Collider Physics

Geneva

PS

SPS

Future Circular Collider

100 km

27 km

LHC

Electroweak symmetry breaking in the SM: the quest for the Higgs

- Properties of SM Higgs
- Production mechanisms
- A few results
- Unitarity of the SM
- Triviality constraint on the SM Higgs
- Stability of the SM

 \star H couplings to W and Z are sizeable

 \star It is important to add some decay modes taking place via loops $\,H o\gamma\gamma\,\,$ and $\,H o gg$

\star a light H is a narrow resonance

Spira et al. hep-ph/9803257

5

 \star The dominant decay modes vary with the Higgs mass

The decay modes $H \to WW^*$ and $H \to ZZ^*$ have been included

• The QCD background for Higgs decaying into b pairs is HUGE $\,\sigma_{
m QCD}(bb)=200\mu{
m b}$

 \star The dominant decay modes vary with the Higgs mass

Decay channel	Branching ratio	Rel. uncertainty	atio
$H ightarrow \gamma \gamma$	2.27×10^{-3}	$^{+5.0\%}_{-4.9\%}$	Aing R M G G G G G G G G
$H \rightarrow ZZ$	2.62×10^{-2}	$^{+4.3\%}_{-4.1\%}$	
$H \to W^+ W^-$	2.14×10^{-1}	$^{+4.3\%}_{-4.2\%}$	10 ⁻² ZZ
$H \to \tau^+ \tau^-$	6.27×10^{-2}	$^{+5.7\%}_{-5.7\%}$	YY
$H \rightarrow b \overline{b}$	5.84×10^{-1}	$^{+3.2\%}_{-3.3\%}$	10 ⁻³ Ζγ
$H \rightarrow Z \gamma$	1.53×10^{-3}	$^{+9.0\%}_{-8.9\%}$	
$H \to \mu^+ \mu^-$	2.18×10^{-4}	$^{+6.0\%}_{-5.9\%}$	10 ⁻⁴ 120 121 122 123 124 125 126 127 128 129 130 M _H [GeV]

The decay modes $H \to WW^*$ and $H \to ZZ^*$ have been included

• The QCD background for Higgs decaying into b pairs is HUGE $\,\,\sigma_{
m QCD}(b\overline{b})=200\mu{
m b}$

2. Production mechanisms

- At LEP the Higgs produced was dominated by the Bjorken mechanism $e^+e^- o HZ$
 - Many Z decays can be reconstructed
 - Kinematics fixes the energy of the Z
 - For a SM Higgs, the b-jets can be reconstructed

LEP direct limit $M_H > 114.4 \text{ GeV}$

before we talk about Higgs: main reactions at the Tevatron and LHC

good to understand the difficulties of the Higgs searches

• At hadronic colliders the main production mechanisms are

- The importance of a process depends on the collider energy
- At the LHC the cross sections are

Cross sections known at least in NLO

- WW fusion process play an important role at the LHC
- A feature of WW fusion is the presence of forward jets that can be tagged qq
 ightarrow Hqq
 ightarrow Hjj

• Two useful decay modes are

$$H \to \tau^+ \tau^-$$
 and $H \to W^+ W^-$

- WW fusion process play an important role at the LHC
- A feature of WW fusion is the presence of forward jets that can be tagged qq
 ightarrow Hqq
 ightarrow Hjj

• Two useful decay modes are

 $H \to \tau^+ \tau^-$ and $H \to W^+ W^-$

 Higgs signal m_H=160 GeV/c² = = tt background a) 0.02 0.01 0 0 2

- The main background is the associated production of top pairs and jets
- The separation between the tagging jets can be used to reduce the backgrounds
 - It is possible to extract the signal

• Higgs produced at run 2 per experiment

Mode	Number
total	700000
AA	16000
ZZ to 4 leptons	900
WW to e mu	3000
tau tau	440000
mu mu	1500

3.A few results

• Precision channels

◆ Precision channels (H→ZZ*→4I, H→yy) have driven the discovery and subsequent measurements in the Higgs sector

Fully reconstructed final states, excellent precision!

- + powerful electron/muon/photon reconstruction, identification and calibration (few GeV detector resolution)
- can easily identify the Higgs candidate and then concentrate on the rest of the event

• The Higgs mass is well known

Precision reaching 0.1%, measurements still dominated by statistical uncertainty.

 $m_h = 125 \text{ GeV}, v = 246 \text{ GeV} \rightarrow \lambda \approx 0.13$

$H \to Z Z^{\star} \to 4\ell$

Good agreement with SM predictions:

- ggH measurement at 12% level
- other production modes more significantly stat. limited

$H\to\gamma\gamma$

Good agreement with SM predictions:

- ggH measurement at 10% level (stat. and sys at similar level)
- other production modes at 20%-50% precision

- Strong anti-correlation (-42%) between WH and ZH due to process cross-contamination:
 - 5 POI: *p*_{SM}= 3%
 - merging WH and ZH: pSM= 50%

$H \to W W^\star \to e^\pm \nu \mu^\mp \nu$

• there are large backgrounds

Table 1: Definition of the fiducial region.

Observable	Condition
Lepton origin	Direct decay of $H \rightarrow W^+W^-$
Lepton flavors; lepton charge	e μ (not from τ decay); opposite
Leading lepton $p_{\rm T}$	$p_{\mathrm{T}}^{l_1} > 25\mathrm{GeV}$
Trailing lepton $p_{\rm T}$	$p_{\mathrm{T}}^{l_2} > 13 \mathrm{GeV}$
$ \eta $ of leptons	$ \eta < 2.5$
Dilepton mass	$m^{ll} > 12 \mathrm{GeV}$
$p_{\rm T}$ of the dilepton system	$p_{\mathrm{T}}^{ll} > 30\mathrm{GeV}$
Transverse mass using trailing lepton	$m_{\mathrm{T}}^{l_2} > 30 \mathrm{GeV}$
Higgs boson transverse mass	$m_{\mathrm{T}}^{\mathrm{H}} > 60\mathrm{GeV}$

Good agreement with SM

$$\mu^{\text{fid}} = 1.05 \pm 0.12 \left(\pm 0.05 \,(\text{stat}) \pm 0.07 \,(\text{exp}) \pm 0.01 \,(\text{signal}) \pm 0.07 \,(\text{bkg}) \pm 0.03 \,(\text{lumi})
ight).$$
 $\sigma^{\text{fid}} = 86.5 \pm 9.5 \,\text{fb}.$

3. Unitarity in WW scattering (Lee-Quigg-Thacker, Cornwall, etc)

• Let us analyze the scattering of longitudinal W's ("Goldstone bosons") at high energies

$$W_L^+ W_L^- \to W_L^+ W_L^-$$

• We can approximate $\ \epsilon^{\mu}_W \simeq p^{\mu}_W$

• A 2 to 2 elastic scattering cross section can be written as

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2 s} \mid \mathcal{A} \mid^2$$

• the partial wave decomposition is

$$\mathcal{A} = 16\pi \sum_{l=0}^{\infty} (2l+1) P_l(\cos\theta) a_l$$

• However,

$$\sigma = \frac{16\pi}{s} \sum_{l=0}^{\infty} (2l+1) \mid a_l \mid^2 = \frac{1}{s} Im \left[\mathcal{A}(\theta = 0) \right] = \frac{16\pi}{s} \sum_{l=0}^{\infty} (2l+1) \mid a_l \mid^2$$

• Therefore, unitarity implies that

$$a_l \mid^2 = Im(a_l)$$
 or the equivalent form $\mid Re(a_l) \mid < \frac{1}{2}$

 \bullet Let's analyze the J=0 partial wave. In the $\,M_W^2 << s\,{\rm limit}$

$$a_0^0(W_L^+W_L^- \to W_L^+W_L^-) \equiv \frac{1}{16\pi s} \int_{-s}^0 |\mathcal{A}| dt$$
$$= -\frac{M_h^2}{16\pi v^2} \left[2 + \frac{M_h^2}{s - M_h^2} - \frac{M_h^2}{s} \log\left(1 + \frac{s}{M_h^2}\right) \right]$$

 \bullet Taking the high-energy limit $M_{H}^{2} << s$

$$a_0^0 \longrightarrow -\frac{M_h^2}{8\pi v^2}$$

• Using the above unitarity condition leads to

$$M_H < 870 \,\,{
m GeV}$$
 (710 GeV)

-0

• In the observed value of the Higgs mass is compatible with unitarity

4. Triviality constraints

* The Higgs quartic coupling "changes with the scale due to loop corrections" (it's a way to improve the convergence of PT):

defining
$$t \equiv \log(Q^2/Q_0^2)$$
 we have $\frac{d\lambda}{dt} = \frac{3\lambda^2}{4\pi^2}$

whose solution is

$$\lambda(Q) = \frac{\lambda(Q_0)}{\left[1 - \frac{3\lambda(Q_0)}{4\pi^2}\log(\frac{Q^2}{Q_0^2})\right]}$$

* The SM stops being valid at the energy scale Q such that

$$\ln\left(\frac{Q}{Q_0}\right) = \frac{4\pi^2}{3\lambda(Q_0)}$$

st Requiring the SM to be valid up to the scale Λ leads to a constraint on the Higgs mass

$${
m M}_{H}^2 < rac{8\pi^2 v^2}{3\log(\Lambda^2/v^2)}$$
 where we used that ${
m M}_{H}^2 = 2\lambda(Q_0)v^2$

5. Stability of the SM

• This expression must be improved using the RGE due to the appearance of large log's of the Higgs

• This calculation has been don using two-loop RGE's, extracting the physical Higgs mass, etc

* excluded Higgs masses (Sher et al; Hambye and Riesselmann)

 \star the Higgs mass is restricted to be between approximately 126 GeV and 160 GeV for $\Lambda \simeq 10^{16}~{
m GeV}$

Stability of our vacuum depends on the Higgs potential and the top quark mass.

REFERENCES

- Sally Dawson, arXiv:0812.2190
- Gunion, Haber, Kane, and Dawson, *Higgs Hunter Guide*