METALURGIA EXTRATIVA DOS NÃO FERROSOS

PMT 3409

Flávio Beneduce

Convecção forçada no interior de tubos (Re>10.000)

$$Nu_f = 0.026. \operatorname{Re}_f^{0.8}. \operatorname{Pr}_f^{1/3}. (\frac{\eta_f}{\eta_s})^{0.14}$$

Convecção natural

$$Nu_m = c.(Gr.Pr)_m^n$$

m: média de temperatura entre o fluido e o sólido

c e n: tabelados

(Gr.Pr) _m	С	n
1x10 ⁻³ -5x10 ²	1,18	1/8
5x10 ² -2x10 ⁷	0,54	1/4
2x10 ⁷ -1x10 ¹³	0,135	1/3

$$\phi_{eq} = 2. \sqrt[3]{\frac{3.V_{peça}}{4.\pi}}$$

•Água flui através de uma tubulação de 50 mm de diâmetro e 3 m de comprimento a uma velocidade de 0,8 m/s. Determine o coeficiente de transferência de calor \bar{h} se a temperatura média da água é de 50°C e a temperatura da parede é de 70°C.

$$Re_f = \frac{0.8x0,05x988,1}{0.569x10^{-4}x9,80665} = 7,08x10^4 > 10.000$$

$$Pr_f = 3,63 \qquad \eta_f = 0.569x10^{-4}$$

$$\eta_s = 0.416x10^{-4}$$

$$Nu_f = 0.026. (7.08x10^4)^{0.8}.3.63^{1/3}. (\frac{0.569}{0.416})^{0.14}$$

$$Nu_f = 0.026. (7.08 \times 10^4)^{0.8}. 3.63^{1/3}. (\frac{0.569}{0.416})^{0.14}$$

 $Nu_f = 316.78 = \frac{\overline{h}.0.05}{0.552}$

$$\bar{h} = 3497.2 \ \frac{kcal}{h.m^2.°C} \equiv 4060.64 \frac{W}{m^2.°C}$$

Severidade de têmpera

O parâmetro severidade de têmpera (H) é um parâmetro tecnológico que relaciona as propriedades térmicas do meio e do corpo. Ela é definida pela equação:

$$H = \frac{\bar{h}}{\lambda_s} [L^{-1}]$$

Valores típicos de H (supondo $\lambda_{aço}$ =35W/m.K).

Meio de têmpera		H(m ⁻¹)
Óleo	Sem agitação	7,9
	Agitação moderada	13,8
	Boa agitação	19,7
	Agitação vigorosa	27,6
Λαμα	Sem agitação	39,4
	Agitação vigorosa	59,0
Salmoura	Sem agitação	78,7
	Agitação vigorosa	196

 Uma esfera de aço de 10 cm de diâmetro é austenitizada a 800°C e resfriada em 4 meios diferentes: ar, óleo e água a 30°C e agitados a 1 m/s além de ar parado na mesma temperatura. Determinar as severidades de têmpera e as curvas de resfriamento nos 4 casos. $(\beta_{ar}=1/273 \text{ °C}^{-1}; \lambda_{aco}=39 \text{ kcal/h.m.°C})$

$$(\beta_{ar}=1/2/3 \text{ °C}^{-1}, \lambda_{aço}=39 \text{ Kcal/n.m. °C})$$

a) Ar agitado a 1 m/s

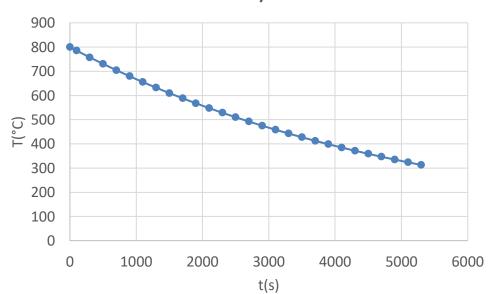
$$Re_f = \frac{1,0x0,10x1,1614}{184,6x10^{-7}} = 6,29x10^3 > 1.000$$

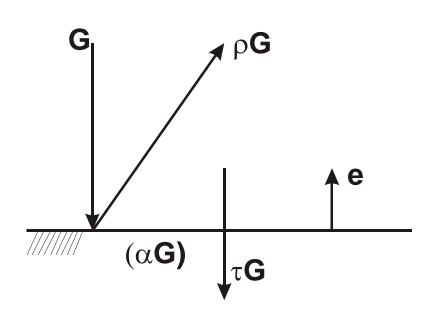
$$Pr_f = 0.707 \quad Pr_s = 0.727$$

$$Nu_f = 43,2 = \frac{\overline{h}.0,1}{26,3x10^{-3}}$$

$$\bar{h} = 11,4 \; \frac{W}{m^2 \cdot {}^{\circ}C}$$

$$H = 0.252 \, m^{-1}$$


$$Bi = \frac{11,4x0,05x3600}{39x1000x4,18} = 1,26x10^{-2} < 0,1$$


$$\therefore regime\ newtoniano$$

$$\frac{T-30}{800-30} = \exp\left(-\frac{11,4x(4x\pi x 0,05^2)}{7849x460x\left(\frac{4x\pi x 0,05^3}{3}\right)}.t\right)$$

$$\frac{T-30}{770} = \exp(-1.89x10^{-4}xt)$$

$$T = 770x \exp(-1.89x10^{-4}xt) + 30$$
ar 1m/s

$$G = \rho G + \alpha G + \tau G$$

$$e$$

$$\alpha + \rho + \tau = 1$$

G=Fluxo total incidente α = absorvidade ρ = refletividade τ = transmitividade e = emitância ou poder emissor

- •Corpo opaco: $\tau=0\Rightarrow \alpha+\rho=1$ condição para muitos sólidos e líquidos com exceção dos vidros e silicatos líquidos
- •Corpo transparente: $\tau \neq 0$
- •Radiosidade: fluxo que sai do corpo $q_{irr}^{"}=e+\rho G$
- •Corpo negro: absorve toda energia além de emitir o máximo

$$\rho = \tau = 0 :: \alpha = 1$$

$$q_{irr}'' = e_b$$
poder emissor

•Corpo real: tem um poder emissor que é uma fração de um corpo negro. Dessa forma:

$$e=\epsilon \ . \ e_b$$

$$\epsilon = emissividade$$

•Corpo cinza: absorvidade não depende da temperatura do corpo

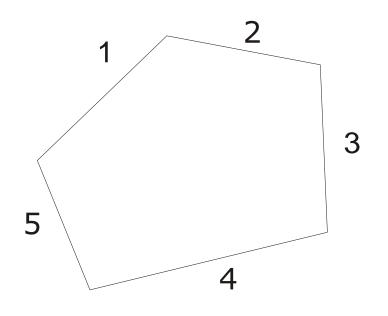
Para um corpo negro:

$$e_b = \sigma \cdot T^4$$

σ=constante de Stefan-Boltzman

4,93x10⁻⁸ kcal/h.m².K⁴

5,6697x10⁻⁸ W/m².K⁴


0,1713x10⁻⁸ BTU/h.ft².R⁴

T = temperatura absoluta

Para um corpo real:

$$e = \varepsilon \cdot \sigma \cdot T^4$$

FATOR DE VISTA: representa a fração de radiação de (1) que atinge $(2) - F_{12}$

$$F_{12}+F_{13}+F_{14}+...=1$$

$$S_1.F_{12}=S_2.F_{21}$$

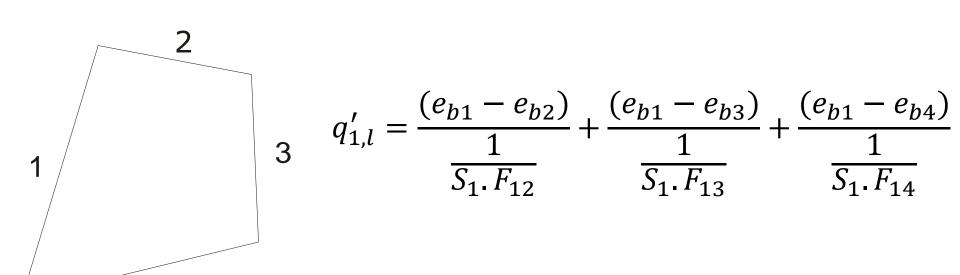
Portanto:

 A energia emitida pela superfície (1) que atinge a superfície (2) será:

$$E_{12}=e_{b1}.S_1.F_{12}=q'_{1\rightarrow 2}$$

$$q_{1,l} = S_1.F_{12}.(e_{b1} - e_{b2}) =$$

= $S_1.F_{12}.\sigma.(T_1^4 - T_2^4)$

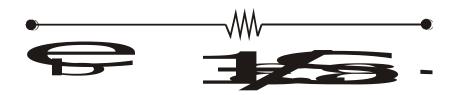

O caso contrário será:

$$E_{21} = e_{b2}.S_2.F_{21} = q'_{2\rightarrow 1}$$

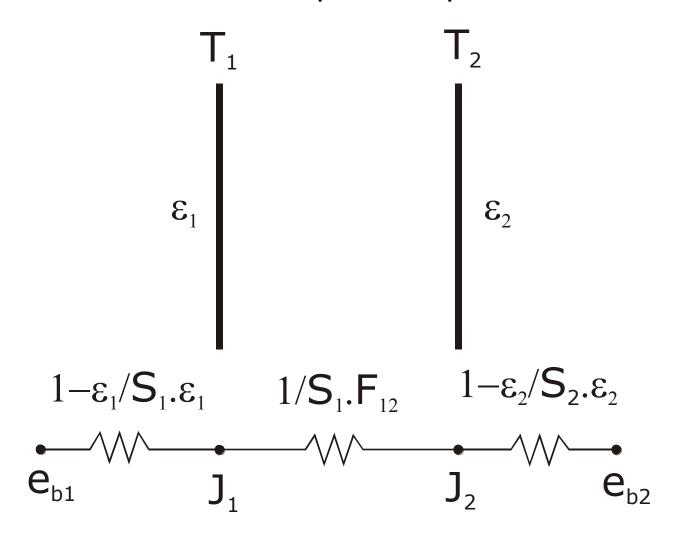
•A troca líquida de energia de (1) para (2) será:

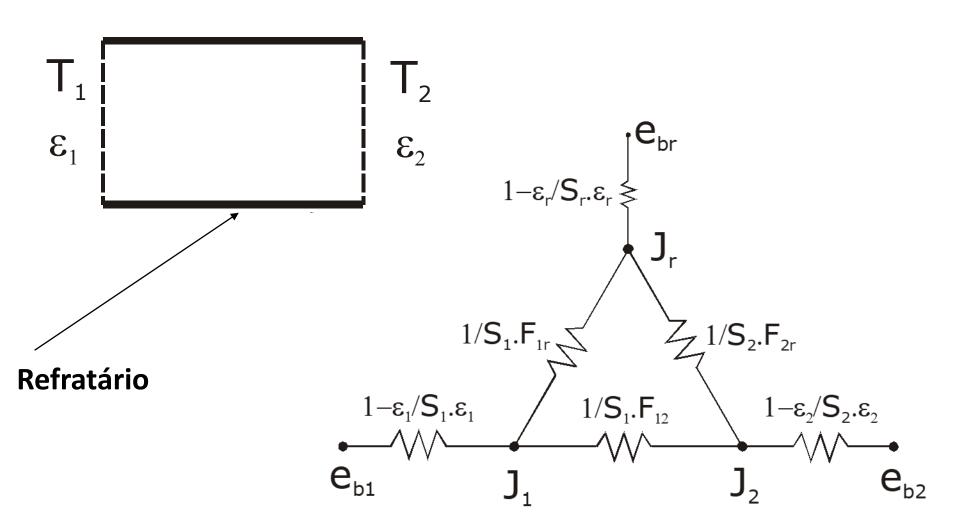
$$q'_{1,l} = q'_{1\to 2} - q'_{2\to 1}$$

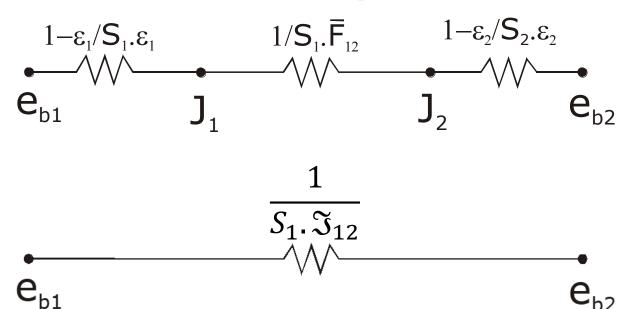
Para superfícies múltiplas:



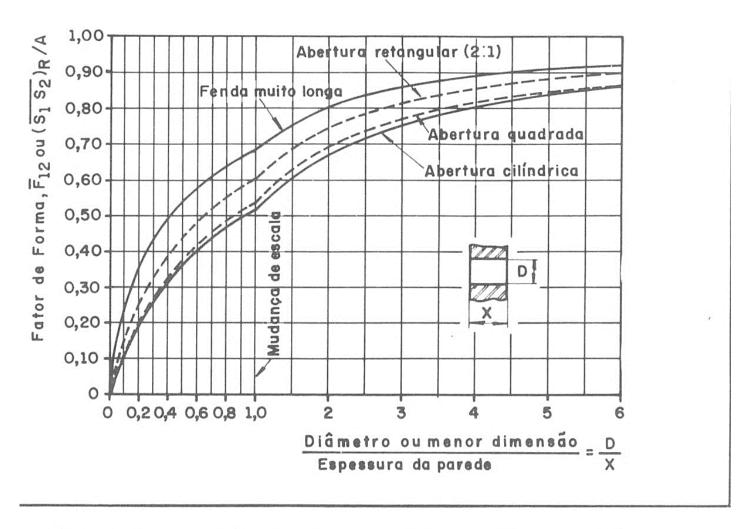
$$q_{1,l} = S_1 \cdot F_{12} \cdot (e_{b1} - e_{b2})$$


•(1/S₁.F₁₂) = resistência à radiação entre dois potenciais de mesma natureza 1/S₂.F₁₂


O potencial de um corpo cinza (J) pode ser transformado em um corpo negro (e_b) pela resistência (1- ϵ)/(S. ϵ).



Para duas superfícies paralelas:


Para sistemas "fechados":

$$\frac{1}{S_{1}.\mathfrak{T}_{12}} = \frac{1-\varepsilon_{1}}{S_{1}.\varepsilon_{1}} + \frac{1}{S_{1}.\overline{F_{12}}} + \frac{1-\varepsilon_{2}}{S_{2}.\varepsilon_{2}}$$

$$q'_{1,l} = S_1 \cdot \mathfrak{F}_{12} \cdot (e_{b1} - e_{b2}) = S_1 \cdot \mathfrak{F}_{12} \cdot \sigma \cdot (T_1^4 - T_2^4)$$

 Fator de forma global entre duas superfícies paralelas conectadas por paredes refratárias não-condutoras¹