glass. Explain.

13.13. (a) Estimate the heat loss through a 0.5-cm-thick, 1000 cm® window
if the inside temperature is 25°C and the outside temperature is
0°C. Information you may find useful: k,, conductivity of soda
lime is 1.7 W/(m - K).

(b) Repeat part (a) for a porous firebrick that is used to line a
furnace running at 1200°C. Typical values of ky, for firebricks
are 1.3 W/(m - K). State all assumptions.
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