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For rectangular prisms of dimensions 2 2 2 with constant material susceptibility , we have calculated and tabulated the
fluxmetric and magnetometric demagnetizing factors and , defined along the 2 dimension as functions of ( )1 2(=1
500) (=1 256) and (=0 109). We introduce an interpolation technique for obtaining with arbitrary values of
( )1 2 and .

Index Terms—Demagnetizing correction, fluxmetric demagnetizing factor, magnetometric demagnetizing factor, magnetic measure-
ments, rectangular prisms.

I. INTRODUCTION

WHEN a body is placed in a uniform applied field ,
it is magnetized not only by but also by the field

produced by the resultant magnetic poles in the body itself. The
field produced by such poles is usually called the demagnetizing
field . Assuming the material to have a constant suscepti-
bility for the sake of simplicity, the magnetic poles can be
present only on the body surface and they appear only when
there are some surfaces not parallel to the applied field. Since

and so the magnetization are generally nonuniform and
depend on both and body shape, the demagnetizing effects
may bring about great complexities in the magnetic measure-
ments of materials [1]–[3].

In order to avoid such effects, toroidal samples are recom-
mended in magnetic measurements of soft and semi-soft mag-
netic materials. In this case, the sample is magnetized by a cur-
rent- carrying coil uniformly wound on to it, so that the entire
sample surface is parallel to the circular applied field and the
demagnetizing field is absent at a sacrifice of the uniformity of
the circular applied field, which is inversely proportional to the
distance to the axis of cylindrical symmetry of the sample. The
maximum circular field that can be applied is on the order of
10 kA/m, which is limited by the allowed maximum tempera-
ture rise. For semi-soft magnetic materials, one can use a per-
meameter to measure a single tape, whose both ends are well
touched to a yoke made of soft-magnetic lamination, forming
a closed magnetic circuit. When a uniformly wound current-
carrying solenoid surrounds the tape, the demagnetizing fields
produced by the poles appearing in both end regions will be
partially cancelled by the fields produced by the poles induced
in the yoke with signs opposite to those in the tape ends. The
maximum field in such single tape measurements can be several
times greater than that in ring sample measurements. For hard
magnetic materials requiring a maximum field of the order of
MA/m, the recommended sample shapes are cylinders or rect-
angular prisms and the magnetizer is usually an electromagnet.
In this case, the fields produced by the induced poles in soft-
magnetic pole pieces of the magnet will also reduce the demag-
netizing field in the sample [1], [2].
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In contrast to the above examples where demagnetizing fields
are reduced or eliminated, there has been another way to deal
with the demagnetizing problem in magnetic measurements,
which is to calculate demagnetizing factors for certain sample
shapes. In this case, the sample made of material with a con-
stant susceptibility and having a certain symmetric shape is
placed in a uniform , and if the average magnetization
in the sample is parallel to along the symmetry axis and so
is the average demagnetizing field , then the average de-
magnetizing factor is defined as . If the
body shape is ellipsoidal, and are uniform, so that
is reduced to a simple demagnetizing factor , which is a func-
tion of the aspect ratios of the sample but independent of and
was analytically calculated a long time ago [4]. For any other
shapes, one has to define how the average is made and will
depend not only on aspect ratios but also on . Corresponding
to magnetometric and fluxmetric measurements, the average is
conventionally made over the entire body volume and over the
midplane, and the ’s are referred to as the magnetometric
and fluxmetric demagnetizing factors, and , respectively
[3]. If values are available, may be calculated from the
directly measured external susceptibility of the sample, de-
fined by . In fact, in the research and develop-
ment of magnetic materials, wires, cylinders, and rectangular
tapes and blocks are often the most convenient sample shapes,
and they may be easily magnetized by a current-carrying sole-
noid, so that the calculation of demagnetizing factors is neces-
sary in practice.

The numerical calculations of for different sample
shapes with different aspect ratios and have formed a century
old topic [3]. However, a practically complete set of results
was obtained just a decade ago for one shape, cylinder, thanks
to the developments of computer technology [3]. For another
important geometry, rectangular prism, there have long been
analytical results of for the general three-dimensional
case for and analytical transverse for infinitely
long bars for [5]–[8]. For these latter bars, transverse

as functions of and the transverse aspect ratio have
been calculated recently [9], [10]. Since a complete functional
three-dimensional calculation is too complicated, we have cal-
culated the axial of square bars as functions of the aspect
ratio and to compare with the existing results of cylinders,
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and of rectangular prisms as functions of aspect ratios for
the case of for applications in superconductors [11],
[12]. In the present paper, we will give of rectangular
prisms as functions of aspect ratios and , relevant to the
measurements of various magnetic materials. Different from
the results given in [3], [10]–[12], where only tables of discrete
data points are present and functional curves are plotted di-
rectly from the data in the tables, we will introduce an accurate
interpolation technique in detail, so that the resultant are
actually presented as continuous functions of aspect ratios and

in a wide range. This will provide readers who need to make
demagnetizing corrections for their sample having any values
of aspect ratios and with relevant correct . Moreover,
we will introduce an iteration technique in detail, so that the
final and of the sample can be obtained from the
directly measured and aspect ratios.

Although the method and formulas for the present calcula-
tions have already been given in [11] and [12], we will make a
necessary description on them in Section II, commenting on the
reasons for the steps and conditions we have used in this work.
Although these reasons are stated in a logical way, they were not
realized a priori but concluded from the success and failure of
our long-term intensive work. Thus, we expect that such a de-
scription can be practically useful to those who are dealing with
demagnetizing problems. The results of will be presented
as tables and figures in Section III. Section IV will be devoted to
the discussion and application of the results and our conclusions
will be stated in Section V. In the Appendix, we summarize the
quantities appearing in the paper for facilitating the readers.

II. CALCULATION

A. Magnetostatic Problem of Rectangular Prism

We consider a rectangular prism located at
with constant material suscepti-

bility . The prism is immersed in a uniform applied field
in the direction, as shown in Fig. 1(a). Since and

, we have inside the body, so
that the volume pole density, which is proportional to ,
is zero. Thus, the magnetostatic problem is aimed to find the
distribution of surface magnetic pole density, .

The distribution of can be very different for different values
of ; it is constant on the end planes perpendicular to the ap-
plied field and null on the side planes when , but varies
in inverse proportion to the power of the distance to each
edge when [9], [10]. In this case, a finite-element tech-
nique will be appropriate to use for all cases. With this tech-
nique, the entire surface of the prism is divided into rectan-
gular elements, each having a uniform pole density , and using

being the outward unit vector
normal to the surface, and taking into account that is the only
source of the local demagnetizing field , we find that

(1)

where is the outward unit vector normal to the th element and
is the negative of the average demagnetizing field on

Fig. 1. (a) The studied prism with coordinates and applied field. (b) Element
distribution on the side surface of y = b for a prism of � = 10 ; a=b = 2, and
c=(ab) = 2 calculated from (3) and (5) using n = 256.

the th element generated by the th element, which is calculated
in Appendix A of [11] from the magnetic Coulomb law

(2)

where is the entire body surface and is a vector ending
at this surface. Note that in this work we relate for all the
elements using the local demagnetizing field averaged over
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the surface of each element, rather than using at the center of
each element as done in [3] and [10]. This modification allows
us to improve appreciably the accuracy of calculated for
prisms to a level higher than that for cylinders calculated in [3].
Otherwise, the pole distribution of a prism (having 12 edges) is
much more difficult to be calculated accurately than that of a
cylinder (having only two edges) [7], [13].

The set of linear equations (1) should include as many un-
known variables as the number of elements covering the en-
tire surface. However, as done in [10], the number of unknown
variables can be reduced by considering the symmetry. To do
so, we take for the elements within the region
as unknown variables and we include the contributions to
of the eight different elements at symmetric positions with the
same magnitude of surface pole density in the matrix . The
resultant set of linear equations is solved using the LU decom-
position routine [14].

B. Surface Element Division

The division of the surface into elements is done as follows.
The elements are taken to be rectangular shaped. Their size in
the direction depends only on the coordinate of the po-
sition of the element center depends only on , and
depends only on . In this way, the surface division into ele-
ments can be done as the composition of three independent line
element divisions. We take the same nonlinear line division in
the direction as done in [10] for the direction parallel to the
applied field. Consistently, the line divisions in the and di-
rections are done as in [10] for the direction perpendicular to the
field. A more detailed description is made as follows.

As derived in [9], when tends to infinity as
power over the distance to the edge. Since at high are
most difficult to be calculated accurately, the surface element
distribution should be made based on this law. Improving the
calculation for cylinders, where a basically uniform pole in-
tensity for is made in the elements near the edges, a
roughly uniform pole-density increment for is imple-
mented near the edges for the present calculation. As in [10],
we use artificial distributions

(3)

(4)

(5)

to calculate the element divisions along the , and direc-
tions, respectively. In order to overcome the difficulty arising
from the actually infinite at the edges, we extend the , and

for small lengths , and , so that the , and
calculated from (3)–(5) are large finite numbers. Thus, the

division units become
, and . The proper values of

, and are chosen for different values of

and aspect ratios in such a way that the minimum error in the
calculated is obtained.

The numbers of divisions in the three directions, ,
and (with a layer riding on the midplane with

, which is essential for reducing the error of the final results,
especially for ), are taken by fixing the number of elements
integrally belonging to the region,

, selecting
(this is tested to be a proper choice independent of the value
of ), and assuming . The elements centered
at have , so that on these elements are not
unknown variables. We also consider a restriction for

. This restriction ensures sufficiently fine divisions
when is very large so that a minimum error in the final

is reached.
An exemplified element division on a side surface for a prism

of , and is shown in Fig. 1(b).
In order to have a sufficient resolution near the edges,

is used with and . In the actual
calculation, is set as large as 4800.

C. Calculation of

The fluxmetric and magnetometric demagnetizing factors,
and , are defined by [3]

(6)

where the subscripts “mid” and “vol” stand for the average over
the midplane and over the entire volume, respectively. When
the prism material has a constant as in the present case, the
demagnetizing factors can be calculated from either
or using [10]

(7)

(8)

Using the calculated surface pole density, can be
easily calculated by the surface integration of , using

inside the body and on the surface [3], [10].
may be calculated from the sum of the prism-mid-

plane (at ) and prism-volume averaged fields generated by
all rectangular elements as

(9)

(10)

where and are the prism-midplane average and
prism-volume average of the component of the magnetic field
per unit generated by the th element at ,
whose analytical expressions may be obtained from the for-
mulas derived in Appendixes A and B of [11]. The use of ana-
lytical formulas for avoids doing numerical midplane
and volume integrations, as done in [3], [10], so it avoids pos-
sible extra numerical error for calculations and saves
around 50% of the total computer time.
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D. Correction of

The demagnetizing factors can be calculated from ei-
ther or using (7) and (8), respectively. If

is calculated in both ways, we can obtain a corrected
. The correction formula is

(11)

where is the value of calculated using and
is obtained by means of .

Using the finite-element method, there is always a discretiza-
tion error in the calculated pole density distribution, especially
when is large so that shows a sharp divergence near the
edges. When calculating of cylinders [3], we found that
the calculated were very sensitive to the element divi-
sion and that and calculated from the same distri-
bution could be orders of magnitude different from each other
even if quite a large element number was used. This became a
vital problem that seriously limited the accuracy of the results
of . After carefully investigating (7) and (8), we found that
a small error in and could result in a great
error in and . Then, reasonably assuming the rela-
tive errors in the calculated and owing to
the discretization in the pole distribution to be the same

(12)

where quantities with a superscript denote their ideal correct
values whereas those without a superscript denote their calcu-
lated values with some error, a correction formula (11) was de-
rived from (7) and (8). Compared with the directly calculated

and , the error of the corrected was at least
one order of magnitude smaller. The validity of such a correc-
tion technique has been further justified in [10] and used in [11],
[12]. In the present work, all the final data for are actually

.

E. Error Estimation

In a previous work [10], the error in the calculated was
checked by comparing the results with those calculated analyti-
cally for several values. However, for the case of prisms there
are only exact analytical formulas for for [5], [6].
Moreover, since the error for is at least one order of
magnitude greater than that for [10], these analytical for-
mulas are useless for estimating the error for arbitrary . Con-
sequently, an alternative error estimation method is applied.

The error involved in finite-element methods is mainly due
to the division of a continuous body into discrete elements.
The discretization error of the calculated decreases with in-
creasing the number of elements , so that the limit of
would yield to the exact , and consequently, the precise solu-
tion of . Then, if we plot as a function of , the
exact value would correspond to . Furthermore,
if is low enough, the dependence on could be
assumed linear as a first approximation.

The error is estimated as follows. For each pair of and
values, two calculations are done using different

numbers of elements, and with . Then,
we regard the “exact” value as the linear extrapolation

of at , obtained from and
. Finally, the relative error of is estimated as

, taking
as the final value. For the calculations pre-

sented in this paper we have used being around 4800 and
around 3700.

If the dependence of were exactly linear, we
should use the extrapolated as the final
result. However, this is not the case, and we can only use this
technique to estimate the error roughly.

III. RESULTS

are calculated as functions of and aspect ratios of the
prism. The three dimensions , and should give two in-
dependent aspect ratios, and following the early numerical cal-
culations of for in [7], we choose them as and

. The values of are chosen with logarithmic unifor-
mity as 1, 2, 4, 8, 16, 32, 64, 128, and 256, which are the same as
those in [7]. The values of are chosen as 1, 1.5, 2, 5, 10,
20, 50, 100, 200, and 500. We omit data for because
long samples are more important in measurements of magnetic
materials, which are our concern in the present work; the max-
imum is chosen as 500, since the calculated at

have too large error. Moreover, from the data
points at these values of , quite accurate continuous
versus curves may be drawn using a spline line in loga-
rithmic scales for each pair of values of and . The values of

were chosen quite arbitrarily when for cylinders were
calculated in [3]; after studied the conjugate relations in [9]
and [10], we now choose ,
and . These values include the extreme value
and , where analytical exact are known. Since
a complete calculation of demagnetizing factors of prisms in-
volves a huge amount of computation time, the above choice
for calculation points aims to ensure that well distributed data
points of with high accuracy can be used for as many cases
as possible by accurate interpolation and extrapolation.

The obtained data for and are listed in Tables I and II,
respectively. Since in magnetic measurements of samples with a
high , the demagnetizing correction can be properly done only
when their is high enough, data for and
are given at high only, although the results for the high

limit are complete. The estimated errors are classified between
% and %, which are indicated by the numbers of

significant digits and stars. and versus curves
for different values of are plotted by spline lines in Figs. 2
and 3 for , and . We introduce grid lines
so that values of can be easily estimated from the figures.

IV. DISCUSSION

A. Variations of With Aspect Ratios and

A general description of the variations of with aspect
ratio and was first given in [3] for cylinders. After calculating

of square bars, their similarity to cylinders was shown in
[11]. For infinitely long rectangular bars [9], [10], the behavior
of transverse was found also to be basically similar to that
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TABLE I
N OF RECTANGULAR PRISM 2a � 2b � 2c ALONG THE 2c DIMENSION AS A FUNCTION OF SUSCEPTIBILITY � AND ASPECT RATIOS a=b AND c=

p
ab.

THE ESTIMATED ERROR: � = 0, EXACT; SIX SIGNIFICANT DIGITS, <0:01%; FIVE SIGNIFICANT DIGITS, <0:1%; FOUR SIGNIFICANT DIGITS

WITHOUT ; <0:5%; WITH ; <1%; WITH ; <2:1%

of cylinders. For a general rectangular prism like in the present
case, at and

were discussed in [7] for . Extending the calculations to
and , we can observe from comparing our
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TABLE II
N OF RECTANGULAR PRISM 2a � 2b � 2c ALONG THE 2c DIMENSION AS A FUNCTION OF SUSCEPTIBILITY � AND ASPECT RATIOS a=b AND

c=
p
ab. THE ESTIMATED ERROR: � = 0, EXACT; SIX SIGNIFICANT DIGITS, <0:01%; FIVE SIGNIFICANT DIGITS, <0:1%; FOUR SIGNIFICANT

DIGITS WITHOUT ; <0:5%; WITH ; <1%; WITH ; <2:1%; WITH ; <3:1%

results with those given in [7] how change with increasing
at .

Looking at the curves plotted in Figs. 2 and 3 and cal-
culating from the data listed in Tables I and II, we see
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Fig. 2. N along the 2c dimension as a function of c=(ab) at a=b = 1; 2; 4; 8; 16; 32;64;128, and 256 for rectangular prisms 2a� 2b� 2c with � = 0
(a), 1.5 (b), 9 (c), 99 (d), 999 (e), and 10 (f). Arrows point in the direction of increasing a=b.

that at with increasing from 1 to 200,
decreases slightly from 4.0 to

3.5 but decreases greatly from
6.7 to 1.0, showing a remarkable difference between and

. With increasing to , both pairs of numbers turn out to
be 4.2 to 1.8 and 4.5 to 1.8, respectively, suggesting that the
behavior of becomes similar to that of with increasing

. In fact, we have at any large and given that
at small and at large

being the demagnetizing factor for a corresponding ellipsoid.

This rule was used for the approximate estimation of of
rectangular prisms in [7], when the number of accurate data
points was very limited. In order to show their relation after the
present calculations, a comparison among , and at

is shown in Fig. 4 for , and .

B. The Accuracy of Calculated .

A general rule for the accuracy of the calculated is that
it decreases with increasing , and . From Table I,
we see that the error is less than 0.1% for all data at ,
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Fig. 3. N along the 2c dimension as a function of c=(ab) at a=b = 1; 2; 4; 8; 16; 32;64;128, and 256 for rectangular prisms 2a� 2b� 2c with � = 0
(a), 1.5 (b), 9 (c), 99 (d), 999 (e), and 10 (f). Arrows point in the direction of increasing a=b.

and with increasing from 1 to 256, the limiting
for 0.1% accuracy decreases from 500 to 10, from 100 to 5, and
from 500 to 2 for , and , respectively. There are
only three points at or where the
error of is larger than 1%. The accuracy of the calculated

is usually lower than that of . From Table II, we see that
the error is less than 0.1% for all data at , and with
increasing from 1 to 256, the limiting for 0.1%
accuracy decreases from 500 to 100, from 50 to 5, from 100 to
2, and from 100 to 2 for , and , respectively.

There are about 30 points at or
or where the error of is larger
than 1%. Since the optimum element distribution at has
been used for and without further optimization,
the error of for both values is larger than that at
and .

We should mention that although the accuracy of the results
may be improved by further optimizing the element distribution
for each case, such an improvement will not be significant. With
the used maximum that corresponds to a reasonable com-
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Fig. 4. Comparison of N and N versus c=(ab) curves at � = 10 with
demagnetizing factor N of ellipsoids of semi-axes a; b, and c for a=b = 1; 32,
and 128 in (a), (b), and (c), respectively.

putation time, we cannot calculate for
with an accuracy better than 1%. A further improvement in the
accuracy would require a higher and a greatly increased com-
putation speed. The present high accuracy in a wide parameter
region has been realized following all the points described in
Section II after our long-term development, and we believe that
further developments should still be proceeded in a heuristic
way. Numerical calculation has been widely used in magneto-
statics problems, and we feel that the calculation of for
simple geometries can be a good test for treating complex sys-
tems, since the correctness and accuracy of the results can be
well estimated for simple cases but not for the complex ones.

C. for Arbitrary Aspect Ratios

The results of numerical calculations can only give discrete
data points. Since accurate require a huge computation
time, such data points should be reduced to a minimum number.

As functions of , and , the number and distribu-
tion of the calculated points should ensure that accurate
curves of versus , and be obtained from
them. Plotting figures, we always connect a set of functional
data points by a spline line in this paper. As explained earlier,
with the chosen values, curves can
be plotted accurately in log–log scales for each pair of and

. After studying the conjugate relations in two-dimensional
case [10], we know that versus the permeability

is a log–log smooth function, so that a choice of
is reasonable. We have added one point at

, with which for weak magnetic materials can be ob-
tained more accurately. The value of is chosen in geometric
progression growth of common factor 2, and we see from Figs. 2
and 3 that curves are quite uniformly placed when
is large, whereas they become denser when . In fact,

and are physically identical, and is a
parabolic curve centered at , which can be drawn ac-
curately with the chosen values of . Thus, with data
listed in Tables I and II, for any intermediate values of

, and can be obtained by interpolation with a
satisfactory accuracy, and may also be obtained with less
accuracy by extrapolation if their values are beyond the calcu-
lated range.

In actual magnetic measurements, the sample dimensions are
fixed and one needs to get at given values of
and . As examples, we assume arbitrarily two samples to
have and with a common . All
these values are not included in Tables I and II. The interpolation
of is performed as follows.

We first draw spline curves in log–log scales
for , and and , and using
data given in Table I, as demonstrated in Fig. 5(a)–(c). In order to
get accurate spline curves, four values around 7.5 are
used. Drawing a vertical line at , we obtain the

coordinate of its intersection point with each
curve, so that at and every pair of
and is obtained. We next draw spline curve for each

value and , as shown in Fig. 5(d)–(f). Note
that data points for , and are added
when plotting spline curves, so that smooth symmetric parabolic
curves are obtained. Drawing vertical lines at and

, we obtain data by reading the coordinate of the
intersection points. These data points are connected by spline

versus curves in Fig. 6, where they are compared
with two nearby curves directly drawn using accurate data in
Table I. Note that in Fig. 6, the scale is set linear rather than
logarithmic for ease of reading.

In the above cases all the directly calculated data points have
error less than 0.1%, and the interpolated curves have added an
error about 0.2%, as checked by extra direct calculations (see
Table III).

D. Exemplified Application

The calculated versus , and have var-
ious applications [3]. We introduce one that is a good represen-



2086 IEEE TRANSACTIONS ON MAGNETICS, VOL. 41, NO. 6, JUNE 2005

Fig. 5. Spline N versus c=(ab) curves for a=b = 1; 2; 4; 8, and 16 and � = 0 (a), 9 (b), and 999 (c) connecting data points obtained from Table I. Spline
N versus a=b curves for c=(ab) = 7:5 and � = 0 and 1:5 (d), 9 and 99 (e), and 999 (f). Arrows point in the direction of increasing a=b.

tative of the classical model of constant and requires very ac-
curate data.

It is known that for a ferromagnet at temperatures slightly
above the Curie temperature, , the temperature dependent
susceptibility follows:

(13)

where and are constants and the latter is referred to as the
critical exponent. The value of has been calculated using dif-
ferent models of magnetic structure. For example, it equals 1,
1.241, and 1.386 for the mean field, three-dimensional Ising, and
three-dimensional Heisenberg models, respectively [15]. Using
(13), we can determine precisely and from measured

. The problem is that in the magnetometric measurements,

the directly measured susceptibility is and it
has to be corrected to using

(14)

In the past, such a correction was made assuming to be
constant, determined by the maximum in its field or de-
pendence [15]. According to (14), such determined cor-
responds to its value at a certain high only, and it cannot
be properly used for the correction since (13) involves that
changes usually by two or three orders of magnitude.

To make a proper demagnetizing correction for the exempli-
fied samples whose functions are shown in Fig. 6,
and may be obtained iteratively. We expect that such a correc-
tion should give the value of different from that using the tra-
ditional way, so that the physical conclusion might be changed
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Fig. 6. Interpolated spline N versus �+1 curves for c=(ab) = 7:5 and
a=b = 1:5 (a) and 6 (b) (solid lines). The dashed and dotted lines show accurate
nearby curves drawn directly from data listed in Table I.

concerning the magnetic structure. The correction is performed
using

(15)

where the superscripts denote the iteration step.
When , we set to get using the interpo-
lated curves in Fig. 6 and so using (15). We then
use to get and so and use to get and
so in a similar way. Assuming , and
for sample 1 with and , and for
sample 2 with , the results are listed in Table III.

We see from Table III that both and become quite
stable when , and therefore, three times of iterations are
already enough and the final results can be taken as

and , as listed in Table III.
Moreover, we have both and to in-
crease with increasing . It is important to make an error anal-
ysis as follows.

Assuming the relative error of the measured and the cal-
culated is and , respectively, the relative error in
the final calculated from (14) will be estimated by

(16)

if both partial errors are independent to each other. We see from
(16) that is greater than at least by a factor , and
the error in gives an additional contribution to the error of

if is large. Assuming % and %

will increase from 1.1% to 9% with increasing for the
two samples in Table III. Thus, we conclude that in order to get

with a reasonable accuracy, and should be very
accurate and should be so large that is not too
large.

V. CONCLUSION

For rectangular prisms of dimensions with con-
stant material susceptibility , we have calculated their flux-
metric and magnetometric demagnetizing factors along
the axis as functions of the values of and aspect ratios

and . The results are listed in Tables I and II with
620 points in a parameter region of

, and . The error of is less than 1% for
more than 95% of points, and it decreases to less than 0.01%
with decreasing , and . Since the distribution
of the calculation points is well designed, for any values
of parameters in the calculated region may be conveniently ob-
tained by interpolations using spline lines with an satisfactory
additional error of about 0.2%. Our results can be very useful
for high quality magnetic measurements and accurate quantita-
tive studies of magnetic materials.

APPENDIX

SUMMARY OF QUANTITIES USED IN THE PAPER

The studied body is a rectangular prism with a constant ma-
terial susceptibility [or constant material permeability

] centered at the origin and having dimensions ,
and along the , and axes, respectively, in a uniform ap-
plied magnetic field in the direction.

Magnetic field being the demagnetizing
field produced by magnetic poles in the prism and magnetization

. Because the magnetic flux density
and , we have in the

prism, so that magnetic poles are present on the surface only and
are characterized by surface magnetic pole density ,
where is the outward unit vector normal to the surface.

Since and are generally nonuniform, we use and
to stand for their average in general. is the compo-

nent of . and are the component of
and when the average is made over the midplane.

and are the component of and when
the average is made over the entire volume. Since these average
quantities are generally used for both the ideal correct values
and calculated values with some error, we redefine
and to be the ideal correct values when both types
of values appear in (12). and are the midplane av-
erage and volume average of the component of the per unit

generated by the th element in the region of .
is demagnetizing factor for ellipsoid along a principal

axis. is average demagnetizing factor in general. is
fluxmetric demagnetizing factor, i.e., and when the average
is made over the midplane. is magnetometric demagne-
tizing factor, i.e., and when the average is made over
the entire volume. are calculated using “surface
method” through . are calculated using



2088 IEEE TRANSACTIONS ON MAGNETICS, VOL. 41, NO. 6, JUNE 2005

TABLE III
DETERMINATION OF N AND � FROM THE MEASURED SAMPLE DIMENSIONS AND � . DIRECTLY CALCULATED N ARE WRITTEN WITHIN PARENTHESES

“volume method” through . are corrected
using (11) from and .

is external susceptibility.
, and are used for the center coordinates of the th

element; in the region of , these coordinates are
, or . , and are element

size along the , and axes, respectively. , and
are the increments used for calculating element divisions

along the , and axes, respectively, from (3)–(5). ,
and are the division numbers along the , and axes,
respectively. . is the total element
number.

, and are the relative error in , and ,
respectively.
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